Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.42
      1 /*	$NetBSD: uvm_swap.c,v 1.42 2000/12/23 12:13:05 enami Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     32  */
     33 
     34 #include "fs_nfs.h"
     35 #include "opt_uvmhist.h"
     36 #include "opt_compat_netbsd.h"
     37 #include "opt_ddb.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/buf.h>
     42 #include <sys/conf.h>
     43 #include <sys/proc.h>
     44 #include <sys/namei.h>
     45 #include <sys/disklabel.h>
     46 #include <sys/errno.h>
     47 #include <sys/kernel.h>
     48 #include <sys/malloc.h>
     49 #include <sys/vnode.h>
     50 #include <sys/file.h>
     51 #include <sys/extent.h>
     52 #include <sys/mount.h>
     53 #include <sys/pool.h>
     54 #include <sys/syscallargs.h>
     55 #include <sys/swap.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 #include <miscfs/specfs/specdev.h>
     60 
     61 /*
     62  * uvm_swap.c: manage configuration and i/o to swap space.
     63  */
     64 
     65 /*
     66  * swap space is managed in the following way:
     67  *
     68  * each swap partition or file is described by a "swapdev" structure.
     69  * each "swapdev" structure contains a "swapent" structure which contains
     70  * information that is passed up to the user (via system calls).
     71  *
     72  * each swap partition is assigned a "priority" (int) which controls
     73  * swap parition usage.
     74  *
     75  * the system maintains a global data structure describing all swap
     76  * partitions/files.   there is a sorted LIST of "swappri" structures
     77  * which describe "swapdev"'s at that priority.   this LIST is headed
     78  * by the "swap_priority" global var.    each "swappri" contains a
     79  * CIRCLEQ of "swapdev" structures at that priority.
     80  *
     81  * locking:
     82  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
     83  *    system call and prevents the swap priority list from changing
     84  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     85  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
     86  *    structures including the priority list, the swapdev structures,
     87  *    and the swapmap extent.
     88  *
     89  * each swap device has the following info:
     90  *  - swap device in use (could be disabled, preventing future use)
     91  *  - swap enabled (allows new allocations on swap)
     92  *  - map info in /dev/drum
     93  *  - vnode pointer
     94  * for swap files only:
     95  *  - block size
     96  *  - max byte count in buffer
     97  *  - buffer
     98  *  - credentials to use when doing i/o to file
     99  *
    100  * userland controls and configures swap with the swapctl(2) system call.
    101  * the sys_swapctl performs the following operations:
    102  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    103  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    104  *	(passed in via "arg") of a size passed in via "misc" ... we load
    105  *	the current swap config into the array.
    106  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    107  *	priority in "misc", start swapping on it.
    108  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    109  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    110  *	"misc")
    111  */
    112 
    113 /*
    114  * swapdev: describes a single swap partition/file
    115  *
    116  * note the following should be true:
    117  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    118  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    119  */
    120 struct swapdev {
    121 	struct oswapent swd_ose;
    122 #define	swd_dev		swd_ose.ose_dev		/* device id */
    123 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    124 #define	swd_priority	swd_ose.ose_priority	/* our priority */
    125 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    126 	char			*swd_path;	/* saved pathname of device */
    127 	int			swd_pathlen;	/* length of pathname */
    128 	int			swd_npages;	/* #pages we can use */
    129 	int			swd_npginuse;	/* #pages in use */
    130 	int			swd_npgbad;	/* #pages bad */
    131 	int			swd_drumoffset;	/* page0 offset in drum */
    132 	int			swd_drumsize;	/* #pages in drum */
    133 	struct extent		*swd_ex;	/* extent for this swapdev */
    134 	char			swd_exname[12];	/* name of extent above */
    135 	struct vnode		*swd_vp;	/* backing vnode */
    136 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    137 
    138 	int			swd_bsize;	/* blocksize (bytes) */
    139 	int			swd_maxactive;	/* max active i/o reqs */
    140 	struct buf_queue	swd_tab;	/* buffer list */
    141 	int			swd_active;	/* number of active buffers */
    142 	struct ucred		*swd_cred;	/* cred for file access */
    143 };
    144 
    145 /*
    146  * swap device priority entry; the list is kept sorted on `spi_priority'.
    147  */
    148 struct swappri {
    149 	int			spi_priority;     /* priority */
    150 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    151 	/* circleq of swapdevs at this priority */
    152 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    153 };
    154 
    155 /*
    156  * The following two structures are used to keep track of data transfers
    157  * on swap devices associated with regular files.
    158  * NOTE: this code is more or less a copy of vnd.c; we use the same
    159  * structure names here to ease porting..
    160  */
    161 struct vndxfer {
    162 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    163 	struct swapdev	*vx_sdp;
    164 	int		vx_error;
    165 	int		vx_pending;	/* # of pending aux buffers */
    166 	int		vx_flags;
    167 #define VX_BUSY		1
    168 #define VX_DEAD		2
    169 };
    170 
    171 struct vndbuf {
    172 	struct buf	vb_buf;
    173 	struct vndxfer	*vb_xfer;
    174 };
    175 
    176 
    177 /*
    178  * We keep a of pool vndbuf's and vndxfer structures.
    179  */
    180 struct pool *vndxfer_pool;
    181 struct pool *vndbuf_pool;
    182 
    183 #define	getvndxfer(vnx)	do {						\
    184 	int s = splbio();						\
    185 	vnx = pool_get(vndxfer_pool, PR_MALLOCOK|PR_WAITOK);		\
    186 	splx(s);							\
    187 } while (0)
    188 
    189 #define putvndxfer(vnx) {						\
    190 	pool_put(vndxfer_pool, (void *)(vnx));				\
    191 }
    192 
    193 #define	getvndbuf(vbp)	do {						\
    194 	int s = splbio();						\
    195 	vbp = pool_get(vndbuf_pool, PR_MALLOCOK|PR_WAITOK);		\
    196 	splx(s);							\
    197 } while (0)
    198 
    199 #define putvndbuf(vbp) {						\
    200 	pool_put(vndbuf_pool, (void *)(vbp));				\
    201 }
    202 
    203 /* /dev/drum */
    204 bdev_decl(sw);
    205 cdev_decl(sw);
    206 
    207 /*
    208  * local variables
    209  */
    210 static struct extent *swapmap;		/* controls the mapping of /dev/drum */
    211 
    212 /* list of all active swap devices [by priority] */
    213 LIST_HEAD(swap_priority, swappri);
    214 static struct swap_priority swap_priority;
    215 
    216 /* locks */
    217 lock_data_t swap_syscall_lock;
    218 
    219 /*
    220  * prototypes
    221  */
    222 static void		 swapdrum_add __P((struct swapdev *, int));
    223 static struct swapdev	*swapdrum_getsdp __P((int));
    224 
    225 static struct swapdev	*swaplist_find __P((struct vnode *, int));
    226 static void		 swaplist_insert __P((struct swapdev *,
    227 					     struct swappri *, int));
    228 static void		 swaplist_trim __P((void));
    229 
    230 static int swap_on __P((struct proc *, struct swapdev *));
    231 static int swap_off __P((struct proc *, struct swapdev *));
    232 
    233 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
    234 static void sw_reg_iodone __P((struct buf *));
    235 static void sw_reg_start __P((struct swapdev *));
    236 
    237 static int uvm_swap_io __P((struct vm_page **, int, int, int));
    238 
    239 /*
    240  * uvm_swap_init: init the swap system data structures and locks
    241  *
    242  * => called at boot time from init_main.c after the filesystems
    243  *	are brought up (which happens after uvm_init())
    244  */
    245 void
    246 uvm_swap_init()
    247 {
    248 	UVMHIST_FUNC("uvm_swap_init");
    249 
    250 	UVMHIST_CALLED(pdhist);
    251 	/*
    252 	 * first, init the swap list, its counter, and its lock.
    253 	 * then get a handle on the vnode for /dev/drum by using
    254 	 * the its dev_t number ("swapdev", from MD conf.c).
    255 	 */
    256 
    257 	LIST_INIT(&swap_priority);
    258 	uvmexp.nswapdev = 0;
    259 	lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
    260 	simple_lock_init(&uvm.swap_data_lock);
    261 
    262 	if (bdevvp(swapdev, &swapdev_vp))
    263 		panic("uvm_swap_init: can't get vnode for swap device");
    264 
    265 	/*
    266 	 * create swap block resource map to map /dev/drum.   the range
    267 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    268 	 * that block 0 is reserved (used to indicate an allocation
    269 	 * failure, or no allocation).
    270 	 */
    271 	swapmap = extent_create("swapmap", 1, INT_MAX,
    272 				M_VMSWAP, 0, 0, EX_NOWAIT);
    273 	if (swapmap == 0)
    274 		panic("uvm_swap_init: extent_create failed");
    275 
    276 	/*
    277 	 * allocate pools for structures used for swapping to files.
    278 	 */
    279 
    280 	vndxfer_pool =
    281 		pool_create(sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 0,
    282 			    NULL, NULL, 0);
    283 	if (vndxfer_pool == NULL)
    284 		panic("swapinit: pool_create failed");
    285 
    286 	vndbuf_pool =
    287 		pool_create(sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 0,
    288 			    NULL, NULL, 0);
    289 	if (vndbuf_pool == NULL)
    290 		panic("swapinit: pool_create failed");
    291 	/*
    292 	 * done!
    293 	 */
    294 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    295 }
    296 
    297 /*
    298  * swaplist functions: functions that operate on the list of swap
    299  * devices on the system.
    300  */
    301 
    302 /*
    303  * swaplist_insert: insert swap device "sdp" into the global list
    304  *
    305  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    306  * => caller must provide a newly malloc'd swappri structure (we will
    307  *	FREE it if we don't need it... this it to prevent malloc blocking
    308  *	here while adding swap)
    309  */
    310 static void
    311 swaplist_insert(sdp, newspp, priority)
    312 	struct swapdev *sdp;
    313 	struct swappri *newspp;
    314 	int priority;
    315 {
    316 	struct swappri *spp, *pspp;
    317 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    318 
    319 	/*
    320 	 * find entry at or after which to insert the new device.
    321 	 */
    322 	for (pspp = NULL, spp = LIST_FIRST(&swap_priority); spp != NULL;
    323 	     spp = LIST_NEXT(spp, spi_swappri)) {
    324 		if (priority <= spp->spi_priority)
    325 			break;
    326 		pspp = spp;
    327 	}
    328 
    329 	/*
    330 	 * new priority?
    331 	 */
    332 	if (spp == NULL || spp->spi_priority != priority) {
    333 		spp = newspp;  /* use newspp! */
    334 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    335 			    priority, 0, 0, 0);
    336 
    337 		spp->spi_priority = priority;
    338 		CIRCLEQ_INIT(&spp->spi_swapdev);
    339 
    340 		if (pspp)
    341 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    342 		else
    343 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    344 	} else {
    345 	  	/* we don't need a new priority structure, free it */
    346 		FREE(newspp, M_VMSWAP);
    347 	}
    348 
    349 	/*
    350 	 * priority found (or created).   now insert on the priority's
    351 	 * circleq list and bump the total number of swapdevs.
    352 	 */
    353 	sdp->swd_priority = priority;
    354 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    355 	uvmexp.nswapdev++;
    356 }
    357 
    358 /*
    359  * swaplist_find: find and optionally remove a swap device from the
    360  *	global list.
    361  *
    362  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    363  * => we return the swapdev we found (and removed)
    364  */
    365 static struct swapdev *
    366 swaplist_find(vp, remove)
    367 	struct vnode *vp;
    368 	boolean_t remove;
    369 {
    370 	struct swapdev *sdp;
    371 	struct swappri *spp;
    372 
    373 	/*
    374 	 * search the lists for the requested vp
    375 	 */
    376 	for (spp = LIST_FIRST(&swap_priority); spp != NULL;
    377 	     spp = LIST_NEXT(spp, spi_swappri)) {
    378 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    379 		     sdp != (void *)&spp->spi_swapdev;
    380 		     sdp = CIRCLEQ_NEXT(sdp, swd_next))
    381 			if (sdp->swd_vp == vp) {
    382 				if (remove) {
    383 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    384 					    sdp, swd_next);
    385 					uvmexp.nswapdev--;
    386 				}
    387 				return(sdp);
    388 			}
    389 	}
    390 	return (NULL);
    391 }
    392 
    393 
    394 /*
    395  * swaplist_trim: scan priority list for empty priority entries and kill
    396  *	them.
    397  *
    398  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    399  */
    400 static void
    401 swaplist_trim()
    402 {
    403 	struct swappri *spp, *nextspp;
    404 
    405 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    406 		nextspp = LIST_NEXT(spp, spi_swappri);
    407 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    408 		    (void *)&spp->spi_swapdev)
    409 			continue;
    410 		LIST_REMOVE(spp, spi_swappri);
    411 		free(spp, M_VMSWAP);
    412 	}
    413 }
    414 
    415 /*
    416  * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
    417  *
    418  * => caller must hold swap_syscall_lock
    419  * => uvm.swap_data_lock should be unlocked (we may sleep)
    420  */
    421 static void
    422 swapdrum_add(sdp, npages)
    423 	struct swapdev *sdp;
    424 	int	npages;
    425 {
    426 	u_long result;
    427 
    428 	if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
    429 	    EX_WAITOK, &result))
    430 		panic("swapdrum_add");
    431 
    432 	sdp->swd_drumoffset = result;
    433 	sdp->swd_drumsize = npages;
    434 }
    435 
    436 /*
    437  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    438  *	to the "swapdev" that maps that section of the drum.
    439  *
    440  * => each swapdev takes one big contig chunk of the drum
    441  * => caller must hold uvm.swap_data_lock
    442  */
    443 static struct swapdev *
    444 swapdrum_getsdp(pgno)
    445 	int pgno;
    446 {
    447 	struct swapdev *sdp;
    448 	struct swappri *spp;
    449 
    450 	for (spp = LIST_FIRST(&swap_priority); spp != NULL;
    451 	     spp = LIST_NEXT(spp, spi_swappri))
    452 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    453 		     sdp != (void *)&spp->spi_swapdev;
    454 		     sdp = CIRCLEQ_NEXT(sdp, swd_next))
    455 			if (pgno >= sdp->swd_drumoffset &&
    456 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    457 				return sdp;
    458 			}
    459 	return NULL;
    460 }
    461 
    462 
    463 /*
    464  * sys_swapctl: main entry point for swapctl(2) system call
    465  * 	[with two helper functions: swap_on and swap_off]
    466  */
    467 int
    468 sys_swapctl(p, v, retval)
    469 	struct proc *p;
    470 	void *v;
    471 	register_t *retval;
    472 {
    473 	struct sys_swapctl_args /* {
    474 		syscallarg(int) cmd;
    475 		syscallarg(void *) arg;
    476 		syscallarg(int) misc;
    477 	} */ *uap = (struct sys_swapctl_args *)v;
    478 	struct vnode *vp;
    479 	struct nameidata nd;
    480 	struct swappri *spp;
    481 	struct swapdev *sdp;
    482 	struct swapent *sep;
    483 	char	userpath[PATH_MAX + 1];
    484 	size_t	len;
    485 	int	count, error, misc;
    486 	int	priority;
    487 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    488 
    489 	misc = SCARG(uap, misc);
    490 
    491 	/*
    492 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    493 	 */
    494 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
    495 
    496 	/*
    497 	 * we handle the non-priv NSWAP and STATS request first.
    498 	 *
    499 	 * SWAP_NSWAP: return number of config'd swap devices
    500 	 * [can also be obtained with uvmexp sysctl]
    501 	 */
    502 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    503 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    504 		    0, 0, 0);
    505 		*retval = uvmexp.nswapdev;
    506 		error = 0;
    507 		goto out;
    508 	}
    509 
    510 	/*
    511 	 * SWAP_STATS: get stats on current # of configured swap devs
    512 	 *
    513 	 * note that the swap_priority list can't change as long
    514 	 * as we are holding the swap_syscall_lock.  we don't want
    515 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
    516 	 * copyout() and we don't want to be holding that lock then!
    517 	 */
    518 	if (SCARG(uap, cmd) == SWAP_STATS
    519 #if defined(COMPAT_13)
    520 	    || SCARG(uap, cmd) == SWAP_OSTATS
    521 #endif
    522 	    ) {
    523 		sep = (struct swapent *)SCARG(uap, arg);
    524 		count = 0;
    525 
    526 		for (spp = LIST_FIRST(&swap_priority); spp != NULL;
    527 		    spp = LIST_NEXT(spp, spi_swappri)) {
    528 			for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    529 			     sdp != (void *)&spp->spi_swapdev && misc-- > 0;
    530 			     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    531 			  	/*
    532 				 * backwards compatibility for system call.
    533 				 * note that we use 'struct oswapent' as an
    534 				 * overlay into both 'struct swapdev' and
    535 				 * the userland 'struct swapent', as we
    536 				 * want to retain backwards compatibility
    537 				 * with NetBSD 1.3.
    538 				 */
    539 				sdp->swd_ose.ose_inuse =
    540 				    btodb(sdp->swd_npginuse << PAGE_SHIFT);
    541 				error = copyout(&sdp->swd_ose, sep,
    542 						sizeof(struct oswapent));
    543 
    544 				/* now copy out the path if necessary */
    545 #if defined(COMPAT_13)
    546 				if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
    547 #else
    548 				if (error == 0)
    549 #endif
    550 					error = copyout(sdp->swd_path,
    551 					    &sep->se_path, sdp->swd_pathlen);
    552 
    553 				if (error)
    554 					goto out;
    555 				count++;
    556 #if defined(COMPAT_13)
    557 				if (SCARG(uap, cmd) == SWAP_OSTATS)
    558 					((struct oswapent *)sep)++;
    559 				else
    560 #endif
    561 					sep++;
    562 			}
    563 		}
    564 
    565 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    566 
    567 		*retval = count;
    568 		error = 0;
    569 		goto out;
    570 	}
    571 
    572 	/*
    573 	 * all other requests require superuser privs.   verify.
    574 	 */
    575 	if ((error = suser(p->p_ucred, &p->p_acflag)))
    576 		goto out;
    577 
    578 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    579 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    580 
    581 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    582 		goto out;
    583 	}
    584 
    585 	/*
    586 	 * at this point we expect a path name in arg.   we will
    587 	 * use namei() to gain a vnode reference (vref), and lock
    588 	 * the vnode (VOP_LOCK).
    589 	 *
    590 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    591 	 * miniroot)
    592 	 */
    593 	if (SCARG(uap, arg) == NULL) {
    594 		vp = rootvp;		/* miniroot */
    595 		if (vget(vp, LK_EXCLUSIVE)) {
    596 			error = EBUSY;
    597 			goto out;
    598 		}
    599 		if (SCARG(uap, cmd) == SWAP_ON &&
    600 		    copystr("miniroot", userpath, sizeof userpath, &len))
    601 			panic("swapctl: miniroot copy failed");
    602 	} else {
    603 		int	space;
    604 		char	*where;
    605 
    606 		if (SCARG(uap, cmd) == SWAP_ON) {
    607 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    608 			    sizeof userpath, &len)))
    609 				goto out;
    610 			space = UIO_SYSSPACE;
    611 			where = userpath;
    612 		} else {
    613 			space = UIO_USERSPACE;
    614 			where = (char *)SCARG(uap, arg);
    615 		}
    616 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
    617 		if ((error = namei(&nd)))
    618 			goto out;
    619 		vp = nd.ni_vp;
    620 	}
    621 	/* note: "vp" is referenced and locked */
    622 
    623 	error = 0;		/* assume no error */
    624 	switch(SCARG(uap, cmd)) {
    625 
    626 	case SWAP_DUMPDEV:
    627 		if (vp->v_type != VBLK) {
    628 			error = ENOTBLK;
    629 			goto out;
    630 		}
    631 		dumpdev = vp->v_rdev;
    632 
    633 		break;
    634 
    635 	case SWAP_CTL:
    636 		/*
    637 		 * get new priority, remove old entry (if any) and then
    638 		 * reinsert it in the correct place.  finally, prune out
    639 		 * any empty priority structures.
    640 		 */
    641 		priority = SCARG(uap, misc);
    642 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    643 		simple_lock(&uvm.swap_data_lock);
    644 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
    645 			error = ENOENT;
    646 		} else {
    647 			swaplist_insert(sdp, spp, priority);
    648 			swaplist_trim();
    649 		}
    650 		simple_unlock(&uvm.swap_data_lock);
    651 		if (error)
    652 			free(spp, M_VMSWAP);
    653 		break;
    654 
    655 	case SWAP_ON:
    656 
    657 		/*
    658 		 * check for duplicates.   if none found, then insert a
    659 		 * dummy entry on the list to prevent someone else from
    660 		 * trying to enable this device while we are working on
    661 		 * it.
    662 		 */
    663 
    664 		priority = SCARG(uap, misc);
    665 		simple_lock(&uvm.swap_data_lock);
    666 		if ((sdp = swaplist_find(vp, 0)) != NULL) {
    667 			error = EBUSY;
    668 			simple_unlock(&uvm.swap_data_lock);
    669 			break;
    670 		}
    671 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    672 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    673 		memset(sdp, 0, sizeof(*sdp));
    674 		sdp->swd_flags = SWF_FAKE;	/* placeholder only */
    675 		sdp->swd_vp = vp;
    676 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    677 		BUFQ_INIT(&sdp->swd_tab);
    678 
    679 		/*
    680 		 * XXX Is NFS elaboration necessary?
    681 		 */
    682 		if (vp->v_type == VREG) {
    683 			sdp->swd_cred = crdup(p->p_ucred);
    684 		}
    685 
    686 		swaplist_insert(sdp, spp, priority);
    687 		simple_unlock(&uvm.swap_data_lock);
    688 
    689 		sdp->swd_pathlen = len;
    690 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    691 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    692 			panic("swapctl: copystr");
    693 
    694 		/*
    695 		 * we've now got a FAKE placeholder in the swap list.
    696 		 * now attempt to enable swap on it.  if we fail, undo
    697 		 * what we've done and kill the fake entry we just inserted.
    698 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    699 		 */
    700 
    701 		if ((error = swap_on(p, sdp)) != 0) {
    702 			simple_lock(&uvm.swap_data_lock);
    703 			(void) swaplist_find(vp, 1);  /* kill fake entry */
    704 			swaplist_trim();
    705 			simple_unlock(&uvm.swap_data_lock);
    706 			if (vp->v_type == VREG) {
    707 				crfree(sdp->swd_cred);
    708 			}
    709 			free(sdp->swd_path, M_VMSWAP);
    710 			free(sdp, M_VMSWAP);
    711 			break;
    712 		}
    713 		break;
    714 
    715 	case SWAP_OFF:
    716 		simple_lock(&uvm.swap_data_lock);
    717 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
    718 			simple_unlock(&uvm.swap_data_lock);
    719 			error = ENXIO;
    720 			break;
    721 		}
    722 
    723 		/*
    724 		 * If a device isn't in use or enabled, we
    725 		 * can't stop swapping from it (again).
    726 		 */
    727 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    728 			simple_unlock(&uvm.swap_data_lock);
    729 			error = EBUSY;
    730 			break;
    731 		}
    732 
    733 		/*
    734 		 * do the real work.
    735 		 */
    736 		if ((error = swap_off(p, sdp)) != 0)
    737 			goto out;
    738 
    739 		break;
    740 
    741 	default:
    742 		error = EINVAL;
    743 	}
    744 
    745 	/*
    746 	 * done!  release the ref gained by namei() and unlock.
    747 	 */
    748 	vput(vp);
    749 
    750 out:
    751 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
    752 
    753 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    754 	return (error);
    755 }
    756 
    757 /*
    758  * swap_on: attempt to enable a swapdev for swapping.   note that the
    759  *	swapdev is already on the global list, but disabled (marked
    760  *	SWF_FAKE).
    761  *
    762  * => we avoid the start of the disk (to protect disk labels)
    763  * => we also avoid the miniroot, if we are swapping to root.
    764  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
    765  *	if needed.
    766  */
    767 static int
    768 swap_on(p, sdp)
    769 	struct proc *p;
    770 	struct swapdev *sdp;
    771 {
    772 	static int count = 0;	/* static */
    773 	struct vnode *vp;
    774 	int error, npages, nblocks, size;
    775 	long addr;
    776 	struct vattr va;
    777 #ifdef NFS
    778 	extern int (**nfsv2_vnodeop_p) __P((void *));
    779 #endif /* NFS */
    780 	dev_t dev;
    781 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    782 
    783 	/*
    784 	 * we want to enable swapping on sdp.   the swd_vp contains
    785 	 * the vnode we want (locked and ref'd), and the swd_dev
    786 	 * contains the dev_t of the file, if it a block device.
    787 	 */
    788 
    789 	vp = sdp->swd_vp;
    790 	dev = sdp->swd_dev;
    791 
    792 	/*
    793 	 * open the swap file (mostly useful for block device files to
    794 	 * let device driver know what is up).
    795 	 *
    796 	 * we skip the open/close for root on swap because the root
    797 	 * has already been opened when root was mounted (mountroot).
    798 	 */
    799 	if (vp != rootvp) {
    800 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
    801 			return (error);
    802 	}
    803 
    804 	/* XXX this only works for block devices */
    805 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    806 
    807 	/*
    808 	 * we now need to determine the size of the swap area.   for
    809 	 * block specials we can call the d_psize function.
    810 	 * for normal files, we must stat [get attrs].
    811 	 *
    812 	 * we put the result in nblks.
    813 	 * for normal files, we also want the filesystem block size
    814 	 * (which we get with statfs).
    815 	 */
    816 	switch (vp->v_type) {
    817 	case VBLK:
    818 		if (bdevsw[major(dev)].d_psize == 0 ||
    819 		    (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
    820 			error = ENXIO;
    821 			goto bad;
    822 		}
    823 		break;
    824 
    825 	case VREG:
    826 		if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
    827 			goto bad;
    828 		nblocks = (int)btodb(va.va_size);
    829 		if ((error =
    830 		     VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
    831 			goto bad;
    832 
    833 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    834 		/*
    835 		 * limit the max # of outstanding I/O requests we issue
    836 		 * at any one time.   take it easy on NFS servers.
    837 		 */
    838 #ifdef NFS
    839 		if (vp->v_op == nfsv2_vnodeop_p)
    840 			sdp->swd_maxactive = 2; /* XXX */
    841 		else
    842 #endif /* NFS */
    843 			sdp->swd_maxactive = 8; /* XXX */
    844 		break;
    845 
    846 	default:
    847 		error = ENXIO;
    848 		goto bad;
    849 	}
    850 
    851 	/*
    852 	 * save nblocks in a safe place and convert to pages.
    853 	 */
    854 
    855 	sdp->swd_ose.ose_nblks = nblocks;
    856 	npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
    857 
    858 	/*
    859 	 * for block special files, we want to make sure that leave
    860 	 * the disklabel and bootblocks alone, so we arrange to skip
    861 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    862 	 * note that because of this the "size" can be less than the
    863 	 * actual number of blocks on the device.
    864 	 */
    865 	if (vp->v_type == VBLK) {
    866 		/* we use pages 1 to (size - 1) [inclusive] */
    867 		size = npages - 1;
    868 		addr = 1;
    869 	} else {
    870 		/* we use pages 0 to (size - 1) [inclusive] */
    871 		size = npages;
    872 		addr = 0;
    873 	}
    874 
    875 	/*
    876 	 * make sure we have enough blocks for a reasonable sized swap
    877 	 * area.   we want at least one page.
    878 	 */
    879 
    880 	if (size < 1) {
    881 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    882 		error = EINVAL;
    883 		goto bad;
    884 	}
    885 
    886 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    887 
    888 	/*
    889 	 * now we need to allocate an extent to manage this swap device
    890 	 */
    891 	snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
    892 	    count++);
    893 
    894 	/* note that extent_create's 3rd arg is inclusive, thus "- 1" */
    895 	sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
    896 				    0, 0, EX_WAITOK);
    897 	/* allocate the `saved' region from the extent so it won't be used */
    898 	if (addr) {
    899 		if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
    900 			panic("disklabel region");
    901 	}
    902 
    903 	/*
    904 	 * if the vnode we are swapping to is the root vnode
    905 	 * (i.e. we are swapping to the miniroot) then we want
    906 	 * to make sure we don't overwrite it.   do a statfs to
    907 	 * find its size and skip over it.
    908 	 */
    909 	if (vp == rootvp) {
    910 		struct mount *mp;
    911 		struct statfs *sp;
    912 		int rootblocks, rootpages;
    913 
    914 		mp = rootvnode->v_mount;
    915 		sp = &mp->mnt_stat;
    916 		rootblocks = sp->f_blocks * btodb(sp->f_bsize);
    917 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    918 		if (rootpages > size)
    919 			panic("swap_on: miniroot larger than swap?");
    920 
    921 		if (extent_alloc_region(sdp->swd_ex, addr,
    922 					rootpages, EX_WAITOK))
    923 			panic("swap_on: unable to preserve miniroot");
    924 
    925 		size -= rootpages;
    926 		printf("Preserved %d pages of miniroot ", rootpages);
    927 		printf("leaving %d pages of swap\n", size);
    928 	}
    929 
    930 	/*
    931 	 * add a ref to vp to reflect usage as a swap device.
    932 	 */
    933 	vref(vp);
    934 
    935   	/*
    936 	 * add anons to reflect the new swap space
    937 	 */
    938 	uvm_anon_add(size);
    939 
    940 	/*
    941 	 * now add the new swapdev to the drum and enable.
    942 	 */
    943 	simple_lock(&uvm.swap_data_lock);
    944 	swapdrum_add(sdp, npages);
    945 	sdp->swd_npages = size;
    946 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    947 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    948 	uvmexp.swpages += size;
    949 	simple_unlock(&uvm.swap_data_lock);
    950 	return (0);
    951 
    952 bad:
    953 	/*
    954 	 * failure: close device if necessary and return error.
    955 	 */
    956 	if (vp != rootvp)
    957 		(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
    958 	return (error);
    959 }
    960 
    961 /*
    962  * swap_off: stop swapping on swapdev
    963  *
    964  * => swap data should be locked, we will unlock.
    965  */
    966 static int
    967 swap_off(p, sdp)
    968 	struct proc *p;
    969 	struct swapdev *sdp;
    970 {
    971 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
    972 	UVMHIST_LOG(pdhist, "  dev=%x", sdp->swd_dev,0,0,0);
    973 
    974 	/* disable the swap area being removed */
    975 	sdp->swd_flags &= ~SWF_ENABLE;
    976 	simple_unlock(&uvm.swap_data_lock);
    977 
    978 	/*
    979 	 * the idea is to find all the pages that are paged out to this
    980 	 * device, and page them all in.  in uvm, swap-backed pageable
    981 	 * memory can take two forms: aobjs and anons.  call the
    982 	 * swapoff hook for each subsystem to bring in pages.
    983 	 */
    984 
    985 	if (uao_swap_off(sdp->swd_drumoffset,
    986 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
    987 	    anon_swap_off(sdp->swd_drumoffset,
    988 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
    989 
    990 		simple_lock(&uvm.swap_data_lock);
    991 		sdp->swd_flags |= SWF_ENABLE;
    992 		simple_unlock(&uvm.swap_data_lock);
    993 		return ENOMEM;
    994 	}
    995 
    996 #ifdef DIAGNOSTIC
    997 	if (sdp->swd_npginuse != sdp->swd_npgbad) {
    998 		panic("swap_off: sdp %p - %d pages still in use (%d bad)\n",
    999 		      sdp, sdp->swd_npginuse, sdp->swd_npgbad);
   1000 	}
   1001 #endif
   1002 
   1003 	/*
   1004 	 * done with the vnode and saved creds.
   1005 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1006 	 * so that spec_close() can tell if this is the last close.
   1007 	 */
   1008 	if (sdp->swd_vp->v_type == VREG) {
   1009 		crfree(sdp->swd_cred);
   1010 	}
   1011 	vrele(sdp->swd_vp);
   1012 	if (sdp->swd_vp != rootvp) {
   1013 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
   1014 	}
   1015 
   1016 	/* remove anons from the system */
   1017 	uvm_anon_remove(sdp->swd_npages);
   1018 
   1019 	simple_lock(&uvm.swap_data_lock);
   1020 	uvmexp.swpages -= sdp->swd_npages;
   1021 
   1022 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
   1023 		panic("swap_off: swapdev not in list\n");
   1024 	swaplist_trim();
   1025 
   1026 	/*
   1027 	 * free all resources!
   1028 	 */
   1029 	extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
   1030 		    EX_WAITOK);
   1031 	extent_destroy(sdp->swd_ex);
   1032 	free(sdp, M_VMSWAP);
   1033 	simple_unlock(&uvm.swap_data_lock);
   1034 	return (0);
   1035 }
   1036 
   1037 /*
   1038  * /dev/drum interface and i/o functions
   1039  */
   1040 
   1041 /*
   1042  * swread: the read function for the drum (just a call to physio)
   1043  */
   1044 /*ARGSUSED*/
   1045 int
   1046 swread(dev, uio, ioflag)
   1047 	dev_t dev;
   1048 	struct uio *uio;
   1049 	int ioflag;
   1050 {
   1051 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1052 
   1053 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1054 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1055 }
   1056 
   1057 /*
   1058  * swwrite: the write function for the drum (just a call to physio)
   1059  */
   1060 /*ARGSUSED*/
   1061 int
   1062 swwrite(dev, uio, ioflag)
   1063 	dev_t dev;
   1064 	struct uio *uio;
   1065 	int ioflag;
   1066 {
   1067 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1068 
   1069 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1070 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1071 }
   1072 
   1073 /*
   1074  * swstrategy: perform I/O on the drum
   1075  *
   1076  * => we must map the i/o request from the drum to the correct swapdev.
   1077  */
   1078 void
   1079 swstrategy(bp)
   1080 	struct buf *bp;
   1081 {
   1082 	struct swapdev *sdp;
   1083 	struct vnode *vp;
   1084 	int s, pageno, bn;
   1085 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1086 
   1087 	/*
   1088 	 * convert block number to swapdev.   note that swapdev can't
   1089 	 * be yanked out from under us because we are holding resources
   1090 	 * in it (i.e. the blocks we are doing I/O on).
   1091 	 */
   1092 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1093 	simple_lock(&uvm.swap_data_lock);
   1094 	sdp = swapdrum_getsdp(pageno);
   1095 	simple_unlock(&uvm.swap_data_lock);
   1096 	if (sdp == NULL) {
   1097 		bp->b_error = EINVAL;
   1098 		bp->b_flags |= B_ERROR;
   1099 		biodone(bp);
   1100 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1101 		return;
   1102 	}
   1103 
   1104 	/*
   1105 	 * convert drum page number to block number on this swapdev.
   1106 	 */
   1107 
   1108 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1109 	bn = btodb(pageno << PAGE_SHIFT);	/* convert to diskblock */
   1110 
   1111 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1112 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1113 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1114 
   1115 	/*
   1116 	 * for block devices we finish up here.
   1117 	 * for regular files we have to do more work which we delegate
   1118 	 * to sw_reg_strategy().
   1119 	 */
   1120 
   1121 	switch (sdp->swd_vp->v_type) {
   1122 	default:
   1123 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
   1124 
   1125 	case VBLK:
   1126 
   1127 		/*
   1128 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1129 		 * on the swapdev (sdp).
   1130 		 */
   1131 		s = splbio();
   1132 		bp->b_blkno = bn;		/* swapdev block number */
   1133 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1134 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1135 		VHOLD(vp);			/* "hold" swapdev vp for i/o */
   1136 
   1137 		/*
   1138 		 * if we are doing a write, we have to redirect the i/o on
   1139 		 * drum's v_numoutput counter to the swapdevs.
   1140 		 */
   1141 		if ((bp->b_flags & B_READ) == 0) {
   1142 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1143 			vp->v_numoutput++;	/* put it on swapdev */
   1144 		}
   1145 
   1146 		/*
   1147 		 * dissassocate buffer with /dev/drum vnode
   1148 		 * [could be null if buf was from physio]
   1149 		 */
   1150 		if (bp->b_vp != NULL)
   1151 			brelvp(bp);
   1152 
   1153 		/*
   1154 		 * finally plug in swapdev vnode and start I/O
   1155 		 */
   1156 		bp->b_vp = vp;
   1157 		splx(s);
   1158 		VOP_STRATEGY(bp);
   1159 		return;
   1160 
   1161 	case VREG:
   1162 		/*
   1163 		 * delegate to sw_reg_strategy function.
   1164 		 */
   1165 		sw_reg_strategy(sdp, bp, bn);
   1166 		return;
   1167 	}
   1168 	/* NOTREACHED */
   1169 }
   1170 
   1171 /*
   1172  * sw_reg_strategy: handle swap i/o to regular files
   1173  */
   1174 static void
   1175 sw_reg_strategy(sdp, bp, bn)
   1176 	struct swapdev	*sdp;
   1177 	struct buf	*bp;
   1178 	int		bn;
   1179 {
   1180 	struct vnode	*vp;
   1181 	struct vndxfer	*vnx;
   1182 	daddr_t		nbn, byteoff;
   1183 	caddr_t		addr;
   1184 	int		s, off, nra, error, sz, resid;
   1185 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1186 
   1187 	/*
   1188 	 * allocate a vndxfer head for this transfer and point it to
   1189 	 * our buffer.
   1190 	 */
   1191 	getvndxfer(vnx);
   1192 	vnx->vx_flags = VX_BUSY;
   1193 	vnx->vx_error = 0;
   1194 	vnx->vx_pending = 0;
   1195 	vnx->vx_bp = bp;
   1196 	vnx->vx_sdp = sdp;
   1197 
   1198 	/*
   1199 	 * setup for main loop where we read filesystem blocks into
   1200 	 * our buffer.
   1201 	 */
   1202 	error = 0;
   1203 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1204 	addr = bp->b_data;		/* current position in buffer */
   1205 	byteoff = dbtob(bn);
   1206 
   1207 	for (resid = bp->b_resid; resid; resid -= sz) {
   1208 		struct vndbuf	*nbp;
   1209 
   1210 		/*
   1211 		 * translate byteoffset into block number.  return values:
   1212 		 *   vp = vnode of underlying device
   1213 		 *  nbn = new block number (on underlying vnode dev)
   1214 		 *  nra = num blocks we can read-ahead (excludes requested
   1215 		 *	block)
   1216 		 */
   1217 		nra = 0;
   1218 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1219 				 	&vp, &nbn, &nra);
   1220 
   1221 		if (error == 0 && nbn == (daddr_t)-1) {
   1222 			/*
   1223 			 * this used to just set error, but that doesn't
   1224 			 * do the right thing.  Instead, it causes random
   1225 			 * memory errors.  The panic() should remain until
   1226 			 * this condition doesn't destabilize the system.
   1227 			 */
   1228 #if 1
   1229 			panic("sw_reg_strategy: swap to sparse file");
   1230 #else
   1231 			error = EIO;	/* failure */
   1232 #endif
   1233 		}
   1234 
   1235 		/*
   1236 		 * punt if there was an error or a hole in the file.
   1237 		 * we must wait for any i/o ops we have already started
   1238 		 * to finish before returning.
   1239 		 *
   1240 		 * XXX we could deal with holes here but it would be
   1241 		 * a hassle (in the write case).
   1242 		 */
   1243 		if (error) {
   1244 			s = splbio();
   1245 			vnx->vx_error = error;	/* pass error up */
   1246 			goto out;
   1247 		}
   1248 
   1249 		/*
   1250 		 * compute the size ("sz") of this transfer (in bytes).
   1251 		 */
   1252 		off = byteoff % sdp->swd_bsize;
   1253 		sz = (1 + nra) * sdp->swd_bsize - off;
   1254 		if (sz > resid)
   1255 			sz = resid;
   1256 
   1257 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1258 			    "vp %p/%p offset 0x%x/0x%x",
   1259 			    sdp->swd_vp, vp, byteoff, nbn);
   1260 
   1261 		/*
   1262 		 * now get a buf structure.   note that the vb_buf is
   1263 		 * at the front of the nbp structure so that you can
   1264 		 * cast pointers between the two structure easily.
   1265 		 */
   1266 		getvndbuf(nbp);
   1267 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
   1268 		nbp->vb_buf.b_bcount   = sz;
   1269 		nbp->vb_buf.b_bufsize  = sz;
   1270 		nbp->vb_buf.b_error    = 0;
   1271 		nbp->vb_buf.b_data     = addr;
   1272 		nbp->vb_buf.b_lblkno   = 0;
   1273 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1274 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1275 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
   1276 		nbp->vb_buf.b_vp       = NULL;
   1277 		LIST_INIT(&nbp->vb_buf.b_dep);
   1278 
   1279 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1280 
   1281 		/*
   1282 		 * Just sort by block number
   1283 		 */
   1284 		s = splbio();
   1285 		if (vnx->vx_error != 0) {
   1286 			putvndbuf(nbp);
   1287 			goto out;
   1288 		}
   1289 		vnx->vx_pending++;
   1290 
   1291 		/* assoc new buffer with underlying vnode */
   1292 		bgetvp(vp, &nbp->vb_buf);
   1293 
   1294 		/* sort it in and start I/O if we are not over our limit */
   1295 		disksort_blkno(&sdp->swd_tab, &nbp->vb_buf);
   1296 		sw_reg_start(sdp);
   1297 		splx(s);
   1298 
   1299 		/*
   1300 		 * advance to the next I/O
   1301 		 */
   1302 		byteoff += sz;
   1303 		addr += sz;
   1304 	}
   1305 
   1306 	s = splbio();
   1307 
   1308 out: /* Arrive here at splbio */
   1309 	vnx->vx_flags &= ~VX_BUSY;
   1310 	if (vnx->vx_pending == 0) {
   1311 		if (vnx->vx_error != 0) {
   1312 			bp->b_error = vnx->vx_error;
   1313 			bp->b_flags |= B_ERROR;
   1314 		}
   1315 		putvndxfer(vnx);
   1316 		biodone(bp);
   1317 	}
   1318 	splx(s);
   1319 }
   1320 
   1321 /*
   1322  * sw_reg_start: start an I/O request on the requested swapdev
   1323  *
   1324  * => reqs are sorted by disksort (above)
   1325  */
   1326 static void
   1327 sw_reg_start(sdp)
   1328 	struct swapdev	*sdp;
   1329 {
   1330 	struct buf	*bp;
   1331 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1332 
   1333 	/* recursion control */
   1334 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1335 		return;
   1336 
   1337 	sdp->swd_flags |= SWF_BUSY;
   1338 
   1339 	while (sdp->swd_active < sdp->swd_maxactive) {
   1340 		bp = BUFQ_FIRST(&sdp->swd_tab);
   1341 		if (bp == NULL)
   1342 			break;
   1343 		BUFQ_REMOVE(&sdp->swd_tab, bp);
   1344 		sdp->swd_active++;
   1345 
   1346 		UVMHIST_LOG(pdhist,
   1347 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1348 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1349 		if ((bp->b_flags & B_READ) == 0)
   1350 			bp->b_vp->v_numoutput++;
   1351 
   1352 		VOP_STRATEGY(bp);
   1353 	}
   1354 	sdp->swd_flags &= ~SWF_BUSY;
   1355 }
   1356 
   1357 /*
   1358  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1359  *
   1360  * => note that we can recover the vndbuf struct by casting the buf ptr
   1361  */
   1362 static void
   1363 sw_reg_iodone(bp)
   1364 	struct buf *bp;
   1365 {
   1366 	struct vndbuf *vbp = (struct vndbuf *) bp;
   1367 	struct vndxfer *vnx = vbp->vb_xfer;
   1368 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1369 	struct swapdev	*sdp = vnx->vx_sdp;
   1370 	int		s, resid;
   1371 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1372 
   1373 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1374 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1375 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1376 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1377 
   1378 	/*
   1379 	 * protect vbp at splbio and update.
   1380 	 */
   1381 
   1382 	s = splbio();
   1383 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1384 	pbp->b_resid -= resid;
   1385 	vnx->vx_pending--;
   1386 
   1387 	if (vbp->vb_buf.b_error) {
   1388 		UVMHIST_LOG(pdhist, "  got error=%d !",
   1389 		    vbp->vb_buf.b_error, 0, 0, 0);
   1390 
   1391 		/* pass error upward */
   1392 		vnx->vx_error = vbp->vb_buf.b_error;
   1393 	}
   1394 
   1395 	/*
   1396 	 * disassociate this buffer from the vnode.
   1397 	 */
   1398 	brelvp(&vbp->vb_buf);
   1399 
   1400 	/*
   1401 	 * kill vbp structure
   1402 	 */
   1403 	putvndbuf(vbp);
   1404 
   1405 	/*
   1406 	 * wrap up this transaction if it has run to completion or, in
   1407 	 * case of an error, when all auxiliary buffers have returned.
   1408 	 */
   1409 	if (vnx->vx_error != 0) {
   1410 		/* pass error upward */
   1411 		pbp->b_flags |= B_ERROR;
   1412 		pbp->b_error = vnx->vx_error;
   1413 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1414 			putvndxfer(vnx);
   1415 			biodone(pbp);
   1416 		}
   1417 	} else if (pbp->b_resid == 0) {
   1418 #ifdef DIAGNOSTIC
   1419 		if (vnx->vx_pending != 0)
   1420 			panic("sw_reg_iodone: vnx pending: %d",vnx->vx_pending);
   1421 #endif
   1422 
   1423 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1424 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1425 			    pbp, vnx->vx_error, 0, 0);
   1426 			putvndxfer(vnx);
   1427 			biodone(pbp);
   1428 		}
   1429 	}
   1430 
   1431 	/*
   1432 	 * done!   start next swapdev I/O if one is pending
   1433 	 */
   1434 	sdp->swd_active--;
   1435 	sw_reg_start(sdp);
   1436 	splx(s);
   1437 }
   1438 
   1439 
   1440 /*
   1441  * uvm_swap_alloc: allocate space on swap
   1442  *
   1443  * => allocation is done "round robin" down the priority list, as we
   1444  *	allocate in a priority we "rotate" the circle queue.
   1445  * => space can be freed with uvm_swap_free
   1446  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1447  * => we lock uvm.swap_data_lock
   1448  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1449  */
   1450 int
   1451 uvm_swap_alloc(nslots, lessok)
   1452 	int *nslots;	/* IN/OUT */
   1453 	boolean_t lessok;
   1454 {
   1455 	struct swapdev *sdp;
   1456 	struct swappri *spp;
   1457 	u_long	result;
   1458 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1459 
   1460 	/*
   1461 	 * no swap devices configured yet?   definite failure.
   1462 	 */
   1463 	if (uvmexp.nswapdev < 1)
   1464 		return 0;
   1465 
   1466 	/*
   1467 	 * lock data lock, convert slots into blocks, and enter loop
   1468 	 */
   1469 	simple_lock(&uvm.swap_data_lock);
   1470 
   1471 ReTry:	/* XXXMRG */
   1472 	for (spp = LIST_FIRST(&swap_priority); spp != NULL;
   1473 	     spp = LIST_NEXT(spp, spi_swappri)) {
   1474 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
   1475 		     sdp != (void *)&spp->spi_swapdev;
   1476 		     sdp = CIRCLEQ_NEXT(sdp,swd_next)) {
   1477 			/* if it's not enabled, then we can't swap from it */
   1478 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1479 				continue;
   1480 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1481 				continue;
   1482 			if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
   1483 					 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
   1484 					 &result) != 0) {
   1485 				continue;
   1486 			}
   1487 
   1488 			/*
   1489 			 * successful allocation!  now rotate the circleq.
   1490 			 */
   1491 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1492 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1493 			sdp->swd_npginuse += *nslots;
   1494 			uvmexp.swpginuse += *nslots;
   1495 			simple_unlock(&uvm.swap_data_lock);
   1496 			/* done!  return drum slot number */
   1497 			UVMHIST_LOG(pdhist,
   1498 			    "success!  returning %d slots starting at %d",
   1499 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1500 			return(result + sdp->swd_drumoffset);
   1501 		}
   1502 	}
   1503 
   1504 	/* XXXMRG: BEGIN HACK */
   1505 	if (*nslots > 1 && lessok) {
   1506 		*nslots = 1;
   1507 		goto ReTry;	/* XXXMRG: ugh!  extent should support this for us */
   1508 	}
   1509 	/* XXXMRG: END HACK */
   1510 
   1511 	simple_unlock(&uvm.swap_data_lock);
   1512 	return 0;		/* failed */
   1513 }
   1514 
   1515 /*
   1516  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1517  *
   1518  * => we lock uvm.swap_data_lock
   1519  */
   1520 void
   1521 uvm_swap_markbad(startslot, nslots)
   1522 	int startslot;
   1523 	int nslots;
   1524 {
   1525 	struct swapdev *sdp;
   1526 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1527 
   1528 	simple_lock(&uvm.swap_data_lock);
   1529 	sdp = swapdrum_getsdp(startslot);
   1530 
   1531 	/*
   1532 	 * we just keep track of how many pages have been marked bad
   1533 	 * in this device, to make everything add up in swap_off().
   1534 	 * we assume here that the range of slots will all be within
   1535 	 * one swap device.
   1536 	 */
   1537 
   1538 	sdp->swd_npgbad += nslots;
   1539 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1540 	simple_unlock(&uvm.swap_data_lock);
   1541 }
   1542 
   1543 /*
   1544  * uvm_swap_free: free swap slots
   1545  *
   1546  * => this can be all or part of an allocation made by uvm_swap_alloc
   1547  * => we lock uvm.swap_data_lock
   1548  */
   1549 void
   1550 uvm_swap_free(startslot, nslots)
   1551 	int startslot;
   1552 	int nslots;
   1553 {
   1554 	struct swapdev *sdp;
   1555 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1556 
   1557 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1558 	    startslot, 0, 0);
   1559 
   1560 	/*
   1561 	 * ignore attempts to free the "bad" slot.
   1562 	 */
   1563 	if (startslot == SWSLOT_BAD) {
   1564 		return;
   1565 	}
   1566 
   1567 	/*
   1568 	 * convert drum slot offset back to sdp, free the blocks
   1569 	 * in the extent, and return.   must hold pri lock to do
   1570 	 * lookup and access the extent.
   1571 	 */
   1572 	simple_lock(&uvm.swap_data_lock);
   1573 	sdp = swapdrum_getsdp(startslot);
   1574 
   1575 #ifdef DIAGNOSTIC
   1576 	if (uvmexp.nswapdev < 1)
   1577 		panic("uvm_swap_free: uvmexp.nswapdev < 1\n");
   1578 	if (sdp == NULL) {
   1579 		printf("uvm_swap_free: startslot %d, nslots %d\n", startslot,
   1580 		    nslots);
   1581 		panic("uvm_swap_free: unmapped address\n");
   1582 	}
   1583 #endif
   1584 	if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
   1585 			EX_MALLOCOK|EX_NOWAIT) != 0) {
   1586 		printf("warning: resource shortage: %d pages of swap lost\n",
   1587 			nslots);
   1588 	}
   1589 
   1590 	sdp->swd_npginuse -= nslots;
   1591 	uvmexp.swpginuse -= nslots;
   1592 #ifdef DIAGNOSTIC
   1593 	if (sdp->swd_npginuse < 0)
   1594 		panic("uvm_swap_free: inuse < 0");
   1595 #endif
   1596 	simple_unlock(&uvm.swap_data_lock);
   1597 }
   1598 
   1599 /*
   1600  * uvm_swap_put: put any number of pages into a contig place on swap
   1601  *
   1602  * => can be sync or async
   1603  * => XXXMRG: consider making it an inline or macro
   1604  */
   1605 int
   1606 uvm_swap_put(swslot, ppsp, npages, flags)
   1607 	int swslot;
   1608 	struct vm_page **ppsp;
   1609 	int	npages;
   1610 	int	flags;
   1611 {
   1612 	int	result;
   1613 
   1614 	result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1615 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1616 
   1617 	return (result);
   1618 }
   1619 
   1620 /*
   1621  * uvm_swap_get: get a single page from swap
   1622  *
   1623  * => usually a sync op (from fault)
   1624  * => XXXMRG: consider making it an inline or macro
   1625  */
   1626 int
   1627 uvm_swap_get(page, swslot, flags)
   1628 	struct vm_page *page;
   1629 	int swslot, flags;
   1630 {
   1631 	int	result;
   1632 
   1633 	uvmexp.nswget++;
   1634 #ifdef DIAGNOSTIC
   1635 	if ((flags & PGO_SYNCIO) == 0)
   1636 		printf("uvm_swap_get: ASYNC get requested?\n");
   1637 #endif
   1638 
   1639 	if (swslot == SWSLOT_BAD) {
   1640 		return VM_PAGER_ERROR;
   1641 	}
   1642 
   1643 	/*
   1644 	 * this page is (about to be) no longer only in swap.
   1645 	 */
   1646 	simple_lock(&uvm.swap_data_lock);
   1647 	uvmexp.swpgonly--;
   1648 	simple_unlock(&uvm.swap_data_lock);
   1649 
   1650 	result = uvm_swap_io(&page, swslot, 1, B_READ |
   1651 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1652 
   1653 	if (result != VM_PAGER_OK && result != VM_PAGER_PEND) {
   1654 		/*
   1655 		 * oops, the read failed so it really is still only in swap.
   1656 		 */
   1657 		simple_lock(&uvm.swap_data_lock);
   1658 		uvmexp.swpgonly++;
   1659 		simple_unlock(&uvm.swap_data_lock);
   1660 	}
   1661 
   1662 	return (result);
   1663 }
   1664 
   1665 /*
   1666  * uvm_swap_io: do an i/o operation to swap
   1667  */
   1668 
   1669 static int
   1670 uvm_swap_io(pps, startslot, npages, flags)
   1671 	struct vm_page **pps;
   1672 	int startslot, npages, flags;
   1673 {
   1674 	daddr_t startblk;
   1675 	struct	buf *bp;
   1676 	vaddr_t kva;
   1677 	int	result, s, mapinflags, pflag;
   1678 	boolean_t write, async;
   1679 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1680 
   1681 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1682 	    startslot, npages, flags, 0);
   1683 
   1684 	write = (flags & B_READ) == 0;
   1685 	async = (flags & B_ASYNC) != 0;
   1686 
   1687 	/*
   1688 	 * convert starting drum slot to block number
   1689 	 */
   1690 	startblk = btodb(startslot << PAGE_SHIFT);
   1691 
   1692 	/*
   1693 	 * first, map the pages into the kernel (XXX: currently required
   1694 	 * by buffer system).
   1695 	 */
   1696 
   1697 	mapinflags = !write ? UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE;
   1698 	if (!async)
   1699 		mapinflags |= UVMPAGER_MAPIN_WAITOK;
   1700 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1701 	if (kva == 0)
   1702 		return (VM_PAGER_AGAIN);
   1703 
   1704 	/*
   1705 	 * now allocate a buf for the i/o.
   1706 	 * [make sure we don't put the pagedaemon to sleep...]
   1707 	 */
   1708 	s = splbio();
   1709 	pflag = (async || curproc == uvm.pagedaemon_proc) ? 0 : PR_WAITOK;
   1710 	bp = pool_get(&bufpool, pflag);
   1711 	splx(s);
   1712 
   1713 	/*
   1714 	 * if we failed to get a buf, return "try again"
   1715 	 */
   1716 	if (bp == NULL)
   1717 		return (VM_PAGER_AGAIN);
   1718 
   1719 	/*
   1720 	 * fill in the bp/sbp.   we currently route our i/o through
   1721 	 * /dev/drum's vnode [swapdev_vp].
   1722 	 */
   1723 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
   1724 	bp->b_proc = &proc0;	/* XXX */
   1725 	bp->b_vnbufs.le_next = NOLIST;
   1726 	bp->b_data = (caddr_t)kva;
   1727 	bp->b_blkno = startblk;
   1728 	s = splbio();
   1729 	VHOLD(swapdev_vp);
   1730 	bp->b_vp = swapdev_vp;
   1731 	splx(s);
   1732 	/* XXXCDC: isn't swapdev_vp always a VCHR? */
   1733 	/* XXXMRG: probably -- this is obviously something inherited... */
   1734 	if (swapdev_vp->v_type == VBLK)
   1735 		bp->b_dev = swapdev_vp->v_rdev;
   1736 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1737 	LIST_INIT(&bp->b_dep);
   1738 
   1739 	/*
   1740 	 * bump v_numoutput (counter of number of active outputs).
   1741 	 */
   1742 	if (write) {
   1743 		s = splbio();
   1744 		swapdev_vp->v_numoutput++;
   1745 		splx(s);
   1746 	}
   1747 
   1748 	/*
   1749 	 * for async ops we must set up the iodone handler.
   1750 	 */
   1751 	if (async) {
   1752 		/* XXXUBC pagedaemon */
   1753 		bp->b_flags |= B_CALL | (curproc == uvm.pagedaemon_proc ?
   1754 					 B_PDAEMON : 0);
   1755 		bp->b_iodone = uvm_aio_biodone;
   1756 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1757 	}
   1758 	UVMHIST_LOG(pdhist,
   1759 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1760 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1761 
   1762 	/*
   1763 	 * now we start the I/O, and if async, return.
   1764 	 */
   1765 	VOP_STRATEGY(bp);
   1766 	if (async)
   1767 		return (VM_PAGER_PEND);
   1768 
   1769 	/*
   1770 	 * must be sync i/o.   wait for it to finish
   1771 	 */
   1772 	(void) biowait(bp);
   1773 	result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
   1774 
   1775 	/*
   1776 	 * kill the pager mapping
   1777 	 */
   1778 	uvm_pagermapout(kva, npages);
   1779 
   1780 	/*
   1781 	 * now dispose of the buf
   1782 	 */
   1783 	s = splbio();
   1784 	if (bp->b_vp)
   1785 		brelvp(bp);
   1786 	if (write)
   1787 		vwakeup(bp);
   1788 	pool_put(&bufpool, bp);
   1789 	splx(s);
   1790 
   1791 	/*
   1792 	 * finally return.
   1793 	 */
   1794 	UVMHIST_LOG(pdhist, "<- done (sync)  result=%d", result, 0, 0, 0);
   1795 	return (result);
   1796 }
   1797