uvm_swap.c revision 1.28.2.2 1 /* $NetBSD: uvm_swap.c,v 1.28.2.2 1999/12/27 18:36:44 wrstuden Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include "fs_nfs.h"
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/proc.h>
42 #include <sys/namei.h>
43 #include <sys/disklabel.h>
44 #include <sys/errno.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47 #include <sys/vnode.h>
48 #include <sys/file.h>
49 #include <sys/extent.h>
50 #include <sys/mount.h>
51 #include <sys/pool.h>
52 #include <sys/syscallargs.h>
53 #include <sys/swap.h>
54
55 #include <vm/vm.h>
56 #include <vm/vm_conf.h>
57
58 #include <uvm/uvm.h>
59
60 #include <miscfs/specfs/specdev.h>
61
62 /*
63 * uvm_swap.c: manage configuration and i/o to swap space.
64 */
65
66 /*
67 * swap space is managed in the following way:
68 *
69 * each swap partition or file is described by a "swapdev" structure.
70 * each "swapdev" structure contains a "swapent" structure which contains
71 * information that is passed up to the user (via system calls).
72 *
73 * each swap partition is assigned a "priority" (int) which controls
74 * swap parition usage.
75 *
76 * the system maintains a global data structure describing all swap
77 * partitions/files. there is a sorted LIST of "swappri" structures
78 * which describe "swapdev"'s at that priority. this LIST is headed
79 * by the "swap_priority" global var. each "swappri" contains a
80 * CIRCLEQ of "swapdev" structures at that priority.
81 *
82 * the system maintains a fixed pool of "swapbuf" structures for use
83 * at swap i/o time. a swapbuf includes a "buf" structure and an
84 * "aiodone" [we want to avoid malloc()'ing anything at swapout time
85 * since memory may be low].
86 *
87 * locking:
88 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
89 * system call and prevents the swap priority list from changing
90 * while we are in the middle of a system call (e.g. SWAP_STATS).
91 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
92 * structures including the priority list, the swapdev structures,
93 * and the swapmap extent.
94 * - swap_buf_lock (simple_lock): this lock protects the free swapbuf
95 * pool.
96 *
97 * each swap device has the following info:
98 * - swap device in use (could be disabled, preventing future use)
99 * - swap enabled (allows new allocations on swap)
100 * - map info in /dev/drum
101 * - vnode pointer
102 * for swap files only:
103 * - block size
104 * - max byte count in buffer
105 * - buffer
106 * - credentials to use when doing i/o to file
107 *
108 * userland controls and configures swap with the swapctl(2) system call.
109 * the sys_swapctl performs the following operations:
110 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
111 * [2] SWAP_STATS: given a pointer to an array of swapent structures
112 * (passed in via "arg") of a size passed in via "misc" ... we load
113 * the current swap config into the array.
114 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
115 * priority in "misc", start swapping on it.
116 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
117 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
118 * "misc")
119 */
120
121 /*
122 * SWAP_TO_FILES: allows swapping to plain files.
123 */
124
125 #define SWAP_TO_FILES
126
127 /*
128 * swapdev: describes a single swap partition/file
129 *
130 * note the following should be true:
131 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
132 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
133 */
134 struct swapdev {
135 struct oswapent swd_ose;
136 #define swd_dev swd_ose.ose_dev /* device id */
137 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
138 #define swd_priority swd_ose.ose_priority /* our priority */
139 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
140 char *swd_path; /* saved pathname of device */
141 int swd_pathlen; /* length of pathname */
142 int swd_npages; /* #pages we can use */
143 int swd_npginuse; /* #pages in use */
144 int swd_drumoffset; /* page0 offset in drum */
145 int swd_drumsize; /* #pages in drum */
146 struct extent *swd_ex; /* extent for this swapdev */
147 struct vnode *swd_vp; /* backing vnode */
148 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
149
150 #ifdef SWAP_TO_FILES
151 int swd_bsize; /* blocksize (bytes) */
152 int swd_maxactive; /* max active i/o reqs */
153 struct buf swd_tab; /* buffer list */
154 struct ucred *swd_cred; /* cred for file access */
155 #endif
156 };
157
158 /*
159 * swap device priority entry; the list is kept sorted on `spi_priority'.
160 */
161 struct swappri {
162 int spi_priority; /* priority */
163 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
164 /* circleq of swapdevs at this priority */
165 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
166 };
167
168 /*
169 * swapbuf, swapbuffer plus async i/o info
170 */
171 struct swapbuf {
172 struct buf sw_buf; /* a buffer structure */
173 struct uvm_aiodesc sw_aio; /* aiodesc structure, used if ASYNC */
174 SIMPLEQ_ENTRY(swapbuf) sw_sq; /* free list pointer */
175 };
176
177 /*
178 * The following two structures are used to keep track of data transfers
179 * on swap devices associated with regular files.
180 * NOTE: this code is more or less a copy of vnd.c; we use the same
181 * structure names here to ease porting..
182 */
183 struct vndxfer {
184 struct buf *vx_bp; /* Pointer to parent buffer */
185 struct swapdev *vx_sdp;
186 int vx_error;
187 int vx_pending; /* # of pending aux buffers */
188 int vx_flags;
189 #define VX_BUSY 1
190 #define VX_DEAD 2
191 };
192
193 struct vndbuf {
194 struct buf vb_buf;
195 struct vndxfer *vb_xfer;
196 };
197
198
199 /*
200 * We keep a of pool vndbuf's and vndxfer structures.
201 */
202 struct pool *vndxfer_pool;
203 struct pool *vndbuf_pool;
204
205 #define getvndxfer(vnx) do { \
206 int s = splbio(); \
207 vnx = (struct vndxfer *) \
208 pool_get(vndxfer_pool, PR_MALLOCOK|PR_WAITOK); \
209 splx(s); \
210 } while (0)
211
212 #define putvndxfer(vnx) { \
213 pool_put(vndxfer_pool, (void *)(vnx)); \
214 }
215
216 #define getvndbuf(vbp) do { \
217 int s = splbio(); \
218 vbp = (struct vndbuf *) \
219 pool_get(vndbuf_pool, PR_MALLOCOK|PR_WAITOK); \
220 splx(s); \
221 } while (0)
222
223 #define putvndbuf(vbp) { \
224 pool_put(vndbuf_pool, (void *)(vbp)); \
225 }
226
227
228 /*
229 * local variables
230 */
231 static struct extent *swapmap; /* controls the mapping of /dev/drum */
232 SIMPLEQ_HEAD(swapbufhead, swapbuf);
233 struct pool *swapbuf_pool;
234
235 /* list of all active swap devices [by priority] */
236 LIST_HEAD(swap_priority, swappri);
237 static struct swap_priority swap_priority;
238
239 /* locks */
240 lock_data_t swap_syscall_lock;
241
242 /*
243 * prototypes
244 */
245 static void swapdrum_add __P((struct swapdev *, int));
246 static struct swapdev *swapdrum_getsdp __P((int));
247
248 static struct swapdev *swaplist_find __P((struct vnode *, int));
249 static void swaplist_insert __P((struct swapdev *,
250 struct swappri *, int));
251 static void swaplist_trim __P((void));
252
253 static int swap_on __P((struct proc *, struct swapdev *));
254 #ifdef SWAP_OFF_WORKS
255 static int swap_off __P((struct proc *, struct swapdev *));
256 #endif
257
258 #ifdef SWAP_TO_FILES
259 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
260 static void sw_reg_iodone __P((struct buf *));
261 static void sw_reg_start __P((struct swapdev *));
262 #endif
263
264 static void uvm_swap_aiodone __P((struct uvm_aiodesc *));
265 static void uvm_swap_bufdone __P((struct buf *));
266 static int uvm_swap_io __P((struct vm_page **, int, int, int));
267
268 /*
269 * uvm_swap_init: init the swap system data structures and locks
270 *
271 * => called at boot time from init_main.c after the filesystems
272 * are brought up (which happens after uvm_init())
273 */
274 void
275 uvm_swap_init()
276 {
277 UVMHIST_FUNC("uvm_swap_init");
278
279 UVMHIST_CALLED(pdhist);
280 /*
281 * first, init the swap list, its counter, and its lock.
282 * then get a handle on the vnode for /dev/drum by using
283 * the its dev_t number ("swapdev", from MD conf.c).
284 */
285
286 LIST_INIT(&swap_priority);
287 uvmexp.nswapdev = 0;
288 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
289 simple_lock_init(&uvm.swap_data_lock);
290
291 if (bdevvp(swapdev, &swapdev_vp))
292 panic("uvm_swap_init: can't get vnode for swap device");
293
294 /*
295 * create swap block resource map to map /dev/drum. the range
296 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
297 * that block 0 is reserved (used to indicate an allocation
298 * failure, or no allocation).
299 */
300 swapmap = extent_create("swapmap", 1, INT_MAX,
301 M_VMSWAP, 0, 0, EX_NOWAIT);
302 if (swapmap == 0)
303 panic("uvm_swap_init: extent_create failed");
304
305 /*
306 * allocate our private pool of "swapbuf" structures (includes
307 * a "buf" structure). ["nswbuf" comes from param.c and can
308 * be adjusted by MD code before we get here].
309 */
310
311 swapbuf_pool =
312 pool_create(sizeof(struct swapbuf), 0, 0, 0, "swp buf", 0,
313 NULL, NULL, 0);
314 if (swapbuf_pool == NULL)
315 panic("swapinit: pool_create failed");
316 /* XXX - set a maximum on swapbuf_pool? */
317
318 vndxfer_pool =
319 pool_create(sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 0,
320 NULL, NULL, 0);
321 if (vndxfer_pool == NULL)
322 panic("swapinit: pool_create failed");
323
324 vndbuf_pool =
325 pool_create(sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 0,
326 NULL, NULL, 0);
327 if (vndbuf_pool == NULL)
328 panic("swapinit: pool_create failed");
329 /*
330 * done!
331 */
332 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
333 }
334
335 /*
336 * swaplist functions: functions that operate on the list of swap
337 * devices on the system.
338 */
339
340 /*
341 * swaplist_insert: insert swap device "sdp" into the global list
342 *
343 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
344 * => caller must provide a newly malloc'd swappri structure (we will
345 * FREE it if we don't need it... this it to prevent malloc blocking
346 * here while adding swap)
347 */
348 static void
349 swaplist_insert(sdp, newspp, priority)
350 struct swapdev *sdp;
351 struct swappri *newspp;
352 int priority;
353 {
354 struct swappri *spp, *pspp;
355 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
356
357 /*
358 * find entry at or after which to insert the new device.
359 */
360 for (pspp = NULL, spp = swap_priority.lh_first; spp != NULL;
361 spp = spp->spi_swappri.le_next) {
362 if (priority <= spp->spi_priority)
363 break;
364 pspp = spp;
365 }
366
367 /*
368 * new priority?
369 */
370 if (spp == NULL || spp->spi_priority != priority) {
371 spp = newspp; /* use newspp! */
372 UVMHIST_LOG(pdhist, "created new swappri = %d", priority, 0, 0, 0);
373
374 spp->spi_priority = priority;
375 CIRCLEQ_INIT(&spp->spi_swapdev);
376
377 if (pspp)
378 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
379 else
380 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
381 } else {
382 /* we don't need a new priority structure, free it */
383 FREE(newspp, M_VMSWAP);
384 }
385
386 /*
387 * priority found (or created). now insert on the priority's
388 * circleq list and bump the total number of swapdevs.
389 */
390 sdp->swd_priority = priority;
391 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
392 uvmexp.nswapdev++;
393
394 /*
395 * done!
396 */
397 }
398
399 /*
400 * swaplist_find: find and optionally remove a swap device from the
401 * global list.
402 *
403 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
404 * => we return the swapdev we found (and removed)
405 */
406 static struct swapdev *
407 swaplist_find(vp, remove)
408 struct vnode *vp;
409 boolean_t remove;
410 {
411 struct swapdev *sdp;
412 struct swappri *spp;
413
414 /*
415 * search the lists for the requested vp
416 */
417 for (spp = swap_priority.lh_first; spp != NULL;
418 spp = spp->spi_swappri.le_next) {
419 for (sdp = spp->spi_swapdev.cqh_first;
420 sdp != (void *)&spp->spi_swapdev;
421 sdp = sdp->swd_next.cqe_next)
422 if (sdp->swd_vp == vp) {
423 if (remove) {
424 CIRCLEQ_REMOVE(&spp->spi_swapdev,
425 sdp, swd_next);
426 uvmexp.nswapdev--;
427 }
428 return(sdp);
429 }
430 }
431 return (NULL);
432 }
433
434
435 /*
436 * swaplist_trim: scan priority list for empty priority entries and kill
437 * them.
438 *
439 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
440 */
441 static void
442 swaplist_trim()
443 {
444 struct swappri *spp, *nextspp;
445
446 for (spp = swap_priority.lh_first; spp != NULL; spp = nextspp) {
447 nextspp = spp->spi_swappri.le_next;
448 if (spp->spi_swapdev.cqh_first != (void *)&spp->spi_swapdev)
449 continue;
450 LIST_REMOVE(spp, spi_swappri);
451 free((caddr_t)spp, M_VMSWAP);
452 }
453 }
454
455 /*
456 * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
457 *
458 * => caller must hold swap_syscall_lock
459 * => uvm.swap_data_lock should be unlocked (we may sleep)
460 */
461 static void
462 swapdrum_add(sdp, npages)
463 struct swapdev *sdp;
464 int npages;
465 {
466 u_long result;
467
468 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
469 EX_WAITOK, &result))
470 panic("swapdrum_add");
471
472 sdp->swd_drumoffset = result;
473 sdp->swd_drumsize = npages;
474 }
475
476 /*
477 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
478 * to the "swapdev" that maps that section of the drum.
479 *
480 * => each swapdev takes one big contig chunk of the drum
481 * => caller must hold uvm.swap_data_lock
482 */
483 static struct swapdev *
484 swapdrum_getsdp(pgno)
485 int pgno;
486 {
487 struct swapdev *sdp;
488 struct swappri *spp;
489
490 for (spp = swap_priority.lh_first; spp != NULL;
491 spp = spp->spi_swappri.le_next)
492 for (sdp = spp->spi_swapdev.cqh_first;
493 sdp != (void *)&spp->spi_swapdev;
494 sdp = sdp->swd_next.cqe_next)
495 if (pgno >= sdp->swd_drumoffset &&
496 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
497 return sdp;
498 }
499 return NULL;
500 }
501
502
503 /*
504 * sys_swapctl: main entry point for swapctl(2) system call
505 * [with two helper functions: swap_on and swap_off]
506 */
507 int
508 sys_swapctl(p, v, retval)
509 struct proc *p;
510 void *v;
511 register_t *retval;
512 {
513 struct sys_swapctl_args /* {
514 syscallarg(int) cmd;
515 syscallarg(void *) arg;
516 syscallarg(int) misc;
517 } */ *uap = (struct sys_swapctl_args *)v;
518 struct vnode *vp;
519 struct nameidata nd;
520 struct swappri *spp;
521 struct swapdev *sdp;
522 struct swapent *sep;
523 char userpath[PATH_MAX + 1];
524 size_t len;
525 int count, error, misc;
526 int priority;
527 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
528
529 misc = SCARG(uap, misc);
530
531 /*
532 * ensure serialized syscall access by grabbing the swap_syscall_lock
533 */
534 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, (void *)0);
535
536 /*
537 * we handle the non-priv NSWAP and STATS request first.
538 *
539 * SWAP_NSWAP: return number of config'd swap devices
540 * [can also be obtained with uvmexp sysctl]
541 */
542 if (SCARG(uap, cmd) == SWAP_NSWAP) {
543 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
544 0, 0, 0);
545 *retval = uvmexp.nswapdev;
546 error = 0;
547 goto out;
548 }
549
550 /*
551 * SWAP_STATS: get stats on current # of configured swap devs
552 *
553 * note that the swap_priority list can't change as long
554 * as we are holding the swap_syscall_lock. we don't want
555 * to grab the uvm.swap_data_lock because we may fault&sleep during
556 * copyout() and we don't want to be holding that lock then!
557 */
558 if (SCARG(uap, cmd) == SWAP_STATS
559 #if defined(COMPAT_13)
560 || SCARG(uap, cmd) == SWAP_OSTATS
561 #endif
562 ) {
563 sep = (struct swapent *)SCARG(uap, arg);
564 count = 0;
565
566 for (spp = swap_priority.lh_first; spp != NULL;
567 spp = spp->spi_swappri.le_next) {
568 for (sdp = spp->spi_swapdev.cqh_first;
569 sdp != (void *)&spp->spi_swapdev && misc-- > 0;
570 sdp = sdp->swd_next.cqe_next) {
571 /*
572 * backwards compatibility for system call.
573 * note that we use 'struct oswapent' as an
574 * overlay into both 'struct swapdev' and
575 * the userland 'struct swapent', as we
576 * want to retain backwards compatibility
577 * with NetBSD 1.3.
578 */
579 sdp->swd_ose.ose_inuse =
580 btodb(sdp->swd_npginuse << PAGE_SHIFT, DEF_BSHIFT);
581 error = copyout((caddr_t)&sdp->swd_ose,
582 (caddr_t)sep, sizeof(struct oswapent));
583
584 /* now copy out the path if necessary */
585 #if defined(COMPAT_13)
586 if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
587 #else
588 if (error == 0)
589 #endif
590 error = copyout((caddr_t)sdp->swd_path,
591 (caddr_t)&sep->se_path,
592 sdp->swd_pathlen);
593
594 if (error)
595 goto out;
596 count++;
597 #if defined(COMPAT_13)
598 if (SCARG(uap, cmd) == SWAP_OSTATS)
599 ((struct oswapent *)sep)++;
600 else
601 #endif
602 sep++;
603 }
604 }
605
606 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
607
608 *retval = count;
609 error = 0;
610 goto out;
611 }
612
613 /*
614 * all other requests require superuser privs. verify.
615 */
616 if ((error = suser(p->p_ucred, &p->p_acflag)))
617 goto out;
618
619 /*
620 * at this point we expect a path name in arg. we will
621 * use namei() to gain a vnode reference (vref), and lock
622 * the vnode (VOP_LOCK).
623 *
624 * XXX: a NULL arg means use the root vnode pointer (e.g. for
625 * miniroot)
626 */
627 if (SCARG(uap, arg) == NULL) {
628 vp = rootvp; /* miniroot */
629 if (vget(vp, LK_EXCLUSIVE)) {
630 error = EBUSY;
631 goto out;
632 }
633 if (SCARG(uap, cmd) == SWAP_ON &&
634 copystr("miniroot", userpath, sizeof userpath, &len))
635 panic("swapctl: miniroot copy failed");
636 } else {
637 int space;
638 char *where;
639
640 if (SCARG(uap, cmd) == SWAP_ON) {
641 if ((error = copyinstr(SCARG(uap, arg), userpath,
642 sizeof userpath, &len)))
643 goto out;
644 space = UIO_SYSSPACE;
645 where = userpath;
646 } else {
647 space = UIO_USERSPACE;
648 where = (char *)SCARG(uap, arg);
649 }
650 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
651 if ((error = namei(&nd)))
652 goto out;
653 vp = nd.ni_vp;
654 }
655 /* note: "vp" is referenced and locked */
656
657 error = 0; /* assume no error */
658 switch(SCARG(uap, cmd)) {
659 case SWAP_DUMPDEV:
660 if (vp->v_type != VBLK) {
661 error = ENOTBLK;
662 goto out;
663 }
664 dumpdev = vp->v_rdev;
665
666 break;
667
668 case SWAP_CTL:
669 /*
670 * get new priority, remove old entry (if any) and then
671 * reinsert it in the correct place. finally, prune out
672 * any empty priority structures.
673 */
674 priority = SCARG(uap, misc);
675 spp = (struct swappri *)
676 malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
677 simple_lock(&uvm.swap_data_lock);
678 if ((sdp = swaplist_find(vp, 1)) == NULL) {
679 error = ENOENT;
680 } else {
681 swaplist_insert(sdp, spp, priority);
682 swaplist_trim();
683 }
684 simple_unlock(&uvm.swap_data_lock);
685 if (error)
686 free(spp, M_VMSWAP);
687 break;
688
689 case SWAP_ON:
690 /*
691 * check for duplicates. if none found, then insert a
692 * dummy entry on the list to prevent someone else from
693 * trying to enable this device while we are working on
694 * it.
695 */
696 priority = SCARG(uap, misc);
697 simple_lock(&uvm.swap_data_lock);
698 if ((sdp = swaplist_find(vp, 0)) != NULL) {
699 error = EBUSY;
700 simple_unlock(&uvm.swap_data_lock);
701 break;
702 }
703 sdp = (struct swapdev *)
704 malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
705 spp = (struct swappri *)
706 malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
707 memset(sdp, 0, sizeof(*sdp));
708 sdp->swd_flags = SWF_FAKE; /* placeholder only */
709 sdp->swd_vp = vp;
710 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
711 #ifdef SWAP_TO_FILES
712 /*
713 * XXX Is NFS elaboration necessary?
714 */
715 if (vp->v_type == VREG)
716 sdp->swd_cred = crdup(p->p_ucred);
717 #endif
718 swaplist_insert(sdp, spp, priority);
719 simple_unlock(&uvm.swap_data_lock);
720
721 sdp->swd_pathlen = len;
722 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
723 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
724 panic("swapctl: copystr");
725 /*
726 * we've now got a FAKE placeholder in the swap list.
727 * now attempt to enable swap on it. if we fail, undo
728 * what we've done and kill the fake entry we just inserted.
729 * if swap_on is a success, it will clear the SWF_FAKE flag
730 */
731 if ((error = swap_on(p, sdp)) != 0) {
732 simple_lock(&uvm.swap_data_lock);
733 (void) swaplist_find(vp, 1); /* kill fake entry */
734 swaplist_trim();
735 simple_unlock(&uvm.swap_data_lock);
736 #ifdef SWAP_TO_FILES
737 if (vp->v_type == VREG)
738 crfree(sdp->swd_cred);
739 #endif
740 free(sdp->swd_path, M_VMSWAP);
741 free((caddr_t)sdp, M_VMSWAP);
742 break;
743 }
744
745 /*
746 * got it! now add a second reference to vp so that
747 * we keep a reference to the vnode after we return.
748 */
749 vref(vp);
750 break;
751
752 case SWAP_OFF:
753 UVMHIST_LOG(pdhist, "someone is using SWAP_OFF...??", 0,0,0,0);
754 #ifdef SWAP_OFF_WORKS
755 /*
756 * find the entry of interest and ensure it is enabled.
757 */
758 simple_lock(&uvm.swap_data_lock);
759 if ((sdp = swaplist_find(vp, 0)) == NULL) {
760 simple_unlock(&uvm.swap_data_lock);
761 error = ENXIO;
762 break;
763 }
764 /*
765 * If a device isn't in use or enabled, we
766 * can't stop swapping from it (again).
767 */
768 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
769 simple_unlock(&uvm.swap_data_lock);
770 error = EBUSY;
771 break;
772 }
773 /* XXXCDC: should we call with list locked or unlocked? */
774 if ((error = swap_off(p, sdp)) != 0)
775 break;
776 /* XXXCDC: might need relock here */
777
778 /*
779 * now we can kill the entry.
780 */
781 if ((sdp = swaplist_find(vp, 1)) == NULL) {
782 error = ENXIO;
783 break;
784 }
785 simple_unlock(&uvm.swap_data_lock);
786 free((caddr_t)sdp, M_VMSWAP);
787 #else
788 error = EINVAL;
789 #endif
790 break;
791
792 default:
793 UVMHIST_LOG(pdhist, "unhandled command: %#x",
794 SCARG(uap, cmd), 0, 0, 0);
795 error = EINVAL;
796 }
797
798 /*
799 * done! use vput to drop our reference and unlock
800 */
801 vput(vp);
802 out:
803 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0);
804
805 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
806 return (error);
807 }
808
809 /*
810 * swap_on: attempt to enable a swapdev for swapping. note that the
811 * swapdev is already on the global list, but disabled (marked
812 * SWF_FAKE).
813 *
814 * => we avoid the start of the disk (to protect disk labels)
815 * => we also avoid the miniroot, if we are swapping to root.
816 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
817 * if needed.
818 */
819 static int
820 swap_on(p, sdp)
821 struct proc *p;
822 struct swapdev *sdp;
823 {
824 static int count = 0; /* static */
825 struct vnode *vp;
826 int error, npages, nblocks, size;
827 long addr;
828 #ifdef SWAP_TO_FILES
829 struct vattr va;
830 #endif
831 #ifdef NFS
832 extern int (**nfsv2_vnodeop_p) __P((void *));
833 #endif /* NFS */
834 dev_t dev;
835 char *name;
836 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
837
838 /*
839 * we want to enable swapping on sdp. the swd_vp contains
840 * the vnode we want (locked and ref'd), and the swd_dev
841 * contains the dev_t of the file, if it a block device.
842 */
843
844 vp = sdp->swd_vp;
845 dev = sdp->swd_dev;
846
847 /*
848 * open the swap file (mostly useful for block device files to
849 * let device driver know what is up).
850 *
851 * we skip the open/close for root on swap because the root
852 * has already been opened when root was mounted (mountroot).
853 */
854 if (vp != rootvp) {
855 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
856 return (error);
857 }
858
859 /* XXX this only works for block devices */
860 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
861
862 /*
863 * we now need to determine the size of the swap area. for
864 * block specials we can call the d_psize function.
865 * for normal files, we must stat [get attrs].
866 *
867 * we put the result in nblks.
868 * for normal files, we also want the filesystem block size
869 * (which we get with statfs).
870 */
871 switch (vp->v_type) {
872 case VBLK:
873 if (bdevsw[major(dev)].d_psize == 0 ||
874 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
875 error = ENXIO;
876 goto bad;
877 }
878 break;
879
880 #ifdef SWAP_TO_FILES
881 case VREG:
882 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
883 goto bad;
884 nblocks = (int)btodb(va.va_size, DEF_BSHIFT);
885 if ((error =
886 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
887 goto bad;
888
889 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
890 /*
891 * limit the max # of outstanding I/O requests we issue
892 * at any one time. take it easy on NFS servers.
893 */
894 #ifdef NFS
895 if (vp->v_op == nfsv2_vnodeop_p)
896 sdp->swd_maxactive = 2; /* XXX */
897 else
898 #endif /* NFS */
899 sdp->swd_maxactive = 8; /* XXX */
900 break;
901 #endif
902
903 default:
904 error = ENXIO;
905 goto bad;
906 }
907
908 /*
909 * save nblocks in a safe place and convert to pages.
910 */
911
912 sdp->swd_ose.ose_nblks = nblocks;
913 npages = dbtob((u_int64_t)nblocks, DEF_BSHIFT) >> PAGE_SHIFT;
914
915 /*
916 * for block special files, we want to make sure that leave
917 * the disklabel and bootblocks alone, so we arrange to skip
918 * over them (randomly choosing to skip PAGE_SIZE bytes).
919 * note that because of this the "size" can be less than the
920 * actual number of blocks on the device.
921 */
922 if (vp->v_type == VBLK) {
923 /* we use pages 1 to (size - 1) [inclusive] */
924 size = npages - 1;
925 addr = 1;
926 } else {
927 /* we use pages 0 to (size - 1) [inclusive] */
928 size = npages;
929 addr = 0;
930 }
931
932 /*
933 * make sure we have enough blocks for a reasonable sized swap
934 * area. we want at least one page.
935 */
936
937 if (size < 1) {
938 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
939 error = EINVAL;
940 goto bad;
941 }
942
943 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
944
945 /*
946 * now we need to allocate an extent to manage this swap device
947 */
948 name = malloc(12, M_VMSWAP, M_WAITOK);
949 sprintf(name, "swap0x%04x", count++);
950
951 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
952 sdp->swd_ex = extent_create(name, 0, npages - 1, M_VMSWAP,
953 0, 0, EX_WAITOK);
954 /* allocate the `saved' region from the extent so it won't be used */
955 if (addr) {
956 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
957 panic("disklabel region");
958 sdp->swd_npginuse += addr;
959 simple_lock(&uvm.swap_data_lock);
960 uvmexp.swpginuse += addr;
961 uvmexp.swpgonly += addr;
962 simple_unlock(&uvm.swap_data_lock);
963 }
964
965 /*
966 * if the vnode we are swapping to is the root vnode
967 * (i.e. we are swapping to the miniroot) then we want
968 * to make sure we don't overwrite it. do a statfs to
969 * find its size and skip over it.
970 */
971 if (vp == rootvp) {
972 struct mount *mp;
973 struct statfs *sp;
974 int rootblocks, rootpages;
975
976 mp = rootvnode->v_mount;
977 sp = &mp->mnt_stat;
978 rootblocks = sp->f_blocks * btodb(sp->f_bsize, DEF_BSHIFT);
979 rootpages = round_page(dbtob(rootblocks, DEF_BSHIFT)) >> PAGE_SHIFT;
980 if (rootpages > npages)
981 panic("swap_on: miniroot larger than swap?");
982
983 if (extent_alloc_region(sdp->swd_ex, addr,
984 rootpages, EX_WAITOK))
985 panic("swap_on: unable to preserve miniroot");
986
987 simple_lock(&uvm.swap_data_lock);
988 sdp->swd_npginuse += (rootpages - addr);
989 uvmexp.swpginuse += (rootpages - addr);
990 uvmexp.swpgonly += (rootpages - addr);
991 simple_unlock(&uvm.swap_data_lock);
992
993 printf("Preserved %d pages of miniroot ", rootpages);
994 printf("leaving %d pages of swap\n", size - rootpages);
995 }
996
997 /*
998 * now add the new swapdev to the drum and enable.
999 */
1000 simple_lock(&uvm.swap_data_lock);
1001 swapdrum_add(sdp, npages);
1002 sdp->swd_npages = npages;
1003 sdp->swd_flags &= ~SWF_FAKE; /* going live */
1004 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1005 simple_unlock(&uvm.swap_data_lock);
1006 uvmexp.swpages += npages;
1007
1008 /*
1009 * add anon's to reflect the swap space we added
1010 */
1011 uvm_anon_add(size);
1012
1013 #if 0
1014 /*
1015 * At this point we could arrange to reserve memory for the
1016 * swap buffer pools.
1017 *
1018 * I don't think this is necessary, since swapping starts well
1019 * ahead of serious memory deprivation and the memory resource
1020 * pools hold on to actively used memory. This should ensure
1021 * we always have some resources to continue operation.
1022 */
1023
1024 int s = splbio();
1025 int n = 8 * sdp->swd_maxactive;
1026
1027 (void)pool_prime(swapbuf_pool, n, 0);
1028
1029 if (vp->v_type == VREG) {
1030 /* Allocate additional vnx and vnd buffers */
1031 /*
1032 * Allocation Policy:
1033 * (8 * swd_maxactive) vnx headers per swap dev
1034 * (16 * swd_maxactive) vnd buffers per swap dev
1035 */
1036
1037 n = 8 * sdp->swd_maxactive;
1038 (void)pool_prime(vndxfer_pool, n, 0);
1039
1040 n = 16 * sdp->swd_maxactive;
1041 (void)pool_prime(vndbuf_pool, n, 0);
1042 }
1043 splx(s);
1044 #endif
1045
1046 return (0);
1047
1048 bad:
1049 /*
1050 * failure: close device if necessary and return error.
1051 */
1052 if (vp != rootvp) {
1053 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1054 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
1055 VOP_UNLOCK(vp, 0);
1056 }
1057 return (error);
1058 }
1059
1060 #ifdef SWAP_OFF_WORKS
1061 /*
1062 * swap_off: stop swapping on swapdev
1063 *
1064 * XXXCDC: what conditions go here?
1065 */
1066 static int
1067 swap_off(p, sdp)
1068 struct proc *p;
1069 struct swapdev *sdp;
1070 {
1071 char *name;
1072 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1073
1074 /* turn off the enable flag */
1075 sdp->swd_flags &= ~SWF_ENABLE;
1076
1077 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev);
1078
1079 /*
1080 * XXX write me
1081 *
1082 * the idea is to find out which processes are using this swap
1083 * device, and page them all in.
1084 *
1085 * eventually, we should try to move them out to other swap areas
1086 * if available.
1087 *
1088 * The alternative is to create a redirection map for this swap
1089 * device. This should work by moving all the pages of data from
1090 * the ex-swap device to another one, and making an entry in the
1091 * redirection map for it. locking is going to be important for
1092 * this!
1093 *
1094 * XXXCDC: also need to shrink anon pool
1095 */
1096
1097 /* until the above code is written, we must ENODEV */
1098 return ENODEV;
1099
1100 extent_free(swapmap, sdp->swd_mapoffset, sdp->swd_mapsize, EX_WAITOK);
1101 name = sdp->swd_ex->ex_name;
1102 extent_destroy(sdp->swd_ex);
1103 free(name, M_VMSWAP);
1104 free((caddr_t)sdp->swd_ex, M_VMSWAP);
1105 if (sdp->swp_vp != rootvp) {
1106 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1107 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1108 VOP_UNLOCK(vp, 0);
1109 }
1110 if (sdp->swd_vp)
1111 vrele(sdp->swd_vp);
1112 free((caddr_t)sdp, M_VMSWAP);
1113 return (0);
1114 }
1115 #endif
1116
1117 /*
1118 * /dev/drum interface and i/o functions
1119 */
1120
1121 /*
1122 * swread: the read function for the drum (just a call to physio)
1123 */
1124 /*ARGSUSED*/
1125 int
1126 swread(dev, uio, ioflag)
1127 dev_t dev;
1128 struct uio *uio;
1129 int ioflag;
1130 {
1131 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1132
1133 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1134 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio,
1135 DEF_BSHIFT));
1136 }
1137
1138 /*
1139 * swwrite: the write function for the drum (just a call to physio)
1140 */
1141 /*ARGSUSED*/
1142 int
1143 swwrite(dev, uio, ioflag)
1144 dev_t dev;
1145 struct uio *uio;
1146 int ioflag;
1147 {
1148 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1149
1150 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1151 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio,
1152 DEF_BSHIFT));
1153 }
1154
1155 /*
1156 * swstrategy: perform I/O on the drum
1157 *
1158 * => we must map the i/o request from the drum to the correct swapdev.
1159 */
1160 void
1161 swstrategy(bp)
1162 struct buf *bp;
1163 {
1164 struct swapdev *sdp;
1165 struct vnode *vp;
1166 int s, pageno, bn;
1167 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1168
1169 /*
1170 * convert block number to swapdev. note that swapdev can't
1171 * be yanked out from under us because we are holding resources
1172 * in it (i.e. the blocks we are doing I/O on).
1173 */
1174 pageno = dbtob(bp->b_blkno, DEF_BSHIFT) >> PAGE_SHIFT;
1175 simple_lock(&uvm.swap_data_lock);
1176 sdp = swapdrum_getsdp(pageno);
1177 simple_unlock(&uvm.swap_data_lock);
1178 if (sdp == NULL) {
1179 bp->b_error = EINVAL;
1180 bp->b_flags |= B_ERROR;
1181 biodone(bp);
1182 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1183 return;
1184 }
1185
1186 /*
1187 * convert drum page number to block number on this swapdev.
1188 */
1189
1190 pageno = pageno - sdp->swd_drumoffset; /* page # on swapdev */
1191 bn = btodb(pageno << PAGE_SHIFT, DEF_BSHIFT); /* convert to diskblock */
1192
1193 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld\n",
1194 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1195 sdp->swd_drumoffset, bn, bp->b_bcount);
1196
1197
1198 /*
1199 * for block devices we finish up here.
1200 * for regular files we have to do more work which we deligate
1201 * to sw_reg_strategy().
1202 */
1203
1204 switch (sdp->swd_vp->v_type) {
1205 default:
1206 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1207 case VBLK:
1208
1209 /*
1210 * must convert "bp" from an I/O on /dev/drum to an I/O
1211 * on the swapdev (sdp).
1212 */
1213 s = splbio();
1214 bp->b_blkno = bn; /* swapdev block number */
1215 vp = sdp->swd_vp; /* swapdev vnode pointer */
1216 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1217 VHOLD(vp); /* "hold" swapdev vp for i/o */
1218
1219 /*
1220 * if we are doing a write, we have to redirect the i/o on
1221 * drum's v_numoutput counter to the swapdevs.
1222 */
1223 if ((bp->b_flags & B_READ) == 0) {
1224 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1225 vp->v_numoutput++; /* put it on swapdev */
1226 }
1227
1228 /*
1229 * dissassocate buffer with /dev/drum vnode
1230 * [could be null if buf was from physio]
1231 */
1232 if (bp->b_vp != NULLVP)
1233 brelvp(bp);
1234
1235 /*
1236 * finally plug in swapdev vnode and start I/O
1237 */
1238 bp->b_vp = vp;
1239 splx(s);
1240 VOP_STRATEGY(bp);
1241 return;
1242 #ifdef SWAP_TO_FILES
1243 case VREG:
1244 /*
1245 * deligate to sw_reg_strategy function.
1246 */
1247 sw_reg_strategy(sdp, bp, bn);
1248 return;
1249 #endif
1250 }
1251 /* NOTREACHED */
1252 }
1253
1254 #ifdef SWAP_TO_FILES
1255 /*
1256 * sw_reg_strategy: handle swap i/o to regular files
1257 */
1258 static void
1259 sw_reg_strategy(sdp, bp, bn)
1260 struct swapdev *sdp;
1261 struct buf *bp;
1262 int bn;
1263 {
1264 struct vnode *vp;
1265 struct vndxfer *vnx;
1266 daddr_t nbn, byteoff;
1267 caddr_t addr;
1268 int s, off, nra, error, sz, resid;
1269 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1270
1271 /*
1272 * allocate a vndxfer head for this transfer and point it to
1273 * our buffer.
1274 */
1275 getvndxfer(vnx);
1276 vnx->vx_flags = VX_BUSY;
1277 vnx->vx_error = 0;
1278 vnx->vx_pending = 0;
1279 vnx->vx_bp = bp;
1280 vnx->vx_sdp = sdp;
1281
1282 /*
1283 * setup for main loop where we read filesystem blocks into
1284 * our buffer.
1285 */
1286 error = 0;
1287 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1288 addr = bp->b_data; /* current position in buffer */
1289 byteoff = dbtob(bn, DEF_BSHIFT);
1290
1291 for (resid = bp->b_resid; resid; resid -= sz) {
1292 struct vndbuf *nbp;
1293
1294 /*
1295 * translate byteoffset into block number. return values:
1296 * vp = vnode of underlying device
1297 * nbn = new block number (on underlying vnode dev)
1298 * nra = num blocks we can read-ahead (excludes requested
1299 * block)
1300 */
1301 nra = 0;
1302 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1303 &vp, &nbn, &nra);
1304
1305 if (error == 0 && (long)nbn == -1) {
1306 /*
1307 * this used to just set error, but that doesn't
1308 * do the right thing. Instead, it causes random
1309 * memory errors. The panic() should remain until
1310 * this condition doesn't destabilize the system.
1311 */
1312 #if 1
1313 panic("sw_reg_strategy: swap to sparse file");
1314 #else
1315 error = EIO; /* failure */
1316 #endif
1317 }
1318
1319 /*
1320 * punt if there was an error or a hole in the file.
1321 * we must wait for any i/o ops we have already started
1322 * to finish before returning.
1323 *
1324 * XXX we could deal with holes here but it would be
1325 * a hassle (in the write case).
1326 */
1327 if (error) {
1328 s = splbio();
1329 vnx->vx_error = error; /* pass error up */
1330 goto out;
1331 }
1332
1333 /*
1334 * compute the size ("sz") of this transfer (in bytes).
1335 * XXXCDC: ignores read-ahead for non-zero offset
1336 */
1337 if ((off = (byteoff % sdp->swd_bsize)) != 0)
1338 sz = sdp->swd_bsize - off;
1339 else
1340 sz = (1 + nra) * sdp->swd_bsize;
1341
1342 if (resid < sz)
1343 sz = resid;
1344
1345 UVMHIST_LOG(pdhist, "sw_reg_strategy: vp %p/%p offset 0x%x/0x%x",
1346 sdp->swd_vp, vp, byteoff, nbn);
1347
1348 /*
1349 * now get a buf structure. note that the vb_buf is
1350 * at the front of the nbp structure so that you can
1351 * cast pointers between the two structure easily.
1352 */
1353 getvndbuf(nbp);
1354 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1355 nbp->vb_buf.b_bcount = sz;
1356 #if 0
1357 nbp->vb_buf.b_bufsize = bp->b_bufsize; /* XXXCDC: really? */
1358 #endif
1359 nbp->vb_buf.b_bufsize = sz;
1360 nbp->vb_buf.b_error = 0;
1361 nbp->vb_buf.b_data = addr;
1362 nbp->vb_buf.b_blkno = nbn + btodb(off, DEF_BSHIFT);
1363 nbp->vb_buf.b_proc = bp->b_proc;
1364 nbp->vb_buf.b_iodone = sw_reg_iodone;
1365 nbp->vb_buf.b_vp = NULLVP;
1366 nbp->vb_buf.b_vnbufs.le_next = NOLIST;
1367 nbp->vb_buf.b_rcred = sdp->swd_cred;
1368 nbp->vb_buf.b_wcred = sdp->swd_cred;
1369 LIST_INIT(&nbp->vb_buf.b_dep);
1370
1371 /*
1372 * set b_dirtyoff/end and b_validoff/end. this is
1373 * required by the NFS client code (otherwise it will
1374 * just discard our I/O request).
1375 */
1376 if (bp->b_dirtyend == 0) {
1377 nbp->vb_buf.b_dirtyoff = 0;
1378 nbp->vb_buf.b_dirtyend = sz;
1379 } else {
1380 nbp->vb_buf.b_dirtyoff =
1381 max(0, bp->b_dirtyoff - (bp->b_bcount-resid));
1382 nbp->vb_buf.b_dirtyend =
1383 min(sz,
1384 max(0, bp->b_dirtyend - (bp->b_bcount-resid)));
1385 }
1386 if (bp->b_validend == 0) {
1387 nbp->vb_buf.b_validoff = 0;
1388 nbp->vb_buf.b_validend = sz;
1389 } else {
1390 nbp->vb_buf.b_validoff =
1391 max(0, bp->b_validoff - (bp->b_bcount-resid));
1392 nbp->vb_buf.b_validend =
1393 min(sz,
1394 max(0, bp->b_validend - (bp->b_bcount-resid)));
1395 }
1396
1397 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1398
1399 /*
1400 * Just sort by block number
1401 */
1402 nbp->vb_buf.b_cylinder = nbp->vb_buf.b_blkno;
1403 s = splbio();
1404 if (vnx->vx_error != 0) {
1405 putvndbuf(nbp);
1406 goto out;
1407 }
1408 vnx->vx_pending++;
1409
1410 /* assoc new buffer with underlying vnode */
1411 bgetvp(vp, &nbp->vb_buf);
1412
1413 /* sort it in and start I/O if we are not over our limit */
1414 disksort(&sdp->swd_tab, &nbp->vb_buf);
1415 sw_reg_start(sdp);
1416 splx(s);
1417
1418 /*
1419 * advance to the next I/O
1420 */
1421 byteoff += sz;
1422 addr += sz;
1423 }
1424
1425 s = splbio();
1426
1427 out: /* Arrive here at splbio */
1428 vnx->vx_flags &= ~VX_BUSY;
1429 if (vnx->vx_pending == 0) {
1430 if (vnx->vx_error != 0) {
1431 bp->b_error = vnx->vx_error;
1432 bp->b_flags |= B_ERROR;
1433 }
1434 putvndxfer(vnx);
1435 biodone(bp);
1436 }
1437 splx(s);
1438 }
1439
1440 /*
1441 * sw_reg_start: start an I/O request on the requested swapdev
1442 *
1443 * => reqs are sorted by disksort (above)
1444 */
1445 static void
1446 sw_reg_start(sdp)
1447 struct swapdev *sdp;
1448 {
1449 struct buf *bp;
1450 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1451
1452 /* recursion control */
1453 if ((sdp->swd_flags & SWF_BUSY) != 0)
1454 return;
1455
1456 sdp->swd_flags |= SWF_BUSY;
1457
1458 while (sdp->swd_tab.b_active < sdp->swd_maxactive) {
1459 bp = sdp->swd_tab.b_actf;
1460 if (bp == NULL)
1461 break;
1462 sdp->swd_tab.b_actf = bp->b_actf;
1463 sdp->swd_tab.b_active++;
1464
1465 UVMHIST_LOG(pdhist,
1466 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1467 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1468 if ((bp->b_flags & B_READ) == 0)
1469 bp->b_vp->v_numoutput++;
1470 VOP_STRATEGY(bp);
1471 }
1472 sdp->swd_flags &= ~SWF_BUSY;
1473 }
1474
1475 /*
1476 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1477 *
1478 * => note that we can recover the vndbuf struct by casting the buf ptr
1479 */
1480 static void
1481 sw_reg_iodone(bp)
1482 struct buf *bp;
1483 {
1484 struct vndbuf *vbp = (struct vndbuf *) bp;
1485 struct vndxfer *vnx = vbp->vb_xfer;
1486 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1487 struct swapdev *sdp = vnx->vx_sdp;
1488 int s, resid;
1489 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1490
1491 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1492 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1493 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1494 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1495
1496 /*
1497 * protect vbp at splbio and update.
1498 */
1499
1500 s = splbio();
1501 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1502 pbp->b_resid -= resid;
1503 vnx->vx_pending--;
1504
1505 if (vbp->vb_buf.b_error) {
1506 UVMHIST_LOG(pdhist, " got error=%d !",
1507 vbp->vb_buf.b_error, 0, 0, 0);
1508
1509 /* pass error upward */
1510 vnx->vx_error = vbp->vb_buf.b_error;
1511 }
1512
1513 /*
1514 * drop "hold" reference to vnode (if one)
1515 * XXXCDC: always set to NULLVP, this is useless, right?
1516 */
1517 if (vbp->vb_buf.b_vp != NULLVP)
1518 brelvp(&vbp->vb_buf);
1519
1520 /*
1521 * kill vbp structure
1522 */
1523 putvndbuf(vbp);
1524
1525 /*
1526 * wrap up this transaction if it has run to completion or, in
1527 * case of an error, when all auxiliary buffers have returned.
1528 */
1529 if (vnx->vx_error != 0) {
1530 /* pass error upward */
1531 pbp->b_flags |= B_ERROR;
1532 pbp->b_error = vnx->vx_error;
1533 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1534 putvndxfer(vnx);
1535 biodone(pbp);
1536 }
1537 } else if (pbp->b_resid == 0) {
1538 #ifdef DIAGNOSTIC
1539 if (vnx->vx_pending != 0)
1540 panic("sw_reg_iodone: vnx pending: %d",vnx->vx_pending);
1541 #endif
1542
1543 if ((vnx->vx_flags & VX_BUSY) == 0) {
1544 UVMHIST_LOG(pdhist, " iodone error=%d !",
1545 pbp, vnx->vx_error, 0, 0);
1546 putvndxfer(vnx);
1547 biodone(pbp);
1548 }
1549 }
1550
1551 /*
1552 * done! start next swapdev I/O if one is pending
1553 */
1554 sdp->swd_tab.b_active--;
1555 sw_reg_start(sdp);
1556
1557 splx(s);
1558 }
1559 #endif /* SWAP_TO_FILES */
1560
1561
1562 /*
1563 * uvm_swap_alloc: allocate space on swap
1564 *
1565 * => allocation is done "round robin" down the priority list, as we
1566 * allocate in a priority we "rotate" the circle queue.
1567 * => space can be freed with uvm_swap_free
1568 * => we return the page slot number in /dev/drum (0 == invalid slot)
1569 * => we lock uvm.swap_data_lock
1570 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1571 */
1572 int
1573 uvm_swap_alloc(nslots, lessok)
1574 int *nslots; /* IN/OUT */
1575 boolean_t lessok;
1576 {
1577 struct swapdev *sdp;
1578 struct swappri *spp;
1579 u_long result;
1580 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1581
1582 /*
1583 * no swap devices configured yet? definite failure.
1584 */
1585 if (uvmexp.nswapdev < 1)
1586 return 0;
1587
1588 /*
1589 * lock data lock, convert slots into blocks, and enter loop
1590 */
1591 simple_lock(&uvm.swap_data_lock);
1592
1593 ReTry: /* XXXMRG */
1594 for (spp = swap_priority.lh_first; spp != NULL;
1595 spp = spp->spi_swappri.le_next) {
1596 for (sdp = spp->spi_swapdev.cqh_first;
1597 sdp != (void *)&spp->spi_swapdev;
1598 sdp = sdp->swd_next.cqe_next) {
1599 /* if it's not enabled, then we can't swap from it */
1600 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1601 continue;
1602 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1603 continue;
1604 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1605 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1606 &result) != 0) {
1607 continue;
1608 }
1609
1610 /*
1611 * successful allocation! now rotate the circleq.
1612 */
1613 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1614 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1615 sdp->swd_npginuse += *nslots;
1616 uvmexp.swpginuse += *nslots;
1617 simple_unlock(&uvm.swap_data_lock);
1618 /* done! return drum slot number */
1619 UVMHIST_LOG(pdhist,
1620 "success! returning %d slots starting at %d",
1621 *nslots, result + sdp->swd_drumoffset, 0, 0);
1622 return(result + sdp->swd_drumoffset);
1623 }
1624 }
1625
1626 /* XXXMRG: BEGIN HACK */
1627 if (*nslots > 1 && lessok) {
1628 *nslots = 1;
1629 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1630 }
1631 /* XXXMRG: END HACK */
1632
1633 simple_unlock(&uvm.swap_data_lock);
1634 return 0; /* failed */
1635 }
1636
1637 /*
1638 * uvm_swap_free: free swap slots
1639 *
1640 * => this can be all or part of an allocation made by uvm_swap_alloc
1641 * => we lock uvm.swap_data_lock
1642 */
1643 void
1644 uvm_swap_free(startslot, nslots)
1645 int startslot;
1646 int nslots;
1647 {
1648 struct swapdev *sdp;
1649 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1650
1651 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1652 startslot, 0, 0);
1653 /*
1654 * convert drum slot offset back to sdp, free the blocks
1655 * in the extent, and return. must hold pri lock to do
1656 * lookup and access the extent.
1657 */
1658 simple_lock(&uvm.swap_data_lock);
1659 sdp = swapdrum_getsdp(startslot);
1660
1661 #ifdef DIAGNOSTIC
1662 if (uvmexp.nswapdev < 1)
1663 panic("uvm_swap_free: uvmexp.nswapdev < 1\n");
1664 if (sdp == NULL) {
1665 printf("uvm_swap_free: startslot %d, nslots %d\n", startslot,
1666 nslots);
1667 panic("uvm_swap_free: unmapped address\n");
1668 }
1669 #endif
1670 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1671 EX_MALLOCOK|EX_NOWAIT) != 0)
1672 printf("warning: resource shortage: %d slots of swap lost\n",
1673 nslots);
1674
1675 sdp->swd_npginuse -= nslots;
1676 uvmexp.swpginuse -= nslots;
1677 #ifdef DIAGNOSTIC
1678 if (sdp->swd_npginuse < 0)
1679 panic("uvm_swap_free: inuse < 0");
1680 #endif
1681 simple_unlock(&uvm.swap_data_lock);
1682 }
1683
1684 /*
1685 * uvm_swap_put: put any number of pages into a contig place on swap
1686 *
1687 * => can be sync or async
1688 * => XXXMRG: consider making it an inline or macro
1689 */
1690 int
1691 uvm_swap_put(swslot, ppsp, npages, flags)
1692 int swslot;
1693 struct vm_page **ppsp;
1694 int npages;
1695 int flags;
1696 {
1697 int result;
1698
1699 #if 0
1700 flags |= PGO_SYNCIO; /* XXXMRG: tmp, force sync */
1701 #endif
1702
1703 result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1704 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1705
1706 return (result);
1707 }
1708
1709 /*
1710 * uvm_swap_get: get a single page from swap
1711 *
1712 * => usually a sync op (from fault)
1713 * => XXXMRG: consider making it an inline or macro
1714 */
1715 int
1716 uvm_swap_get(page, swslot, flags)
1717 struct vm_page *page;
1718 int swslot, flags;
1719 {
1720 int result;
1721
1722 uvmexp.nswget++;
1723 #ifdef DIAGNOSTIC
1724 if ((flags & PGO_SYNCIO) == 0)
1725 printf("uvm_swap_get: ASYNC get requested?\n");
1726 #endif
1727
1728 /*
1729 * this page is (about to be) no longer only in swap.
1730 */
1731 simple_lock(&uvm.swap_data_lock);
1732 uvmexp.swpgonly--;
1733 simple_unlock(&uvm.swap_data_lock);
1734
1735 result = uvm_swap_io(&page, swslot, 1, B_READ |
1736 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1737
1738 if (result != VM_PAGER_OK && result != VM_PAGER_PEND) {
1739 /*
1740 * oops, the read failed so it really is still only in swap.
1741 */
1742 simple_lock(&uvm.swap_data_lock);
1743 uvmexp.swpgonly++;
1744 simple_unlock(&uvm.swap_data_lock);
1745 }
1746
1747 return (result);
1748 }
1749
1750 /*
1751 * uvm_swap_io: do an i/o operation to swap
1752 */
1753
1754 static int
1755 uvm_swap_io(pps, startslot, npages, flags)
1756 struct vm_page **pps;
1757 int startslot, npages, flags;
1758 {
1759 daddr_t startblk;
1760 struct swapbuf *sbp;
1761 struct buf *bp;
1762 vaddr_t kva;
1763 int result, s, waitf, pflag;
1764 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1765
1766 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1767 startslot, npages, flags, 0);
1768 /*
1769 * convert starting drum slot to block number
1770 */
1771 startblk = btodb(startslot << PAGE_SHIFT, DEF_BSHIFT);
1772
1773 /*
1774 * first, map the pages into the kernel (XXX: currently required
1775 * by buffer system). note that we don't let pagermapin alloc
1776 * an aiodesc structure because we don't want to chance a malloc.
1777 * we've got our own pool of aiodesc structures (in swapbuf).
1778 */
1779 waitf = (flags & B_ASYNC) ? M_NOWAIT : M_WAITOK;
1780 kva = uvm_pagermapin(pps, npages, NULL, waitf);
1781 if (kva == NULL)
1782 return (VM_PAGER_AGAIN);
1783
1784 /*
1785 * now allocate a swap buffer off of freesbufs
1786 * [make sure we don't put the pagedaemon to sleep...]
1787 */
1788 s = splbio();
1789 pflag = ((flags & B_ASYNC) != 0 || curproc == uvm.pagedaemon_proc)
1790 ? 0
1791 : PR_WAITOK;
1792 sbp = pool_get(swapbuf_pool, pflag);
1793 splx(s); /* drop splbio */
1794
1795 /*
1796 * if we failed to get a swapbuf, return "try again"
1797 */
1798 if (sbp == NULL)
1799 return (VM_PAGER_AGAIN);
1800
1801 /*
1802 * fill in the bp/sbp. we currently route our i/o through
1803 * /dev/drum's vnode [swapdev_vp].
1804 */
1805 bp = &sbp->sw_buf;
1806 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1807 bp->b_proc = &proc0; /* XXX */
1808 bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1809 bp->b_vnbufs.le_next = NOLIST;
1810 bp->b_data = (caddr_t)kva;
1811 bp->b_blkno = startblk;
1812 s = splbio();
1813 VHOLD(swapdev_vp);
1814 bp->b_vp = swapdev_vp;
1815 splx(s);
1816 /* XXXCDC: isn't swapdev_vp always a VCHR? */
1817 /* XXXMRG: probably -- this is obviously something inherited... */
1818 if (swapdev_vp->v_type == VBLK)
1819 bp->b_dev = swapdev_vp->v_rdev;
1820 bp->b_bcount = npages << PAGE_SHIFT;
1821 LIST_INIT(&bp->b_dep);
1822
1823 /*
1824 * for pageouts we must set "dirtyoff" [NFS client code needs it].
1825 * and we bump v_numoutput (counter of number of active outputs).
1826 */
1827 if ((bp->b_flags & B_READ) == 0) {
1828 bp->b_dirtyoff = 0;
1829 bp->b_dirtyend = npages << PAGE_SHIFT;
1830 s = splbio();
1831 swapdev_vp->v_numoutput++;
1832 splx(s);
1833 }
1834
1835 /*
1836 * for async ops we must set up the aiodesc and setup the callback
1837 * XXX: we expect no async-reads, but we don't prevent it here.
1838 */
1839 if (flags & B_ASYNC) {
1840 sbp->sw_aio.aiodone = uvm_swap_aiodone;
1841 sbp->sw_aio.kva = kva;
1842 sbp->sw_aio.npages = npages;
1843 sbp->sw_aio.pd_ptr = sbp; /* backpointer */
1844 bp->b_flags |= B_CALL; /* set callback */
1845 bp->b_iodone = uvm_swap_bufdone;/* "buf" iodone function */
1846 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1847 }
1848 UVMHIST_LOG(pdhist,
1849 "about to start io: data = 0x%p blkno = 0x%x, bcount = %ld",
1850 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1851
1852 /*
1853 * now we start the I/O, and if async, return.
1854 */
1855 VOP_STRATEGY(bp);
1856 if (flags & B_ASYNC)
1857 return (VM_PAGER_PEND);
1858
1859 /*
1860 * must be sync i/o. wait for it to finish
1861 */
1862 bp->b_error = biowait(bp);
1863 result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
1864
1865 /*
1866 * kill the pager mapping
1867 */
1868 uvm_pagermapout(kva, npages);
1869
1870 /*
1871 * now dispose of the swap buffer
1872 */
1873 s = splbio();
1874 if (bp->b_vp)
1875 brelvp(bp);
1876
1877 pool_put(swapbuf_pool, sbp);
1878 splx(s);
1879
1880 /*
1881 * finally return.
1882 */
1883 UVMHIST_LOG(pdhist, "<- done (sync) result=%d", result, 0, 0, 0);
1884 return (result);
1885 }
1886
1887 /*
1888 * uvm_swap_bufdone: called from the buffer system when the i/o is done
1889 */
1890 static void
1891 uvm_swap_bufdone(bp)
1892 struct buf *bp;
1893 {
1894 struct swapbuf *sbp = (struct swapbuf *) bp;
1895 int s = splbio();
1896 UVMHIST_FUNC("uvm_swap_bufdone"); UVMHIST_CALLED(pdhist);
1897
1898 UVMHIST_LOG(pdhist, "cleaning buf %p", buf, 0, 0, 0);
1899 #ifdef DIAGNOSTIC
1900 /*
1901 * sanity check: swapbufs are private, so they shouldn't be wanted
1902 */
1903 if (bp->b_flags & B_WANTED)
1904 panic("uvm_swap_bufdone: private buf wanted");
1905 #endif
1906
1907 /*
1908 * drop the buffer's reference to the vnode.
1909 */
1910 if (bp->b_vp)
1911 brelvp(bp);
1912
1913 /*
1914 * now put the aio on the uvm.aio_done list and wake the
1915 * pagedaemon (which will finish up our job in its context).
1916 */
1917 simple_lock(&uvm.pagedaemon_lock); /* locks uvm.aio_done */
1918 TAILQ_INSERT_TAIL(&uvm.aio_done, &sbp->sw_aio, aioq);
1919 simple_unlock(&uvm.pagedaemon_lock);
1920
1921 wakeup(&uvm.pagedaemon);
1922 splx(s);
1923 }
1924
1925 /*
1926 * uvm_swap_aiodone: aiodone function for anonymous memory
1927 *
1928 * => this is called in the context of the pagedaemon (but with the
1929 * page queues unlocked!)
1930 * => our "aio" structure must be part of a "swapbuf"
1931 */
1932 static void
1933 uvm_swap_aiodone(aio)
1934 struct uvm_aiodesc *aio;
1935 {
1936 struct swapbuf *sbp = aio->pd_ptr;
1937 struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT];
1938 int lcv, s;
1939 vaddr_t addr;
1940 UVMHIST_FUNC("uvm_swap_aiodone"); UVMHIST_CALLED(pdhist);
1941
1942 UVMHIST_LOG(pdhist, "done with aio %p", aio, 0, 0, 0);
1943 #ifdef DIAGNOSTIC
1944 /*
1945 * sanity check
1946 */
1947 if (aio->npages > (MAXBSIZE >> PAGE_SHIFT))
1948 panic("uvm_swap_aiodone: aio too big!");
1949 #endif
1950
1951 /*
1952 * first, we have to recover the page pointers (pps) by poking in the
1953 * kernel pmap (XXX: should be saved in the buf structure).
1954 */
1955 for (addr = aio->kva, lcv = 0 ; lcv < aio->npages ;
1956 addr += PAGE_SIZE, lcv++) {
1957 pps[lcv] = uvm_pageratop(addr);
1958 }
1959
1960 /*
1961 * now we can dispose of the kernel mappings of the buffer
1962 */
1963 uvm_pagermapout(aio->kva, aio->npages);
1964
1965 /*
1966 * now we can dispose of the pages by using the dropcluster function
1967 * [note that we have no "page of interest" so we pass in null]
1968 */
1969 uvm_pager_dropcluster(NULL, NULL, pps, &aio->npages,
1970 PGO_PDFREECLUST, 0);
1971
1972 /*
1973 * finally, we can dispose of the swapbuf
1974 */
1975 s = splbio();
1976 pool_put(swapbuf_pool, sbp);
1977 splx(s);
1978 }
1979