uvm_swap.c revision 1.41 1 /* $NetBSD: uvm_swap.c,v 1.41 2000/11/27 08:40:05 chs Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include "fs_nfs.h"
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/conf.h>
43 #include <sys/proc.h>
44 #include <sys/namei.h>
45 #include <sys/disklabel.h>
46 #include <sys/errno.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 #include <sys/vnode.h>
50 #include <sys/file.h>
51 #include <sys/extent.h>
52 #include <sys/mount.h>
53 #include <sys/pool.h>
54 #include <sys/syscallargs.h>
55 #include <sys/swap.h>
56
57 #include <uvm/uvm.h>
58
59 #include <miscfs/specfs/specdev.h>
60
61 /*
62 * uvm_swap.c: manage configuration and i/o to swap space.
63 */
64
65 /*
66 * swap space is managed in the following way:
67 *
68 * each swap partition or file is described by a "swapdev" structure.
69 * each "swapdev" structure contains a "swapent" structure which contains
70 * information that is passed up to the user (via system calls).
71 *
72 * each swap partition is assigned a "priority" (int) which controls
73 * swap parition usage.
74 *
75 * the system maintains a global data structure describing all swap
76 * partitions/files. there is a sorted LIST of "swappri" structures
77 * which describe "swapdev"'s at that priority. this LIST is headed
78 * by the "swap_priority" global var. each "swappri" contains a
79 * CIRCLEQ of "swapdev" structures at that priority.
80 *
81 * locking:
82 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
83 * system call and prevents the swap priority list from changing
84 * while we are in the middle of a system call (e.g. SWAP_STATS).
85 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
86 * structures including the priority list, the swapdev structures,
87 * and the swapmap extent.
88 *
89 * each swap device has the following info:
90 * - swap device in use (could be disabled, preventing future use)
91 * - swap enabled (allows new allocations on swap)
92 * - map info in /dev/drum
93 * - vnode pointer
94 * for swap files only:
95 * - block size
96 * - max byte count in buffer
97 * - buffer
98 * - credentials to use when doing i/o to file
99 *
100 * userland controls and configures swap with the swapctl(2) system call.
101 * the sys_swapctl performs the following operations:
102 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
103 * [2] SWAP_STATS: given a pointer to an array of swapent structures
104 * (passed in via "arg") of a size passed in via "misc" ... we load
105 * the current swap config into the array.
106 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
107 * priority in "misc", start swapping on it.
108 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
109 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
110 * "misc")
111 */
112
113 /*
114 * swapdev: describes a single swap partition/file
115 *
116 * note the following should be true:
117 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
118 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
119 */
120 struct swapdev {
121 struct oswapent swd_ose;
122 #define swd_dev swd_ose.ose_dev /* device id */
123 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
124 #define swd_priority swd_ose.ose_priority /* our priority */
125 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
126 char *swd_path; /* saved pathname of device */
127 int swd_pathlen; /* length of pathname */
128 int swd_npages; /* #pages we can use */
129 int swd_npginuse; /* #pages in use */
130 int swd_npgbad; /* #pages bad */
131 int swd_drumoffset; /* page0 offset in drum */
132 int swd_drumsize; /* #pages in drum */
133 struct extent *swd_ex; /* extent for this swapdev */
134 struct vnode *swd_vp; /* backing vnode */
135 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
136
137 int swd_bsize; /* blocksize (bytes) */
138 int swd_maxactive; /* max active i/o reqs */
139 struct buf_queue swd_tab; /* buffer list */
140 int swd_active; /* number of active buffers */
141 struct ucred *swd_cred; /* cred for file access */
142 };
143
144 /*
145 * swap device priority entry; the list is kept sorted on `spi_priority'.
146 */
147 struct swappri {
148 int spi_priority; /* priority */
149 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
150 /* circleq of swapdevs at this priority */
151 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
152 };
153
154 /*
155 * The following two structures are used to keep track of data transfers
156 * on swap devices associated with regular files.
157 * NOTE: this code is more or less a copy of vnd.c; we use the same
158 * structure names here to ease porting..
159 */
160 struct vndxfer {
161 struct buf *vx_bp; /* Pointer to parent buffer */
162 struct swapdev *vx_sdp;
163 int vx_error;
164 int vx_pending; /* # of pending aux buffers */
165 int vx_flags;
166 #define VX_BUSY 1
167 #define VX_DEAD 2
168 };
169
170 struct vndbuf {
171 struct buf vb_buf;
172 struct vndxfer *vb_xfer;
173 };
174
175
176 /*
177 * We keep a of pool vndbuf's and vndxfer structures.
178 */
179 struct pool *vndxfer_pool;
180 struct pool *vndbuf_pool;
181
182 #define getvndxfer(vnx) do { \
183 int s = splbio(); \
184 vnx = pool_get(vndxfer_pool, PR_MALLOCOK|PR_WAITOK); \
185 splx(s); \
186 } while (0)
187
188 #define putvndxfer(vnx) { \
189 pool_put(vndxfer_pool, (void *)(vnx)); \
190 }
191
192 #define getvndbuf(vbp) do { \
193 int s = splbio(); \
194 vbp = pool_get(vndbuf_pool, PR_MALLOCOK|PR_WAITOK); \
195 splx(s); \
196 } while (0)
197
198 #define putvndbuf(vbp) { \
199 pool_put(vndbuf_pool, (void *)(vbp)); \
200 }
201
202 /* /dev/drum */
203 bdev_decl(sw);
204 cdev_decl(sw);
205
206 /*
207 * local variables
208 */
209 static struct extent *swapmap; /* controls the mapping of /dev/drum */
210
211 /* list of all active swap devices [by priority] */
212 LIST_HEAD(swap_priority, swappri);
213 static struct swap_priority swap_priority;
214
215 /* locks */
216 lock_data_t swap_syscall_lock;
217
218 /*
219 * prototypes
220 */
221 static void swapdrum_add __P((struct swapdev *, int));
222 static struct swapdev *swapdrum_getsdp __P((int));
223
224 static struct swapdev *swaplist_find __P((struct vnode *, int));
225 static void swaplist_insert __P((struct swapdev *,
226 struct swappri *, int));
227 static void swaplist_trim __P((void));
228
229 static int swap_on __P((struct proc *, struct swapdev *));
230 static int swap_off __P((struct proc *, struct swapdev *));
231
232 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
233 static void sw_reg_iodone __P((struct buf *));
234 static void sw_reg_start __P((struct swapdev *));
235
236 static int uvm_swap_io __P((struct vm_page **, int, int, int));
237
238 /*
239 * uvm_swap_init: init the swap system data structures and locks
240 *
241 * => called at boot time from init_main.c after the filesystems
242 * are brought up (which happens after uvm_init())
243 */
244 void
245 uvm_swap_init()
246 {
247 UVMHIST_FUNC("uvm_swap_init");
248
249 UVMHIST_CALLED(pdhist);
250 /*
251 * first, init the swap list, its counter, and its lock.
252 * then get a handle on the vnode for /dev/drum by using
253 * the its dev_t number ("swapdev", from MD conf.c).
254 */
255
256 LIST_INIT(&swap_priority);
257 uvmexp.nswapdev = 0;
258 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
259 simple_lock_init(&uvm.swap_data_lock);
260
261 if (bdevvp(swapdev, &swapdev_vp))
262 panic("uvm_swap_init: can't get vnode for swap device");
263
264 /*
265 * create swap block resource map to map /dev/drum. the range
266 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
267 * that block 0 is reserved (used to indicate an allocation
268 * failure, or no allocation).
269 */
270 swapmap = extent_create("swapmap", 1, INT_MAX,
271 M_VMSWAP, 0, 0, EX_NOWAIT);
272 if (swapmap == 0)
273 panic("uvm_swap_init: extent_create failed");
274
275 /*
276 * allocate pools for structures used for swapping to files.
277 */
278
279 vndxfer_pool =
280 pool_create(sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 0,
281 NULL, NULL, 0);
282 if (vndxfer_pool == NULL)
283 panic("swapinit: pool_create failed");
284
285 vndbuf_pool =
286 pool_create(sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 0,
287 NULL, NULL, 0);
288 if (vndbuf_pool == NULL)
289 panic("swapinit: pool_create failed");
290 /*
291 * done!
292 */
293 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
294 }
295
296 /*
297 * swaplist functions: functions that operate on the list of swap
298 * devices on the system.
299 */
300
301 /*
302 * swaplist_insert: insert swap device "sdp" into the global list
303 *
304 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
305 * => caller must provide a newly malloc'd swappri structure (we will
306 * FREE it if we don't need it... this it to prevent malloc blocking
307 * here while adding swap)
308 */
309 static void
310 swaplist_insert(sdp, newspp, priority)
311 struct swapdev *sdp;
312 struct swappri *newspp;
313 int priority;
314 {
315 struct swappri *spp, *pspp;
316 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
317
318 /*
319 * find entry at or after which to insert the new device.
320 */
321 for (pspp = NULL, spp = LIST_FIRST(&swap_priority); spp != NULL;
322 spp = LIST_NEXT(spp, spi_swappri)) {
323 if (priority <= spp->spi_priority)
324 break;
325 pspp = spp;
326 }
327
328 /*
329 * new priority?
330 */
331 if (spp == NULL || spp->spi_priority != priority) {
332 spp = newspp; /* use newspp! */
333 UVMHIST_LOG(pdhist, "created new swappri = %d",
334 priority, 0, 0, 0);
335
336 spp->spi_priority = priority;
337 CIRCLEQ_INIT(&spp->spi_swapdev);
338
339 if (pspp)
340 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
341 else
342 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
343 } else {
344 /* we don't need a new priority structure, free it */
345 FREE(newspp, M_VMSWAP);
346 }
347
348 /*
349 * priority found (or created). now insert on the priority's
350 * circleq list and bump the total number of swapdevs.
351 */
352 sdp->swd_priority = priority;
353 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
354 uvmexp.nswapdev++;
355 }
356
357 /*
358 * swaplist_find: find and optionally remove a swap device from the
359 * global list.
360 *
361 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
362 * => we return the swapdev we found (and removed)
363 */
364 static struct swapdev *
365 swaplist_find(vp, remove)
366 struct vnode *vp;
367 boolean_t remove;
368 {
369 struct swapdev *sdp;
370 struct swappri *spp;
371
372 /*
373 * search the lists for the requested vp
374 */
375 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
376 spp = LIST_NEXT(spp, spi_swappri)) {
377 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
378 sdp != (void *)&spp->spi_swapdev;
379 sdp = CIRCLEQ_NEXT(sdp, swd_next))
380 if (sdp->swd_vp == vp) {
381 if (remove) {
382 CIRCLEQ_REMOVE(&spp->spi_swapdev,
383 sdp, swd_next);
384 uvmexp.nswapdev--;
385 }
386 return(sdp);
387 }
388 }
389 return (NULL);
390 }
391
392
393 /*
394 * swaplist_trim: scan priority list for empty priority entries and kill
395 * them.
396 *
397 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
398 */
399 static void
400 swaplist_trim()
401 {
402 struct swappri *spp, *nextspp;
403
404 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
405 nextspp = LIST_NEXT(spp, spi_swappri);
406 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
407 (void *)&spp->spi_swapdev)
408 continue;
409 LIST_REMOVE(spp, spi_swappri);
410 free(spp, M_VMSWAP);
411 }
412 }
413
414 /*
415 * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
416 *
417 * => caller must hold swap_syscall_lock
418 * => uvm.swap_data_lock should be unlocked (we may sleep)
419 */
420 static void
421 swapdrum_add(sdp, npages)
422 struct swapdev *sdp;
423 int npages;
424 {
425 u_long result;
426
427 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
428 EX_WAITOK, &result))
429 panic("swapdrum_add");
430
431 sdp->swd_drumoffset = result;
432 sdp->swd_drumsize = npages;
433 }
434
435 /*
436 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
437 * to the "swapdev" that maps that section of the drum.
438 *
439 * => each swapdev takes one big contig chunk of the drum
440 * => caller must hold uvm.swap_data_lock
441 */
442 static struct swapdev *
443 swapdrum_getsdp(pgno)
444 int pgno;
445 {
446 struct swapdev *sdp;
447 struct swappri *spp;
448
449 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
450 spp = LIST_NEXT(spp, spi_swappri))
451 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
452 sdp != (void *)&spp->spi_swapdev;
453 sdp = CIRCLEQ_NEXT(sdp, swd_next))
454 if (pgno >= sdp->swd_drumoffset &&
455 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
456 return sdp;
457 }
458 return NULL;
459 }
460
461
462 /*
463 * sys_swapctl: main entry point for swapctl(2) system call
464 * [with two helper functions: swap_on and swap_off]
465 */
466 int
467 sys_swapctl(p, v, retval)
468 struct proc *p;
469 void *v;
470 register_t *retval;
471 {
472 struct sys_swapctl_args /* {
473 syscallarg(int) cmd;
474 syscallarg(void *) arg;
475 syscallarg(int) misc;
476 } */ *uap = (struct sys_swapctl_args *)v;
477 struct vnode *vp;
478 struct nameidata nd;
479 struct swappri *spp;
480 struct swapdev *sdp;
481 struct swapent *sep;
482 char userpath[PATH_MAX + 1];
483 size_t len;
484 int count, error, misc;
485 int priority;
486 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
487
488 misc = SCARG(uap, misc);
489
490 /*
491 * ensure serialized syscall access by grabbing the swap_syscall_lock
492 */
493 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
494
495 /*
496 * we handle the non-priv NSWAP and STATS request first.
497 *
498 * SWAP_NSWAP: return number of config'd swap devices
499 * [can also be obtained with uvmexp sysctl]
500 */
501 if (SCARG(uap, cmd) == SWAP_NSWAP) {
502 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
503 0, 0, 0);
504 *retval = uvmexp.nswapdev;
505 error = 0;
506 goto out;
507 }
508
509 /*
510 * SWAP_STATS: get stats on current # of configured swap devs
511 *
512 * note that the swap_priority list can't change as long
513 * as we are holding the swap_syscall_lock. we don't want
514 * to grab the uvm.swap_data_lock because we may fault&sleep during
515 * copyout() and we don't want to be holding that lock then!
516 */
517 if (SCARG(uap, cmd) == SWAP_STATS
518 #if defined(COMPAT_13)
519 || SCARG(uap, cmd) == SWAP_OSTATS
520 #endif
521 ) {
522 sep = (struct swapent *)SCARG(uap, arg);
523 count = 0;
524
525 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
526 spp = LIST_NEXT(spp, spi_swappri)) {
527 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
528 sdp != (void *)&spp->spi_swapdev && misc-- > 0;
529 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
530 /*
531 * backwards compatibility for system call.
532 * note that we use 'struct oswapent' as an
533 * overlay into both 'struct swapdev' and
534 * the userland 'struct swapent', as we
535 * want to retain backwards compatibility
536 * with NetBSD 1.3.
537 */
538 sdp->swd_ose.ose_inuse =
539 btodb(sdp->swd_npginuse << PAGE_SHIFT);
540 error = copyout(&sdp->swd_ose, sep,
541 sizeof(struct oswapent));
542
543 /* now copy out the path if necessary */
544 #if defined(COMPAT_13)
545 if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
546 #else
547 if (error == 0)
548 #endif
549 error = copyout(sdp->swd_path,
550 &sep->se_path, sdp->swd_pathlen);
551
552 if (error)
553 goto out;
554 count++;
555 #if defined(COMPAT_13)
556 if (SCARG(uap, cmd) == SWAP_OSTATS)
557 ((struct oswapent *)sep)++;
558 else
559 #endif
560 sep++;
561 }
562 }
563
564 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
565
566 *retval = count;
567 error = 0;
568 goto out;
569 }
570
571 /*
572 * all other requests require superuser privs. verify.
573 */
574 if ((error = suser(p->p_ucred, &p->p_acflag)))
575 goto out;
576
577 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
578 dev_t *devp = (dev_t *)SCARG(uap, arg);
579
580 error = copyout(&dumpdev, devp, sizeof(dumpdev));
581 goto out;
582 }
583
584 /*
585 * at this point we expect a path name in arg. we will
586 * use namei() to gain a vnode reference (vref), and lock
587 * the vnode (VOP_LOCK).
588 *
589 * XXX: a NULL arg means use the root vnode pointer (e.g. for
590 * miniroot)
591 */
592 if (SCARG(uap, arg) == NULL) {
593 vp = rootvp; /* miniroot */
594 if (vget(vp, LK_EXCLUSIVE)) {
595 error = EBUSY;
596 goto out;
597 }
598 if (SCARG(uap, cmd) == SWAP_ON &&
599 copystr("miniroot", userpath, sizeof userpath, &len))
600 panic("swapctl: miniroot copy failed");
601 } else {
602 int space;
603 char *where;
604
605 if (SCARG(uap, cmd) == SWAP_ON) {
606 if ((error = copyinstr(SCARG(uap, arg), userpath,
607 sizeof userpath, &len)))
608 goto out;
609 space = UIO_SYSSPACE;
610 where = userpath;
611 } else {
612 space = UIO_USERSPACE;
613 where = (char *)SCARG(uap, arg);
614 }
615 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
616 if ((error = namei(&nd)))
617 goto out;
618 vp = nd.ni_vp;
619 }
620 /* note: "vp" is referenced and locked */
621
622 error = 0; /* assume no error */
623 switch(SCARG(uap, cmd)) {
624
625 case SWAP_DUMPDEV:
626 if (vp->v_type != VBLK) {
627 error = ENOTBLK;
628 goto out;
629 }
630 dumpdev = vp->v_rdev;
631
632 break;
633
634 case SWAP_CTL:
635 /*
636 * get new priority, remove old entry (if any) and then
637 * reinsert it in the correct place. finally, prune out
638 * any empty priority structures.
639 */
640 priority = SCARG(uap, misc);
641 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
642 simple_lock(&uvm.swap_data_lock);
643 if ((sdp = swaplist_find(vp, 1)) == NULL) {
644 error = ENOENT;
645 } else {
646 swaplist_insert(sdp, spp, priority);
647 swaplist_trim();
648 }
649 simple_unlock(&uvm.swap_data_lock);
650 if (error)
651 free(spp, M_VMSWAP);
652 break;
653
654 case SWAP_ON:
655
656 /*
657 * check for duplicates. if none found, then insert a
658 * dummy entry on the list to prevent someone else from
659 * trying to enable this device while we are working on
660 * it.
661 */
662
663 priority = SCARG(uap, misc);
664 simple_lock(&uvm.swap_data_lock);
665 if ((sdp = swaplist_find(vp, 0)) != NULL) {
666 error = EBUSY;
667 simple_unlock(&uvm.swap_data_lock);
668 break;
669 }
670 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
671 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
672 memset(sdp, 0, sizeof(*sdp));
673 sdp->swd_flags = SWF_FAKE; /* placeholder only */
674 sdp->swd_vp = vp;
675 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
676 BUFQ_INIT(&sdp->swd_tab);
677
678 /*
679 * XXX Is NFS elaboration necessary?
680 */
681 if (vp->v_type == VREG) {
682 sdp->swd_cred = crdup(p->p_ucred);
683 }
684
685 swaplist_insert(sdp, spp, priority);
686 simple_unlock(&uvm.swap_data_lock);
687
688 sdp->swd_pathlen = len;
689 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
690 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
691 panic("swapctl: copystr");
692
693 /*
694 * we've now got a FAKE placeholder in the swap list.
695 * now attempt to enable swap on it. if we fail, undo
696 * what we've done and kill the fake entry we just inserted.
697 * if swap_on is a success, it will clear the SWF_FAKE flag
698 */
699
700 if ((error = swap_on(p, sdp)) != 0) {
701 simple_lock(&uvm.swap_data_lock);
702 (void) swaplist_find(vp, 1); /* kill fake entry */
703 swaplist_trim();
704 simple_unlock(&uvm.swap_data_lock);
705 if (vp->v_type == VREG) {
706 crfree(sdp->swd_cred);
707 }
708 free(sdp->swd_path, M_VMSWAP);
709 free(sdp, M_VMSWAP);
710 break;
711 }
712 break;
713
714 case SWAP_OFF:
715 simple_lock(&uvm.swap_data_lock);
716 if ((sdp = swaplist_find(vp, 0)) == NULL) {
717 simple_unlock(&uvm.swap_data_lock);
718 error = ENXIO;
719 break;
720 }
721
722 /*
723 * If a device isn't in use or enabled, we
724 * can't stop swapping from it (again).
725 */
726 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
727 simple_unlock(&uvm.swap_data_lock);
728 error = EBUSY;
729 break;
730 }
731
732 /*
733 * do the real work.
734 */
735 if ((error = swap_off(p, sdp)) != 0)
736 goto out;
737
738 break;
739
740 default:
741 error = EINVAL;
742 }
743
744 /*
745 * done! release the ref gained by namei() and unlock.
746 */
747 vput(vp);
748
749 out:
750 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
751
752 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
753 return (error);
754 }
755
756 /*
757 * swap_on: attempt to enable a swapdev for swapping. note that the
758 * swapdev is already on the global list, but disabled (marked
759 * SWF_FAKE).
760 *
761 * => we avoid the start of the disk (to protect disk labels)
762 * => we also avoid the miniroot, if we are swapping to root.
763 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
764 * if needed.
765 */
766 static int
767 swap_on(p, sdp)
768 struct proc *p;
769 struct swapdev *sdp;
770 {
771 static int count = 0; /* static */
772 struct vnode *vp;
773 int error, npages, nblocks, size;
774 long addr;
775 struct vattr va;
776 #ifdef NFS
777 extern int (**nfsv2_vnodeop_p) __P((void *));
778 #endif /* NFS */
779 dev_t dev;
780 char *name;
781 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
782
783 /*
784 * we want to enable swapping on sdp. the swd_vp contains
785 * the vnode we want (locked and ref'd), and the swd_dev
786 * contains the dev_t of the file, if it a block device.
787 */
788
789 vp = sdp->swd_vp;
790 dev = sdp->swd_dev;
791
792 /*
793 * open the swap file (mostly useful for block device files to
794 * let device driver know what is up).
795 *
796 * we skip the open/close for root on swap because the root
797 * has already been opened when root was mounted (mountroot).
798 */
799 if (vp != rootvp) {
800 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
801 return (error);
802 }
803
804 /* XXX this only works for block devices */
805 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
806
807 /*
808 * we now need to determine the size of the swap area. for
809 * block specials we can call the d_psize function.
810 * for normal files, we must stat [get attrs].
811 *
812 * we put the result in nblks.
813 * for normal files, we also want the filesystem block size
814 * (which we get with statfs).
815 */
816 switch (vp->v_type) {
817 case VBLK:
818 if (bdevsw[major(dev)].d_psize == 0 ||
819 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
820 error = ENXIO;
821 goto bad;
822 }
823 break;
824
825 case VREG:
826 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
827 goto bad;
828 nblocks = (int)btodb(va.va_size);
829 if ((error =
830 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
831 goto bad;
832
833 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
834 /*
835 * limit the max # of outstanding I/O requests we issue
836 * at any one time. take it easy on NFS servers.
837 */
838 #ifdef NFS
839 if (vp->v_op == nfsv2_vnodeop_p)
840 sdp->swd_maxactive = 2; /* XXX */
841 else
842 #endif /* NFS */
843 sdp->swd_maxactive = 8; /* XXX */
844 break;
845
846 default:
847 error = ENXIO;
848 goto bad;
849 }
850
851 /*
852 * save nblocks in a safe place and convert to pages.
853 */
854
855 sdp->swd_ose.ose_nblks = nblocks;
856 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
857
858 /*
859 * for block special files, we want to make sure that leave
860 * the disklabel and bootblocks alone, so we arrange to skip
861 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
862 * note that because of this the "size" can be less than the
863 * actual number of blocks on the device.
864 */
865 if (vp->v_type == VBLK) {
866 /* we use pages 1 to (size - 1) [inclusive] */
867 size = npages - 1;
868 addr = 1;
869 } else {
870 /* we use pages 0 to (size - 1) [inclusive] */
871 size = npages;
872 addr = 0;
873 }
874
875 /*
876 * make sure we have enough blocks for a reasonable sized swap
877 * area. we want at least one page.
878 */
879
880 if (size < 1) {
881 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
882 error = EINVAL;
883 goto bad;
884 }
885
886 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
887
888 /*
889 * now we need to allocate an extent to manage this swap device
890 */
891 name = malloc(12, M_VMSWAP, M_WAITOK);
892 sprintf(name, "swap0x%04x", count++);
893
894 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
895 sdp->swd_ex = extent_create(name, 0, npages - 1, M_VMSWAP,
896 0, 0, EX_WAITOK);
897 /* allocate the `saved' region from the extent so it won't be used */
898 if (addr) {
899 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
900 panic("disklabel region");
901 }
902
903 /*
904 * if the vnode we are swapping to is the root vnode
905 * (i.e. we are swapping to the miniroot) then we want
906 * to make sure we don't overwrite it. do a statfs to
907 * find its size and skip over it.
908 */
909 if (vp == rootvp) {
910 struct mount *mp;
911 struct statfs *sp;
912 int rootblocks, rootpages;
913
914 mp = rootvnode->v_mount;
915 sp = &mp->mnt_stat;
916 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
917 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
918 if (rootpages > size)
919 panic("swap_on: miniroot larger than swap?");
920
921 if (extent_alloc_region(sdp->swd_ex, addr,
922 rootpages, EX_WAITOK))
923 panic("swap_on: unable to preserve miniroot");
924
925 size -= rootpages;
926 printf("Preserved %d pages of miniroot ", rootpages);
927 printf("leaving %d pages of swap\n", size);
928 }
929
930 /*
931 * add a ref to vp to reflect usage as a swap device.
932 */
933 vref(vp);
934
935 /*
936 * add anons to reflect the new swap space
937 */
938 uvm_anon_add(size);
939
940 /*
941 * now add the new swapdev to the drum and enable.
942 */
943 simple_lock(&uvm.swap_data_lock);
944 swapdrum_add(sdp, npages);
945 sdp->swd_npages = size;
946 sdp->swd_flags &= ~SWF_FAKE; /* going live */
947 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
948 uvmexp.swpages += size;
949 simple_unlock(&uvm.swap_data_lock);
950 return (0);
951
952 bad:
953 /*
954 * failure: close device if necessary and return error.
955 */
956 if (vp != rootvp)
957 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
958 return (error);
959 }
960
961 /*
962 * swap_off: stop swapping on swapdev
963 *
964 * => swap data should be locked, we will unlock.
965 */
966 static int
967 swap_off(p, sdp)
968 struct proc *p;
969 struct swapdev *sdp;
970 {
971 void *name;
972 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
973 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev,0,0,0);
974
975 /* disable the swap area being removed */
976 sdp->swd_flags &= ~SWF_ENABLE;
977 simple_unlock(&uvm.swap_data_lock);
978
979 /*
980 * the idea is to find all the pages that are paged out to this
981 * device, and page them all in. in uvm, swap-backed pageable
982 * memory can take two forms: aobjs and anons. call the
983 * swapoff hook for each subsystem to bring in pages.
984 */
985
986 if (uao_swap_off(sdp->swd_drumoffset,
987 sdp->swd_drumoffset + sdp->swd_drumsize) ||
988 anon_swap_off(sdp->swd_drumoffset,
989 sdp->swd_drumoffset + sdp->swd_drumsize)) {
990
991 simple_lock(&uvm.swap_data_lock);
992 sdp->swd_flags |= SWF_ENABLE;
993 simple_unlock(&uvm.swap_data_lock);
994 return ENOMEM;
995 }
996
997 #ifdef DIAGNOSTIC
998 if (sdp->swd_npginuse != sdp->swd_npgbad) {
999 panic("swap_off: sdp %p - %d pages still in use (%d bad)\n",
1000 sdp, sdp->swd_npginuse, sdp->swd_npgbad);
1001 }
1002 #endif
1003
1004 /*
1005 * done with the vnode and saved creds.
1006 * drop our ref on the vnode before calling VOP_CLOSE()
1007 * so that spec_close() can tell if this is the last close.
1008 */
1009 if (sdp->swd_vp->v_type == VREG) {
1010 crfree(sdp->swd_cred);
1011 }
1012 vrele(sdp->swd_vp);
1013 if (sdp->swd_vp != rootvp) {
1014 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1015 }
1016
1017 /* remove anons from the system */
1018 uvm_anon_remove(sdp->swd_npages);
1019
1020 simple_lock(&uvm.swap_data_lock);
1021 uvmexp.swpages -= sdp->swd_npages;
1022
1023 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1024 panic("swap_off: swapdev not in list\n");
1025 swaplist_trim();
1026
1027 /*
1028 * free all resources!
1029 */
1030 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1031 EX_WAITOK);
1032 name = (void *)sdp->swd_ex->ex_name;
1033 extent_destroy(sdp->swd_ex);
1034 free(name, M_VMSWAP);
1035 free(sdp, M_VMSWAP);
1036 simple_unlock(&uvm.swap_data_lock);
1037 return (0);
1038 }
1039
1040 /*
1041 * /dev/drum interface and i/o functions
1042 */
1043
1044 /*
1045 * swread: the read function for the drum (just a call to physio)
1046 */
1047 /*ARGSUSED*/
1048 int
1049 swread(dev, uio, ioflag)
1050 dev_t dev;
1051 struct uio *uio;
1052 int ioflag;
1053 {
1054 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1055
1056 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1057 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1058 }
1059
1060 /*
1061 * swwrite: the write function for the drum (just a call to physio)
1062 */
1063 /*ARGSUSED*/
1064 int
1065 swwrite(dev, uio, ioflag)
1066 dev_t dev;
1067 struct uio *uio;
1068 int ioflag;
1069 {
1070 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1071
1072 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1073 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1074 }
1075
1076 /*
1077 * swstrategy: perform I/O on the drum
1078 *
1079 * => we must map the i/o request from the drum to the correct swapdev.
1080 */
1081 void
1082 swstrategy(bp)
1083 struct buf *bp;
1084 {
1085 struct swapdev *sdp;
1086 struct vnode *vp;
1087 int s, pageno, bn;
1088 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1089
1090 /*
1091 * convert block number to swapdev. note that swapdev can't
1092 * be yanked out from under us because we are holding resources
1093 * in it (i.e. the blocks we are doing I/O on).
1094 */
1095 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1096 simple_lock(&uvm.swap_data_lock);
1097 sdp = swapdrum_getsdp(pageno);
1098 simple_unlock(&uvm.swap_data_lock);
1099 if (sdp == NULL) {
1100 bp->b_error = EINVAL;
1101 bp->b_flags |= B_ERROR;
1102 biodone(bp);
1103 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1104 return;
1105 }
1106
1107 /*
1108 * convert drum page number to block number on this swapdev.
1109 */
1110
1111 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1112 bn = btodb(pageno << PAGE_SHIFT); /* convert to diskblock */
1113
1114 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1115 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1116 sdp->swd_drumoffset, bn, bp->b_bcount);
1117
1118 /*
1119 * for block devices we finish up here.
1120 * for regular files we have to do more work which we delegate
1121 * to sw_reg_strategy().
1122 */
1123
1124 switch (sdp->swd_vp->v_type) {
1125 default:
1126 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1127
1128 case VBLK:
1129
1130 /*
1131 * must convert "bp" from an I/O on /dev/drum to an I/O
1132 * on the swapdev (sdp).
1133 */
1134 s = splbio();
1135 bp->b_blkno = bn; /* swapdev block number */
1136 vp = sdp->swd_vp; /* swapdev vnode pointer */
1137 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1138 VHOLD(vp); /* "hold" swapdev vp for i/o */
1139
1140 /*
1141 * if we are doing a write, we have to redirect the i/o on
1142 * drum's v_numoutput counter to the swapdevs.
1143 */
1144 if ((bp->b_flags & B_READ) == 0) {
1145 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1146 vp->v_numoutput++; /* put it on swapdev */
1147 }
1148
1149 /*
1150 * dissassocate buffer with /dev/drum vnode
1151 * [could be null if buf was from physio]
1152 */
1153 if (bp->b_vp != NULL)
1154 brelvp(bp);
1155
1156 /*
1157 * finally plug in swapdev vnode and start I/O
1158 */
1159 bp->b_vp = vp;
1160 splx(s);
1161 VOP_STRATEGY(bp);
1162 return;
1163
1164 case VREG:
1165 /*
1166 * delegate to sw_reg_strategy function.
1167 */
1168 sw_reg_strategy(sdp, bp, bn);
1169 return;
1170 }
1171 /* NOTREACHED */
1172 }
1173
1174 /*
1175 * sw_reg_strategy: handle swap i/o to regular files
1176 */
1177 static void
1178 sw_reg_strategy(sdp, bp, bn)
1179 struct swapdev *sdp;
1180 struct buf *bp;
1181 int bn;
1182 {
1183 struct vnode *vp;
1184 struct vndxfer *vnx;
1185 daddr_t nbn, byteoff;
1186 caddr_t addr;
1187 int s, off, nra, error, sz, resid;
1188 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1189
1190 /*
1191 * allocate a vndxfer head for this transfer and point it to
1192 * our buffer.
1193 */
1194 getvndxfer(vnx);
1195 vnx->vx_flags = VX_BUSY;
1196 vnx->vx_error = 0;
1197 vnx->vx_pending = 0;
1198 vnx->vx_bp = bp;
1199 vnx->vx_sdp = sdp;
1200
1201 /*
1202 * setup for main loop where we read filesystem blocks into
1203 * our buffer.
1204 */
1205 error = 0;
1206 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1207 addr = bp->b_data; /* current position in buffer */
1208 byteoff = dbtob(bn);
1209
1210 for (resid = bp->b_resid; resid; resid -= sz) {
1211 struct vndbuf *nbp;
1212
1213 /*
1214 * translate byteoffset into block number. return values:
1215 * vp = vnode of underlying device
1216 * nbn = new block number (on underlying vnode dev)
1217 * nra = num blocks we can read-ahead (excludes requested
1218 * block)
1219 */
1220 nra = 0;
1221 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1222 &vp, &nbn, &nra);
1223
1224 if (error == 0 && nbn == (daddr_t)-1) {
1225 /*
1226 * this used to just set error, but that doesn't
1227 * do the right thing. Instead, it causes random
1228 * memory errors. The panic() should remain until
1229 * this condition doesn't destabilize the system.
1230 */
1231 #if 1
1232 panic("sw_reg_strategy: swap to sparse file");
1233 #else
1234 error = EIO; /* failure */
1235 #endif
1236 }
1237
1238 /*
1239 * punt if there was an error or a hole in the file.
1240 * we must wait for any i/o ops we have already started
1241 * to finish before returning.
1242 *
1243 * XXX we could deal with holes here but it would be
1244 * a hassle (in the write case).
1245 */
1246 if (error) {
1247 s = splbio();
1248 vnx->vx_error = error; /* pass error up */
1249 goto out;
1250 }
1251
1252 /*
1253 * compute the size ("sz") of this transfer (in bytes).
1254 */
1255 off = byteoff % sdp->swd_bsize;
1256 sz = (1 + nra) * sdp->swd_bsize - off;
1257 if (sz > resid)
1258 sz = resid;
1259
1260 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1261 "vp %p/%p offset 0x%x/0x%x",
1262 sdp->swd_vp, vp, byteoff, nbn);
1263
1264 /*
1265 * now get a buf structure. note that the vb_buf is
1266 * at the front of the nbp structure so that you can
1267 * cast pointers between the two structure easily.
1268 */
1269 getvndbuf(nbp);
1270 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1271 nbp->vb_buf.b_bcount = sz;
1272 nbp->vb_buf.b_bufsize = sz;
1273 nbp->vb_buf.b_error = 0;
1274 nbp->vb_buf.b_data = addr;
1275 nbp->vb_buf.b_lblkno = 0;
1276 nbp->vb_buf.b_blkno = nbn + btodb(off);
1277 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1278 nbp->vb_buf.b_iodone = sw_reg_iodone;
1279 nbp->vb_buf.b_vp = NULL;
1280 LIST_INIT(&nbp->vb_buf.b_dep);
1281
1282 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1283
1284 /*
1285 * Just sort by block number
1286 */
1287 s = splbio();
1288 if (vnx->vx_error != 0) {
1289 putvndbuf(nbp);
1290 goto out;
1291 }
1292 vnx->vx_pending++;
1293
1294 /* assoc new buffer with underlying vnode */
1295 bgetvp(vp, &nbp->vb_buf);
1296
1297 /* sort it in and start I/O if we are not over our limit */
1298 disksort_blkno(&sdp->swd_tab, &nbp->vb_buf);
1299 sw_reg_start(sdp);
1300 splx(s);
1301
1302 /*
1303 * advance to the next I/O
1304 */
1305 byteoff += sz;
1306 addr += sz;
1307 }
1308
1309 s = splbio();
1310
1311 out: /* Arrive here at splbio */
1312 vnx->vx_flags &= ~VX_BUSY;
1313 if (vnx->vx_pending == 0) {
1314 if (vnx->vx_error != 0) {
1315 bp->b_error = vnx->vx_error;
1316 bp->b_flags |= B_ERROR;
1317 }
1318 putvndxfer(vnx);
1319 biodone(bp);
1320 }
1321 splx(s);
1322 }
1323
1324 /*
1325 * sw_reg_start: start an I/O request on the requested swapdev
1326 *
1327 * => reqs are sorted by disksort (above)
1328 */
1329 static void
1330 sw_reg_start(sdp)
1331 struct swapdev *sdp;
1332 {
1333 struct buf *bp;
1334 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1335
1336 /* recursion control */
1337 if ((sdp->swd_flags & SWF_BUSY) != 0)
1338 return;
1339
1340 sdp->swd_flags |= SWF_BUSY;
1341
1342 while (sdp->swd_active < sdp->swd_maxactive) {
1343 bp = BUFQ_FIRST(&sdp->swd_tab);
1344 if (bp == NULL)
1345 break;
1346 BUFQ_REMOVE(&sdp->swd_tab, bp);
1347 sdp->swd_active++;
1348
1349 UVMHIST_LOG(pdhist,
1350 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1351 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1352 if ((bp->b_flags & B_READ) == 0)
1353 bp->b_vp->v_numoutput++;
1354
1355 VOP_STRATEGY(bp);
1356 }
1357 sdp->swd_flags &= ~SWF_BUSY;
1358 }
1359
1360 /*
1361 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1362 *
1363 * => note that we can recover the vndbuf struct by casting the buf ptr
1364 */
1365 static void
1366 sw_reg_iodone(bp)
1367 struct buf *bp;
1368 {
1369 struct vndbuf *vbp = (struct vndbuf *) bp;
1370 struct vndxfer *vnx = vbp->vb_xfer;
1371 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1372 struct swapdev *sdp = vnx->vx_sdp;
1373 int s, resid;
1374 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1375
1376 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1377 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1378 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1379 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1380
1381 /*
1382 * protect vbp at splbio and update.
1383 */
1384
1385 s = splbio();
1386 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1387 pbp->b_resid -= resid;
1388 vnx->vx_pending--;
1389
1390 if (vbp->vb_buf.b_error) {
1391 UVMHIST_LOG(pdhist, " got error=%d !",
1392 vbp->vb_buf.b_error, 0, 0, 0);
1393
1394 /* pass error upward */
1395 vnx->vx_error = vbp->vb_buf.b_error;
1396 }
1397
1398 /*
1399 * disassociate this buffer from the vnode.
1400 */
1401 brelvp(&vbp->vb_buf);
1402
1403 /*
1404 * kill vbp structure
1405 */
1406 putvndbuf(vbp);
1407
1408 /*
1409 * wrap up this transaction if it has run to completion or, in
1410 * case of an error, when all auxiliary buffers have returned.
1411 */
1412 if (vnx->vx_error != 0) {
1413 /* pass error upward */
1414 pbp->b_flags |= B_ERROR;
1415 pbp->b_error = vnx->vx_error;
1416 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1417 putvndxfer(vnx);
1418 biodone(pbp);
1419 }
1420 } else if (pbp->b_resid == 0) {
1421 #ifdef DIAGNOSTIC
1422 if (vnx->vx_pending != 0)
1423 panic("sw_reg_iodone: vnx pending: %d",vnx->vx_pending);
1424 #endif
1425
1426 if ((vnx->vx_flags & VX_BUSY) == 0) {
1427 UVMHIST_LOG(pdhist, " iodone error=%d !",
1428 pbp, vnx->vx_error, 0, 0);
1429 putvndxfer(vnx);
1430 biodone(pbp);
1431 }
1432 }
1433
1434 /*
1435 * done! start next swapdev I/O if one is pending
1436 */
1437 sdp->swd_active--;
1438 sw_reg_start(sdp);
1439 splx(s);
1440 }
1441
1442
1443 /*
1444 * uvm_swap_alloc: allocate space on swap
1445 *
1446 * => allocation is done "round robin" down the priority list, as we
1447 * allocate in a priority we "rotate" the circle queue.
1448 * => space can be freed with uvm_swap_free
1449 * => we return the page slot number in /dev/drum (0 == invalid slot)
1450 * => we lock uvm.swap_data_lock
1451 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1452 */
1453 int
1454 uvm_swap_alloc(nslots, lessok)
1455 int *nslots; /* IN/OUT */
1456 boolean_t lessok;
1457 {
1458 struct swapdev *sdp;
1459 struct swappri *spp;
1460 u_long result;
1461 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1462
1463 /*
1464 * no swap devices configured yet? definite failure.
1465 */
1466 if (uvmexp.nswapdev < 1)
1467 return 0;
1468
1469 /*
1470 * lock data lock, convert slots into blocks, and enter loop
1471 */
1472 simple_lock(&uvm.swap_data_lock);
1473
1474 ReTry: /* XXXMRG */
1475 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
1476 spp = LIST_NEXT(spp, spi_swappri)) {
1477 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
1478 sdp != (void *)&spp->spi_swapdev;
1479 sdp = CIRCLEQ_NEXT(sdp,swd_next)) {
1480 /* if it's not enabled, then we can't swap from it */
1481 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1482 continue;
1483 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1484 continue;
1485 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1486 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1487 &result) != 0) {
1488 continue;
1489 }
1490
1491 /*
1492 * successful allocation! now rotate the circleq.
1493 */
1494 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1495 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1496 sdp->swd_npginuse += *nslots;
1497 uvmexp.swpginuse += *nslots;
1498 simple_unlock(&uvm.swap_data_lock);
1499 /* done! return drum slot number */
1500 UVMHIST_LOG(pdhist,
1501 "success! returning %d slots starting at %d",
1502 *nslots, result + sdp->swd_drumoffset, 0, 0);
1503 return(result + sdp->swd_drumoffset);
1504 }
1505 }
1506
1507 /* XXXMRG: BEGIN HACK */
1508 if (*nslots > 1 && lessok) {
1509 *nslots = 1;
1510 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1511 }
1512 /* XXXMRG: END HACK */
1513
1514 simple_unlock(&uvm.swap_data_lock);
1515 return 0; /* failed */
1516 }
1517
1518 /*
1519 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1520 *
1521 * => we lock uvm.swap_data_lock
1522 */
1523 void
1524 uvm_swap_markbad(startslot, nslots)
1525 int startslot;
1526 int nslots;
1527 {
1528 struct swapdev *sdp;
1529 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1530
1531 simple_lock(&uvm.swap_data_lock);
1532 sdp = swapdrum_getsdp(startslot);
1533
1534 /*
1535 * we just keep track of how many pages have been marked bad
1536 * in this device, to make everything add up in swap_off().
1537 * we assume here that the range of slots will all be within
1538 * one swap device.
1539 */
1540
1541 sdp->swd_npgbad += nslots;
1542 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1543 simple_unlock(&uvm.swap_data_lock);
1544 }
1545
1546 /*
1547 * uvm_swap_free: free swap slots
1548 *
1549 * => this can be all or part of an allocation made by uvm_swap_alloc
1550 * => we lock uvm.swap_data_lock
1551 */
1552 void
1553 uvm_swap_free(startslot, nslots)
1554 int startslot;
1555 int nslots;
1556 {
1557 struct swapdev *sdp;
1558 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1559
1560 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1561 startslot, 0, 0);
1562
1563 /*
1564 * ignore attempts to free the "bad" slot.
1565 */
1566 if (startslot == SWSLOT_BAD) {
1567 return;
1568 }
1569
1570 /*
1571 * convert drum slot offset back to sdp, free the blocks
1572 * in the extent, and return. must hold pri lock to do
1573 * lookup and access the extent.
1574 */
1575 simple_lock(&uvm.swap_data_lock);
1576 sdp = swapdrum_getsdp(startslot);
1577
1578 #ifdef DIAGNOSTIC
1579 if (uvmexp.nswapdev < 1)
1580 panic("uvm_swap_free: uvmexp.nswapdev < 1\n");
1581 if (sdp == NULL) {
1582 printf("uvm_swap_free: startslot %d, nslots %d\n", startslot,
1583 nslots);
1584 panic("uvm_swap_free: unmapped address\n");
1585 }
1586 #endif
1587 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1588 EX_MALLOCOK|EX_NOWAIT) != 0) {
1589 printf("warning: resource shortage: %d pages of swap lost\n",
1590 nslots);
1591 }
1592
1593 sdp->swd_npginuse -= nslots;
1594 uvmexp.swpginuse -= nslots;
1595 #ifdef DIAGNOSTIC
1596 if (sdp->swd_npginuse < 0)
1597 panic("uvm_swap_free: inuse < 0");
1598 #endif
1599 simple_unlock(&uvm.swap_data_lock);
1600 }
1601
1602 /*
1603 * uvm_swap_put: put any number of pages into a contig place on swap
1604 *
1605 * => can be sync or async
1606 * => XXXMRG: consider making it an inline or macro
1607 */
1608 int
1609 uvm_swap_put(swslot, ppsp, npages, flags)
1610 int swslot;
1611 struct vm_page **ppsp;
1612 int npages;
1613 int flags;
1614 {
1615 int result;
1616
1617 result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1618 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1619
1620 return (result);
1621 }
1622
1623 /*
1624 * uvm_swap_get: get a single page from swap
1625 *
1626 * => usually a sync op (from fault)
1627 * => XXXMRG: consider making it an inline or macro
1628 */
1629 int
1630 uvm_swap_get(page, swslot, flags)
1631 struct vm_page *page;
1632 int swslot, flags;
1633 {
1634 int result;
1635
1636 uvmexp.nswget++;
1637 #ifdef DIAGNOSTIC
1638 if ((flags & PGO_SYNCIO) == 0)
1639 printf("uvm_swap_get: ASYNC get requested?\n");
1640 #endif
1641
1642 if (swslot == SWSLOT_BAD) {
1643 return VM_PAGER_ERROR;
1644 }
1645
1646 /*
1647 * this page is (about to be) no longer only in swap.
1648 */
1649 simple_lock(&uvm.swap_data_lock);
1650 uvmexp.swpgonly--;
1651 simple_unlock(&uvm.swap_data_lock);
1652
1653 result = uvm_swap_io(&page, swslot, 1, B_READ |
1654 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1655
1656 if (result != VM_PAGER_OK && result != VM_PAGER_PEND) {
1657 /*
1658 * oops, the read failed so it really is still only in swap.
1659 */
1660 simple_lock(&uvm.swap_data_lock);
1661 uvmexp.swpgonly++;
1662 simple_unlock(&uvm.swap_data_lock);
1663 }
1664
1665 return (result);
1666 }
1667
1668 /*
1669 * uvm_swap_io: do an i/o operation to swap
1670 */
1671
1672 static int
1673 uvm_swap_io(pps, startslot, npages, flags)
1674 struct vm_page **pps;
1675 int startslot, npages, flags;
1676 {
1677 daddr_t startblk;
1678 struct buf *bp;
1679 vaddr_t kva;
1680 int result, s, mapinflags, pflag;
1681 boolean_t write, async;
1682 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1683
1684 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1685 startslot, npages, flags, 0);
1686
1687 write = (flags & B_READ) == 0;
1688 async = (flags & B_ASYNC) != 0;
1689
1690 /*
1691 * convert starting drum slot to block number
1692 */
1693 startblk = btodb(startslot << PAGE_SHIFT);
1694
1695 /*
1696 * first, map the pages into the kernel (XXX: currently required
1697 * by buffer system).
1698 */
1699
1700 mapinflags = !write ? UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE;
1701 if (!async)
1702 mapinflags |= UVMPAGER_MAPIN_WAITOK;
1703 kva = uvm_pagermapin(pps, npages, mapinflags);
1704 if (kva == 0)
1705 return (VM_PAGER_AGAIN);
1706
1707 /*
1708 * now allocate a buf for the i/o.
1709 * [make sure we don't put the pagedaemon to sleep...]
1710 */
1711 s = splbio();
1712 pflag = (async || curproc == uvm.pagedaemon_proc) ? 0 : PR_WAITOK;
1713 bp = pool_get(&bufpool, pflag);
1714 splx(s);
1715
1716 /*
1717 * if we failed to get a buf, return "try again"
1718 */
1719 if (bp == NULL)
1720 return (VM_PAGER_AGAIN);
1721
1722 /*
1723 * fill in the bp/sbp. we currently route our i/o through
1724 * /dev/drum's vnode [swapdev_vp].
1725 */
1726 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1727 bp->b_proc = &proc0; /* XXX */
1728 bp->b_vnbufs.le_next = NOLIST;
1729 bp->b_data = (caddr_t)kva;
1730 bp->b_blkno = startblk;
1731 s = splbio();
1732 VHOLD(swapdev_vp);
1733 bp->b_vp = swapdev_vp;
1734 splx(s);
1735 /* XXXCDC: isn't swapdev_vp always a VCHR? */
1736 /* XXXMRG: probably -- this is obviously something inherited... */
1737 if (swapdev_vp->v_type == VBLK)
1738 bp->b_dev = swapdev_vp->v_rdev;
1739 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1740 LIST_INIT(&bp->b_dep);
1741
1742 /*
1743 * bump v_numoutput (counter of number of active outputs).
1744 */
1745 if (write) {
1746 s = splbio();
1747 swapdev_vp->v_numoutput++;
1748 splx(s);
1749 }
1750
1751 /*
1752 * for async ops we must set up the iodone handler.
1753 */
1754 if (async) {
1755 /* XXXUBC pagedaemon */
1756 bp->b_flags |= B_CALL | (curproc == uvm.pagedaemon_proc ?
1757 B_PDAEMON : 0);
1758 bp->b_iodone = uvm_aio_biodone;
1759 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1760 }
1761 UVMHIST_LOG(pdhist,
1762 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1763 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1764
1765 /*
1766 * now we start the I/O, and if async, return.
1767 */
1768 VOP_STRATEGY(bp);
1769 if (async)
1770 return (VM_PAGER_PEND);
1771
1772 /*
1773 * must be sync i/o. wait for it to finish
1774 */
1775 (void) biowait(bp);
1776 result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
1777
1778 /*
1779 * kill the pager mapping
1780 */
1781 uvm_pagermapout(kva, npages);
1782
1783 /*
1784 * now dispose of the buf
1785 */
1786 s = splbio();
1787 if (bp->b_vp)
1788 brelvp(bp);
1789 if (write)
1790 vwakeup(bp);
1791 pool_put(&bufpool, bp);
1792 splx(s);
1793
1794 /*
1795 * finally return.
1796 */
1797 UVMHIST_LOG(pdhist, "<- done (sync) result=%d", result, 0, 0, 0);
1798 return (result);
1799 }
1800