Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.37
      1 /*	$NetBSD: uvm_swap.c,v 1.37 2000/05/19 03:45:04 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     32  */
     33 
     34 #include "fs_nfs.h"
     35 #include "opt_uvmhist.h"
     36 #include "opt_compat_netbsd.h"
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/buf.h>
     41 #include <sys/conf.h>
     42 #include <sys/proc.h>
     43 #include <sys/namei.h>
     44 #include <sys/disklabel.h>
     45 #include <sys/errno.h>
     46 #include <sys/kernel.h>
     47 #include <sys/malloc.h>
     48 #include <sys/vnode.h>
     49 #include <sys/file.h>
     50 #include <sys/extent.h>
     51 #include <sys/mount.h>
     52 #include <sys/pool.h>
     53 #include <sys/syscallargs.h>
     54 #include <sys/swap.h>
     55 
     56 #include <vm/vm.h>
     57 #include <uvm/uvm.h>
     58 
     59 #include <miscfs/specfs/specdev.h>
     60 
     61 /*
     62  * uvm_swap.c: manage configuration and i/o to swap space.
     63  */
     64 
     65 /*
     66  * swap space is managed in the following way:
     67  *
     68  * each swap partition or file is described by a "swapdev" structure.
     69  * each "swapdev" structure contains a "swapent" structure which contains
     70  * information that is passed up to the user (via system calls).
     71  *
     72  * each swap partition is assigned a "priority" (int) which controls
     73  * swap parition usage.
     74  *
     75  * the system maintains a global data structure describing all swap
     76  * partitions/files.   there is a sorted LIST of "swappri" structures
     77  * which describe "swapdev"'s at that priority.   this LIST is headed
     78  * by the "swap_priority" global var.    each "swappri" contains a
     79  * CIRCLEQ of "swapdev" structures at that priority.
     80  *
     81  * the system maintains a fixed pool of "swapbuf" structures for use
     82  * at swap i/o time.  a swapbuf includes a "buf" structure and an
     83  * "aiodone" [we want to avoid malloc()'ing anything at swapout time
     84  * since memory may be low].
     85  *
     86  * locking:
     87  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
     88  *    system call and prevents the swap priority list from changing
     89  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     90  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
     91  *    structures including the priority list, the swapdev structures,
     92  *    and the swapmap extent.
     93  *  - swap_buf_lock (simple_lock): this lock protects the free swapbuf
     94  *    pool.
     95  *
     96  * each swap device has the following info:
     97  *  - swap device in use (could be disabled, preventing future use)
     98  *  - swap enabled (allows new allocations on swap)
     99  *  - map info in /dev/drum
    100  *  - vnode pointer
    101  * for swap files only:
    102  *  - block size
    103  *  - max byte count in buffer
    104  *  - buffer
    105  *  - credentials to use when doing i/o to file
    106  *
    107  * userland controls and configures swap with the swapctl(2) system call.
    108  * the sys_swapctl performs the following operations:
    109  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    110  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    111  *	(passed in via "arg") of a size passed in via "misc" ... we load
    112  *	the current swap config into the array.
    113  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    114  *	priority in "misc", start swapping on it.
    115  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    116  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    117  *	"misc")
    118  */
    119 
    120 /*
    121  * swapdev: describes a single swap partition/file
    122  *
    123  * note the following should be true:
    124  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    125  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    126  */
    127 struct swapdev {
    128 	struct oswapent swd_ose;
    129 #define	swd_dev		swd_ose.ose_dev		/* device id */
    130 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    131 #define	swd_priority	swd_ose.ose_priority	/* our priority */
    132 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    133 	char			*swd_path;	/* saved pathname of device */
    134 	int			swd_pathlen;	/* length of pathname */
    135 	int			swd_npages;	/* #pages we can use */
    136 	int			swd_npginuse;	/* #pages in use */
    137 	int			swd_npgbad;	/* #pages bad */
    138 	int			swd_drumoffset;	/* page0 offset in drum */
    139 	int			swd_drumsize;	/* #pages in drum */
    140 	struct extent		*swd_ex;	/* extent for this swapdev */
    141 	struct vnode		*swd_vp;	/* backing vnode */
    142 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    143 
    144 	int			swd_bsize;	/* blocksize (bytes) */
    145 	int			swd_maxactive;	/* max active i/o reqs */
    146 	struct buf_queue	swd_tab;	/* buffer list */
    147 	int			swd_active;	/* number of active buffers */
    148 	struct ucred		*swd_cred;	/* cred for file access */
    149 };
    150 
    151 /*
    152  * swap device priority entry; the list is kept sorted on `spi_priority'.
    153  */
    154 struct swappri {
    155 	int			spi_priority;     /* priority */
    156 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    157 	/* circleq of swapdevs at this priority */
    158 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    159 };
    160 
    161 /*
    162  * swapbuf, swapbuffer plus async i/o info
    163  */
    164 struct swapbuf {
    165 	struct buf sw_buf;		/* a buffer structure */
    166 	struct uvm_aiodesc sw_aio;	/* aiodesc structure, used if ASYNC */
    167 	SIMPLEQ_ENTRY(swapbuf) sw_sq;	/* free list pointer */
    168 };
    169 
    170 /*
    171  * The following two structures are used to keep track of data transfers
    172  * on swap devices associated with regular files.
    173  * NOTE: this code is more or less a copy of vnd.c; we use the same
    174  * structure names here to ease porting..
    175  */
    176 struct vndxfer {
    177 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    178 	struct swapdev	*vx_sdp;
    179 	int		vx_error;
    180 	int		vx_pending;	/* # of pending aux buffers */
    181 	int		vx_flags;
    182 #define VX_BUSY		1
    183 #define VX_DEAD		2
    184 };
    185 
    186 struct vndbuf {
    187 	struct buf	vb_buf;
    188 	struct vndxfer	*vb_xfer;
    189 };
    190 
    191 
    192 /*
    193  * We keep a of pool vndbuf's and vndxfer structures.
    194  */
    195 struct pool *vndxfer_pool;
    196 struct pool *vndbuf_pool;
    197 
    198 #define	getvndxfer(vnx)	do {						\
    199 	int s = splbio();						\
    200 	vnx = pool_get(vndxfer_pool, PR_MALLOCOK|PR_WAITOK);		\
    201 	splx(s);							\
    202 } while (0)
    203 
    204 #define putvndxfer(vnx) {						\
    205 	pool_put(vndxfer_pool, (void *)(vnx));				\
    206 }
    207 
    208 #define	getvndbuf(vbp)	do {						\
    209 	int s = splbio();						\
    210 	vbp = pool_get(vndbuf_pool, PR_MALLOCOK|PR_WAITOK);		\
    211 	splx(s);							\
    212 } while (0)
    213 
    214 #define putvndbuf(vbp) {						\
    215 	pool_put(vndbuf_pool, (void *)(vbp));				\
    216 }
    217 
    218 /* /dev/drum */
    219 bdev_decl(sw);
    220 cdev_decl(sw);
    221 
    222 /*
    223  * local variables
    224  */
    225 static struct extent *swapmap;		/* controls the mapping of /dev/drum */
    226 SIMPLEQ_HEAD(swapbufhead, swapbuf);
    227 struct pool *swapbuf_pool;
    228 
    229 /* list of all active swap devices [by priority] */
    230 LIST_HEAD(swap_priority, swappri);
    231 static struct swap_priority swap_priority;
    232 
    233 /* locks */
    234 lock_data_t swap_syscall_lock;
    235 
    236 /*
    237  * prototypes
    238  */
    239 static void		 swapdrum_add __P((struct swapdev *, int));
    240 static struct swapdev	*swapdrum_getsdp __P((int));
    241 
    242 static struct swapdev	*swaplist_find __P((struct vnode *, int));
    243 static void		 swaplist_insert __P((struct swapdev *,
    244 					     struct swappri *, int));
    245 static void		 swaplist_trim __P((void));
    246 
    247 static int swap_on __P((struct proc *, struct swapdev *));
    248 static int swap_off __P((struct proc *, struct swapdev *));
    249 
    250 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
    251 static void sw_reg_iodone __P((struct buf *));
    252 static void sw_reg_start __P((struct swapdev *));
    253 
    254 static void uvm_swap_aiodone __P((struct uvm_aiodesc *));
    255 static void uvm_swap_bufdone __P((struct buf *));
    256 static int uvm_swap_io __P((struct vm_page **, int, int, int));
    257 
    258 /*
    259  * uvm_swap_init: init the swap system data structures and locks
    260  *
    261  * => called at boot time from init_main.c after the filesystems
    262  *	are brought up (which happens after uvm_init())
    263  */
    264 void
    265 uvm_swap_init()
    266 {
    267 	UVMHIST_FUNC("uvm_swap_init");
    268 
    269 	UVMHIST_CALLED(pdhist);
    270 	/*
    271 	 * first, init the swap list, its counter, and its lock.
    272 	 * then get a handle on the vnode for /dev/drum by using
    273 	 * the its dev_t number ("swapdev", from MD conf.c).
    274 	 */
    275 
    276 	LIST_INIT(&swap_priority);
    277 	uvmexp.nswapdev = 0;
    278 	lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
    279 	simple_lock_init(&uvm.swap_data_lock);
    280 
    281 	if (bdevvp(swapdev, &swapdev_vp))
    282 		panic("uvm_swap_init: can't get vnode for swap device");
    283 
    284 	/*
    285 	 * create swap block resource map to map /dev/drum.   the range
    286 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    287 	 * that block 0 is reserved (used to indicate an allocation
    288 	 * failure, or no allocation).
    289 	 */
    290 	swapmap = extent_create("swapmap", 1, INT_MAX,
    291 				M_VMSWAP, 0, 0, EX_NOWAIT);
    292 	if (swapmap == 0)
    293 		panic("uvm_swap_init: extent_create failed");
    294 
    295 	/*
    296 	 * allocate our private pool of "swapbuf" structures (includes
    297 	 * a "buf" structure).  ["nswbuf" comes from param.c and can
    298 	 * be adjusted by MD code before we get here].
    299 	 */
    300 
    301 	swapbuf_pool =
    302 		pool_create(sizeof(struct swapbuf), 0, 0, 0, "swp buf", 0,
    303 			    NULL, NULL, 0);
    304 	if (swapbuf_pool == NULL)
    305 		panic("swapinit: pool_create failed");
    306 	/* XXX - set a maximum on swapbuf_pool? */
    307 
    308 	vndxfer_pool =
    309 		pool_create(sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 0,
    310 			    NULL, NULL, 0);
    311 	if (vndxfer_pool == NULL)
    312 		panic("swapinit: pool_create failed");
    313 
    314 	vndbuf_pool =
    315 		pool_create(sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 0,
    316 			    NULL, NULL, 0);
    317 	if (vndbuf_pool == NULL)
    318 		panic("swapinit: pool_create failed");
    319 	/*
    320 	 * done!
    321 	 */
    322 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    323 }
    324 
    325 /*
    326  * swaplist functions: functions that operate on the list of swap
    327  * devices on the system.
    328  */
    329 
    330 /*
    331  * swaplist_insert: insert swap device "sdp" into the global list
    332  *
    333  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    334  * => caller must provide a newly malloc'd swappri structure (we will
    335  *	FREE it if we don't need it... this it to prevent malloc blocking
    336  *	here while adding swap)
    337  */
    338 static void
    339 swaplist_insert(sdp, newspp, priority)
    340 	struct swapdev *sdp;
    341 	struct swappri *newspp;
    342 	int priority;
    343 {
    344 	struct swappri *spp, *pspp;
    345 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    346 
    347 	/*
    348 	 * find entry at or after which to insert the new device.
    349 	 */
    350 	for (pspp = NULL, spp = LIST_FIRST(&swap_priority); spp != NULL;
    351 	     spp = LIST_NEXT(spp, spi_swappri)) {
    352 		if (priority <= spp->spi_priority)
    353 			break;
    354 		pspp = spp;
    355 	}
    356 
    357 	/*
    358 	 * new priority?
    359 	 */
    360 	if (spp == NULL || spp->spi_priority != priority) {
    361 		spp = newspp;  /* use newspp! */
    362 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    363 			    priority, 0, 0, 0);
    364 
    365 		spp->spi_priority = priority;
    366 		CIRCLEQ_INIT(&spp->spi_swapdev);
    367 
    368 		if (pspp)
    369 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    370 		else
    371 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    372 	} else {
    373 	  	/* we don't need a new priority structure, free it */
    374 		FREE(newspp, M_VMSWAP);
    375 	}
    376 
    377 	/*
    378 	 * priority found (or created).   now insert on the priority's
    379 	 * circleq list and bump the total number of swapdevs.
    380 	 */
    381 	sdp->swd_priority = priority;
    382 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    383 	uvmexp.nswapdev++;
    384 }
    385 
    386 /*
    387  * swaplist_find: find and optionally remove a swap device from the
    388  *	global list.
    389  *
    390  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    391  * => we return the swapdev we found (and removed)
    392  */
    393 static struct swapdev *
    394 swaplist_find(vp, remove)
    395 	struct vnode *vp;
    396 	boolean_t remove;
    397 {
    398 	struct swapdev *sdp;
    399 	struct swappri *spp;
    400 
    401 	/*
    402 	 * search the lists for the requested vp
    403 	 */
    404 	for (spp = LIST_FIRST(&swap_priority); spp != NULL;
    405 	     spp = LIST_NEXT(spp, spi_swappri)) {
    406 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    407 		     sdp != (void *)&spp->spi_swapdev;
    408 		     sdp = CIRCLEQ_NEXT(sdp, swd_next))
    409 			if (sdp->swd_vp == vp) {
    410 				if (remove) {
    411 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    412 					    sdp, swd_next);
    413 					uvmexp.nswapdev--;
    414 				}
    415 				return(sdp);
    416 			}
    417 	}
    418 	return (NULL);
    419 }
    420 
    421 
    422 /*
    423  * swaplist_trim: scan priority list for empty priority entries and kill
    424  *	them.
    425  *
    426  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    427  */
    428 static void
    429 swaplist_trim()
    430 {
    431 	struct swappri *spp, *nextspp;
    432 
    433 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    434 		nextspp = LIST_NEXT(spp, spi_swappri);
    435 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    436 		    (void *)&spp->spi_swapdev)
    437 			continue;
    438 		LIST_REMOVE(spp, spi_swappri);
    439 		free(spp, M_VMSWAP);
    440 	}
    441 }
    442 
    443 /*
    444  * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
    445  *
    446  * => caller must hold swap_syscall_lock
    447  * => uvm.swap_data_lock should be unlocked (we may sleep)
    448  */
    449 static void
    450 swapdrum_add(sdp, npages)
    451 	struct swapdev *sdp;
    452 	int	npages;
    453 {
    454 	u_long result;
    455 
    456 	if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
    457 	    EX_WAITOK, &result))
    458 		panic("swapdrum_add");
    459 
    460 	sdp->swd_drumoffset = result;
    461 	sdp->swd_drumsize = npages;
    462 }
    463 
    464 /*
    465  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    466  *	to the "swapdev" that maps that section of the drum.
    467  *
    468  * => each swapdev takes one big contig chunk of the drum
    469  * => caller must hold uvm.swap_data_lock
    470  */
    471 static struct swapdev *
    472 swapdrum_getsdp(pgno)
    473 	int pgno;
    474 {
    475 	struct swapdev *sdp;
    476 	struct swappri *spp;
    477 
    478 	for (spp = LIST_FIRST(&swap_priority); spp != NULL;
    479 	     spp = LIST_NEXT(spp, spi_swappri))
    480 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    481 		     sdp != (void *)&spp->spi_swapdev;
    482 		     sdp = CIRCLEQ_NEXT(sdp, swd_next))
    483 			if (pgno >= sdp->swd_drumoffset &&
    484 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    485 				return sdp;
    486 			}
    487 	return NULL;
    488 }
    489 
    490 
    491 /*
    492  * sys_swapctl: main entry point for swapctl(2) system call
    493  * 	[with two helper functions: swap_on and swap_off]
    494  */
    495 int
    496 sys_swapctl(p, v, retval)
    497 	struct proc *p;
    498 	void *v;
    499 	register_t *retval;
    500 {
    501 	struct sys_swapctl_args /* {
    502 		syscallarg(int) cmd;
    503 		syscallarg(void *) arg;
    504 		syscallarg(int) misc;
    505 	} */ *uap = (struct sys_swapctl_args *)v;
    506 	struct vnode *vp;
    507 	struct nameidata nd;
    508 	struct swappri *spp;
    509 	struct swapdev *sdp;
    510 	struct swapent *sep;
    511 	char	userpath[PATH_MAX + 1];
    512 	size_t	len;
    513 	int	count, error, misc;
    514 	int	priority;
    515 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    516 
    517 	misc = SCARG(uap, misc);
    518 
    519 	/*
    520 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    521 	 */
    522 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
    523 
    524 	/*
    525 	 * we handle the non-priv NSWAP and STATS request first.
    526 	 *
    527 	 * SWAP_NSWAP: return number of config'd swap devices
    528 	 * [can also be obtained with uvmexp sysctl]
    529 	 */
    530 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    531 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    532 		    0, 0, 0);
    533 		*retval = uvmexp.nswapdev;
    534 		error = 0;
    535 		goto out;
    536 	}
    537 
    538 	/*
    539 	 * SWAP_STATS: get stats on current # of configured swap devs
    540 	 *
    541 	 * note that the swap_priority list can't change as long
    542 	 * as we are holding the swap_syscall_lock.  we don't want
    543 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
    544 	 * copyout() and we don't want to be holding that lock then!
    545 	 */
    546 	if (SCARG(uap, cmd) == SWAP_STATS
    547 #if defined(COMPAT_13)
    548 	    || SCARG(uap, cmd) == SWAP_OSTATS
    549 #endif
    550 	    ) {
    551 		sep = (struct swapent *)SCARG(uap, arg);
    552 		count = 0;
    553 
    554 		for (spp = LIST_FIRST(&swap_priority); spp != NULL;
    555 		    spp = LIST_NEXT(spp, spi_swappri)) {
    556 			for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    557 			     sdp != (void *)&spp->spi_swapdev && misc-- > 0;
    558 			     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    559 			  	/*
    560 				 * backwards compatibility for system call.
    561 				 * note that we use 'struct oswapent' as an
    562 				 * overlay into both 'struct swapdev' and
    563 				 * the userland 'struct swapent', as we
    564 				 * want to retain backwards compatibility
    565 				 * with NetBSD 1.3.
    566 				 */
    567 				sdp->swd_ose.ose_inuse =
    568 				    btodb(sdp->swd_npginuse << PAGE_SHIFT);
    569 				error = copyout(&sdp->swd_ose, sep,
    570 						sizeof(struct oswapent));
    571 
    572 				/* now copy out the path if necessary */
    573 #if defined(COMPAT_13)
    574 				if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
    575 #else
    576 				if (error == 0)
    577 #endif
    578 					error = copyout(sdp->swd_path,
    579 					    &sep->se_path, sdp->swd_pathlen);
    580 
    581 				if (error)
    582 					goto out;
    583 				count++;
    584 #if defined(COMPAT_13)
    585 				if (SCARG(uap, cmd) == SWAP_OSTATS)
    586 					((struct oswapent *)sep)++;
    587 				else
    588 #endif
    589 					sep++;
    590 			}
    591 		}
    592 
    593 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    594 
    595 		*retval = count;
    596 		error = 0;
    597 		goto out;
    598 	}
    599 
    600 	/*
    601 	 * all other requests require superuser privs.   verify.
    602 	 */
    603 	if ((error = suser(p->p_ucred, &p->p_acflag)))
    604 		goto out;
    605 
    606 	/*
    607 	 * at this point we expect a path name in arg.   we will
    608 	 * use namei() to gain a vnode reference (vref), and lock
    609 	 * the vnode (VOP_LOCK).
    610 	 *
    611 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    612 	 * miniroot)
    613 	 */
    614 	if (SCARG(uap, arg) == NULL) {
    615 		vp = rootvp;		/* miniroot */
    616 		if (vget(vp, LK_EXCLUSIVE)) {
    617 			error = EBUSY;
    618 			goto out;
    619 		}
    620 		if (SCARG(uap, cmd) == SWAP_ON &&
    621 		    copystr("miniroot", userpath, sizeof userpath, &len))
    622 			panic("swapctl: miniroot copy failed");
    623 	} else {
    624 		int	space;
    625 		char	*where;
    626 
    627 		if (SCARG(uap, cmd) == SWAP_ON) {
    628 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    629 			    sizeof userpath, &len)))
    630 				goto out;
    631 			space = UIO_SYSSPACE;
    632 			where = userpath;
    633 		} else {
    634 			space = UIO_USERSPACE;
    635 			where = (char *)SCARG(uap, arg);
    636 		}
    637 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
    638 		if ((error = namei(&nd)))
    639 			goto out;
    640 		vp = nd.ni_vp;
    641 	}
    642 	/* note: "vp" is referenced and locked */
    643 
    644 	error = 0;		/* assume no error */
    645 	switch(SCARG(uap, cmd)) {
    646 	case SWAP_DUMPDEV:
    647 		if (vp->v_type != VBLK) {
    648 			error = ENOTBLK;
    649 			goto out;
    650 		}
    651 		dumpdev = vp->v_rdev;
    652 
    653 		break;
    654 
    655 	case SWAP_CTL:
    656 		/*
    657 		 * get new priority, remove old entry (if any) and then
    658 		 * reinsert it in the correct place.  finally, prune out
    659 		 * any empty priority structures.
    660 		 */
    661 		priority = SCARG(uap, misc);
    662 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    663 		simple_lock(&uvm.swap_data_lock);
    664 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
    665 			error = ENOENT;
    666 		} else {
    667 			swaplist_insert(sdp, spp, priority);
    668 			swaplist_trim();
    669 		}
    670 		simple_unlock(&uvm.swap_data_lock);
    671 		if (error)
    672 			free(spp, M_VMSWAP);
    673 		break;
    674 
    675 	case SWAP_ON:
    676 
    677 		/*
    678 		 * check for duplicates.   if none found, then insert a
    679 		 * dummy entry on the list to prevent someone else from
    680 		 * trying to enable this device while we are working on
    681 		 * it.
    682 		 */
    683 
    684 		priority = SCARG(uap, misc);
    685 		simple_lock(&uvm.swap_data_lock);
    686 		if ((sdp = swaplist_find(vp, 0)) != NULL) {
    687 			error = EBUSY;
    688 			simple_unlock(&uvm.swap_data_lock);
    689 			break;
    690 		}
    691 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    692 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    693 		memset(sdp, 0, sizeof(*sdp));
    694 		sdp->swd_flags = SWF_FAKE;	/* placeholder only */
    695 		sdp->swd_vp = vp;
    696 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    697 		BUFQ_INIT(&sdp->swd_tab);
    698 
    699 		/*
    700 		 * XXX Is NFS elaboration necessary?
    701 		 */
    702 		if (vp->v_type == VREG) {
    703 			sdp->swd_cred = crdup(p->p_ucred);
    704 		}
    705 
    706 		swaplist_insert(sdp, spp, priority);
    707 		simple_unlock(&uvm.swap_data_lock);
    708 
    709 		sdp->swd_pathlen = len;
    710 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    711 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    712 			panic("swapctl: copystr");
    713 
    714 		/*
    715 		 * we've now got a FAKE placeholder in the swap list.
    716 		 * now attempt to enable swap on it.  if we fail, undo
    717 		 * what we've done and kill the fake entry we just inserted.
    718 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    719 		 */
    720 
    721 		if ((error = swap_on(p, sdp)) != 0) {
    722 			simple_lock(&uvm.swap_data_lock);
    723 			(void) swaplist_find(vp, 1);  /* kill fake entry */
    724 			swaplist_trim();
    725 			simple_unlock(&uvm.swap_data_lock);
    726 			if (vp->v_type == VREG) {
    727 				crfree(sdp->swd_cred);
    728 			}
    729 			free(sdp->swd_path, M_VMSWAP);
    730 			free(sdp, M_VMSWAP);
    731 			break;
    732 		}
    733 
    734 		/*
    735 		 * got it!   now add a second reference to vp so that
    736 		 * we keep a reference to the vnode after we return.
    737 		 */
    738 		vref(vp);
    739 		break;
    740 
    741 	case SWAP_OFF:
    742 		simple_lock(&uvm.swap_data_lock);
    743 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
    744 			simple_unlock(&uvm.swap_data_lock);
    745 			error = ENXIO;
    746 			break;
    747 		}
    748 
    749 		/*
    750 		 * If a device isn't in use or enabled, we
    751 		 * can't stop swapping from it (again).
    752 		 */
    753 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    754 			simple_unlock(&uvm.swap_data_lock);
    755 			error = EBUSY;
    756 			break;
    757 		}
    758 
    759 		/*
    760 		 * do the real work.
    761 		 */
    762 		if ((error = swap_off(p, sdp)) != 0)
    763 			goto out;
    764 
    765 		break;
    766 
    767 	default:
    768 		error = EINVAL;
    769 	}
    770 
    771 	/*
    772 	 * done!   use vput to drop our reference and unlock
    773 	 */
    774 	vput(vp);
    775 out:
    776 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
    777 
    778 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    779 	return (error);
    780 }
    781 
    782 /*
    783  * swap_on: attempt to enable a swapdev for swapping.   note that the
    784  *	swapdev is already on the global list, but disabled (marked
    785  *	SWF_FAKE).
    786  *
    787  * => we avoid the start of the disk (to protect disk labels)
    788  * => we also avoid the miniroot, if we are swapping to root.
    789  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
    790  *	if needed.
    791  */
    792 static int
    793 swap_on(p, sdp)
    794 	struct proc *p;
    795 	struct swapdev *sdp;
    796 {
    797 	static int count = 0;	/* static */
    798 	struct vnode *vp;
    799 	int error, npages, nblocks, size;
    800 	long addr;
    801 	struct vattr va;
    802 #ifdef NFS
    803 	extern int (**nfsv2_vnodeop_p) __P((void *));
    804 #endif /* NFS */
    805 	dev_t dev;
    806 	char *name;
    807 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    808 
    809 	/*
    810 	 * we want to enable swapping on sdp.   the swd_vp contains
    811 	 * the vnode we want (locked and ref'd), and the swd_dev
    812 	 * contains the dev_t of the file, if it a block device.
    813 	 */
    814 
    815 	vp = sdp->swd_vp;
    816 	dev = sdp->swd_dev;
    817 
    818 	/*
    819 	 * open the swap file (mostly useful for block device files to
    820 	 * let device driver know what is up).
    821 	 *
    822 	 * we skip the open/close for root on swap because the root
    823 	 * has already been opened when root was mounted (mountroot).
    824 	 */
    825 	if (vp != rootvp) {
    826 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
    827 			return (error);
    828 	}
    829 
    830 	/* XXX this only works for block devices */
    831 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    832 
    833 	/*
    834 	 * we now need to determine the size of the swap area.   for
    835 	 * block specials we can call the d_psize function.
    836 	 * for normal files, we must stat [get attrs].
    837 	 *
    838 	 * we put the result in nblks.
    839 	 * for normal files, we also want the filesystem block size
    840 	 * (which we get with statfs).
    841 	 */
    842 	switch (vp->v_type) {
    843 	case VBLK:
    844 		if (bdevsw[major(dev)].d_psize == 0 ||
    845 		    (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
    846 			error = ENXIO;
    847 			goto bad;
    848 		}
    849 		break;
    850 
    851 	case VREG:
    852 		if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
    853 			goto bad;
    854 		nblocks = (int)btodb(va.va_size);
    855 		if ((error =
    856 		     VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
    857 			goto bad;
    858 
    859 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    860 		/*
    861 		 * limit the max # of outstanding I/O requests we issue
    862 		 * at any one time.   take it easy on NFS servers.
    863 		 */
    864 #ifdef NFS
    865 		if (vp->v_op == nfsv2_vnodeop_p)
    866 			sdp->swd_maxactive = 2; /* XXX */
    867 		else
    868 #endif /* NFS */
    869 			sdp->swd_maxactive = 8; /* XXX */
    870 		break;
    871 
    872 	default:
    873 		error = ENXIO;
    874 		goto bad;
    875 	}
    876 
    877 	/*
    878 	 * save nblocks in a safe place and convert to pages.
    879 	 */
    880 
    881 	sdp->swd_ose.ose_nblks = nblocks;
    882 	npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
    883 
    884 	/*
    885 	 * for block special files, we want to make sure that leave
    886 	 * the disklabel and bootblocks alone, so we arrange to skip
    887 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    888 	 * note that because of this the "size" can be less than the
    889 	 * actual number of blocks on the device.
    890 	 */
    891 	if (vp->v_type == VBLK) {
    892 		/* we use pages 1 to (size - 1) [inclusive] */
    893 		size = npages - 1;
    894 		addr = 1;
    895 	} else {
    896 		/* we use pages 0 to (size - 1) [inclusive] */
    897 		size = npages;
    898 		addr = 0;
    899 	}
    900 
    901 	/*
    902 	 * make sure we have enough blocks for a reasonable sized swap
    903 	 * area.   we want at least one page.
    904 	 */
    905 
    906 	if (size < 1) {
    907 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    908 		error = EINVAL;
    909 		goto bad;
    910 	}
    911 
    912 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    913 
    914 	/*
    915 	 * now we need to allocate an extent to manage this swap device
    916 	 */
    917 	name = malloc(12, M_VMSWAP, M_WAITOK);
    918 	sprintf(name, "swap0x%04x", count++);
    919 
    920 	/* note that extent_create's 3rd arg is inclusive, thus "- 1" */
    921 	sdp->swd_ex = extent_create(name, 0, npages - 1, M_VMSWAP,
    922 				    0, 0, EX_WAITOK);
    923 	/* allocate the `saved' region from the extent so it won't be used */
    924 	if (addr) {
    925 		if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
    926 			panic("disklabel region");
    927 	}
    928 
    929 	/*
    930 	 * if the vnode we are swapping to is the root vnode
    931 	 * (i.e. we are swapping to the miniroot) then we want
    932 	 * to make sure we don't overwrite it.   do a statfs to
    933 	 * find its size and skip over it.
    934 	 */
    935 	if (vp == rootvp) {
    936 		struct mount *mp;
    937 		struct statfs *sp;
    938 		int rootblocks, rootpages;
    939 
    940 		mp = rootvnode->v_mount;
    941 		sp = &mp->mnt_stat;
    942 		rootblocks = sp->f_blocks * btodb(sp->f_bsize);
    943 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    944 		if (rootpages > size)
    945 			panic("swap_on: miniroot larger than swap?");
    946 
    947 		if (extent_alloc_region(sdp->swd_ex, addr,
    948 					rootpages, EX_WAITOK))
    949 			panic("swap_on: unable to preserve miniroot");
    950 
    951 		size -= rootpages;
    952 		printf("Preserved %d pages of miniroot ", rootpages);
    953 		printf("leaving %d pages of swap\n", size);
    954 	}
    955 
    956   	/*
    957 	 * add anons to reflect the new swap space
    958 	 */
    959 	uvm_anon_add(size);
    960 
    961 	/*
    962 	 * now add the new swapdev to the drum and enable.
    963 	 */
    964 	simple_lock(&uvm.swap_data_lock);
    965 	swapdrum_add(sdp, npages);
    966 	sdp->swd_npages = size;
    967 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    968 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    969 	uvmexp.swpages += size;
    970 	simple_unlock(&uvm.swap_data_lock);
    971 	return (0);
    972 
    973 bad:
    974 	/*
    975 	 * failure: close device if necessary and return error.
    976 	 */
    977 	if (vp != rootvp)
    978 		(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
    979 	return (error);
    980 }
    981 
    982 /*
    983  * swap_off: stop swapping on swapdev
    984  *
    985  * => swap data should be locked, we will unlock.
    986  */
    987 static int
    988 swap_off(p, sdp)
    989 	struct proc *p;
    990 	struct swapdev *sdp;
    991 {
    992 	void *name;
    993 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
    994 	UVMHIST_LOG(pdhist, "  dev=%x", sdp->swd_dev,0,0,0);
    995 
    996 	/* disable the swap area being removed */
    997 	sdp->swd_flags &= ~SWF_ENABLE;
    998 	simple_unlock(&uvm.swap_data_lock);
    999 
   1000 	/*
   1001 	 * the idea is to find all the pages that are paged out to this
   1002 	 * device, and page them all in.  in uvm, swap-backed pageable
   1003 	 * memory can take two forms: aobjs and anons.  call the
   1004 	 * swapoff hook for each subsystem to bring in pages.
   1005 	 */
   1006 
   1007 	if (uao_swap_off(sdp->swd_drumoffset,
   1008 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1009 	    anon_swap_off(sdp->swd_drumoffset,
   1010 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1011 
   1012 		simple_lock(&uvm.swap_data_lock);
   1013 		sdp->swd_flags |= SWF_ENABLE;
   1014 		simple_unlock(&uvm.swap_data_lock);
   1015 		return ENOMEM;
   1016 	}
   1017 
   1018 #ifdef DIAGNOSTIC
   1019 	if (sdp->swd_npginuse != sdp->swd_npgbad) {
   1020 		panic("swap_off: sdp %p - %d pages still in use (%d bad)\n",
   1021 		      sdp, sdp->swd_npginuse, sdp->swd_npgbad);
   1022 	}
   1023 #endif
   1024 
   1025 	/*
   1026 	 * done with the vnode.
   1027 	 */
   1028 	if (sdp->swd_vp->v_type == VREG) {
   1029 		crfree(sdp->swd_cred);
   1030 	}
   1031 	if (sdp->swd_vp != rootvp) {
   1032 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
   1033 	}
   1034 	if (sdp->swd_vp) {
   1035 		vrele(sdp->swd_vp);
   1036 	}
   1037 
   1038 	/* remove anons from the system */
   1039 	uvm_anon_remove(sdp->swd_npages);
   1040 
   1041 	simple_lock(&uvm.swap_data_lock);
   1042 	uvmexp.swpages -= sdp->swd_npages;
   1043 
   1044 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
   1045 		panic("swap_off: swapdev not in list\n");
   1046 	swaplist_trim();
   1047 
   1048 	/*
   1049 	 * free all resources!
   1050 	 */
   1051 	extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
   1052 		    EX_WAITOK);
   1053 	name = (void *)sdp->swd_ex->ex_name;
   1054 	extent_destroy(sdp->swd_ex);
   1055 	free(name, M_VMSWAP);
   1056 	free(sdp, M_VMSWAP);
   1057 	simple_unlock(&uvm.swap_data_lock);
   1058 	return (0);
   1059 }
   1060 
   1061 /*
   1062  * /dev/drum interface and i/o functions
   1063  */
   1064 
   1065 /*
   1066  * swread: the read function for the drum (just a call to physio)
   1067  */
   1068 /*ARGSUSED*/
   1069 int
   1070 swread(dev, uio, ioflag)
   1071 	dev_t dev;
   1072 	struct uio *uio;
   1073 	int ioflag;
   1074 {
   1075 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1076 
   1077 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1078 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1079 }
   1080 
   1081 /*
   1082  * swwrite: the write function for the drum (just a call to physio)
   1083  */
   1084 /*ARGSUSED*/
   1085 int
   1086 swwrite(dev, uio, ioflag)
   1087 	dev_t dev;
   1088 	struct uio *uio;
   1089 	int ioflag;
   1090 {
   1091 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1092 
   1093 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1094 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1095 }
   1096 
   1097 /*
   1098  * swstrategy: perform I/O on the drum
   1099  *
   1100  * => we must map the i/o request from the drum to the correct swapdev.
   1101  */
   1102 void
   1103 swstrategy(bp)
   1104 	struct buf *bp;
   1105 {
   1106 	struct swapdev *sdp;
   1107 	struct vnode *vp;
   1108 	int s, pageno, bn;
   1109 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1110 
   1111 	/*
   1112 	 * convert block number to swapdev.   note that swapdev can't
   1113 	 * be yanked out from under us because we are holding resources
   1114 	 * in it (i.e. the blocks we are doing I/O on).
   1115 	 */
   1116 	pageno = dbtob(bp->b_blkno) >> PAGE_SHIFT;
   1117 	simple_lock(&uvm.swap_data_lock);
   1118 	sdp = swapdrum_getsdp(pageno);
   1119 	simple_unlock(&uvm.swap_data_lock);
   1120 	if (sdp == NULL) {
   1121 		bp->b_error = EINVAL;
   1122 		bp->b_flags |= B_ERROR;
   1123 		biodone(bp);
   1124 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1125 		return;
   1126 	}
   1127 
   1128 	/*
   1129 	 * convert drum page number to block number on this swapdev.
   1130 	 */
   1131 
   1132 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1133 	bn = btodb(pageno << PAGE_SHIFT);	/* convert to diskblock */
   1134 
   1135 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld\n",
   1136 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1137 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1138 
   1139 	/*
   1140 	 * for block devices we finish up here.
   1141 	 * for regular files we have to do more work which we delegate
   1142 	 * to sw_reg_strategy().
   1143 	 */
   1144 
   1145 	switch (sdp->swd_vp->v_type) {
   1146 	default:
   1147 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
   1148 
   1149 	case VBLK:
   1150 
   1151 		/*
   1152 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1153 		 * on the swapdev (sdp).
   1154 		 */
   1155 		s = splbio();
   1156 		bp->b_blkno = bn;		/* swapdev block number */
   1157 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1158 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1159 		VHOLD(vp);			/* "hold" swapdev vp for i/o */
   1160 
   1161 		/*
   1162 		 * if we are doing a write, we have to redirect the i/o on
   1163 		 * drum's v_numoutput counter to the swapdevs.
   1164 		 */
   1165 		if ((bp->b_flags & B_READ) == 0) {
   1166 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1167 			vp->v_numoutput++;	/* put it on swapdev */
   1168 		}
   1169 
   1170 		/*
   1171 		 * dissassocate buffer with /dev/drum vnode
   1172 		 * [could be null if buf was from physio]
   1173 		 */
   1174 		if (bp->b_vp != NULLVP)
   1175 			brelvp(bp);
   1176 
   1177 		/*
   1178 		 * finally plug in swapdev vnode and start I/O
   1179 		 */
   1180 		bp->b_vp = vp;
   1181 		splx(s);
   1182 		VOP_STRATEGY(bp);
   1183 		return;
   1184 
   1185 	case VREG:
   1186 		/*
   1187 		 * delegate to sw_reg_strategy function.
   1188 		 */
   1189 		sw_reg_strategy(sdp, bp, bn);
   1190 		return;
   1191 	}
   1192 	/* NOTREACHED */
   1193 }
   1194 
   1195 /*
   1196  * sw_reg_strategy: handle swap i/o to regular files
   1197  */
   1198 static void
   1199 sw_reg_strategy(sdp, bp, bn)
   1200 	struct swapdev	*sdp;
   1201 	struct buf	*bp;
   1202 	int		bn;
   1203 {
   1204 	struct vnode	*vp;
   1205 	struct vndxfer	*vnx;
   1206 	daddr_t		nbn, byteoff;
   1207 	caddr_t		addr;
   1208 	int		s, off, nra, error, sz, resid;
   1209 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1210 
   1211 	/*
   1212 	 * allocate a vndxfer head for this transfer and point it to
   1213 	 * our buffer.
   1214 	 */
   1215 	getvndxfer(vnx);
   1216 	vnx->vx_flags = VX_BUSY;
   1217 	vnx->vx_error = 0;
   1218 	vnx->vx_pending = 0;
   1219 	vnx->vx_bp = bp;
   1220 	vnx->vx_sdp = sdp;
   1221 
   1222 	/*
   1223 	 * setup for main loop where we read filesystem blocks into
   1224 	 * our buffer.
   1225 	 */
   1226 	error = 0;
   1227 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1228 	addr = bp->b_data;		/* current position in buffer */
   1229 	byteoff = dbtob(bn);
   1230 
   1231 	for (resid = bp->b_resid; resid; resid -= sz) {
   1232 		struct vndbuf	*nbp;
   1233 
   1234 		/*
   1235 		 * translate byteoffset into block number.  return values:
   1236 		 *   vp = vnode of underlying device
   1237 		 *  nbn = new block number (on underlying vnode dev)
   1238 		 *  nra = num blocks we can read-ahead (excludes requested
   1239 		 *	block)
   1240 		 */
   1241 		nra = 0;
   1242 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1243 				 	&vp, &nbn, &nra);
   1244 
   1245 		if (error == 0 && nbn == (daddr_t)-1) {
   1246 			/*
   1247 			 * this used to just set error, but that doesn't
   1248 			 * do the right thing.  Instead, it causes random
   1249 			 * memory errors.  The panic() should remain until
   1250 			 * this condition doesn't destabilize the system.
   1251 			 */
   1252 #if 1
   1253 			panic("sw_reg_strategy: swap to sparse file");
   1254 #else
   1255 			error = EIO;	/* failure */
   1256 #endif
   1257 		}
   1258 
   1259 		/*
   1260 		 * punt if there was an error or a hole in the file.
   1261 		 * we must wait for any i/o ops we have already started
   1262 		 * to finish before returning.
   1263 		 *
   1264 		 * XXX we could deal with holes here but it would be
   1265 		 * a hassle (in the write case).
   1266 		 */
   1267 		if (error) {
   1268 			s = splbio();
   1269 			vnx->vx_error = error;	/* pass error up */
   1270 			goto out;
   1271 		}
   1272 
   1273 		/*
   1274 		 * compute the size ("sz") of this transfer (in bytes).
   1275 		 * XXXCDC: ignores read-ahead for non-zero offset
   1276 		 */
   1277 		if ((off = (byteoff % sdp->swd_bsize)) != 0)
   1278 			sz = sdp->swd_bsize - off;
   1279 		else
   1280 			sz = (1 + nra) * sdp->swd_bsize;
   1281 
   1282 		if (resid < sz)
   1283 			sz = resid;
   1284 
   1285 		UVMHIST_LOG(pdhist, "sw_reg_strategy: vp %p/%p offset 0x%x/0x%x",
   1286 				sdp->swd_vp, vp, byteoff, nbn);
   1287 
   1288 		/*
   1289 		 * now get a buf structure.   note that the vb_buf is
   1290 		 * at the front of the nbp structure so that you can
   1291 		 * cast pointers between the two structure easily.
   1292 		 */
   1293 		getvndbuf(nbp);
   1294 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
   1295 		nbp->vb_buf.b_bcount   = sz;
   1296 		nbp->vb_buf.b_bufsize  = sz;
   1297 		nbp->vb_buf.b_error    = 0;
   1298 		nbp->vb_buf.b_data     = addr;
   1299 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1300 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1301 		nbp->vb_buf.b_proc     = bp->b_proc;
   1302 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
   1303 		nbp->vb_buf.b_vp       = NULLVP;
   1304 		nbp->vb_buf.b_vnbufs.le_next = NOLIST;
   1305 		nbp->vb_buf.b_rcred    = sdp->swd_cred;
   1306 		nbp->vb_buf.b_wcred    = sdp->swd_cred;
   1307 		LIST_INIT(&nbp->vb_buf.b_dep);
   1308 
   1309 		/*
   1310 		 * set b_dirtyoff/end and b_validoff/end.   this is
   1311 		 * required by the NFS client code (otherwise it will
   1312 		 * just discard our I/O request).
   1313 		 */
   1314 		if (bp->b_dirtyend == 0) {
   1315 			nbp->vb_buf.b_dirtyoff = 0;
   1316 			nbp->vb_buf.b_dirtyend = sz;
   1317 		} else {
   1318 			nbp->vb_buf.b_dirtyoff =
   1319 			    max(0, bp->b_dirtyoff - (bp->b_bcount-resid));
   1320 			nbp->vb_buf.b_dirtyend =
   1321 			    min(sz,
   1322 				max(0, bp->b_dirtyend - (bp->b_bcount-resid)));
   1323 		}
   1324 		if (bp->b_validend == 0) {
   1325 			nbp->vb_buf.b_validoff = 0;
   1326 			nbp->vb_buf.b_validend = sz;
   1327 		} else {
   1328 			nbp->vb_buf.b_validoff =
   1329 			    max(0, bp->b_validoff - (bp->b_bcount-resid));
   1330 			nbp->vb_buf.b_validend =
   1331 			    min(sz,
   1332 				max(0, bp->b_validend - (bp->b_bcount-resid)));
   1333 		}
   1334 
   1335 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1336 
   1337 		/*
   1338 		 * Just sort by block number
   1339 		 */
   1340 		s = splbio();
   1341 		if (vnx->vx_error != 0) {
   1342 			putvndbuf(nbp);
   1343 			goto out;
   1344 		}
   1345 		vnx->vx_pending++;
   1346 
   1347 		/* assoc new buffer with underlying vnode */
   1348 		bgetvp(vp, &nbp->vb_buf);
   1349 
   1350 		/* sort it in and start I/O if we are not over our limit */
   1351 		disksort_blkno(&sdp->swd_tab, &nbp->vb_buf);
   1352 		sw_reg_start(sdp);
   1353 		splx(s);
   1354 
   1355 		/*
   1356 		 * advance to the next I/O
   1357 		 */
   1358 		byteoff += sz;
   1359 		addr += sz;
   1360 	}
   1361 
   1362 	s = splbio();
   1363 
   1364 out: /* Arrive here at splbio */
   1365 	vnx->vx_flags &= ~VX_BUSY;
   1366 	if (vnx->vx_pending == 0) {
   1367 		if (vnx->vx_error != 0) {
   1368 			bp->b_error = vnx->vx_error;
   1369 			bp->b_flags |= B_ERROR;
   1370 		}
   1371 		putvndxfer(vnx);
   1372 		biodone(bp);
   1373 	}
   1374 	splx(s);
   1375 }
   1376 
   1377 /*
   1378  * sw_reg_start: start an I/O request on the requested swapdev
   1379  *
   1380  * => reqs are sorted by disksort (above)
   1381  */
   1382 static void
   1383 sw_reg_start(sdp)
   1384 	struct swapdev	*sdp;
   1385 {
   1386 	struct buf	*bp;
   1387 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1388 
   1389 	/* recursion control */
   1390 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1391 		return;
   1392 
   1393 	sdp->swd_flags |= SWF_BUSY;
   1394 
   1395 	while (sdp->swd_active < sdp->swd_maxactive) {
   1396 		bp = BUFQ_FIRST(&sdp->swd_tab);
   1397 		if (bp == NULL)
   1398 			break;
   1399 		BUFQ_REMOVE(&sdp->swd_tab, bp);
   1400 		sdp->swd_active++;
   1401 
   1402 		UVMHIST_LOG(pdhist,
   1403 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1404 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1405 		if ((bp->b_flags & B_READ) == 0)
   1406 			bp->b_vp->v_numoutput++;
   1407 		VOP_STRATEGY(bp);
   1408 	}
   1409 	sdp->swd_flags &= ~SWF_BUSY;
   1410 }
   1411 
   1412 /*
   1413  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1414  *
   1415  * => note that we can recover the vndbuf struct by casting the buf ptr
   1416  */
   1417 static void
   1418 sw_reg_iodone(bp)
   1419 	struct buf *bp;
   1420 {
   1421 	struct vndbuf *vbp = (struct vndbuf *) bp;
   1422 	struct vndxfer *vnx = vbp->vb_xfer;
   1423 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1424 	struct swapdev	*sdp = vnx->vx_sdp;
   1425 	int		s, resid;
   1426 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1427 
   1428 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1429 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1430 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1431 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1432 
   1433 	/*
   1434 	 * protect vbp at splbio and update.
   1435 	 */
   1436 
   1437 	s = splbio();
   1438 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1439 	pbp->b_resid -= resid;
   1440 	vnx->vx_pending--;
   1441 
   1442 	if (vbp->vb_buf.b_error) {
   1443 		UVMHIST_LOG(pdhist, "  got error=%d !",
   1444 		    vbp->vb_buf.b_error, 0, 0, 0);
   1445 
   1446 		/* pass error upward */
   1447 		vnx->vx_error = vbp->vb_buf.b_error;
   1448 	}
   1449 
   1450 	/*
   1451 	 * disassociate this buffer from the vnode (if any).
   1452 	 */
   1453 	if (vbp->vb_buf.b_vp != NULLVP) {
   1454 		brelvp(&vbp->vb_buf);
   1455 	}
   1456 
   1457 	/*
   1458 	 * kill vbp structure
   1459 	 */
   1460 	putvndbuf(vbp);
   1461 
   1462 	/*
   1463 	 * wrap up this transaction if it has run to completion or, in
   1464 	 * case of an error, when all auxiliary buffers have returned.
   1465 	 */
   1466 	if (vnx->vx_error != 0) {
   1467 		/* pass error upward */
   1468 		pbp->b_flags |= B_ERROR;
   1469 		pbp->b_error = vnx->vx_error;
   1470 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1471 			putvndxfer(vnx);
   1472 			biodone(pbp);
   1473 		}
   1474 	} else if (pbp->b_resid == 0) {
   1475 #ifdef DIAGNOSTIC
   1476 		if (vnx->vx_pending != 0)
   1477 			panic("sw_reg_iodone: vnx pending: %d",vnx->vx_pending);
   1478 #endif
   1479 
   1480 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1481 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1482 			    pbp, vnx->vx_error, 0, 0);
   1483 			putvndxfer(vnx);
   1484 			biodone(pbp);
   1485 		}
   1486 	}
   1487 
   1488 	/*
   1489 	 * done!   start next swapdev I/O if one is pending
   1490 	 */
   1491 	sdp->swd_active--;
   1492 	sw_reg_start(sdp);
   1493 	splx(s);
   1494 }
   1495 
   1496 
   1497 /*
   1498  * uvm_swap_alloc: allocate space on swap
   1499  *
   1500  * => allocation is done "round robin" down the priority list, as we
   1501  *	allocate in a priority we "rotate" the circle queue.
   1502  * => space can be freed with uvm_swap_free
   1503  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1504  * => we lock uvm.swap_data_lock
   1505  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1506  */
   1507 int
   1508 uvm_swap_alloc(nslots, lessok)
   1509 	int *nslots;	/* IN/OUT */
   1510 	boolean_t lessok;
   1511 {
   1512 	struct swapdev *sdp;
   1513 	struct swappri *spp;
   1514 	u_long	result;
   1515 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1516 
   1517 	/*
   1518 	 * no swap devices configured yet?   definite failure.
   1519 	 */
   1520 	if (uvmexp.nswapdev < 1)
   1521 		return 0;
   1522 
   1523 	/*
   1524 	 * lock data lock, convert slots into blocks, and enter loop
   1525 	 */
   1526 	simple_lock(&uvm.swap_data_lock);
   1527 
   1528 ReTry:	/* XXXMRG */
   1529 	for (spp = LIST_FIRST(&swap_priority); spp != NULL;
   1530 	     spp = LIST_NEXT(spp, spi_swappri)) {
   1531 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
   1532 		     sdp != (void *)&spp->spi_swapdev;
   1533 		     sdp = CIRCLEQ_NEXT(sdp,swd_next)) {
   1534 			/* if it's not enabled, then we can't swap from it */
   1535 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1536 				continue;
   1537 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1538 				continue;
   1539 			if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
   1540 					 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
   1541 					 &result) != 0) {
   1542 				continue;
   1543 			}
   1544 
   1545 			/*
   1546 			 * successful allocation!  now rotate the circleq.
   1547 			 */
   1548 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1549 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1550 			sdp->swd_npginuse += *nslots;
   1551 			uvmexp.swpginuse += *nslots;
   1552 			simple_unlock(&uvm.swap_data_lock);
   1553 			/* done!  return drum slot number */
   1554 			UVMHIST_LOG(pdhist,
   1555 			    "success!  returning %d slots starting at %d",
   1556 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1557 			return(result + sdp->swd_drumoffset);
   1558 		}
   1559 	}
   1560 
   1561 	/* XXXMRG: BEGIN HACK */
   1562 	if (*nslots > 1 && lessok) {
   1563 		*nslots = 1;
   1564 		goto ReTry;	/* XXXMRG: ugh!  extent should support this for us */
   1565 	}
   1566 	/* XXXMRG: END HACK */
   1567 
   1568 	simple_unlock(&uvm.swap_data_lock);
   1569 	return 0;		/* failed */
   1570 }
   1571 
   1572 /*
   1573  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1574  *
   1575  * => we lock uvm.swap_data_lock
   1576  */
   1577 void
   1578 uvm_swap_markbad(startslot, nslots)
   1579 	int startslot;
   1580 	int nslots;
   1581 {
   1582 	struct swapdev *sdp;
   1583 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1584 
   1585 	simple_lock(&uvm.swap_data_lock);
   1586 	sdp = swapdrum_getsdp(startslot);
   1587 
   1588 	/*
   1589 	 * we just keep track of how many pages have been marked bad
   1590 	 * in this device, to make everything add up in swap_off().
   1591 	 * we assume here that the range of slots will all be within
   1592 	 * one swap device.
   1593 	 */
   1594 	sdp->swd_npgbad += nslots;
   1595 
   1596 	simple_unlock(&uvm.swap_data_lock);
   1597 }
   1598 
   1599 /*
   1600  * uvm_swap_free: free swap slots
   1601  *
   1602  * => this can be all or part of an allocation made by uvm_swap_alloc
   1603  * => we lock uvm.swap_data_lock
   1604  */
   1605 void
   1606 uvm_swap_free(startslot, nslots)
   1607 	int startslot;
   1608 	int nslots;
   1609 {
   1610 	struct swapdev *sdp;
   1611 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1612 
   1613 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1614 	    startslot, 0, 0);
   1615 
   1616 	/*
   1617 	 * ignore attempts to free the "bad" slot.
   1618 	 */
   1619 	if (startslot == SWSLOT_BAD) {
   1620 		return;
   1621 	}
   1622 
   1623 	/*
   1624 	 * convert drum slot offset back to sdp, free the blocks
   1625 	 * in the extent, and return.   must hold pri lock to do
   1626 	 * lookup and access the extent.
   1627 	 */
   1628 	simple_lock(&uvm.swap_data_lock);
   1629 	sdp = swapdrum_getsdp(startslot);
   1630 
   1631 #ifdef DIAGNOSTIC
   1632 	if (uvmexp.nswapdev < 1)
   1633 		panic("uvm_swap_free: uvmexp.nswapdev < 1\n");
   1634 	if (sdp == NULL) {
   1635 		printf("uvm_swap_free: startslot %d, nslots %d\n", startslot,
   1636 		    nslots);
   1637 		panic("uvm_swap_free: unmapped address\n");
   1638 	}
   1639 #endif
   1640 	if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
   1641 			EX_MALLOCOK|EX_NOWAIT) != 0) {
   1642 		printf("warning: resource shortage: %d pages of swap lost\n",
   1643 			nslots);
   1644 	}
   1645 
   1646 	sdp->swd_npginuse -= nslots;
   1647 	uvmexp.swpginuse -= nslots;
   1648 #ifdef DIAGNOSTIC
   1649 	if (sdp->swd_npginuse < 0)
   1650 		panic("uvm_swap_free: inuse < 0");
   1651 #endif
   1652 	simple_unlock(&uvm.swap_data_lock);
   1653 }
   1654 
   1655 /*
   1656  * uvm_swap_put: put any number of pages into a contig place on swap
   1657  *
   1658  * => can be sync or async
   1659  * => XXXMRG: consider making it an inline or macro
   1660  */
   1661 int
   1662 uvm_swap_put(swslot, ppsp, npages, flags)
   1663 	int swslot;
   1664 	struct vm_page **ppsp;
   1665 	int	npages;
   1666 	int	flags;
   1667 {
   1668 	int	result;
   1669 
   1670 	result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1671 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1672 
   1673 	return (result);
   1674 }
   1675 
   1676 /*
   1677  * uvm_swap_get: get a single page from swap
   1678  *
   1679  * => usually a sync op (from fault)
   1680  * => XXXMRG: consider making it an inline or macro
   1681  */
   1682 int
   1683 uvm_swap_get(page, swslot, flags)
   1684 	struct vm_page *page;
   1685 	int swslot, flags;
   1686 {
   1687 	int	result;
   1688 
   1689 	uvmexp.nswget++;
   1690 #ifdef DIAGNOSTIC
   1691 	if ((flags & PGO_SYNCIO) == 0)
   1692 		printf("uvm_swap_get: ASYNC get requested?\n");
   1693 #endif
   1694 
   1695 	if (swslot == SWSLOT_BAD) {
   1696 		return VM_PAGER_ERROR;
   1697 	}
   1698 
   1699 	/*
   1700 	 * this page is (about to be) no longer only in swap.
   1701 	 */
   1702 	simple_lock(&uvm.swap_data_lock);
   1703 	uvmexp.swpgonly--;
   1704 	simple_unlock(&uvm.swap_data_lock);
   1705 
   1706 	result = uvm_swap_io(&page, swslot, 1, B_READ |
   1707 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1708 
   1709 	if (result != VM_PAGER_OK && result != VM_PAGER_PEND) {
   1710 		/*
   1711 		 * oops, the read failed so it really is still only in swap.
   1712 		 */
   1713 		simple_lock(&uvm.swap_data_lock);
   1714 		uvmexp.swpgonly++;
   1715 		simple_unlock(&uvm.swap_data_lock);
   1716 	}
   1717 
   1718 	return (result);
   1719 }
   1720 
   1721 /*
   1722  * uvm_swap_io: do an i/o operation to swap
   1723  */
   1724 
   1725 static int
   1726 uvm_swap_io(pps, startslot, npages, flags)
   1727 	struct vm_page **pps;
   1728 	int startslot, npages, flags;
   1729 {
   1730 	daddr_t startblk;
   1731 	struct swapbuf *sbp;
   1732 	struct	buf *bp;
   1733 	vaddr_t kva;
   1734 	int	result, s, mapinflags, pflag;
   1735 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1736 
   1737 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1738 	    startslot, npages, flags, 0);
   1739 
   1740 	/*
   1741 	 * convert starting drum slot to block number
   1742 	 */
   1743 	startblk = btodb(startslot << PAGE_SHIFT);
   1744 
   1745 	/*
   1746 	 * first, map the pages into the kernel (XXX: currently required
   1747 	 * by buffer system).   note that we don't let pagermapin alloc
   1748 	 * an aiodesc structure because we don't want to chance a malloc.
   1749 	 * we've got our own pool of aiodesc structures (in swapbuf).
   1750 	 */
   1751 	mapinflags = (flags & B_READ) ? UVMPAGER_MAPIN_READ :
   1752 	    UVMPAGER_MAPIN_WRITE;
   1753 	if ((flags & B_ASYNC) == 0)
   1754 		mapinflags |= UVMPAGER_MAPIN_WAITOK;
   1755 	kva = uvm_pagermapin(pps, npages, NULL, mapinflags);
   1756 	if (kva == 0)
   1757 		return (VM_PAGER_AGAIN);
   1758 
   1759 	/*
   1760 	 * now allocate a swap buffer off of freesbufs
   1761 	 * [make sure we don't put the pagedaemon to sleep...]
   1762 	 */
   1763 	s = splbio();
   1764 	pflag = ((flags & B_ASYNC) != 0 || curproc == uvm.pagedaemon_proc)
   1765 		? 0
   1766 		: PR_WAITOK;
   1767 	sbp = pool_get(swapbuf_pool, pflag);
   1768 	splx(s);		/* drop splbio */
   1769 
   1770 	/*
   1771 	 * if we failed to get a swapbuf, return "try again"
   1772 	 */
   1773 	if (sbp == NULL)
   1774 		return (VM_PAGER_AGAIN);
   1775 
   1776 	/*
   1777 	 * fill in the bp/sbp.   we currently route our i/o through
   1778 	 * /dev/drum's vnode [swapdev_vp].
   1779 	 */
   1780 	bp = &sbp->sw_buf;
   1781 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
   1782 	bp->b_proc = &proc0;	/* XXX */
   1783 	bp->b_rcred = bp->b_wcred = proc0.p_ucred;
   1784 	bp->b_vnbufs.le_next = NOLIST;
   1785 	bp->b_data = (caddr_t)kva;
   1786 	bp->b_blkno = startblk;
   1787 	s = splbio();
   1788 	VHOLD(swapdev_vp);
   1789 	bp->b_vp = swapdev_vp;
   1790 	splx(s);
   1791 	/* XXXCDC: isn't swapdev_vp always a VCHR? */
   1792 	/* XXXMRG: probably -- this is obviously something inherited... */
   1793 	if (swapdev_vp->v_type == VBLK)
   1794 		bp->b_dev = swapdev_vp->v_rdev;
   1795 	bp->b_bcount = npages << PAGE_SHIFT;
   1796 	LIST_INIT(&bp->b_dep);
   1797 
   1798 	/*
   1799 	 * for pageouts we must set "dirtyoff" [NFS client code needs it].
   1800 	 * and we bump v_numoutput (counter of number of active outputs).
   1801 	 */
   1802 	if ((bp->b_flags & B_READ) == 0) {
   1803 		bp->b_dirtyoff = 0;
   1804 		bp->b_dirtyend = npages << PAGE_SHIFT;
   1805 		s = splbio();
   1806 		swapdev_vp->v_numoutput++;
   1807 		splx(s);
   1808 	}
   1809 
   1810 	/*
   1811 	 * for async ops we must set up the aiodesc and setup the callback
   1812 	 * XXX: we expect no async-reads, but we don't prevent it here.
   1813 	 */
   1814 	if (flags & B_ASYNC) {
   1815 		sbp->sw_aio.aiodone = uvm_swap_aiodone;
   1816 		sbp->sw_aio.kva = kva;
   1817 		sbp->sw_aio.npages = npages;
   1818 		sbp->sw_aio.pd_ptr = sbp;	/* backpointer */
   1819 		bp->b_flags |= B_CALL;		/* set callback */
   1820 		bp->b_iodone = uvm_swap_bufdone;/* "buf" iodone function */
   1821 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1822 	}
   1823 	UVMHIST_LOG(pdhist,
   1824 	    "about to start io: data = 0x%p blkno = 0x%x, bcount = %ld",
   1825 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1826 
   1827 	/*
   1828 	 * now we start the I/O, and if async, return.
   1829 	 */
   1830 	VOP_STRATEGY(bp);
   1831 	if (flags & B_ASYNC)
   1832 		return (VM_PAGER_PEND);
   1833 
   1834 	/*
   1835 	 * must be sync i/o.   wait for it to finish
   1836 	 */
   1837 	bp->b_error = biowait(bp);
   1838 	result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
   1839 
   1840 	/*
   1841 	 * kill the pager mapping
   1842 	 */
   1843 	uvm_pagermapout(kva, npages);
   1844 
   1845 	/*
   1846 	 * now dispose of the swap buffer
   1847 	 */
   1848 	s = splbio();
   1849 	if (bp->b_vp)
   1850 		brelvp(bp);
   1851 
   1852 	pool_put(swapbuf_pool, sbp);
   1853 	splx(s);
   1854 
   1855 	/*
   1856 	 * finally return.
   1857 	 */
   1858 	UVMHIST_LOG(pdhist, "<- done (sync)  result=%d", result, 0, 0, 0);
   1859 	return (result);
   1860 }
   1861 
   1862 /*
   1863  * uvm_swap_bufdone: called from the buffer system when the i/o is done
   1864  */
   1865 static void
   1866 uvm_swap_bufdone(bp)
   1867 	struct buf *bp;
   1868 {
   1869 	struct swapbuf *sbp = (struct swapbuf *) bp;
   1870 	int	s = splbio();
   1871 	UVMHIST_FUNC("uvm_swap_bufdone"); UVMHIST_CALLED(pdhist);
   1872 
   1873 	UVMHIST_LOG(pdhist, "cleaning buf %p", buf, 0, 0, 0);
   1874 #ifdef DIAGNOSTIC
   1875 	/*
   1876 	 * sanity check: swapbufs are private, so they shouldn't be wanted
   1877 	 */
   1878 	if (bp->b_flags & B_WANTED)
   1879 		panic("uvm_swap_bufdone: private buf wanted");
   1880 #endif
   1881 
   1882 	/*
   1883 	 * drop the buffer's reference to the vnode.
   1884 	 */
   1885 	if (bp->b_vp)
   1886 		brelvp(bp);
   1887 
   1888 	/*
   1889 	 * now put the aio on the uvm.aio_done list and wake the
   1890 	 * pagedaemon (which will finish up our job in its context).
   1891 	 */
   1892 	simple_lock(&uvm.pagedaemon_lock);	/* locks uvm.aio_done */
   1893 	TAILQ_INSERT_TAIL(&uvm.aio_done, &sbp->sw_aio, aioq);
   1894 	simple_unlock(&uvm.pagedaemon_lock);
   1895 
   1896 	wakeup(&uvm.pagedaemon);
   1897 	splx(s);
   1898 }
   1899 
   1900 /*
   1901  * uvm_swap_aiodone: aiodone function for anonymous memory
   1902  *
   1903  * => this is called in the context of the pagedaemon (but with the
   1904  *	page queues unlocked!)
   1905  * => our "aio" structure must be part of a "swapbuf"
   1906  */
   1907 static void
   1908 uvm_swap_aiodone(aio)
   1909 	struct uvm_aiodesc *aio;
   1910 {
   1911 	struct swapbuf *sbp = aio->pd_ptr;
   1912 	struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT];
   1913 	int lcv, s;
   1914 	vaddr_t addr;
   1915 	UVMHIST_FUNC("uvm_swap_aiodone"); UVMHIST_CALLED(pdhist);
   1916 
   1917 	UVMHIST_LOG(pdhist, "done with aio %p", aio, 0, 0, 0);
   1918 #ifdef DIAGNOSTIC
   1919 	/*
   1920 	 * sanity check
   1921 	 */
   1922 	if (aio->npages > (MAXBSIZE >> PAGE_SHIFT))
   1923 		panic("uvm_swap_aiodone: aio too big!");
   1924 #endif
   1925 
   1926 	/*
   1927 	 * first, we have to recover the page pointers (pps) by poking in the
   1928 	 * kernel pmap (XXX: should be saved in the buf structure).
   1929 	 */
   1930 	for (addr = aio->kva, lcv = 0 ; lcv < aio->npages ;
   1931 		addr += PAGE_SIZE, lcv++) {
   1932 		pps[lcv] = uvm_pageratop(addr);
   1933 	}
   1934 
   1935 	/*
   1936 	 * now we can dispose of the kernel mappings of the buffer
   1937 	 */
   1938 	uvm_pagermapout(aio->kva, aio->npages);
   1939 
   1940 	/*
   1941 	 * now we can dispose of the pages by using the dropcluster function
   1942 	 * [note that we have no "page of interest" so we pass in null]
   1943 	 */
   1944 	uvm_pager_dropcluster(NULL, NULL, pps, &aio->npages,
   1945 				PGO_PDFREECLUST);
   1946 
   1947 	/*
   1948 	 * finally, we can dispose of the swapbuf
   1949 	 */
   1950 	s = splbio();
   1951 	pool_put(swapbuf_pool, sbp);
   1952 	splx(s);
   1953 }
   1954