Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.41
      1 /*	$NetBSD: uvm_swap.c,v 1.41 2000/11/27 08:40:05 chs Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     32  */
     33 
     34 #include "fs_nfs.h"
     35 #include "opt_uvmhist.h"
     36 #include "opt_compat_netbsd.h"
     37 #include "opt_ddb.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/buf.h>
     42 #include <sys/conf.h>
     43 #include <sys/proc.h>
     44 #include <sys/namei.h>
     45 #include <sys/disklabel.h>
     46 #include <sys/errno.h>
     47 #include <sys/kernel.h>
     48 #include <sys/malloc.h>
     49 #include <sys/vnode.h>
     50 #include <sys/file.h>
     51 #include <sys/extent.h>
     52 #include <sys/mount.h>
     53 #include <sys/pool.h>
     54 #include <sys/syscallargs.h>
     55 #include <sys/swap.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 #include <miscfs/specfs/specdev.h>
     60 
     61 /*
     62  * uvm_swap.c: manage configuration and i/o to swap space.
     63  */
     64 
     65 /*
     66  * swap space is managed in the following way:
     67  *
     68  * each swap partition or file is described by a "swapdev" structure.
     69  * each "swapdev" structure contains a "swapent" structure which contains
     70  * information that is passed up to the user (via system calls).
     71  *
     72  * each swap partition is assigned a "priority" (int) which controls
     73  * swap parition usage.
     74  *
     75  * the system maintains a global data structure describing all swap
     76  * partitions/files.   there is a sorted LIST of "swappri" structures
     77  * which describe "swapdev"'s at that priority.   this LIST is headed
     78  * by the "swap_priority" global var.    each "swappri" contains a
     79  * CIRCLEQ of "swapdev" structures at that priority.
     80  *
     81  * locking:
     82  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
     83  *    system call and prevents the swap priority list from changing
     84  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     85  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
     86  *    structures including the priority list, the swapdev structures,
     87  *    and the swapmap extent.
     88  *
     89  * each swap device has the following info:
     90  *  - swap device in use (could be disabled, preventing future use)
     91  *  - swap enabled (allows new allocations on swap)
     92  *  - map info in /dev/drum
     93  *  - vnode pointer
     94  * for swap files only:
     95  *  - block size
     96  *  - max byte count in buffer
     97  *  - buffer
     98  *  - credentials to use when doing i/o to file
     99  *
    100  * userland controls and configures swap with the swapctl(2) system call.
    101  * the sys_swapctl performs the following operations:
    102  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    103  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    104  *	(passed in via "arg") of a size passed in via "misc" ... we load
    105  *	the current swap config into the array.
    106  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    107  *	priority in "misc", start swapping on it.
    108  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    109  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    110  *	"misc")
    111  */
    112 
    113 /*
    114  * swapdev: describes a single swap partition/file
    115  *
    116  * note the following should be true:
    117  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    118  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    119  */
    120 struct swapdev {
    121 	struct oswapent swd_ose;
    122 #define	swd_dev		swd_ose.ose_dev		/* device id */
    123 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    124 #define	swd_priority	swd_ose.ose_priority	/* our priority */
    125 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    126 	char			*swd_path;	/* saved pathname of device */
    127 	int			swd_pathlen;	/* length of pathname */
    128 	int			swd_npages;	/* #pages we can use */
    129 	int			swd_npginuse;	/* #pages in use */
    130 	int			swd_npgbad;	/* #pages bad */
    131 	int			swd_drumoffset;	/* page0 offset in drum */
    132 	int			swd_drumsize;	/* #pages in drum */
    133 	struct extent		*swd_ex;	/* extent for this swapdev */
    134 	struct vnode		*swd_vp;	/* backing vnode */
    135 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    136 
    137 	int			swd_bsize;	/* blocksize (bytes) */
    138 	int			swd_maxactive;	/* max active i/o reqs */
    139 	struct buf_queue	swd_tab;	/* buffer list */
    140 	int			swd_active;	/* number of active buffers */
    141 	struct ucred		*swd_cred;	/* cred for file access */
    142 };
    143 
    144 /*
    145  * swap device priority entry; the list is kept sorted on `spi_priority'.
    146  */
    147 struct swappri {
    148 	int			spi_priority;     /* priority */
    149 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    150 	/* circleq of swapdevs at this priority */
    151 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    152 };
    153 
    154 /*
    155  * The following two structures are used to keep track of data transfers
    156  * on swap devices associated with regular files.
    157  * NOTE: this code is more or less a copy of vnd.c; we use the same
    158  * structure names here to ease porting..
    159  */
    160 struct vndxfer {
    161 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    162 	struct swapdev	*vx_sdp;
    163 	int		vx_error;
    164 	int		vx_pending;	/* # of pending aux buffers */
    165 	int		vx_flags;
    166 #define VX_BUSY		1
    167 #define VX_DEAD		2
    168 };
    169 
    170 struct vndbuf {
    171 	struct buf	vb_buf;
    172 	struct vndxfer	*vb_xfer;
    173 };
    174 
    175 
    176 /*
    177  * We keep a of pool vndbuf's and vndxfer structures.
    178  */
    179 struct pool *vndxfer_pool;
    180 struct pool *vndbuf_pool;
    181 
    182 #define	getvndxfer(vnx)	do {						\
    183 	int s = splbio();						\
    184 	vnx = pool_get(vndxfer_pool, PR_MALLOCOK|PR_WAITOK);		\
    185 	splx(s);							\
    186 } while (0)
    187 
    188 #define putvndxfer(vnx) {						\
    189 	pool_put(vndxfer_pool, (void *)(vnx));				\
    190 }
    191 
    192 #define	getvndbuf(vbp)	do {						\
    193 	int s = splbio();						\
    194 	vbp = pool_get(vndbuf_pool, PR_MALLOCOK|PR_WAITOK);		\
    195 	splx(s);							\
    196 } while (0)
    197 
    198 #define putvndbuf(vbp) {						\
    199 	pool_put(vndbuf_pool, (void *)(vbp));				\
    200 }
    201 
    202 /* /dev/drum */
    203 bdev_decl(sw);
    204 cdev_decl(sw);
    205 
    206 /*
    207  * local variables
    208  */
    209 static struct extent *swapmap;		/* controls the mapping of /dev/drum */
    210 
    211 /* list of all active swap devices [by priority] */
    212 LIST_HEAD(swap_priority, swappri);
    213 static struct swap_priority swap_priority;
    214 
    215 /* locks */
    216 lock_data_t swap_syscall_lock;
    217 
    218 /*
    219  * prototypes
    220  */
    221 static void		 swapdrum_add __P((struct swapdev *, int));
    222 static struct swapdev	*swapdrum_getsdp __P((int));
    223 
    224 static struct swapdev	*swaplist_find __P((struct vnode *, int));
    225 static void		 swaplist_insert __P((struct swapdev *,
    226 					     struct swappri *, int));
    227 static void		 swaplist_trim __P((void));
    228 
    229 static int swap_on __P((struct proc *, struct swapdev *));
    230 static int swap_off __P((struct proc *, struct swapdev *));
    231 
    232 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
    233 static void sw_reg_iodone __P((struct buf *));
    234 static void sw_reg_start __P((struct swapdev *));
    235 
    236 static int uvm_swap_io __P((struct vm_page **, int, int, int));
    237 
    238 /*
    239  * uvm_swap_init: init the swap system data structures and locks
    240  *
    241  * => called at boot time from init_main.c after the filesystems
    242  *	are brought up (which happens after uvm_init())
    243  */
    244 void
    245 uvm_swap_init()
    246 {
    247 	UVMHIST_FUNC("uvm_swap_init");
    248 
    249 	UVMHIST_CALLED(pdhist);
    250 	/*
    251 	 * first, init the swap list, its counter, and its lock.
    252 	 * then get a handle on the vnode for /dev/drum by using
    253 	 * the its dev_t number ("swapdev", from MD conf.c).
    254 	 */
    255 
    256 	LIST_INIT(&swap_priority);
    257 	uvmexp.nswapdev = 0;
    258 	lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
    259 	simple_lock_init(&uvm.swap_data_lock);
    260 
    261 	if (bdevvp(swapdev, &swapdev_vp))
    262 		panic("uvm_swap_init: can't get vnode for swap device");
    263 
    264 	/*
    265 	 * create swap block resource map to map /dev/drum.   the range
    266 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    267 	 * that block 0 is reserved (used to indicate an allocation
    268 	 * failure, or no allocation).
    269 	 */
    270 	swapmap = extent_create("swapmap", 1, INT_MAX,
    271 				M_VMSWAP, 0, 0, EX_NOWAIT);
    272 	if (swapmap == 0)
    273 		panic("uvm_swap_init: extent_create failed");
    274 
    275 	/*
    276 	 * allocate pools for structures used for swapping to files.
    277 	 */
    278 
    279 	vndxfer_pool =
    280 		pool_create(sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 0,
    281 			    NULL, NULL, 0);
    282 	if (vndxfer_pool == NULL)
    283 		panic("swapinit: pool_create failed");
    284 
    285 	vndbuf_pool =
    286 		pool_create(sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 0,
    287 			    NULL, NULL, 0);
    288 	if (vndbuf_pool == NULL)
    289 		panic("swapinit: pool_create failed");
    290 	/*
    291 	 * done!
    292 	 */
    293 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    294 }
    295 
    296 /*
    297  * swaplist functions: functions that operate on the list of swap
    298  * devices on the system.
    299  */
    300 
    301 /*
    302  * swaplist_insert: insert swap device "sdp" into the global list
    303  *
    304  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    305  * => caller must provide a newly malloc'd swappri structure (we will
    306  *	FREE it if we don't need it... this it to prevent malloc blocking
    307  *	here while adding swap)
    308  */
    309 static void
    310 swaplist_insert(sdp, newspp, priority)
    311 	struct swapdev *sdp;
    312 	struct swappri *newspp;
    313 	int priority;
    314 {
    315 	struct swappri *spp, *pspp;
    316 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    317 
    318 	/*
    319 	 * find entry at or after which to insert the new device.
    320 	 */
    321 	for (pspp = NULL, spp = LIST_FIRST(&swap_priority); spp != NULL;
    322 	     spp = LIST_NEXT(spp, spi_swappri)) {
    323 		if (priority <= spp->spi_priority)
    324 			break;
    325 		pspp = spp;
    326 	}
    327 
    328 	/*
    329 	 * new priority?
    330 	 */
    331 	if (spp == NULL || spp->spi_priority != priority) {
    332 		spp = newspp;  /* use newspp! */
    333 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    334 			    priority, 0, 0, 0);
    335 
    336 		spp->spi_priority = priority;
    337 		CIRCLEQ_INIT(&spp->spi_swapdev);
    338 
    339 		if (pspp)
    340 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    341 		else
    342 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    343 	} else {
    344 	  	/* we don't need a new priority structure, free it */
    345 		FREE(newspp, M_VMSWAP);
    346 	}
    347 
    348 	/*
    349 	 * priority found (or created).   now insert on the priority's
    350 	 * circleq list and bump the total number of swapdevs.
    351 	 */
    352 	sdp->swd_priority = priority;
    353 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    354 	uvmexp.nswapdev++;
    355 }
    356 
    357 /*
    358  * swaplist_find: find and optionally remove a swap device from the
    359  *	global list.
    360  *
    361  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    362  * => we return the swapdev we found (and removed)
    363  */
    364 static struct swapdev *
    365 swaplist_find(vp, remove)
    366 	struct vnode *vp;
    367 	boolean_t remove;
    368 {
    369 	struct swapdev *sdp;
    370 	struct swappri *spp;
    371 
    372 	/*
    373 	 * search the lists for the requested vp
    374 	 */
    375 	for (spp = LIST_FIRST(&swap_priority); spp != NULL;
    376 	     spp = LIST_NEXT(spp, spi_swappri)) {
    377 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    378 		     sdp != (void *)&spp->spi_swapdev;
    379 		     sdp = CIRCLEQ_NEXT(sdp, swd_next))
    380 			if (sdp->swd_vp == vp) {
    381 				if (remove) {
    382 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    383 					    sdp, swd_next);
    384 					uvmexp.nswapdev--;
    385 				}
    386 				return(sdp);
    387 			}
    388 	}
    389 	return (NULL);
    390 }
    391 
    392 
    393 /*
    394  * swaplist_trim: scan priority list for empty priority entries and kill
    395  *	them.
    396  *
    397  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    398  */
    399 static void
    400 swaplist_trim()
    401 {
    402 	struct swappri *spp, *nextspp;
    403 
    404 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    405 		nextspp = LIST_NEXT(spp, spi_swappri);
    406 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    407 		    (void *)&spp->spi_swapdev)
    408 			continue;
    409 		LIST_REMOVE(spp, spi_swappri);
    410 		free(spp, M_VMSWAP);
    411 	}
    412 }
    413 
    414 /*
    415  * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
    416  *
    417  * => caller must hold swap_syscall_lock
    418  * => uvm.swap_data_lock should be unlocked (we may sleep)
    419  */
    420 static void
    421 swapdrum_add(sdp, npages)
    422 	struct swapdev *sdp;
    423 	int	npages;
    424 {
    425 	u_long result;
    426 
    427 	if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
    428 	    EX_WAITOK, &result))
    429 		panic("swapdrum_add");
    430 
    431 	sdp->swd_drumoffset = result;
    432 	sdp->swd_drumsize = npages;
    433 }
    434 
    435 /*
    436  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    437  *	to the "swapdev" that maps that section of the drum.
    438  *
    439  * => each swapdev takes one big contig chunk of the drum
    440  * => caller must hold uvm.swap_data_lock
    441  */
    442 static struct swapdev *
    443 swapdrum_getsdp(pgno)
    444 	int pgno;
    445 {
    446 	struct swapdev *sdp;
    447 	struct swappri *spp;
    448 
    449 	for (spp = LIST_FIRST(&swap_priority); spp != NULL;
    450 	     spp = LIST_NEXT(spp, spi_swappri))
    451 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    452 		     sdp != (void *)&spp->spi_swapdev;
    453 		     sdp = CIRCLEQ_NEXT(sdp, swd_next))
    454 			if (pgno >= sdp->swd_drumoffset &&
    455 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    456 				return sdp;
    457 			}
    458 	return NULL;
    459 }
    460 
    461 
    462 /*
    463  * sys_swapctl: main entry point for swapctl(2) system call
    464  * 	[with two helper functions: swap_on and swap_off]
    465  */
    466 int
    467 sys_swapctl(p, v, retval)
    468 	struct proc *p;
    469 	void *v;
    470 	register_t *retval;
    471 {
    472 	struct sys_swapctl_args /* {
    473 		syscallarg(int) cmd;
    474 		syscallarg(void *) arg;
    475 		syscallarg(int) misc;
    476 	} */ *uap = (struct sys_swapctl_args *)v;
    477 	struct vnode *vp;
    478 	struct nameidata nd;
    479 	struct swappri *spp;
    480 	struct swapdev *sdp;
    481 	struct swapent *sep;
    482 	char	userpath[PATH_MAX + 1];
    483 	size_t	len;
    484 	int	count, error, misc;
    485 	int	priority;
    486 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    487 
    488 	misc = SCARG(uap, misc);
    489 
    490 	/*
    491 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    492 	 */
    493 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
    494 
    495 	/*
    496 	 * we handle the non-priv NSWAP and STATS request first.
    497 	 *
    498 	 * SWAP_NSWAP: return number of config'd swap devices
    499 	 * [can also be obtained with uvmexp sysctl]
    500 	 */
    501 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    502 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    503 		    0, 0, 0);
    504 		*retval = uvmexp.nswapdev;
    505 		error = 0;
    506 		goto out;
    507 	}
    508 
    509 	/*
    510 	 * SWAP_STATS: get stats on current # of configured swap devs
    511 	 *
    512 	 * note that the swap_priority list can't change as long
    513 	 * as we are holding the swap_syscall_lock.  we don't want
    514 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
    515 	 * copyout() and we don't want to be holding that lock then!
    516 	 */
    517 	if (SCARG(uap, cmd) == SWAP_STATS
    518 #if defined(COMPAT_13)
    519 	    || SCARG(uap, cmd) == SWAP_OSTATS
    520 #endif
    521 	    ) {
    522 		sep = (struct swapent *)SCARG(uap, arg);
    523 		count = 0;
    524 
    525 		for (spp = LIST_FIRST(&swap_priority); spp != NULL;
    526 		    spp = LIST_NEXT(spp, spi_swappri)) {
    527 			for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    528 			     sdp != (void *)&spp->spi_swapdev && misc-- > 0;
    529 			     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    530 			  	/*
    531 				 * backwards compatibility for system call.
    532 				 * note that we use 'struct oswapent' as an
    533 				 * overlay into both 'struct swapdev' and
    534 				 * the userland 'struct swapent', as we
    535 				 * want to retain backwards compatibility
    536 				 * with NetBSD 1.3.
    537 				 */
    538 				sdp->swd_ose.ose_inuse =
    539 				    btodb(sdp->swd_npginuse << PAGE_SHIFT);
    540 				error = copyout(&sdp->swd_ose, sep,
    541 						sizeof(struct oswapent));
    542 
    543 				/* now copy out the path if necessary */
    544 #if defined(COMPAT_13)
    545 				if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
    546 #else
    547 				if (error == 0)
    548 #endif
    549 					error = copyout(sdp->swd_path,
    550 					    &sep->se_path, sdp->swd_pathlen);
    551 
    552 				if (error)
    553 					goto out;
    554 				count++;
    555 #if defined(COMPAT_13)
    556 				if (SCARG(uap, cmd) == SWAP_OSTATS)
    557 					((struct oswapent *)sep)++;
    558 				else
    559 #endif
    560 					sep++;
    561 			}
    562 		}
    563 
    564 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    565 
    566 		*retval = count;
    567 		error = 0;
    568 		goto out;
    569 	}
    570 
    571 	/*
    572 	 * all other requests require superuser privs.   verify.
    573 	 */
    574 	if ((error = suser(p->p_ucred, &p->p_acflag)))
    575 		goto out;
    576 
    577 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    578 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    579 
    580 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    581 		goto out;
    582 	}
    583 
    584 	/*
    585 	 * at this point we expect a path name in arg.   we will
    586 	 * use namei() to gain a vnode reference (vref), and lock
    587 	 * the vnode (VOP_LOCK).
    588 	 *
    589 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    590 	 * miniroot)
    591 	 */
    592 	if (SCARG(uap, arg) == NULL) {
    593 		vp = rootvp;		/* miniroot */
    594 		if (vget(vp, LK_EXCLUSIVE)) {
    595 			error = EBUSY;
    596 			goto out;
    597 		}
    598 		if (SCARG(uap, cmd) == SWAP_ON &&
    599 		    copystr("miniroot", userpath, sizeof userpath, &len))
    600 			panic("swapctl: miniroot copy failed");
    601 	} else {
    602 		int	space;
    603 		char	*where;
    604 
    605 		if (SCARG(uap, cmd) == SWAP_ON) {
    606 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    607 			    sizeof userpath, &len)))
    608 				goto out;
    609 			space = UIO_SYSSPACE;
    610 			where = userpath;
    611 		} else {
    612 			space = UIO_USERSPACE;
    613 			where = (char *)SCARG(uap, arg);
    614 		}
    615 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
    616 		if ((error = namei(&nd)))
    617 			goto out;
    618 		vp = nd.ni_vp;
    619 	}
    620 	/* note: "vp" is referenced and locked */
    621 
    622 	error = 0;		/* assume no error */
    623 	switch(SCARG(uap, cmd)) {
    624 
    625 	case SWAP_DUMPDEV:
    626 		if (vp->v_type != VBLK) {
    627 			error = ENOTBLK;
    628 			goto out;
    629 		}
    630 		dumpdev = vp->v_rdev;
    631 
    632 		break;
    633 
    634 	case SWAP_CTL:
    635 		/*
    636 		 * get new priority, remove old entry (if any) and then
    637 		 * reinsert it in the correct place.  finally, prune out
    638 		 * any empty priority structures.
    639 		 */
    640 		priority = SCARG(uap, misc);
    641 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    642 		simple_lock(&uvm.swap_data_lock);
    643 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
    644 			error = ENOENT;
    645 		} else {
    646 			swaplist_insert(sdp, spp, priority);
    647 			swaplist_trim();
    648 		}
    649 		simple_unlock(&uvm.swap_data_lock);
    650 		if (error)
    651 			free(spp, M_VMSWAP);
    652 		break;
    653 
    654 	case SWAP_ON:
    655 
    656 		/*
    657 		 * check for duplicates.   if none found, then insert a
    658 		 * dummy entry on the list to prevent someone else from
    659 		 * trying to enable this device while we are working on
    660 		 * it.
    661 		 */
    662 
    663 		priority = SCARG(uap, misc);
    664 		simple_lock(&uvm.swap_data_lock);
    665 		if ((sdp = swaplist_find(vp, 0)) != NULL) {
    666 			error = EBUSY;
    667 			simple_unlock(&uvm.swap_data_lock);
    668 			break;
    669 		}
    670 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    671 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    672 		memset(sdp, 0, sizeof(*sdp));
    673 		sdp->swd_flags = SWF_FAKE;	/* placeholder only */
    674 		sdp->swd_vp = vp;
    675 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    676 		BUFQ_INIT(&sdp->swd_tab);
    677 
    678 		/*
    679 		 * XXX Is NFS elaboration necessary?
    680 		 */
    681 		if (vp->v_type == VREG) {
    682 			sdp->swd_cred = crdup(p->p_ucred);
    683 		}
    684 
    685 		swaplist_insert(sdp, spp, priority);
    686 		simple_unlock(&uvm.swap_data_lock);
    687 
    688 		sdp->swd_pathlen = len;
    689 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    690 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    691 			panic("swapctl: copystr");
    692 
    693 		/*
    694 		 * we've now got a FAKE placeholder in the swap list.
    695 		 * now attempt to enable swap on it.  if we fail, undo
    696 		 * what we've done and kill the fake entry we just inserted.
    697 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    698 		 */
    699 
    700 		if ((error = swap_on(p, sdp)) != 0) {
    701 			simple_lock(&uvm.swap_data_lock);
    702 			(void) swaplist_find(vp, 1);  /* kill fake entry */
    703 			swaplist_trim();
    704 			simple_unlock(&uvm.swap_data_lock);
    705 			if (vp->v_type == VREG) {
    706 				crfree(sdp->swd_cred);
    707 			}
    708 			free(sdp->swd_path, M_VMSWAP);
    709 			free(sdp, M_VMSWAP);
    710 			break;
    711 		}
    712 		break;
    713 
    714 	case SWAP_OFF:
    715 		simple_lock(&uvm.swap_data_lock);
    716 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
    717 			simple_unlock(&uvm.swap_data_lock);
    718 			error = ENXIO;
    719 			break;
    720 		}
    721 
    722 		/*
    723 		 * If a device isn't in use or enabled, we
    724 		 * can't stop swapping from it (again).
    725 		 */
    726 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    727 			simple_unlock(&uvm.swap_data_lock);
    728 			error = EBUSY;
    729 			break;
    730 		}
    731 
    732 		/*
    733 		 * do the real work.
    734 		 */
    735 		if ((error = swap_off(p, sdp)) != 0)
    736 			goto out;
    737 
    738 		break;
    739 
    740 	default:
    741 		error = EINVAL;
    742 	}
    743 
    744 	/*
    745 	 * done!  release the ref gained by namei() and unlock.
    746 	 */
    747 	vput(vp);
    748 
    749 out:
    750 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
    751 
    752 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    753 	return (error);
    754 }
    755 
    756 /*
    757  * swap_on: attempt to enable a swapdev for swapping.   note that the
    758  *	swapdev is already on the global list, but disabled (marked
    759  *	SWF_FAKE).
    760  *
    761  * => we avoid the start of the disk (to protect disk labels)
    762  * => we also avoid the miniroot, if we are swapping to root.
    763  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
    764  *	if needed.
    765  */
    766 static int
    767 swap_on(p, sdp)
    768 	struct proc *p;
    769 	struct swapdev *sdp;
    770 {
    771 	static int count = 0;	/* static */
    772 	struct vnode *vp;
    773 	int error, npages, nblocks, size;
    774 	long addr;
    775 	struct vattr va;
    776 #ifdef NFS
    777 	extern int (**nfsv2_vnodeop_p) __P((void *));
    778 #endif /* NFS */
    779 	dev_t dev;
    780 	char *name;
    781 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    782 
    783 	/*
    784 	 * we want to enable swapping on sdp.   the swd_vp contains
    785 	 * the vnode we want (locked and ref'd), and the swd_dev
    786 	 * contains the dev_t of the file, if it a block device.
    787 	 */
    788 
    789 	vp = sdp->swd_vp;
    790 	dev = sdp->swd_dev;
    791 
    792 	/*
    793 	 * open the swap file (mostly useful for block device files to
    794 	 * let device driver know what is up).
    795 	 *
    796 	 * we skip the open/close for root on swap because the root
    797 	 * has already been opened when root was mounted (mountroot).
    798 	 */
    799 	if (vp != rootvp) {
    800 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
    801 			return (error);
    802 	}
    803 
    804 	/* XXX this only works for block devices */
    805 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    806 
    807 	/*
    808 	 * we now need to determine the size of the swap area.   for
    809 	 * block specials we can call the d_psize function.
    810 	 * for normal files, we must stat [get attrs].
    811 	 *
    812 	 * we put the result in nblks.
    813 	 * for normal files, we also want the filesystem block size
    814 	 * (which we get with statfs).
    815 	 */
    816 	switch (vp->v_type) {
    817 	case VBLK:
    818 		if (bdevsw[major(dev)].d_psize == 0 ||
    819 		    (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
    820 			error = ENXIO;
    821 			goto bad;
    822 		}
    823 		break;
    824 
    825 	case VREG:
    826 		if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
    827 			goto bad;
    828 		nblocks = (int)btodb(va.va_size);
    829 		if ((error =
    830 		     VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
    831 			goto bad;
    832 
    833 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    834 		/*
    835 		 * limit the max # of outstanding I/O requests we issue
    836 		 * at any one time.   take it easy on NFS servers.
    837 		 */
    838 #ifdef NFS
    839 		if (vp->v_op == nfsv2_vnodeop_p)
    840 			sdp->swd_maxactive = 2; /* XXX */
    841 		else
    842 #endif /* NFS */
    843 			sdp->swd_maxactive = 8; /* XXX */
    844 		break;
    845 
    846 	default:
    847 		error = ENXIO;
    848 		goto bad;
    849 	}
    850 
    851 	/*
    852 	 * save nblocks in a safe place and convert to pages.
    853 	 */
    854 
    855 	sdp->swd_ose.ose_nblks = nblocks;
    856 	npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
    857 
    858 	/*
    859 	 * for block special files, we want to make sure that leave
    860 	 * the disklabel and bootblocks alone, so we arrange to skip
    861 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    862 	 * note that because of this the "size" can be less than the
    863 	 * actual number of blocks on the device.
    864 	 */
    865 	if (vp->v_type == VBLK) {
    866 		/* we use pages 1 to (size - 1) [inclusive] */
    867 		size = npages - 1;
    868 		addr = 1;
    869 	} else {
    870 		/* we use pages 0 to (size - 1) [inclusive] */
    871 		size = npages;
    872 		addr = 0;
    873 	}
    874 
    875 	/*
    876 	 * make sure we have enough blocks for a reasonable sized swap
    877 	 * area.   we want at least one page.
    878 	 */
    879 
    880 	if (size < 1) {
    881 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    882 		error = EINVAL;
    883 		goto bad;
    884 	}
    885 
    886 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    887 
    888 	/*
    889 	 * now we need to allocate an extent to manage this swap device
    890 	 */
    891 	name = malloc(12, M_VMSWAP, M_WAITOK);
    892 	sprintf(name, "swap0x%04x", count++);
    893 
    894 	/* note that extent_create's 3rd arg is inclusive, thus "- 1" */
    895 	sdp->swd_ex = extent_create(name, 0, npages - 1, M_VMSWAP,
    896 				    0, 0, EX_WAITOK);
    897 	/* allocate the `saved' region from the extent so it won't be used */
    898 	if (addr) {
    899 		if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
    900 			panic("disklabel region");
    901 	}
    902 
    903 	/*
    904 	 * if the vnode we are swapping to is the root vnode
    905 	 * (i.e. we are swapping to the miniroot) then we want
    906 	 * to make sure we don't overwrite it.   do a statfs to
    907 	 * find its size and skip over it.
    908 	 */
    909 	if (vp == rootvp) {
    910 		struct mount *mp;
    911 		struct statfs *sp;
    912 		int rootblocks, rootpages;
    913 
    914 		mp = rootvnode->v_mount;
    915 		sp = &mp->mnt_stat;
    916 		rootblocks = sp->f_blocks * btodb(sp->f_bsize);
    917 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    918 		if (rootpages > size)
    919 			panic("swap_on: miniroot larger than swap?");
    920 
    921 		if (extent_alloc_region(sdp->swd_ex, addr,
    922 					rootpages, EX_WAITOK))
    923 			panic("swap_on: unable to preserve miniroot");
    924 
    925 		size -= rootpages;
    926 		printf("Preserved %d pages of miniroot ", rootpages);
    927 		printf("leaving %d pages of swap\n", size);
    928 	}
    929 
    930 	/*
    931 	 * add a ref to vp to reflect usage as a swap device.
    932 	 */
    933 	vref(vp);
    934 
    935   	/*
    936 	 * add anons to reflect the new swap space
    937 	 */
    938 	uvm_anon_add(size);
    939 
    940 	/*
    941 	 * now add the new swapdev to the drum and enable.
    942 	 */
    943 	simple_lock(&uvm.swap_data_lock);
    944 	swapdrum_add(sdp, npages);
    945 	sdp->swd_npages = size;
    946 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    947 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    948 	uvmexp.swpages += size;
    949 	simple_unlock(&uvm.swap_data_lock);
    950 	return (0);
    951 
    952 bad:
    953 	/*
    954 	 * failure: close device if necessary and return error.
    955 	 */
    956 	if (vp != rootvp)
    957 		(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
    958 	return (error);
    959 }
    960 
    961 /*
    962  * swap_off: stop swapping on swapdev
    963  *
    964  * => swap data should be locked, we will unlock.
    965  */
    966 static int
    967 swap_off(p, sdp)
    968 	struct proc *p;
    969 	struct swapdev *sdp;
    970 {
    971 	void *name;
    972 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
    973 	UVMHIST_LOG(pdhist, "  dev=%x", sdp->swd_dev,0,0,0);
    974 
    975 	/* disable the swap area being removed */
    976 	sdp->swd_flags &= ~SWF_ENABLE;
    977 	simple_unlock(&uvm.swap_data_lock);
    978 
    979 	/*
    980 	 * the idea is to find all the pages that are paged out to this
    981 	 * device, and page them all in.  in uvm, swap-backed pageable
    982 	 * memory can take two forms: aobjs and anons.  call the
    983 	 * swapoff hook for each subsystem to bring in pages.
    984 	 */
    985 
    986 	if (uao_swap_off(sdp->swd_drumoffset,
    987 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
    988 	    anon_swap_off(sdp->swd_drumoffset,
    989 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
    990 
    991 		simple_lock(&uvm.swap_data_lock);
    992 		sdp->swd_flags |= SWF_ENABLE;
    993 		simple_unlock(&uvm.swap_data_lock);
    994 		return ENOMEM;
    995 	}
    996 
    997 #ifdef DIAGNOSTIC
    998 	if (sdp->swd_npginuse != sdp->swd_npgbad) {
    999 		panic("swap_off: sdp %p - %d pages still in use (%d bad)\n",
   1000 		      sdp, sdp->swd_npginuse, sdp->swd_npgbad);
   1001 	}
   1002 #endif
   1003 
   1004 	/*
   1005 	 * done with the vnode and saved creds.
   1006 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1007 	 * so that spec_close() can tell if this is the last close.
   1008 	 */
   1009 	if (sdp->swd_vp->v_type == VREG) {
   1010 		crfree(sdp->swd_cred);
   1011 	}
   1012 	vrele(sdp->swd_vp);
   1013 	if (sdp->swd_vp != rootvp) {
   1014 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
   1015 	}
   1016 
   1017 	/* remove anons from the system */
   1018 	uvm_anon_remove(sdp->swd_npages);
   1019 
   1020 	simple_lock(&uvm.swap_data_lock);
   1021 	uvmexp.swpages -= sdp->swd_npages;
   1022 
   1023 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
   1024 		panic("swap_off: swapdev not in list\n");
   1025 	swaplist_trim();
   1026 
   1027 	/*
   1028 	 * free all resources!
   1029 	 */
   1030 	extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
   1031 		    EX_WAITOK);
   1032 	name = (void *)sdp->swd_ex->ex_name;
   1033 	extent_destroy(sdp->swd_ex);
   1034 	free(name, M_VMSWAP);
   1035 	free(sdp, M_VMSWAP);
   1036 	simple_unlock(&uvm.swap_data_lock);
   1037 	return (0);
   1038 }
   1039 
   1040 /*
   1041  * /dev/drum interface and i/o functions
   1042  */
   1043 
   1044 /*
   1045  * swread: the read function for the drum (just a call to physio)
   1046  */
   1047 /*ARGSUSED*/
   1048 int
   1049 swread(dev, uio, ioflag)
   1050 	dev_t dev;
   1051 	struct uio *uio;
   1052 	int ioflag;
   1053 {
   1054 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1055 
   1056 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1057 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1058 }
   1059 
   1060 /*
   1061  * swwrite: the write function for the drum (just a call to physio)
   1062  */
   1063 /*ARGSUSED*/
   1064 int
   1065 swwrite(dev, uio, ioflag)
   1066 	dev_t dev;
   1067 	struct uio *uio;
   1068 	int ioflag;
   1069 {
   1070 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1071 
   1072 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1073 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1074 }
   1075 
   1076 /*
   1077  * swstrategy: perform I/O on the drum
   1078  *
   1079  * => we must map the i/o request from the drum to the correct swapdev.
   1080  */
   1081 void
   1082 swstrategy(bp)
   1083 	struct buf *bp;
   1084 {
   1085 	struct swapdev *sdp;
   1086 	struct vnode *vp;
   1087 	int s, pageno, bn;
   1088 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1089 
   1090 	/*
   1091 	 * convert block number to swapdev.   note that swapdev can't
   1092 	 * be yanked out from under us because we are holding resources
   1093 	 * in it (i.e. the blocks we are doing I/O on).
   1094 	 */
   1095 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1096 	simple_lock(&uvm.swap_data_lock);
   1097 	sdp = swapdrum_getsdp(pageno);
   1098 	simple_unlock(&uvm.swap_data_lock);
   1099 	if (sdp == NULL) {
   1100 		bp->b_error = EINVAL;
   1101 		bp->b_flags |= B_ERROR;
   1102 		biodone(bp);
   1103 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1104 		return;
   1105 	}
   1106 
   1107 	/*
   1108 	 * convert drum page number to block number on this swapdev.
   1109 	 */
   1110 
   1111 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1112 	bn = btodb(pageno << PAGE_SHIFT);	/* convert to diskblock */
   1113 
   1114 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1115 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1116 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1117 
   1118 	/*
   1119 	 * for block devices we finish up here.
   1120 	 * for regular files we have to do more work which we delegate
   1121 	 * to sw_reg_strategy().
   1122 	 */
   1123 
   1124 	switch (sdp->swd_vp->v_type) {
   1125 	default:
   1126 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
   1127 
   1128 	case VBLK:
   1129 
   1130 		/*
   1131 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1132 		 * on the swapdev (sdp).
   1133 		 */
   1134 		s = splbio();
   1135 		bp->b_blkno = bn;		/* swapdev block number */
   1136 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1137 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1138 		VHOLD(vp);			/* "hold" swapdev vp for i/o */
   1139 
   1140 		/*
   1141 		 * if we are doing a write, we have to redirect the i/o on
   1142 		 * drum's v_numoutput counter to the swapdevs.
   1143 		 */
   1144 		if ((bp->b_flags & B_READ) == 0) {
   1145 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1146 			vp->v_numoutput++;	/* put it on swapdev */
   1147 		}
   1148 
   1149 		/*
   1150 		 * dissassocate buffer with /dev/drum vnode
   1151 		 * [could be null if buf was from physio]
   1152 		 */
   1153 		if (bp->b_vp != NULL)
   1154 			brelvp(bp);
   1155 
   1156 		/*
   1157 		 * finally plug in swapdev vnode and start I/O
   1158 		 */
   1159 		bp->b_vp = vp;
   1160 		splx(s);
   1161 		VOP_STRATEGY(bp);
   1162 		return;
   1163 
   1164 	case VREG:
   1165 		/*
   1166 		 * delegate to sw_reg_strategy function.
   1167 		 */
   1168 		sw_reg_strategy(sdp, bp, bn);
   1169 		return;
   1170 	}
   1171 	/* NOTREACHED */
   1172 }
   1173 
   1174 /*
   1175  * sw_reg_strategy: handle swap i/o to regular files
   1176  */
   1177 static void
   1178 sw_reg_strategy(sdp, bp, bn)
   1179 	struct swapdev	*sdp;
   1180 	struct buf	*bp;
   1181 	int		bn;
   1182 {
   1183 	struct vnode	*vp;
   1184 	struct vndxfer	*vnx;
   1185 	daddr_t		nbn, byteoff;
   1186 	caddr_t		addr;
   1187 	int		s, off, nra, error, sz, resid;
   1188 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1189 
   1190 	/*
   1191 	 * allocate a vndxfer head for this transfer and point it to
   1192 	 * our buffer.
   1193 	 */
   1194 	getvndxfer(vnx);
   1195 	vnx->vx_flags = VX_BUSY;
   1196 	vnx->vx_error = 0;
   1197 	vnx->vx_pending = 0;
   1198 	vnx->vx_bp = bp;
   1199 	vnx->vx_sdp = sdp;
   1200 
   1201 	/*
   1202 	 * setup for main loop where we read filesystem blocks into
   1203 	 * our buffer.
   1204 	 */
   1205 	error = 0;
   1206 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1207 	addr = bp->b_data;		/* current position in buffer */
   1208 	byteoff = dbtob(bn);
   1209 
   1210 	for (resid = bp->b_resid; resid; resid -= sz) {
   1211 		struct vndbuf	*nbp;
   1212 
   1213 		/*
   1214 		 * translate byteoffset into block number.  return values:
   1215 		 *   vp = vnode of underlying device
   1216 		 *  nbn = new block number (on underlying vnode dev)
   1217 		 *  nra = num blocks we can read-ahead (excludes requested
   1218 		 *	block)
   1219 		 */
   1220 		nra = 0;
   1221 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1222 				 	&vp, &nbn, &nra);
   1223 
   1224 		if (error == 0 && nbn == (daddr_t)-1) {
   1225 			/*
   1226 			 * this used to just set error, but that doesn't
   1227 			 * do the right thing.  Instead, it causes random
   1228 			 * memory errors.  The panic() should remain until
   1229 			 * this condition doesn't destabilize the system.
   1230 			 */
   1231 #if 1
   1232 			panic("sw_reg_strategy: swap to sparse file");
   1233 #else
   1234 			error = EIO;	/* failure */
   1235 #endif
   1236 		}
   1237 
   1238 		/*
   1239 		 * punt if there was an error or a hole in the file.
   1240 		 * we must wait for any i/o ops we have already started
   1241 		 * to finish before returning.
   1242 		 *
   1243 		 * XXX we could deal with holes here but it would be
   1244 		 * a hassle (in the write case).
   1245 		 */
   1246 		if (error) {
   1247 			s = splbio();
   1248 			vnx->vx_error = error;	/* pass error up */
   1249 			goto out;
   1250 		}
   1251 
   1252 		/*
   1253 		 * compute the size ("sz") of this transfer (in bytes).
   1254 		 */
   1255 		off = byteoff % sdp->swd_bsize;
   1256 		sz = (1 + nra) * sdp->swd_bsize - off;
   1257 		if (sz > resid)
   1258 			sz = resid;
   1259 
   1260 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1261 			    "vp %p/%p offset 0x%x/0x%x",
   1262 			    sdp->swd_vp, vp, byteoff, nbn);
   1263 
   1264 		/*
   1265 		 * now get a buf structure.   note that the vb_buf is
   1266 		 * at the front of the nbp structure so that you can
   1267 		 * cast pointers between the two structure easily.
   1268 		 */
   1269 		getvndbuf(nbp);
   1270 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
   1271 		nbp->vb_buf.b_bcount   = sz;
   1272 		nbp->vb_buf.b_bufsize  = sz;
   1273 		nbp->vb_buf.b_error    = 0;
   1274 		nbp->vb_buf.b_data     = addr;
   1275 		nbp->vb_buf.b_lblkno   = 0;
   1276 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1277 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1278 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
   1279 		nbp->vb_buf.b_vp       = NULL;
   1280 		LIST_INIT(&nbp->vb_buf.b_dep);
   1281 
   1282 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1283 
   1284 		/*
   1285 		 * Just sort by block number
   1286 		 */
   1287 		s = splbio();
   1288 		if (vnx->vx_error != 0) {
   1289 			putvndbuf(nbp);
   1290 			goto out;
   1291 		}
   1292 		vnx->vx_pending++;
   1293 
   1294 		/* assoc new buffer with underlying vnode */
   1295 		bgetvp(vp, &nbp->vb_buf);
   1296 
   1297 		/* sort it in and start I/O if we are not over our limit */
   1298 		disksort_blkno(&sdp->swd_tab, &nbp->vb_buf);
   1299 		sw_reg_start(sdp);
   1300 		splx(s);
   1301 
   1302 		/*
   1303 		 * advance to the next I/O
   1304 		 */
   1305 		byteoff += sz;
   1306 		addr += sz;
   1307 	}
   1308 
   1309 	s = splbio();
   1310 
   1311 out: /* Arrive here at splbio */
   1312 	vnx->vx_flags &= ~VX_BUSY;
   1313 	if (vnx->vx_pending == 0) {
   1314 		if (vnx->vx_error != 0) {
   1315 			bp->b_error = vnx->vx_error;
   1316 			bp->b_flags |= B_ERROR;
   1317 		}
   1318 		putvndxfer(vnx);
   1319 		biodone(bp);
   1320 	}
   1321 	splx(s);
   1322 }
   1323 
   1324 /*
   1325  * sw_reg_start: start an I/O request on the requested swapdev
   1326  *
   1327  * => reqs are sorted by disksort (above)
   1328  */
   1329 static void
   1330 sw_reg_start(sdp)
   1331 	struct swapdev	*sdp;
   1332 {
   1333 	struct buf	*bp;
   1334 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1335 
   1336 	/* recursion control */
   1337 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1338 		return;
   1339 
   1340 	sdp->swd_flags |= SWF_BUSY;
   1341 
   1342 	while (sdp->swd_active < sdp->swd_maxactive) {
   1343 		bp = BUFQ_FIRST(&sdp->swd_tab);
   1344 		if (bp == NULL)
   1345 			break;
   1346 		BUFQ_REMOVE(&sdp->swd_tab, bp);
   1347 		sdp->swd_active++;
   1348 
   1349 		UVMHIST_LOG(pdhist,
   1350 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1351 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1352 		if ((bp->b_flags & B_READ) == 0)
   1353 			bp->b_vp->v_numoutput++;
   1354 
   1355 		VOP_STRATEGY(bp);
   1356 	}
   1357 	sdp->swd_flags &= ~SWF_BUSY;
   1358 }
   1359 
   1360 /*
   1361  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1362  *
   1363  * => note that we can recover the vndbuf struct by casting the buf ptr
   1364  */
   1365 static void
   1366 sw_reg_iodone(bp)
   1367 	struct buf *bp;
   1368 {
   1369 	struct vndbuf *vbp = (struct vndbuf *) bp;
   1370 	struct vndxfer *vnx = vbp->vb_xfer;
   1371 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1372 	struct swapdev	*sdp = vnx->vx_sdp;
   1373 	int		s, resid;
   1374 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1375 
   1376 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1377 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1378 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1379 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1380 
   1381 	/*
   1382 	 * protect vbp at splbio and update.
   1383 	 */
   1384 
   1385 	s = splbio();
   1386 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1387 	pbp->b_resid -= resid;
   1388 	vnx->vx_pending--;
   1389 
   1390 	if (vbp->vb_buf.b_error) {
   1391 		UVMHIST_LOG(pdhist, "  got error=%d !",
   1392 		    vbp->vb_buf.b_error, 0, 0, 0);
   1393 
   1394 		/* pass error upward */
   1395 		vnx->vx_error = vbp->vb_buf.b_error;
   1396 	}
   1397 
   1398 	/*
   1399 	 * disassociate this buffer from the vnode.
   1400 	 */
   1401 	brelvp(&vbp->vb_buf);
   1402 
   1403 	/*
   1404 	 * kill vbp structure
   1405 	 */
   1406 	putvndbuf(vbp);
   1407 
   1408 	/*
   1409 	 * wrap up this transaction if it has run to completion or, in
   1410 	 * case of an error, when all auxiliary buffers have returned.
   1411 	 */
   1412 	if (vnx->vx_error != 0) {
   1413 		/* pass error upward */
   1414 		pbp->b_flags |= B_ERROR;
   1415 		pbp->b_error = vnx->vx_error;
   1416 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1417 			putvndxfer(vnx);
   1418 			biodone(pbp);
   1419 		}
   1420 	} else if (pbp->b_resid == 0) {
   1421 #ifdef DIAGNOSTIC
   1422 		if (vnx->vx_pending != 0)
   1423 			panic("sw_reg_iodone: vnx pending: %d",vnx->vx_pending);
   1424 #endif
   1425 
   1426 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1427 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1428 			    pbp, vnx->vx_error, 0, 0);
   1429 			putvndxfer(vnx);
   1430 			biodone(pbp);
   1431 		}
   1432 	}
   1433 
   1434 	/*
   1435 	 * done!   start next swapdev I/O if one is pending
   1436 	 */
   1437 	sdp->swd_active--;
   1438 	sw_reg_start(sdp);
   1439 	splx(s);
   1440 }
   1441 
   1442 
   1443 /*
   1444  * uvm_swap_alloc: allocate space on swap
   1445  *
   1446  * => allocation is done "round robin" down the priority list, as we
   1447  *	allocate in a priority we "rotate" the circle queue.
   1448  * => space can be freed with uvm_swap_free
   1449  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1450  * => we lock uvm.swap_data_lock
   1451  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1452  */
   1453 int
   1454 uvm_swap_alloc(nslots, lessok)
   1455 	int *nslots;	/* IN/OUT */
   1456 	boolean_t lessok;
   1457 {
   1458 	struct swapdev *sdp;
   1459 	struct swappri *spp;
   1460 	u_long	result;
   1461 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1462 
   1463 	/*
   1464 	 * no swap devices configured yet?   definite failure.
   1465 	 */
   1466 	if (uvmexp.nswapdev < 1)
   1467 		return 0;
   1468 
   1469 	/*
   1470 	 * lock data lock, convert slots into blocks, and enter loop
   1471 	 */
   1472 	simple_lock(&uvm.swap_data_lock);
   1473 
   1474 ReTry:	/* XXXMRG */
   1475 	for (spp = LIST_FIRST(&swap_priority); spp != NULL;
   1476 	     spp = LIST_NEXT(spp, spi_swappri)) {
   1477 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
   1478 		     sdp != (void *)&spp->spi_swapdev;
   1479 		     sdp = CIRCLEQ_NEXT(sdp,swd_next)) {
   1480 			/* if it's not enabled, then we can't swap from it */
   1481 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1482 				continue;
   1483 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1484 				continue;
   1485 			if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
   1486 					 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
   1487 					 &result) != 0) {
   1488 				continue;
   1489 			}
   1490 
   1491 			/*
   1492 			 * successful allocation!  now rotate the circleq.
   1493 			 */
   1494 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1495 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1496 			sdp->swd_npginuse += *nslots;
   1497 			uvmexp.swpginuse += *nslots;
   1498 			simple_unlock(&uvm.swap_data_lock);
   1499 			/* done!  return drum slot number */
   1500 			UVMHIST_LOG(pdhist,
   1501 			    "success!  returning %d slots starting at %d",
   1502 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1503 			return(result + sdp->swd_drumoffset);
   1504 		}
   1505 	}
   1506 
   1507 	/* XXXMRG: BEGIN HACK */
   1508 	if (*nslots > 1 && lessok) {
   1509 		*nslots = 1;
   1510 		goto ReTry;	/* XXXMRG: ugh!  extent should support this for us */
   1511 	}
   1512 	/* XXXMRG: END HACK */
   1513 
   1514 	simple_unlock(&uvm.swap_data_lock);
   1515 	return 0;		/* failed */
   1516 }
   1517 
   1518 /*
   1519  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1520  *
   1521  * => we lock uvm.swap_data_lock
   1522  */
   1523 void
   1524 uvm_swap_markbad(startslot, nslots)
   1525 	int startslot;
   1526 	int nslots;
   1527 {
   1528 	struct swapdev *sdp;
   1529 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1530 
   1531 	simple_lock(&uvm.swap_data_lock);
   1532 	sdp = swapdrum_getsdp(startslot);
   1533 
   1534 	/*
   1535 	 * we just keep track of how many pages have been marked bad
   1536 	 * in this device, to make everything add up in swap_off().
   1537 	 * we assume here that the range of slots will all be within
   1538 	 * one swap device.
   1539 	 */
   1540 
   1541 	sdp->swd_npgbad += nslots;
   1542 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1543 	simple_unlock(&uvm.swap_data_lock);
   1544 }
   1545 
   1546 /*
   1547  * uvm_swap_free: free swap slots
   1548  *
   1549  * => this can be all or part of an allocation made by uvm_swap_alloc
   1550  * => we lock uvm.swap_data_lock
   1551  */
   1552 void
   1553 uvm_swap_free(startslot, nslots)
   1554 	int startslot;
   1555 	int nslots;
   1556 {
   1557 	struct swapdev *sdp;
   1558 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1559 
   1560 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1561 	    startslot, 0, 0);
   1562 
   1563 	/*
   1564 	 * ignore attempts to free the "bad" slot.
   1565 	 */
   1566 	if (startslot == SWSLOT_BAD) {
   1567 		return;
   1568 	}
   1569 
   1570 	/*
   1571 	 * convert drum slot offset back to sdp, free the blocks
   1572 	 * in the extent, and return.   must hold pri lock to do
   1573 	 * lookup and access the extent.
   1574 	 */
   1575 	simple_lock(&uvm.swap_data_lock);
   1576 	sdp = swapdrum_getsdp(startslot);
   1577 
   1578 #ifdef DIAGNOSTIC
   1579 	if (uvmexp.nswapdev < 1)
   1580 		panic("uvm_swap_free: uvmexp.nswapdev < 1\n");
   1581 	if (sdp == NULL) {
   1582 		printf("uvm_swap_free: startslot %d, nslots %d\n", startslot,
   1583 		    nslots);
   1584 		panic("uvm_swap_free: unmapped address\n");
   1585 	}
   1586 #endif
   1587 	if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
   1588 			EX_MALLOCOK|EX_NOWAIT) != 0) {
   1589 		printf("warning: resource shortage: %d pages of swap lost\n",
   1590 			nslots);
   1591 	}
   1592 
   1593 	sdp->swd_npginuse -= nslots;
   1594 	uvmexp.swpginuse -= nslots;
   1595 #ifdef DIAGNOSTIC
   1596 	if (sdp->swd_npginuse < 0)
   1597 		panic("uvm_swap_free: inuse < 0");
   1598 #endif
   1599 	simple_unlock(&uvm.swap_data_lock);
   1600 }
   1601 
   1602 /*
   1603  * uvm_swap_put: put any number of pages into a contig place on swap
   1604  *
   1605  * => can be sync or async
   1606  * => XXXMRG: consider making it an inline or macro
   1607  */
   1608 int
   1609 uvm_swap_put(swslot, ppsp, npages, flags)
   1610 	int swslot;
   1611 	struct vm_page **ppsp;
   1612 	int	npages;
   1613 	int	flags;
   1614 {
   1615 	int	result;
   1616 
   1617 	result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1618 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1619 
   1620 	return (result);
   1621 }
   1622 
   1623 /*
   1624  * uvm_swap_get: get a single page from swap
   1625  *
   1626  * => usually a sync op (from fault)
   1627  * => XXXMRG: consider making it an inline or macro
   1628  */
   1629 int
   1630 uvm_swap_get(page, swslot, flags)
   1631 	struct vm_page *page;
   1632 	int swslot, flags;
   1633 {
   1634 	int	result;
   1635 
   1636 	uvmexp.nswget++;
   1637 #ifdef DIAGNOSTIC
   1638 	if ((flags & PGO_SYNCIO) == 0)
   1639 		printf("uvm_swap_get: ASYNC get requested?\n");
   1640 #endif
   1641 
   1642 	if (swslot == SWSLOT_BAD) {
   1643 		return VM_PAGER_ERROR;
   1644 	}
   1645 
   1646 	/*
   1647 	 * this page is (about to be) no longer only in swap.
   1648 	 */
   1649 	simple_lock(&uvm.swap_data_lock);
   1650 	uvmexp.swpgonly--;
   1651 	simple_unlock(&uvm.swap_data_lock);
   1652 
   1653 	result = uvm_swap_io(&page, swslot, 1, B_READ |
   1654 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1655 
   1656 	if (result != VM_PAGER_OK && result != VM_PAGER_PEND) {
   1657 		/*
   1658 		 * oops, the read failed so it really is still only in swap.
   1659 		 */
   1660 		simple_lock(&uvm.swap_data_lock);
   1661 		uvmexp.swpgonly++;
   1662 		simple_unlock(&uvm.swap_data_lock);
   1663 	}
   1664 
   1665 	return (result);
   1666 }
   1667 
   1668 /*
   1669  * uvm_swap_io: do an i/o operation to swap
   1670  */
   1671 
   1672 static int
   1673 uvm_swap_io(pps, startslot, npages, flags)
   1674 	struct vm_page **pps;
   1675 	int startslot, npages, flags;
   1676 {
   1677 	daddr_t startblk;
   1678 	struct	buf *bp;
   1679 	vaddr_t kva;
   1680 	int	result, s, mapinflags, pflag;
   1681 	boolean_t write, async;
   1682 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1683 
   1684 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1685 	    startslot, npages, flags, 0);
   1686 
   1687 	write = (flags & B_READ) == 0;
   1688 	async = (flags & B_ASYNC) != 0;
   1689 
   1690 	/*
   1691 	 * convert starting drum slot to block number
   1692 	 */
   1693 	startblk = btodb(startslot << PAGE_SHIFT);
   1694 
   1695 	/*
   1696 	 * first, map the pages into the kernel (XXX: currently required
   1697 	 * by buffer system).
   1698 	 */
   1699 
   1700 	mapinflags = !write ? UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE;
   1701 	if (!async)
   1702 		mapinflags |= UVMPAGER_MAPIN_WAITOK;
   1703 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1704 	if (kva == 0)
   1705 		return (VM_PAGER_AGAIN);
   1706 
   1707 	/*
   1708 	 * now allocate a buf for the i/o.
   1709 	 * [make sure we don't put the pagedaemon to sleep...]
   1710 	 */
   1711 	s = splbio();
   1712 	pflag = (async || curproc == uvm.pagedaemon_proc) ? 0 : PR_WAITOK;
   1713 	bp = pool_get(&bufpool, pflag);
   1714 	splx(s);
   1715 
   1716 	/*
   1717 	 * if we failed to get a buf, return "try again"
   1718 	 */
   1719 	if (bp == NULL)
   1720 		return (VM_PAGER_AGAIN);
   1721 
   1722 	/*
   1723 	 * fill in the bp/sbp.   we currently route our i/o through
   1724 	 * /dev/drum's vnode [swapdev_vp].
   1725 	 */
   1726 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
   1727 	bp->b_proc = &proc0;	/* XXX */
   1728 	bp->b_vnbufs.le_next = NOLIST;
   1729 	bp->b_data = (caddr_t)kva;
   1730 	bp->b_blkno = startblk;
   1731 	s = splbio();
   1732 	VHOLD(swapdev_vp);
   1733 	bp->b_vp = swapdev_vp;
   1734 	splx(s);
   1735 	/* XXXCDC: isn't swapdev_vp always a VCHR? */
   1736 	/* XXXMRG: probably -- this is obviously something inherited... */
   1737 	if (swapdev_vp->v_type == VBLK)
   1738 		bp->b_dev = swapdev_vp->v_rdev;
   1739 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1740 	LIST_INIT(&bp->b_dep);
   1741 
   1742 	/*
   1743 	 * bump v_numoutput (counter of number of active outputs).
   1744 	 */
   1745 	if (write) {
   1746 		s = splbio();
   1747 		swapdev_vp->v_numoutput++;
   1748 		splx(s);
   1749 	}
   1750 
   1751 	/*
   1752 	 * for async ops we must set up the iodone handler.
   1753 	 */
   1754 	if (async) {
   1755 		/* XXXUBC pagedaemon */
   1756 		bp->b_flags |= B_CALL | (curproc == uvm.pagedaemon_proc ?
   1757 					 B_PDAEMON : 0);
   1758 		bp->b_iodone = uvm_aio_biodone;
   1759 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1760 	}
   1761 	UVMHIST_LOG(pdhist,
   1762 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1763 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1764 
   1765 	/*
   1766 	 * now we start the I/O, and if async, return.
   1767 	 */
   1768 	VOP_STRATEGY(bp);
   1769 	if (async)
   1770 		return (VM_PAGER_PEND);
   1771 
   1772 	/*
   1773 	 * must be sync i/o.   wait for it to finish
   1774 	 */
   1775 	(void) biowait(bp);
   1776 	result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
   1777 
   1778 	/*
   1779 	 * kill the pager mapping
   1780 	 */
   1781 	uvm_pagermapout(kva, npages);
   1782 
   1783 	/*
   1784 	 * now dispose of the buf
   1785 	 */
   1786 	s = splbio();
   1787 	if (bp->b_vp)
   1788 		brelvp(bp);
   1789 	if (write)
   1790 		vwakeup(bp);
   1791 	pool_put(&bufpool, bp);
   1792 	splx(s);
   1793 
   1794 	/*
   1795 	 * finally return.
   1796 	 */
   1797 	UVMHIST_LOG(pdhist, "<- done (sync)  result=%d", result, 0, 0, 0);
   1798 	return (result);
   1799 }
   1800