uvm_swap.c revision 1.27.4.3 1 /* $NetBSD: uvm_swap.c,v 1.27.4.3 1999/07/31 19:03:26 chs Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include "fs_nfs.h"
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/proc.h>
42 #include <sys/namei.h>
43 #include <sys/disklabel.h>
44 #include <sys/errno.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47 #include <sys/vnode.h>
48 #include <sys/file.h>
49 #include <sys/extent.h>
50 #include <sys/mount.h>
51 #include <sys/pool.h>
52 #include <sys/syscallargs.h>
53 #include <sys/swap.h>
54
55 #include <vm/vm.h>
56 #include <vm/vm_conf.h>
57
58 #include <uvm/uvm.h>
59
60 #include <miscfs/specfs/specdev.h>
61
62 /*
63 * uvm_swap.c: manage configuration and i/o to swap space.
64 */
65
66 /*
67 * swap space is managed in the following way:
68 *
69 * each swap partition or file is described by a "swapdev" structure.
70 * each "swapdev" structure contains a "swapent" structure which contains
71 * information that is passed up to the user (via system calls).
72 *
73 * each swap partition is assigned a "priority" (int) which controls
74 * swap parition usage.
75 *
76 * the system maintains a global data structure describing all swap
77 * partitions/files. there is a sorted LIST of "swappri" structures
78 * which describe "swapdev"'s at that priority. this LIST is headed
79 * by the "swap_priority" global var. each "swappri" contains a
80 * CIRCLEQ of "swapdev" structures at that priority.
81 *
82 * locking:
83 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
84 * system call and prevents the swap priority list from changing
85 * while we are in the middle of a system call (e.g. SWAP_STATS).
86 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
87 * structures including the priority list, the swapdev structures,
88 * and the swapmap extent.
89 *
90 * each swap device has the following info:
91 * - swap device in use (could be disabled, preventing future use)
92 * - swap enabled (allows new allocations on swap)
93 * - map info in /dev/drum
94 * - vnode pointer
95 * for swap files only:
96 * - block size
97 * - max byte count in buffer
98 * - buffer
99 * - credentials to use when doing i/o to file
100 *
101 * userland controls and configures swap with the swapctl(2) system call.
102 * the sys_swapctl performs the following operations:
103 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
104 * [2] SWAP_STATS: given a pointer to an array of swapent structures
105 * (passed in via "arg") of a size passed in via "misc" ... we load
106 * the current swap config into the array.
107 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
108 * priority in "misc", start swapping on it.
109 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
110 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
111 * "misc")
112 */
113
114 /*
115 * SWAP_TO_FILES: allows swapping to plain files.
116 */
117
118 #define SWAP_TO_FILES
119
120 /*
121 * swapdev: describes a single swap partition/file
122 *
123 * note the following should be true:
124 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
125 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
126 */
127 struct swapdev {
128 struct oswapent swd_ose;
129 #define swd_dev swd_ose.ose_dev /* device id */
130 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
131 #define swd_priority swd_ose.ose_priority /* our priority */
132 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
133 char *swd_path; /* saved pathname of device */
134 int swd_pathlen; /* length of pathname */
135 int swd_npages; /* #pages we can use */
136 int swd_npginuse; /* #pages in use */
137 int swd_drumoffset; /* page0 offset in drum */
138 int swd_drumsize; /* #pages in drum */
139 struct extent *swd_ex; /* extent for this swapdev */
140 struct vnode *swd_vp; /* backing vnode */
141 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
142
143 #ifdef SWAP_TO_FILES
144 int swd_bsize; /* blocksize (bytes) */
145 int swd_maxactive; /* max active i/o reqs */
146 struct buf swd_tab; /* buffer list */
147 struct ucred *swd_cred; /* cred for file access */
148 #endif
149 };
150
151 /*
152 * swap device priority entry; the list is kept sorted on `spi_priority'.
153 */
154 struct swappri {
155 int spi_priority; /* priority */
156 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
157 /* circleq of swapdevs at this priority */
158 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
159 };
160
161 /*
162 * The following two structures are used to keep track of data transfers
163 * on swap devices associated with regular files.
164 * NOTE: this code is more or less a copy of vnd.c; we use the same
165 * structure names here to ease porting..
166 */
167 struct vndxfer {
168 struct buf *vx_bp; /* Pointer to parent buffer */
169 struct swapdev *vx_sdp;
170 int vx_error;
171 int vx_pending; /* # of pending aux buffers */
172 int vx_flags;
173 #define VX_BUSY 1
174 #define VX_DEAD 2
175 };
176
177 struct vndbuf {
178 struct buf vb_buf;
179 struct vndxfer *vb_xfer;
180 };
181
182
183 /*
184 * We keep a of pool vndbuf's and vndxfer structures.
185 */
186 struct pool *vndxfer_pool;
187 struct pool *vndbuf_pool;
188
189 #define getvndxfer(vnx) do { \
190 int s = splbio(); \
191 vnx = (struct vndxfer *) \
192 pool_get(vndxfer_pool, PR_MALLOCOK|PR_WAITOK); \
193 splx(s); \
194 } while (0)
195
196 #define putvndxfer(vnx) { \
197 pool_put(vndxfer_pool, (void *)(vnx)); \
198 }
199
200 #define getvndbuf(vbp) do { \
201 int s = splbio(); \
202 vbp = (struct vndbuf *) \
203 pool_get(vndbuf_pool, PR_MALLOCOK|PR_WAITOK); \
204 splx(s); \
205 } while (0)
206
207 #define putvndbuf(vbp) { \
208 pool_put(vndbuf_pool, (void *)(vbp)); \
209 }
210
211
212 /*
213 * local variables
214 */
215 static struct extent *swapmap; /* controls the mapping of /dev/drum */
216
217 /* list of all active swap devices [by priority] */
218 LIST_HEAD(swap_priority, swappri);
219 static struct swap_priority swap_priority;
220
221 /* locks */
222 lock_data_t swap_syscall_lock;
223
224 /*
225 * prototypes
226 */
227 static void swapdrum_add __P((struct swapdev *, int));
228 static struct swapdev *swapdrum_getsdp __P((int));
229
230 static struct swapdev *swaplist_find __P((struct vnode *, int));
231 static void swaplist_insert __P((struct swapdev *,
232 struct swappri *, int));
233 static void swaplist_trim __P((void));
234
235 static int swap_on __P((struct proc *, struct swapdev *));
236 static int swap_off __P((struct proc *, struct swapdev *));
237
238 #ifdef SWAP_TO_FILES
239 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
240 static void sw_reg_iodone __P((struct buf *));
241 static void sw_reg_start __P((struct swapdev *));
242 #endif
243
244 static int uvm_swap_io __P((struct vm_page **, int, int, int));
245
246 /*
247 * uvm_swap_init: init the swap system data structures and locks
248 *
249 * => called at boot time from init_main.c after the filesystems
250 * are brought up (which happens after uvm_init())
251 */
252 void
253 uvm_swap_init()
254 {
255 UVMHIST_FUNC("uvm_swap_init");
256
257 UVMHIST_CALLED(pdhist);
258 /*
259 * first, init the swap list, its counter, and its lock.
260 * then get a handle on the vnode for /dev/drum by using
261 * the its dev_t number ("swapdev", from MD conf.c).
262 */
263
264 LIST_INIT(&swap_priority);
265 uvmexp.nswapdev = 0;
266 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
267 simple_lock_init(&uvm.swap_data_lock);
268
269 if (bdevvp(swapdev, &swapdev_vp))
270 panic("uvm_swap_init: can't get vnode for swap device");
271
272 /*
273 * create swap block resource map to map /dev/drum. the range
274 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
275 * that block 0 is reserved (used to indicate an allocation
276 * failure, or no allocation).
277 */
278 swapmap = extent_create("swapmap", 1, INT_MAX,
279 M_VMSWAP, 0, 0, EX_NOWAIT);
280 if (swapmap == 0)
281 panic("uvm_swap_init: extent_create failed");
282
283 /*
284 * allocate pools for structures used for swapping to files.
285 */
286
287 vndxfer_pool =
288 pool_create(sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 0,
289 NULL, NULL, 0);
290 if (vndxfer_pool == NULL)
291 panic("swapinit: pool_create failed");
292
293 vndbuf_pool =
294 pool_create(sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 0,
295 NULL, NULL, 0);
296 if (vndbuf_pool == NULL)
297 panic("swapinit: pool_create failed");
298 /*
299 * done!
300 */
301 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
302 }
303
304 /*
305 * swaplist functions: functions that operate on the list of swap
306 * devices on the system.
307 */
308
309 /*
310 * swaplist_insert: insert swap device "sdp" into the global list
311 *
312 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
313 * => caller must provide a newly malloc'd swappri structure (we will
314 * FREE it if we don't need it... this it to prevent malloc blocking
315 * here while adding swap)
316 */
317 static void
318 swaplist_insert(sdp, newspp, priority)
319 struct swapdev *sdp;
320 struct swappri *newspp;
321 int priority;
322 {
323 struct swappri *spp, *pspp;
324 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
325
326 /*
327 * find entry at or after which to insert the new device.
328 */
329 for (pspp = NULL, spp = swap_priority.lh_first; spp != NULL;
330 spp = spp->spi_swappri.le_next) {
331 if (priority <= spp->spi_priority)
332 break;
333 pspp = spp;
334 }
335
336 /*
337 * new priority?
338 */
339 if (spp == NULL || spp->spi_priority != priority) {
340 spp = newspp; /* use newspp! */
341 UVMHIST_LOG(pdhist, "created new swappri = %d", priority, 0, 0, 0);
342
343 spp->spi_priority = priority;
344 CIRCLEQ_INIT(&spp->spi_swapdev);
345
346 if (pspp)
347 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
348 else
349 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
350 } else {
351 /* we don't need a new priority structure, free it */
352 FREE(newspp, M_VMSWAP);
353 }
354
355 /*
356 * priority found (or created). now insert on the priority's
357 * circleq list and bump the total number of swapdevs.
358 */
359 sdp->swd_priority = priority;
360 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
361 uvmexp.nswapdev++;
362
363 /*
364 * done!
365 */
366 }
367
368 /*
369 * swaplist_find: find and optionally remove a swap device from the
370 * global list.
371 *
372 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
373 * => we return the swapdev we found (and removed)
374 */
375 static struct swapdev *
376 swaplist_find(vp, remove)
377 struct vnode *vp;
378 boolean_t remove;
379 {
380 struct swapdev *sdp;
381 struct swappri *spp;
382
383 /*
384 * search the lists for the requested vp
385 */
386 for (spp = swap_priority.lh_first; spp != NULL;
387 spp = spp->spi_swappri.le_next) {
388 for (sdp = spp->spi_swapdev.cqh_first;
389 sdp != (void *)&spp->spi_swapdev;
390 sdp = sdp->swd_next.cqe_next)
391 if (sdp->swd_vp == vp) {
392 if (remove) {
393 CIRCLEQ_REMOVE(&spp->spi_swapdev,
394 sdp, swd_next);
395 uvmexp.nswapdev--;
396 }
397 return(sdp);
398 }
399 }
400 return (NULL);
401 }
402
403
404 /*
405 * swaplist_trim: scan priority list for empty priority entries and kill
406 * them.
407 *
408 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
409 */
410 static void
411 swaplist_trim()
412 {
413 struct swappri *spp, *nextspp;
414
415 for (spp = swap_priority.lh_first; spp != NULL; spp = nextspp) {
416 nextspp = spp->spi_swappri.le_next;
417 if (spp->spi_swapdev.cqh_first != (void *)&spp->spi_swapdev)
418 continue;
419 LIST_REMOVE(spp, spi_swappri);
420 free((caddr_t)spp, M_VMSWAP);
421 }
422 }
423
424 /*
425 * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
426 *
427 * => caller must hold swap_syscall_lock
428 * => uvm.swap_data_lock should be unlocked (we may sleep)
429 */
430 static void
431 swapdrum_add(sdp, npages)
432 struct swapdev *sdp;
433 int npages;
434 {
435 u_long result;
436
437 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
438 EX_WAITOK, &result))
439 panic("swapdrum_add");
440
441 sdp->swd_drumoffset = result;
442 sdp->swd_drumsize = npages;
443 }
444
445 /*
446 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
447 * to the "swapdev" that maps that section of the drum.
448 *
449 * => each swapdev takes one big contig chunk of the drum
450 * => caller must hold uvm.swap_data_lock
451 */
452 static struct swapdev *
453 swapdrum_getsdp(pgno)
454 int pgno;
455 {
456 struct swapdev *sdp;
457 struct swappri *spp;
458
459 for (spp = swap_priority.lh_first; spp != NULL;
460 spp = spp->spi_swappri.le_next)
461 for (sdp = spp->spi_swapdev.cqh_first;
462 sdp != (void *)&spp->spi_swapdev;
463 sdp = sdp->swd_next.cqe_next)
464 if (pgno >= sdp->swd_drumoffset &&
465 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
466 return sdp;
467 }
468 return NULL;
469 }
470
471
472 /*
473 * sys_swapctl: main entry point for swapctl(2) system call
474 * [with two helper functions: swap_on and swap_off]
475 */
476 int
477 sys_swapctl(p, v, retval)
478 struct proc *p;
479 void *v;
480 register_t *retval;
481 {
482 struct sys_swapctl_args /* {
483 syscallarg(int) cmd;
484 syscallarg(void *) arg;
485 syscallarg(int) misc;
486 } */ *uap = (struct sys_swapctl_args *)v;
487 struct vnode *vp;
488 struct nameidata nd;
489 struct swappri *spp;
490 struct swapdev *sdp;
491 struct swapent *sep;
492 char userpath[PATH_MAX + 1];
493 size_t len;
494 int count, error, misc;
495 int priority;
496 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
497
498 misc = SCARG(uap, misc);
499
500 /*
501 * ensure serialized syscall access by grabbing the swap_syscall_lock
502 */
503 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, (void *)0);
504
505 /*
506 * we handle the non-priv NSWAP and STATS request first.
507 *
508 * SWAP_NSWAP: return number of config'd swap devices
509 * [can also be obtained with uvmexp sysctl]
510 */
511 if (SCARG(uap, cmd) == SWAP_NSWAP) {
512 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
513 0, 0, 0);
514 *retval = uvmexp.nswapdev;
515 error = 0;
516 goto out;
517 }
518
519 /*
520 * SWAP_STATS: get stats on current # of configured swap devs
521 *
522 * note that the swap_priority list can't change as long
523 * as we are holding the swap_syscall_lock. we don't want
524 * to grab the uvm.swap_data_lock because we may fault&sleep during
525 * copyout() and we don't want to be holding that lock then!
526 */
527 if (SCARG(uap, cmd) == SWAP_STATS
528 #if defined(COMPAT_13)
529 || SCARG(uap, cmd) == SWAP_OSTATS
530 #endif
531 ) {
532 sep = (struct swapent *)SCARG(uap, arg);
533 count = 0;
534
535 for (spp = swap_priority.lh_first; spp != NULL;
536 spp = spp->spi_swappri.le_next) {
537 for (sdp = spp->spi_swapdev.cqh_first;
538 sdp != (void *)&spp->spi_swapdev && misc-- > 0;
539 sdp = sdp->swd_next.cqe_next) {
540 /*
541 * backwards compatibility for system call.
542 * note that we use 'struct oswapent' as an
543 * overlay into both 'struct swapdev' and
544 * the userland 'struct swapent', as we
545 * want to retain backwards compatibility
546 * with NetBSD 1.3.
547 */
548 sdp->swd_ose.ose_inuse =
549 btodb(sdp->swd_npginuse << PAGE_SHIFT);
550 error = copyout((caddr_t)&sdp->swd_ose,
551 (caddr_t)sep, sizeof(struct oswapent));
552
553 /* now copy out the path if necessary */
554 #if defined(COMPAT_13)
555 if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
556 #else
557 if (error == 0)
558 #endif
559 error = copyout((caddr_t)sdp->swd_path,
560 (caddr_t)&sep->se_path,
561 sdp->swd_pathlen);
562
563 if (error)
564 goto out;
565 count++;
566 #if defined(COMPAT_13)
567 if (SCARG(uap, cmd) == SWAP_OSTATS)
568 ((struct oswapent *)sep)++;
569 else
570 #endif
571 sep++;
572 }
573 }
574
575 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
576
577 *retval = count;
578 error = 0;
579 goto out;
580 }
581
582 /*
583 * all other requests require superuser privs. verify.
584 */
585 if ((error = suser(p->p_ucred, &p->p_acflag)))
586 goto out;
587
588 /*
589 * at this point we expect a path name in arg. we will
590 * use namei() to gain a vnode reference (vref), and lock
591 * the vnode (VOP_LOCK).
592 *
593 * XXX: a NULL arg means use the root vnode pointer (e.g. for
594 * miniroot)
595 */
596 if (SCARG(uap, arg) == NULL) {
597 vp = rootvp; /* miniroot */
598 if (vget(vp, LK_EXCLUSIVE)) {
599 error = EBUSY;
600 goto out;
601 }
602 if (SCARG(uap, cmd) == SWAP_ON &&
603 copystr("miniroot", userpath, sizeof userpath, &len))
604 panic("swapctl: miniroot copy failed");
605 } else {
606 int space;
607 char *where;
608
609 if (SCARG(uap, cmd) == SWAP_ON) {
610 if ((error = copyinstr(SCARG(uap, arg), userpath,
611 sizeof userpath, &len)))
612 goto out;
613 space = UIO_SYSSPACE;
614 where = userpath;
615 } else {
616 space = UIO_USERSPACE;
617 where = (char *)SCARG(uap, arg);
618 }
619 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
620 if ((error = namei(&nd)))
621 goto out;
622 vp = nd.ni_vp;
623 }
624 /* note: "vp" is referenced and locked */
625
626 error = 0; /* assume no error */
627 switch(SCARG(uap, cmd)) {
628 case SWAP_DUMPDEV:
629 if (vp->v_type != VBLK) {
630 error = ENOTBLK;
631 goto out;
632 }
633 dumpdev = vp->v_rdev;
634
635 break;
636
637 case SWAP_CTL:
638 /*
639 * get new priority, remove old entry (if any) and then
640 * reinsert it in the correct place. finally, prune out
641 * any empty priority structures.
642 */
643 priority = SCARG(uap, misc);
644 spp = (struct swappri *)
645 malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
646 simple_lock(&uvm.swap_data_lock);
647 if ((sdp = swaplist_find(vp, 1)) == NULL) {
648 error = ENOENT;
649 } else {
650 swaplist_insert(sdp, spp, priority);
651 swaplist_trim();
652 }
653 simple_unlock(&uvm.swap_data_lock);
654 if (error)
655 free(spp, M_VMSWAP);
656 break;
657
658 case SWAP_ON:
659 /*
660 * check for duplicates. if none found, then insert a
661 * dummy entry on the list to prevent someone else from
662 * trying to enable this device while we are working on
663 * it.
664 */
665 priority = SCARG(uap, misc);
666 simple_lock(&uvm.swap_data_lock);
667 if ((sdp = swaplist_find(vp, 0)) != NULL) {
668 error = EBUSY;
669 simple_unlock(&uvm.swap_data_lock);
670 break;
671 }
672 sdp = (struct swapdev *)
673 malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
674 spp = (struct swappri *)
675 malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
676 memset(sdp, 0, sizeof(*sdp));
677 sdp->swd_flags = SWF_FAKE; /* placeholder only */
678 sdp->swd_vp = vp;
679 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
680 #ifdef SWAP_TO_FILES
681 /*
682 * XXX Is NFS elaboration necessary?
683 */
684 if (vp->v_type == VREG)
685 sdp->swd_cred = crdup(p->p_ucred);
686 #endif
687 swaplist_insert(sdp, spp, priority);
688 simple_unlock(&uvm.swap_data_lock);
689
690 sdp->swd_pathlen = len;
691 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
692 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
693 panic("swapctl: copystr");
694 /*
695 * we've now got a FAKE placeholder in the swap list.
696 * now attempt to enable swap on it. if we fail, undo
697 * what we've done and kill the fake entry we just inserted.
698 * if swap_on is a success, it will clear the SWF_FAKE flag
699 */
700 if ((error = swap_on(p, sdp)) != 0) {
701 simple_lock(&uvm.swap_data_lock);
702 (void) swaplist_find(vp, 1); /* kill fake entry */
703 swaplist_trim();
704 simple_unlock(&uvm.swap_data_lock);
705 #ifdef SWAP_TO_FILES
706 if (vp->v_type == VREG)
707 crfree(sdp->swd_cred);
708 #endif
709 free(sdp->swd_path, M_VMSWAP);
710 free((caddr_t)sdp, M_VMSWAP);
711 break;
712 }
713
714 /*
715 * got it! now add a second reference to vp so that
716 * we keep a reference to the vnode after we return.
717 */
718 vref(vp);
719 break;
720
721 case SWAP_OFF:
722 #if 1
723 /*
724 * find the entry of interest and ensure it is enabled.
725 */
726 simple_lock(&uvm.swap_data_lock);
727 if ((sdp = swaplist_find(vp, 0)) == NULL) {
728 simple_unlock(&uvm.swap_data_lock);
729 error = ENXIO;
730 break;
731 }
732 /*
733 * If a device isn't in use or enabled, we
734 * can't stop swapping from it (again).
735 */
736 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
737 simple_unlock(&uvm.swap_data_lock);
738 error = EBUSY;
739 break;
740 }
741
742 /*
743 * do the real work.
744 */
745 /* XXXCDC: should we call with list locked or unlocked? */
746 if ((error = swap_off(p, sdp)) != 0)
747 /* XXXCDC: might need relock here */
748 goto out;
749
750 /*
751 * now we can kill the entry.
752 */
753 if ((sdp = swaplist_find(vp, 1)) == NULL) {
754 error = ENXIO;
755 break;
756 }
757 simple_unlock(&uvm.swap_data_lock);
758 free((caddr_t)sdp, M_VMSWAP);
759 #else
760 error = EINVAL;
761 #endif
762 break;
763
764 default:
765 error = EINVAL;
766 }
767
768 /*
769 * done! use vput to drop our reference and unlock
770 */
771 vput(vp);
772 out:
773 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0);
774
775 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
776 return (error);
777 }
778
779 /*
780 * swap_on: attempt to enable a swapdev for swapping. note that the
781 * swapdev is already on the global list, but disabled (marked
782 * SWF_FAKE).
783 *
784 * => we avoid the start of the disk (to protect disk labels)
785 * => we also avoid the miniroot, if we are swapping to root.
786 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
787 * if needed.
788 */
789 static int
790 swap_on(p, sdp)
791 struct proc *p;
792 struct swapdev *sdp;
793 {
794 static int count = 0; /* static */
795 struct vnode *vp;
796 int error, npages, nblocks, size;
797 long addr;
798 #ifdef SWAP_TO_FILES
799 struct vattr va;
800 #endif
801 #ifdef NFS
802 extern int (**nfsv2_vnodeop_p) __P((void *));
803 #endif /* NFS */
804 dev_t dev;
805 char *name;
806 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
807
808 /*
809 * we want to enable swapping on sdp. the swd_vp contains
810 * the vnode we want (locked and ref'd), and the swd_dev
811 * contains the dev_t of the file, if it a block device.
812 */
813
814 vp = sdp->swd_vp;
815 dev = sdp->swd_dev;
816
817 /*
818 * open the swap file (mostly useful for block device files to
819 * let device driver know what is up).
820 *
821 * we skip the open/close for root on swap because the root
822 * has already been opened when root was mounted (mountroot).
823 */
824 if (vp != rootvp) {
825 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
826 return (error);
827 }
828
829 /* XXX this only works for block devices */
830 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
831
832 /*
833 * we now need to determine the size of the swap area. for
834 * block specials we can call the d_psize function.
835 * for normal files, we must stat [get attrs].
836 *
837 * we put the result in nblks.
838 * for normal files, we also want the filesystem block size
839 * (which we get with statfs).
840 */
841 switch (vp->v_type) {
842 case VBLK:
843 if (bdevsw[major(dev)].d_psize == 0 ||
844 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
845 error = ENXIO;
846 goto bad;
847 }
848 break;
849
850 #ifdef SWAP_TO_FILES
851 case VREG:
852 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
853 goto bad;
854 nblocks = (int)btodb(va.va_size);
855 if ((error =
856 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
857 goto bad;
858
859 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
860 /*
861 * limit the max # of outstanding I/O requests we issue
862 * at any one time. take it easy on NFS servers.
863 */
864 #ifdef NFS
865 if (vp->v_op == nfsv2_vnodeop_p)
866 sdp->swd_maxactive = 2; /* XXX */
867 else
868 #endif /* NFS */
869 sdp->swd_maxactive = 8; /* XXX */
870 break;
871 #endif
872
873 default:
874 error = ENXIO;
875 goto bad;
876 }
877
878 /*
879 * save nblocks in a safe place and convert to pages.
880 */
881
882 sdp->swd_ose.ose_nblks = nblocks;
883 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
884
885 /*
886 * for block special files, we want to make sure that leave
887 * the disklabel and bootblocks alone, so we arrange to skip
888 * over them (randomly choosing to skip PAGE_SIZE bytes).
889 * note that because of this the "size" can be less than the
890 * actual number of blocks on the device.
891 */
892 if (vp->v_type == VBLK) {
893 /* we use pages 1 to (size - 1) [inclusive] */
894 size = npages - 1;
895 addr = 1;
896 } else {
897 /* we use pages 0 to (size - 1) [inclusive] */
898 size = npages;
899 addr = 0;
900 }
901
902 /*
903 * make sure we have enough blocks for a reasonable sized swap
904 * area. we want at least one page.
905 */
906
907 if (size < 1) {
908 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
909 error = EINVAL;
910 goto bad;
911 }
912
913 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
914
915 /*
916 * now we need to allocate an extent to manage this swap device
917 */
918 name = malloc(12, M_VMSWAP, M_WAITOK);
919 sprintf(name, "swap0x%04x", count++);
920
921 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
922 sdp->swd_ex = extent_create(name, 0, npages - 1, M_VMSWAP,
923 0, 0, EX_WAITOK);
924 /* allocate the `saved' region from the extent so it won't be used */
925 if (addr) {
926 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
927 panic("disklabel region");
928 sdp->swd_npginuse += addr;
929 simple_lock(&uvm.swap_data_lock);
930 uvmexp.swpginuse += addr;
931 uvmexp.swpgonly += addr;
932 simple_unlock(&uvm.swap_data_lock);
933 }
934
935 /*
936 * if the vnode we are swapping to is the root vnode
937 * (i.e. we are swapping to the miniroot) then we want
938 * to make sure we don't overwrite it. do a statfs to
939 * find its size and skip over it.
940 */
941 if (vp == rootvp) {
942 struct mount *mp;
943 struct statfs *sp;
944 int rootblocks, rootpages;
945
946 mp = rootvnode->v_mount;
947 sp = &mp->mnt_stat;
948 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
949 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
950 if (rootpages > npages)
951 panic("swap_on: miniroot larger than swap?");
952
953 if (extent_alloc_region(sdp->swd_ex, addr,
954 rootpages, EX_WAITOK))
955 panic("swap_on: unable to preserve miniroot");
956
957 simple_lock(&uvm.swap_data_lock);
958 sdp->swd_npginuse += (rootpages - addr);
959 uvmexp.swpginuse += (rootpages - addr);
960 uvmexp.swpgonly += (rootpages - addr);
961 simple_unlock(&uvm.swap_data_lock);
962
963 size -= rootpages;
964 printf("Preserved %d pages of miniroot ", rootpages);
965 printf("leaving %d pages of swap\n", size);
966 }
967
968 /*
969 * add anons to reflect the new swap space
970 */
971 uvm_anon_add(size);
972
973 /*
974 * now add the new swapdev to the drum and enable.
975 */
976 simple_lock(&uvm.swap_data_lock);
977 swapdrum_add(sdp, npages);
978 sdp->swd_npages = size;
979 sdp->swd_flags &= ~SWF_FAKE; /* going live */
980 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
981 simple_unlock(&uvm.swap_data_lock);
982 uvmexp.swpages += npages;
983
984 #if 0
985 /*
986 * At this point we could arrange to reserve memory for the
987 * swap buffer pools.
988 *
989 * I don't think this is necessary, since swapping starts well
990 * ahead of serious memory deprivation and the memory resource
991 * pools hold on to actively used memory. This should ensure
992 * we always have some resources to continue operation.
993 */
994
995 int s = splbio();
996 int n = 8 * sdp->swd_maxactive;
997
998 if (vp->v_type == VREG) {
999 /* Allocate additional vnx and vnd buffers */
1000 /*
1001 * Allocation Policy:
1002 * (8 * swd_maxactive) vnx headers per swap dev
1003 * (16 * swd_maxactive) vnd buffers per swap dev
1004 */
1005
1006 n = 8 * sdp->swd_maxactive;
1007 (void)pool_prime(vndxfer_pool, n, 0);
1008
1009 n = 16 * sdp->swd_maxactive;
1010 (void)pool_prime(vndbuf_pool, n, 0);
1011 }
1012 splx(s);
1013 #endif
1014
1015 return (0);
1016
1017 bad:
1018 /*
1019 * failure: close device if necessary and return error.
1020 */
1021 if (vp != rootvp)
1022 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
1023 return (error);
1024 }
1025
1026 /*
1027 * swap_off: stop swapping on swapdev
1028 *
1029 * => swap data should be locked, we will unlock.
1030 */
1031 static int
1032 swap_off(p, sdp)
1033 struct proc *p;
1034 struct swapdev *sdp;
1035 {
1036 return 0;
1037 }
1038
1039 /*
1040 * /dev/drum interface and i/o functions
1041 */
1042
1043 /*
1044 * swread: the read function for the drum (just a call to physio)
1045 */
1046 /*ARGSUSED*/
1047 int
1048 swread(dev, uio, ioflag)
1049 dev_t dev;
1050 struct uio *uio;
1051 int ioflag;
1052 {
1053 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1054
1055 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1056 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1057 }
1058
1059 /*
1060 * swwrite: the write function for the drum (just a call to physio)
1061 */
1062 /*ARGSUSED*/
1063 int
1064 swwrite(dev, uio, ioflag)
1065 dev_t dev;
1066 struct uio *uio;
1067 int ioflag;
1068 {
1069 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1070
1071 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1072 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1073 }
1074
1075 /*
1076 * swstrategy: perform I/O on the drum
1077 *
1078 * => we must map the i/o request from the drum to the correct swapdev.
1079 */
1080 void
1081 swstrategy(bp)
1082 struct buf *bp;
1083 {
1084 struct swapdev *sdp;
1085 struct vnode *vp;
1086 int s, pageno, bn;
1087 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1088
1089 /*
1090 * convert block number to swapdev. note that swapdev can't
1091 * be yanked out from under us because we are holding resources
1092 * in it (i.e. the blocks we are doing I/O on).
1093 */
1094 pageno = dbtob(bp->b_blkno) >> PAGE_SHIFT;
1095 simple_lock(&uvm.swap_data_lock);
1096 sdp = swapdrum_getsdp(pageno);
1097 simple_unlock(&uvm.swap_data_lock);
1098 if (sdp == NULL) {
1099 bp->b_error = EINVAL;
1100 bp->b_flags |= B_ERROR;
1101 biodone(bp);
1102 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1103 return;
1104 }
1105
1106 /*
1107 * convert drum page number to block number on this swapdev.
1108 */
1109
1110 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1111 bn = btodb(pageno << PAGE_SHIFT); /* convert to diskblock */
1112
1113 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld\n",
1114 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1115 sdp->swd_drumoffset, bn, bp->b_bcount);
1116
1117 /*
1118 * for block devices we finish up here.
1119 * for regular files we have to do more work which we delegate
1120 * to sw_reg_strategy().
1121 */
1122
1123 switch (sdp->swd_vp->v_type) {
1124 default:
1125 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1126 case VBLK:
1127
1128 /*
1129 * must convert "bp" from an I/O on /dev/drum to an I/O
1130 * on the swapdev (sdp).
1131 */
1132 s = splbio();
1133 bp->b_blkno = bn; /* swapdev block number */
1134 vp = sdp->swd_vp; /* swapdev vnode pointer */
1135 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1136 VHOLD(vp); /* "hold" swapdev vp for i/o */
1137
1138 /*
1139 * if we are doing a write, we have to redirect the i/o on
1140 * drum's v_numoutput counter to the swapdevs.
1141 */
1142 if ((bp->b_flags & B_READ) == 0) {
1143 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1144 vp->v_numoutput++; /* put it on swapdev */
1145 }
1146
1147 /*
1148 * dissassocate buffer with /dev/drum vnode
1149 * [could be null if buf was from physio]
1150 */
1151 if (bp->b_vp != NULLVP)
1152 brelvp(bp);
1153
1154 /*
1155 * finally plug in swapdev vnode and start I/O
1156 */
1157 bp->b_vp = vp;
1158 splx(s);
1159 VOP_STRATEGY(bp);
1160 return;
1161 #ifdef SWAP_TO_FILES
1162 case VREG:
1163 /*
1164 * deligate to sw_reg_strategy function.
1165 */
1166 sw_reg_strategy(sdp, bp, bn);
1167 return;
1168 #endif
1169 }
1170 /* NOTREACHED */
1171 }
1172
1173 #ifdef SWAP_TO_FILES
1174 /*
1175 * sw_reg_strategy: handle swap i/o to regular files
1176 */
1177 static void
1178 sw_reg_strategy(sdp, bp, bn)
1179 struct swapdev *sdp;
1180 struct buf *bp;
1181 int bn;
1182 {
1183 struct vnode *vp;
1184 struct vndxfer *vnx;
1185 daddr_t nbn, byteoff;
1186 caddr_t addr;
1187 int s, off, nra, error, sz, resid;
1188 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1189
1190 /*
1191 * allocate a vndxfer head for this transfer and point it to
1192 * our buffer.
1193 */
1194 getvndxfer(vnx);
1195 vnx->vx_flags = VX_BUSY;
1196 vnx->vx_error = 0;
1197 vnx->vx_pending = 0;
1198 vnx->vx_bp = bp;
1199 vnx->vx_sdp = sdp;
1200
1201 /*
1202 * setup for main loop where we read filesystem blocks into
1203 * our buffer.
1204 */
1205 error = 0;
1206 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1207 addr = bp->b_data; /* current position in buffer */
1208 byteoff = dbtob(bn);
1209
1210 for (resid = bp->b_resid; resid; resid -= sz) {
1211 struct vndbuf *nbp;
1212
1213 /*
1214 * translate byteoffset into block number. return values:
1215 * vp = vnode of underlying device
1216 * nbn = new block number (on underlying vnode dev)
1217 * nra = num blocks we can read-ahead (excludes requested
1218 * block)
1219 */
1220 nra = 0;
1221 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1222 &vp, &nbn, &nra);
1223
1224 if (error == 0 && (long)nbn == -1) {
1225 /*
1226 * this used to just set error, but that doesn't
1227 * do the right thing. Instead, it causes random
1228 * memory errors. The panic() should remain until
1229 * this condition doesn't destabilize the system.
1230 */
1231 #if 1
1232 panic("sw_reg_strategy: swap to sparse file");
1233 #else
1234 error = EIO; /* failure */
1235 #endif
1236 }
1237
1238 /*
1239 * punt if there was an error or a hole in the file.
1240 * we must wait for any i/o ops we have already started
1241 * to finish before returning.
1242 *
1243 * XXX we could deal with holes here but it would be
1244 * a hassle (in the write case).
1245 */
1246 if (error) {
1247 s = splbio();
1248 vnx->vx_error = error; /* pass error up */
1249 goto out;
1250 }
1251
1252 /*
1253 * compute the size ("sz") of this transfer (in bytes).
1254 * XXXCDC: ignores read-ahead for non-zero offset
1255 */
1256 if ((off = (byteoff % sdp->swd_bsize)) != 0)
1257 sz = sdp->swd_bsize - off;
1258 else
1259 sz = (1 + nra) * sdp->swd_bsize;
1260
1261 if (resid < sz)
1262 sz = resid;
1263
1264 UVMHIST_LOG(pdhist, "sw_reg_strategy: vp %p/%p offset 0x%x/0x%x",
1265 sdp->swd_vp, vp, byteoff, nbn);
1266
1267 /*
1268 * now get a buf structure. note that the vb_buf is
1269 * at the front of the nbp structure so that you can
1270 * cast pointers between the two structure easily.
1271 */
1272 getvndbuf(nbp);
1273 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1274 nbp->vb_buf.b_bcount = sz;
1275 #if 0
1276 nbp->vb_buf.b_bufsize = bp->b_bufsize; /* XXXCDC: really? */
1277 #endif
1278 nbp->vb_buf.b_bufsize = sz;
1279 nbp->vb_buf.b_error = 0;
1280 nbp->vb_buf.b_data = addr;
1281 nbp->vb_buf.b_blkno = nbn + btodb(off);
1282 nbp->vb_buf.b_proc = bp->b_proc;
1283 nbp->vb_buf.b_iodone = sw_reg_iodone;
1284 nbp->vb_buf.b_vp = NULLVP;
1285 nbp->vb_buf.b_vnbufs.le_next = NOLIST;
1286 nbp->vb_buf.b_rcred = sdp->swd_cred;
1287 nbp->vb_buf.b_wcred = sdp->swd_cred;
1288
1289 /*
1290 * set b_dirtyoff/end and b_validoff/end. this is
1291 * required by the NFS client code (otherwise it will
1292 * just discard our I/O request).
1293 */
1294 if (bp->b_dirtyend == 0) {
1295 nbp->vb_buf.b_dirtyoff = 0;
1296 nbp->vb_buf.b_dirtyend = sz;
1297 } else {
1298 nbp->vb_buf.b_dirtyoff =
1299 max(0, bp->b_dirtyoff - (bp->b_bcount-resid));
1300 nbp->vb_buf.b_dirtyend =
1301 min(sz,
1302 max(0, bp->b_dirtyend - (bp->b_bcount-resid)));
1303 }
1304 if (bp->b_validend == 0) {
1305 nbp->vb_buf.b_validoff = 0;
1306 nbp->vb_buf.b_validend = sz;
1307 } else {
1308 nbp->vb_buf.b_validoff =
1309 max(0, bp->b_validoff - (bp->b_bcount-resid));
1310 nbp->vb_buf.b_validend =
1311 min(sz,
1312 max(0, bp->b_validend - (bp->b_bcount-resid)));
1313 }
1314
1315 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1316
1317 /*
1318 * Just sort by block number
1319 */
1320 nbp->vb_buf.b_cylinder = nbp->vb_buf.b_blkno;
1321 s = splbio();
1322 if (vnx->vx_error != 0) {
1323 putvndbuf(nbp);
1324 goto out;
1325 }
1326 vnx->vx_pending++;
1327
1328 /* assoc new buffer with underlying vnode */
1329 bgetvp(vp, &nbp->vb_buf);
1330
1331 /* sort it in and start I/O if we are not over our limit */
1332 disksort(&sdp->swd_tab, &nbp->vb_buf);
1333 sw_reg_start(sdp);
1334 splx(s);
1335
1336 /*
1337 * advance to the next I/O
1338 */
1339 byteoff += sz;
1340 addr += sz;
1341 }
1342
1343 s = splbio();
1344
1345 out: /* Arrive here at splbio */
1346 vnx->vx_flags &= ~VX_BUSY;
1347 if (vnx->vx_pending == 0) {
1348 if (vnx->vx_error != 0) {
1349 bp->b_error = vnx->vx_error;
1350 bp->b_flags |= B_ERROR;
1351 }
1352 putvndxfer(vnx);
1353 biodone(bp);
1354 }
1355 splx(s);
1356 }
1357
1358 /*
1359 * sw_reg_start: start an I/O request on the requested swapdev
1360 *
1361 * => reqs are sorted by disksort (above)
1362 */
1363 static void
1364 sw_reg_start(sdp)
1365 struct swapdev *sdp;
1366 {
1367 struct buf *bp;
1368 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1369
1370 /* recursion control */
1371 if ((sdp->swd_flags & SWF_BUSY) != 0)
1372 return;
1373
1374 sdp->swd_flags |= SWF_BUSY;
1375
1376 while (sdp->swd_tab.b_active < sdp->swd_maxactive) {
1377 bp = sdp->swd_tab.b_actf;
1378 if (bp == NULL)
1379 break;
1380 sdp->swd_tab.b_actf = bp->b_actf;
1381 sdp->swd_tab.b_active++;
1382
1383 UVMHIST_LOG(pdhist,
1384 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1385 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1386 if ((bp->b_flags & B_READ) == 0)
1387 bp->b_vp->v_numoutput++;
1388 VOP_STRATEGY(bp);
1389 }
1390 sdp->swd_flags &= ~SWF_BUSY;
1391 }
1392
1393 /*
1394 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1395 *
1396 * => note that we can recover the vndbuf struct by casting the buf ptr
1397 */
1398 static void
1399 sw_reg_iodone(bp)
1400 struct buf *bp;
1401 {
1402 struct vndbuf *vbp = (struct vndbuf *) bp;
1403 struct vndxfer *vnx = vbp->vb_xfer;
1404 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1405 struct swapdev *sdp = vnx->vx_sdp;
1406 int s, resid;
1407 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1408
1409 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1410 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1411 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1412 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1413
1414 /*
1415 * protect vbp at splbio and update.
1416 */
1417
1418 s = splbio();
1419 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1420 pbp->b_resid -= resid;
1421 vnx->vx_pending--;
1422
1423 if (vbp->vb_buf.b_error) {
1424 UVMHIST_LOG(pdhist, " got error=%d !",
1425 vbp->vb_buf.b_error, 0, 0, 0);
1426
1427 /* pass error upward */
1428 vnx->vx_error = vbp->vb_buf.b_error;
1429 }
1430
1431 /*
1432 * drop "hold" reference to vnode (if one)
1433 * XXXCDC: always set to NULLVP, this is useless, right?
1434 */
1435 if (vbp->vb_buf.b_vp != NULLVP)
1436 brelvp(&vbp->vb_buf);
1437
1438 /*
1439 * kill vbp structure
1440 */
1441 putvndbuf(vbp);
1442
1443 /*
1444 * wrap up this transaction if it has run to completion or, in
1445 * case of an error, when all auxiliary buffers have returned.
1446 */
1447 if (vnx->vx_error != 0) {
1448 /* pass error upward */
1449 pbp->b_flags |= B_ERROR;
1450 pbp->b_error = vnx->vx_error;
1451 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1452 putvndxfer(vnx);
1453 biodone(pbp);
1454 }
1455 } else if (pbp->b_resid == 0) {
1456 #ifdef DIAGNOSTIC
1457 if (vnx->vx_pending != 0)
1458 panic("sw_reg_iodone: vnx pending: %d",vnx->vx_pending);
1459 #endif
1460
1461 if ((vnx->vx_flags & VX_BUSY) == 0) {
1462 UVMHIST_LOG(pdhist, " iodone error=%d !",
1463 pbp, vnx->vx_error, 0, 0);
1464 putvndxfer(vnx);
1465 biodone(pbp);
1466 }
1467 }
1468
1469 /*
1470 * done! start next swapdev I/O if one is pending
1471 */
1472 sdp->swd_tab.b_active--;
1473 sw_reg_start(sdp);
1474
1475 splx(s);
1476 }
1477 #endif /* SWAP_TO_FILES */
1478
1479
1480 /*
1481 * uvm_swap_alloc: allocate space on swap
1482 *
1483 * => allocation is done "round robin" down the priority list, as we
1484 * allocate in a priority we "rotate" the circle queue.
1485 * => space can be freed with uvm_swap_free
1486 * => we return the page slot number in /dev/drum (0 == invalid slot)
1487 * => we lock uvm.swap_data_lock
1488 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1489 */
1490 int
1491 uvm_swap_alloc(nslots, lessok)
1492 int *nslots; /* IN/OUT */
1493 boolean_t lessok;
1494 {
1495 struct swapdev *sdp;
1496 struct swappri *spp;
1497 u_long result;
1498 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1499
1500 /*
1501 * no swap devices configured yet? definite failure.
1502 */
1503 if (uvmexp.nswapdev < 1)
1504 return 0;
1505
1506 /*
1507 * lock data lock, convert slots into blocks, and enter loop
1508 */
1509 simple_lock(&uvm.swap_data_lock);
1510
1511 ReTry: /* XXXMRG */
1512 for (spp = swap_priority.lh_first; spp != NULL;
1513 spp = spp->spi_swappri.le_next) {
1514 for (sdp = spp->spi_swapdev.cqh_first;
1515 sdp != (void *)&spp->spi_swapdev;
1516 sdp = sdp->swd_next.cqe_next) {
1517 /* if it's not enabled, then we can't swap from it */
1518 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1519 continue;
1520 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1521 continue;
1522 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1523 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1524 &result) != 0) {
1525 continue;
1526 }
1527
1528 /*
1529 * successful allocation! now rotate the circleq.
1530 */
1531 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1532 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1533 sdp->swd_npginuse += *nslots;
1534 uvmexp.swpginuse += *nslots;
1535 simple_unlock(&uvm.swap_data_lock);
1536 /* done! return drum slot number */
1537 UVMHIST_LOG(pdhist,
1538 "success! returning %d slots starting at %d",
1539 *nslots, result + sdp->swd_drumoffset, 0, 0);
1540 return(result + sdp->swd_drumoffset);
1541 }
1542 }
1543
1544 /* XXXMRG: BEGIN HACK */
1545 if (*nslots > 1 && lessok) {
1546 *nslots = 1;
1547 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1548 }
1549 /* XXXMRG: END HACK */
1550
1551 simple_unlock(&uvm.swap_data_lock);
1552 return 0; /* failed */
1553 }
1554
1555 /*
1556 * uvm_swap_free: free swap slots
1557 *
1558 * => this can be all or part of an allocation made by uvm_swap_alloc
1559 * => we lock uvm.swap_data_lock
1560 */
1561 void
1562 uvm_swap_free(startslot, nslots)
1563 int startslot;
1564 int nslots;
1565 {
1566 struct swapdev *sdp;
1567 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1568
1569 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1570 startslot, 0, 0);
1571 /*
1572 * convert drum slot offset back to sdp, free the blocks
1573 * in the extent, and return. must hold pri lock to do
1574 * lookup and access the extent.
1575 */
1576 simple_lock(&uvm.swap_data_lock);
1577 sdp = swapdrum_getsdp(startslot);
1578
1579 #ifdef DIAGNOSTIC
1580 if (uvmexp.nswapdev < 1)
1581 panic("uvm_swap_free: uvmexp.nswapdev < 1\n");
1582 if (sdp == NULL) {
1583 printf("uvm_swap_free: startslot %d, nslots %d\n", startslot,
1584 nslots);
1585 panic("uvm_swap_free: unmapped address\n");
1586 }
1587 #endif
1588 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1589 EX_MALLOCOK|EX_NOWAIT) != 0)
1590 printf("warning: resource shortage: %d slots of swap lost\n",
1591 nslots);
1592
1593 sdp->swd_npginuse -= nslots;
1594 uvmexp.swpginuse -= nslots;
1595 #ifdef DIAGNOSTIC
1596 if (sdp->swd_npginuse < 0)
1597 panic("uvm_swap_free: inuse < 0");
1598 #endif
1599 simple_unlock(&uvm.swap_data_lock);
1600 }
1601
1602 /*
1603 * uvm_swap_put: put any number of pages into a contig place on swap
1604 *
1605 * => can be sync or async
1606 * => XXXMRG: consider making it an inline or macro
1607 */
1608 int
1609 uvm_swap_put(swslot, ppsp, npages, flags)
1610 int swslot;
1611 struct vm_page **ppsp;
1612 int npages;
1613 int flags;
1614 {
1615 int result;
1616
1617 result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1618 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1619
1620 return (result);
1621 }
1622
1623 /*
1624 * uvm_swap_get: get a single page from swap
1625 *
1626 * => usually a sync op (from fault)
1627 * => XXXMRG: consider making it an inline or macro
1628 */
1629 int
1630 uvm_swap_get(page, swslot, flags)
1631 struct vm_page *page;
1632 int swslot, flags;
1633 {
1634 int result;
1635
1636 uvmexp.nswget++;
1637 #ifdef DIAGNOSTIC
1638 if ((flags & PGO_SYNCIO) == 0)
1639 printf("uvm_swap_get: ASYNC get requested?\n");
1640 #endif
1641
1642 /*
1643 * this page is (about to be) no longer only in swap.
1644 */
1645 simple_lock(&uvm.swap_data_lock);
1646 uvmexp.swpgonly--;
1647 simple_unlock(&uvm.swap_data_lock);
1648
1649 result = uvm_swap_io(&page, swslot, 1, B_READ |
1650 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1651
1652 if (result != VM_PAGER_OK && result != VM_PAGER_PEND) {
1653 /*
1654 * oops, the read failed so it really is still only in swap.
1655 */
1656 simple_lock(&uvm.swap_data_lock);
1657 uvmexp.swpgonly++;
1658 simple_unlock(&uvm.swap_data_lock);
1659 }
1660
1661 return (result);
1662 }
1663
1664 /*
1665 * uvm_swap_io: do an i/o operation to swap
1666 */
1667
1668 static int
1669 uvm_swap_io(pps, startslot, npages, flags)
1670 struct vm_page **pps;
1671 int startslot, npages, flags;
1672 {
1673 daddr_t startblk;
1674 struct buf *bp;
1675 vaddr_t kva;
1676 int result, s, waitf, pflag;
1677 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1678
1679 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1680 startslot, npages, flags, 0);
1681 /*
1682 * convert starting drum slot to block number
1683 */
1684 startblk = btodb(startslot << PAGE_SHIFT);
1685
1686 /*
1687 * first, map the pages into the kernel (XXX: currently required
1688 * by buffer system).
1689 */
1690 waitf = (flags & B_ASYNC) ? M_NOWAIT : M_WAITOK;
1691 kva = uvm_pagermapin(pps, npages, waitf);
1692 if (kva == NULL)
1693 return (VM_PAGER_AGAIN);
1694
1695 /*
1696 * now allocate a buf for the i/o.
1697 * [make sure we don't put the pagedaemon to sleep...]
1698 */
1699 s = splbio();
1700 pflag = ((flags & B_ASYNC) != 0 || curproc == uvm.pagedaemon_proc)
1701 ? 0
1702 : PR_WAITOK;
1703 bp = pool_get(&bufpool, pflag);
1704 splx(s); /* drop splbio */
1705
1706 /*
1707 * if we failed to get a buf, return "try again"
1708 */
1709 if (bp == NULL)
1710 return (VM_PAGER_AGAIN);
1711
1712 /*
1713 * fill in the bp/sbp. we currently route our i/o through
1714 * /dev/drum's vnode [swapdev_vp].
1715 */
1716 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1717 bp->b_proc = &proc0; /* XXX */
1718 bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1719 bp->b_vnbufs.le_next = NOLIST;
1720 bp->b_data = (caddr_t)kva;
1721 bp->b_blkno = startblk;
1722 s = splbio();
1723 VHOLD(swapdev_vp);
1724 bp->b_vp = swapdev_vp;
1725 splx(s);
1726 /* XXXCDC: isn't swapdev_vp always a VCHR? */
1727 /* XXXMRG: probably -- this is obviously something inherited... */
1728 if (swapdev_vp->v_type == VBLK)
1729 bp->b_dev = swapdev_vp->v_rdev;
1730 bp->b_bcount = npages << PAGE_SHIFT;
1731 bp->b_bufsize = bp->b_bcount;
1732
1733 /*
1734 * for pageouts we must set "dirtyoff" [NFS client code needs it].
1735 * and we bump v_numoutput (counter of number of active outputs).
1736 */
1737 if ((bp->b_flags & B_READ) == 0) {
1738 bp->b_dirtyoff = 0;
1739 bp->b_dirtyend = npages << PAGE_SHIFT;
1740 s = splbio();
1741 swapdev_vp->v_numoutput++;
1742 splx(s);
1743 }
1744
1745 /*
1746 * for async ops we must set up the aiodesc and setup the callback
1747 * XXX: we expect no async-reads, but we don't prevent it here.
1748 */
1749 if (flags & B_ASYNC) {
1750 /* XXX pagedaemon */
1751 bp->b_flags |= B_CALL | (curproc == uvm.pagedaemon_proc ?
1752 B_PDAEMON : 0);
1753 bp->b_iodone = uvm_aio_biodone;
1754 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1755 }
1756 UVMHIST_LOG(pdhist,
1757 "about to start io: data = 0x%p blkno = 0x%x, bcount = %ld",
1758 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1759
1760 /*
1761 * now we start the I/O, and if async, return.
1762 */
1763 VOP_STRATEGY(bp);
1764 if (flags & B_ASYNC)
1765 return (VM_PAGER_PEND);
1766
1767 /*
1768 * must be sync i/o. wait for it to finish
1769 */
1770 (void) biowait(bp);
1771 result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
1772
1773 /*
1774 * kill the pager mapping
1775 */
1776 uvm_pagermapout(kva, npages);
1777
1778 /*
1779 * now dispose of the buf
1780 */
1781 s = splbio();
1782 if (bp->b_vp)
1783 brelvp(bp);
1784
1785 pool_put(&bufpool, bp);
1786 splx(s);
1787
1788 /*
1789 * finally return.
1790 */
1791 UVMHIST_LOG(pdhist, "<- done (sync) result=%d", result, 0, 0, 0);
1792 return (result);
1793 }
1794