uvm_swap.c revision 1.43 1 /* $NetBSD: uvm_swap.c,v 1.43 2000/12/27 09:17:04 chs Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include "fs_nfs.h"
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/conf.h>
43 #include <sys/proc.h>
44 #include <sys/namei.h>
45 #include <sys/disklabel.h>
46 #include <sys/errno.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 #include <sys/vnode.h>
50 #include <sys/file.h>
51 #include <sys/extent.h>
52 #include <sys/mount.h>
53 #include <sys/pool.h>
54 #include <sys/syscallargs.h>
55 #include <sys/swap.h>
56
57 #include <uvm/uvm.h>
58
59 #include <miscfs/specfs/specdev.h>
60
61 /*
62 * uvm_swap.c: manage configuration and i/o to swap space.
63 */
64
65 /*
66 * swap space is managed in the following way:
67 *
68 * each swap partition or file is described by a "swapdev" structure.
69 * each "swapdev" structure contains a "swapent" structure which contains
70 * information that is passed up to the user (via system calls).
71 *
72 * each swap partition is assigned a "priority" (int) which controls
73 * swap parition usage.
74 *
75 * the system maintains a global data structure describing all swap
76 * partitions/files. there is a sorted LIST of "swappri" structures
77 * which describe "swapdev"'s at that priority. this LIST is headed
78 * by the "swap_priority" global var. each "swappri" contains a
79 * CIRCLEQ of "swapdev" structures at that priority.
80 *
81 * locking:
82 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
83 * system call and prevents the swap priority list from changing
84 * while we are in the middle of a system call (e.g. SWAP_STATS).
85 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
86 * structures including the priority list, the swapdev structures,
87 * and the swapmap extent.
88 *
89 * each swap device has the following info:
90 * - swap device in use (could be disabled, preventing future use)
91 * - swap enabled (allows new allocations on swap)
92 * - map info in /dev/drum
93 * - vnode pointer
94 * for swap files only:
95 * - block size
96 * - max byte count in buffer
97 * - buffer
98 * - credentials to use when doing i/o to file
99 *
100 * userland controls and configures swap with the swapctl(2) system call.
101 * the sys_swapctl performs the following operations:
102 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
103 * [2] SWAP_STATS: given a pointer to an array of swapent structures
104 * (passed in via "arg") of a size passed in via "misc" ... we load
105 * the current swap config into the array.
106 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
107 * priority in "misc", start swapping on it.
108 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
109 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
110 * "misc")
111 */
112
113 /*
114 * swapdev: describes a single swap partition/file
115 *
116 * note the following should be true:
117 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
118 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
119 */
120 struct swapdev {
121 struct oswapent swd_ose;
122 #define swd_dev swd_ose.ose_dev /* device id */
123 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
124 #define swd_priority swd_ose.ose_priority /* our priority */
125 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
126 char *swd_path; /* saved pathname of device */
127 int swd_pathlen; /* length of pathname */
128 int swd_npages; /* #pages we can use */
129 int swd_npginuse; /* #pages in use */
130 int swd_npgbad; /* #pages bad */
131 int swd_drumoffset; /* page0 offset in drum */
132 int swd_drumsize; /* #pages in drum */
133 struct extent *swd_ex; /* extent for this swapdev */
134 char swd_exname[12]; /* name of extent above */
135 struct vnode *swd_vp; /* backing vnode */
136 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
137
138 int swd_bsize; /* blocksize (bytes) */
139 int swd_maxactive; /* max active i/o reqs */
140 struct buf_queue swd_tab; /* buffer list */
141 int swd_active; /* number of active buffers */
142 struct ucred *swd_cred; /* cred for file access */
143 };
144
145 /*
146 * swap device priority entry; the list is kept sorted on `spi_priority'.
147 */
148 struct swappri {
149 int spi_priority; /* priority */
150 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
151 /* circleq of swapdevs at this priority */
152 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
153 };
154
155 /*
156 * The following two structures are used to keep track of data transfers
157 * on swap devices associated with regular files.
158 * NOTE: this code is more or less a copy of vnd.c; we use the same
159 * structure names here to ease porting..
160 */
161 struct vndxfer {
162 struct buf *vx_bp; /* Pointer to parent buffer */
163 struct swapdev *vx_sdp;
164 int vx_error;
165 int vx_pending; /* # of pending aux buffers */
166 int vx_flags;
167 #define VX_BUSY 1
168 #define VX_DEAD 2
169 };
170
171 struct vndbuf {
172 struct buf vb_buf;
173 struct vndxfer *vb_xfer;
174 };
175
176
177 /*
178 * We keep a of pool vndbuf's and vndxfer structures.
179 */
180 struct pool *vndxfer_pool;
181 struct pool *vndbuf_pool;
182
183 #define getvndxfer(vnx) do { \
184 int s = splbio(); \
185 vnx = pool_get(vndxfer_pool, PR_MALLOCOK|PR_WAITOK); \
186 splx(s); \
187 } while (0)
188
189 #define putvndxfer(vnx) { \
190 pool_put(vndxfer_pool, (void *)(vnx)); \
191 }
192
193 #define getvndbuf(vbp) do { \
194 int s = splbio(); \
195 vbp = pool_get(vndbuf_pool, PR_MALLOCOK|PR_WAITOK); \
196 splx(s); \
197 } while (0)
198
199 #define putvndbuf(vbp) { \
200 pool_put(vndbuf_pool, (void *)(vbp)); \
201 }
202
203 /* /dev/drum */
204 bdev_decl(sw);
205 cdev_decl(sw);
206
207 /*
208 * local variables
209 */
210 static struct extent *swapmap; /* controls the mapping of /dev/drum */
211
212 /* list of all active swap devices [by priority] */
213 LIST_HEAD(swap_priority, swappri);
214 static struct swap_priority swap_priority;
215
216 /* locks */
217 lock_data_t swap_syscall_lock;
218
219 /*
220 * prototypes
221 */
222 static void swapdrum_add __P((struct swapdev *, int));
223 static struct swapdev *swapdrum_getsdp __P((int));
224
225 static struct swapdev *swaplist_find __P((struct vnode *, int));
226 static void swaplist_insert __P((struct swapdev *,
227 struct swappri *, int));
228 static void swaplist_trim __P((void));
229
230 static int swap_on __P((struct proc *, struct swapdev *));
231 static int swap_off __P((struct proc *, struct swapdev *));
232
233 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
234 static void sw_reg_iodone __P((struct buf *));
235 static void sw_reg_start __P((struct swapdev *));
236
237 static int uvm_swap_io __P((struct vm_page **, int, int, int));
238
239 /*
240 * uvm_swap_init: init the swap system data structures and locks
241 *
242 * => called at boot time from init_main.c after the filesystems
243 * are brought up (which happens after uvm_init())
244 */
245 void
246 uvm_swap_init()
247 {
248 UVMHIST_FUNC("uvm_swap_init");
249
250 UVMHIST_CALLED(pdhist);
251 /*
252 * first, init the swap list, its counter, and its lock.
253 * then get a handle on the vnode for /dev/drum by using
254 * the its dev_t number ("swapdev", from MD conf.c).
255 */
256
257 LIST_INIT(&swap_priority);
258 uvmexp.nswapdev = 0;
259 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
260 simple_lock_init(&uvm.swap_data_lock);
261
262 if (bdevvp(swapdev, &swapdev_vp))
263 panic("uvm_swap_init: can't get vnode for swap device");
264
265 /*
266 * create swap block resource map to map /dev/drum. the range
267 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
268 * that block 0 is reserved (used to indicate an allocation
269 * failure, or no allocation).
270 */
271 swapmap = extent_create("swapmap", 1, INT_MAX,
272 M_VMSWAP, 0, 0, EX_NOWAIT);
273 if (swapmap == 0)
274 panic("uvm_swap_init: extent_create failed");
275
276 /*
277 * allocate pools for structures used for swapping to files.
278 */
279
280 vndxfer_pool =
281 pool_create(sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 0,
282 NULL, NULL, 0);
283 if (vndxfer_pool == NULL)
284 panic("swapinit: pool_create failed");
285
286 vndbuf_pool =
287 pool_create(sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 0,
288 NULL, NULL, 0);
289 if (vndbuf_pool == NULL)
290 panic("swapinit: pool_create failed");
291 /*
292 * done!
293 */
294 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
295 }
296
297 /*
298 * swaplist functions: functions that operate on the list of swap
299 * devices on the system.
300 */
301
302 /*
303 * swaplist_insert: insert swap device "sdp" into the global list
304 *
305 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
306 * => caller must provide a newly malloc'd swappri structure (we will
307 * FREE it if we don't need it... this it to prevent malloc blocking
308 * here while adding swap)
309 */
310 static void
311 swaplist_insert(sdp, newspp, priority)
312 struct swapdev *sdp;
313 struct swappri *newspp;
314 int priority;
315 {
316 struct swappri *spp, *pspp;
317 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
318
319 /*
320 * find entry at or after which to insert the new device.
321 */
322 for (pspp = NULL, spp = LIST_FIRST(&swap_priority); spp != NULL;
323 spp = LIST_NEXT(spp, spi_swappri)) {
324 if (priority <= spp->spi_priority)
325 break;
326 pspp = spp;
327 }
328
329 /*
330 * new priority?
331 */
332 if (spp == NULL || spp->spi_priority != priority) {
333 spp = newspp; /* use newspp! */
334 UVMHIST_LOG(pdhist, "created new swappri = %d",
335 priority, 0, 0, 0);
336
337 spp->spi_priority = priority;
338 CIRCLEQ_INIT(&spp->spi_swapdev);
339
340 if (pspp)
341 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
342 else
343 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
344 } else {
345 /* we don't need a new priority structure, free it */
346 FREE(newspp, M_VMSWAP);
347 }
348
349 /*
350 * priority found (or created). now insert on the priority's
351 * circleq list and bump the total number of swapdevs.
352 */
353 sdp->swd_priority = priority;
354 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
355 uvmexp.nswapdev++;
356 }
357
358 /*
359 * swaplist_find: find and optionally remove a swap device from the
360 * global list.
361 *
362 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
363 * => we return the swapdev we found (and removed)
364 */
365 static struct swapdev *
366 swaplist_find(vp, remove)
367 struct vnode *vp;
368 boolean_t remove;
369 {
370 struct swapdev *sdp;
371 struct swappri *spp;
372
373 /*
374 * search the lists for the requested vp
375 */
376 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
377 spp = LIST_NEXT(spp, spi_swappri)) {
378 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
379 sdp != (void *)&spp->spi_swapdev;
380 sdp = CIRCLEQ_NEXT(sdp, swd_next))
381 if (sdp->swd_vp == vp) {
382 if (remove) {
383 CIRCLEQ_REMOVE(&spp->spi_swapdev,
384 sdp, swd_next);
385 uvmexp.nswapdev--;
386 }
387 return(sdp);
388 }
389 }
390 return (NULL);
391 }
392
393
394 /*
395 * swaplist_trim: scan priority list for empty priority entries and kill
396 * them.
397 *
398 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
399 */
400 static void
401 swaplist_trim()
402 {
403 struct swappri *spp, *nextspp;
404
405 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
406 nextspp = LIST_NEXT(spp, spi_swappri);
407 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
408 (void *)&spp->spi_swapdev)
409 continue;
410 LIST_REMOVE(spp, spi_swappri);
411 free(spp, M_VMSWAP);
412 }
413 }
414
415 /*
416 * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
417 *
418 * => caller must hold swap_syscall_lock
419 * => uvm.swap_data_lock should be unlocked (we may sleep)
420 */
421 static void
422 swapdrum_add(sdp, npages)
423 struct swapdev *sdp;
424 int npages;
425 {
426 u_long result;
427
428 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
429 EX_WAITOK, &result))
430 panic("swapdrum_add");
431
432 sdp->swd_drumoffset = result;
433 sdp->swd_drumsize = npages;
434 }
435
436 /*
437 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
438 * to the "swapdev" that maps that section of the drum.
439 *
440 * => each swapdev takes one big contig chunk of the drum
441 * => caller must hold uvm.swap_data_lock
442 */
443 static struct swapdev *
444 swapdrum_getsdp(pgno)
445 int pgno;
446 {
447 struct swapdev *sdp;
448 struct swappri *spp;
449
450 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
451 spp = LIST_NEXT(spp, spi_swappri))
452 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
453 sdp != (void *)&spp->spi_swapdev;
454 sdp = CIRCLEQ_NEXT(sdp, swd_next))
455 if (pgno >= sdp->swd_drumoffset &&
456 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
457 return sdp;
458 }
459 return NULL;
460 }
461
462
463 /*
464 * sys_swapctl: main entry point for swapctl(2) system call
465 * [with two helper functions: swap_on and swap_off]
466 */
467 int
468 sys_swapctl(p, v, retval)
469 struct proc *p;
470 void *v;
471 register_t *retval;
472 {
473 struct sys_swapctl_args /* {
474 syscallarg(int) cmd;
475 syscallarg(void *) arg;
476 syscallarg(int) misc;
477 } */ *uap = (struct sys_swapctl_args *)v;
478 struct vnode *vp;
479 struct nameidata nd;
480 struct swappri *spp;
481 struct swapdev *sdp;
482 struct swapent *sep;
483 char userpath[PATH_MAX + 1];
484 size_t len;
485 int count, error, misc;
486 int priority;
487 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
488
489 misc = SCARG(uap, misc);
490
491 /*
492 * ensure serialized syscall access by grabbing the swap_syscall_lock
493 */
494 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
495
496 /*
497 * we handle the non-priv NSWAP and STATS request first.
498 *
499 * SWAP_NSWAP: return number of config'd swap devices
500 * [can also be obtained with uvmexp sysctl]
501 */
502 if (SCARG(uap, cmd) == SWAP_NSWAP) {
503 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
504 0, 0, 0);
505 *retval = uvmexp.nswapdev;
506 error = 0;
507 goto out;
508 }
509
510 /*
511 * SWAP_STATS: get stats on current # of configured swap devs
512 *
513 * note that the swap_priority list can't change as long
514 * as we are holding the swap_syscall_lock. we don't want
515 * to grab the uvm.swap_data_lock because we may fault&sleep during
516 * copyout() and we don't want to be holding that lock then!
517 */
518 if (SCARG(uap, cmd) == SWAP_STATS
519 #if defined(COMPAT_13)
520 || SCARG(uap, cmd) == SWAP_OSTATS
521 #endif
522 ) {
523 sep = (struct swapent *)SCARG(uap, arg);
524 count = 0;
525
526 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
527 spp = LIST_NEXT(spp, spi_swappri)) {
528 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
529 sdp != (void *)&spp->spi_swapdev && misc-- > 0;
530 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
531 /*
532 * backwards compatibility for system call.
533 * note that we use 'struct oswapent' as an
534 * overlay into both 'struct swapdev' and
535 * the userland 'struct swapent', as we
536 * want to retain backwards compatibility
537 * with NetBSD 1.3.
538 */
539 sdp->swd_ose.ose_inuse =
540 btodb(sdp->swd_npginuse << PAGE_SHIFT);
541 error = copyout(&sdp->swd_ose, sep,
542 sizeof(struct oswapent));
543
544 /* now copy out the path if necessary */
545 #if defined(COMPAT_13)
546 if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
547 #else
548 if (error == 0)
549 #endif
550 error = copyout(sdp->swd_path,
551 &sep->se_path, sdp->swd_pathlen);
552
553 if (error)
554 goto out;
555 count++;
556 #if defined(COMPAT_13)
557 if (SCARG(uap, cmd) == SWAP_OSTATS)
558 ((struct oswapent *)sep)++;
559 else
560 #endif
561 sep++;
562 }
563 }
564
565 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
566
567 *retval = count;
568 error = 0;
569 goto out;
570 }
571
572 /*
573 * all other requests require superuser privs. verify.
574 */
575 if ((error = suser(p->p_ucred, &p->p_acflag)))
576 goto out;
577
578 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
579 dev_t *devp = (dev_t *)SCARG(uap, arg);
580
581 error = copyout(&dumpdev, devp, sizeof(dumpdev));
582 goto out;
583 }
584
585 /*
586 * at this point we expect a path name in arg. we will
587 * use namei() to gain a vnode reference (vref), and lock
588 * the vnode (VOP_LOCK).
589 *
590 * XXX: a NULL arg means use the root vnode pointer (e.g. for
591 * miniroot)
592 */
593 if (SCARG(uap, arg) == NULL) {
594 vp = rootvp; /* miniroot */
595 if (vget(vp, LK_EXCLUSIVE)) {
596 error = EBUSY;
597 goto out;
598 }
599 if (SCARG(uap, cmd) == SWAP_ON &&
600 copystr("miniroot", userpath, sizeof userpath, &len))
601 panic("swapctl: miniroot copy failed");
602 } else {
603 int space;
604 char *where;
605
606 if (SCARG(uap, cmd) == SWAP_ON) {
607 if ((error = copyinstr(SCARG(uap, arg), userpath,
608 sizeof userpath, &len)))
609 goto out;
610 space = UIO_SYSSPACE;
611 where = userpath;
612 } else {
613 space = UIO_USERSPACE;
614 where = (char *)SCARG(uap, arg);
615 }
616 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
617 if ((error = namei(&nd)))
618 goto out;
619 vp = nd.ni_vp;
620 }
621 /* note: "vp" is referenced and locked */
622
623 error = 0; /* assume no error */
624 switch(SCARG(uap, cmd)) {
625
626 case SWAP_DUMPDEV:
627 if (vp->v_type != VBLK) {
628 error = ENOTBLK;
629 goto out;
630 }
631 dumpdev = vp->v_rdev;
632
633 break;
634
635 case SWAP_CTL:
636 /*
637 * get new priority, remove old entry (if any) and then
638 * reinsert it in the correct place. finally, prune out
639 * any empty priority structures.
640 */
641 priority = SCARG(uap, misc);
642 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
643 simple_lock(&uvm.swap_data_lock);
644 if ((sdp = swaplist_find(vp, 1)) == NULL) {
645 error = ENOENT;
646 } else {
647 swaplist_insert(sdp, spp, priority);
648 swaplist_trim();
649 }
650 simple_unlock(&uvm.swap_data_lock);
651 if (error)
652 free(spp, M_VMSWAP);
653 break;
654
655 case SWAP_ON:
656
657 /*
658 * check for duplicates. if none found, then insert a
659 * dummy entry on the list to prevent someone else from
660 * trying to enable this device while we are working on
661 * it.
662 */
663
664 priority = SCARG(uap, misc);
665 simple_lock(&uvm.swap_data_lock);
666 if ((sdp = swaplist_find(vp, 0)) != NULL) {
667 error = EBUSY;
668 simple_unlock(&uvm.swap_data_lock);
669 break;
670 }
671 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
672 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
673 memset(sdp, 0, sizeof(*sdp));
674 sdp->swd_flags = SWF_FAKE; /* placeholder only */
675 sdp->swd_vp = vp;
676 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
677 BUFQ_INIT(&sdp->swd_tab);
678
679 /*
680 * XXX Is NFS elaboration necessary?
681 */
682 if (vp->v_type == VREG) {
683 sdp->swd_cred = crdup(p->p_ucred);
684 }
685
686 swaplist_insert(sdp, spp, priority);
687 simple_unlock(&uvm.swap_data_lock);
688
689 sdp->swd_pathlen = len;
690 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
691 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
692 panic("swapctl: copystr");
693
694 /*
695 * we've now got a FAKE placeholder in the swap list.
696 * now attempt to enable swap on it. if we fail, undo
697 * what we've done and kill the fake entry we just inserted.
698 * if swap_on is a success, it will clear the SWF_FAKE flag
699 */
700
701 if ((error = swap_on(p, sdp)) != 0) {
702 simple_lock(&uvm.swap_data_lock);
703 (void) swaplist_find(vp, 1); /* kill fake entry */
704 swaplist_trim();
705 simple_unlock(&uvm.swap_data_lock);
706 if (vp->v_type == VREG) {
707 crfree(sdp->swd_cred);
708 }
709 free(sdp->swd_path, M_VMSWAP);
710 free(sdp, M_VMSWAP);
711 break;
712 }
713 break;
714
715 case SWAP_OFF:
716 simple_lock(&uvm.swap_data_lock);
717 if ((sdp = swaplist_find(vp, 0)) == NULL) {
718 simple_unlock(&uvm.swap_data_lock);
719 error = ENXIO;
720 break;
721 }
722
723 /*
724 * If a device isn't in use or enabled, we
725 * can't stop swapping from it (again).
726 */
727 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
728 simple_unlock(&uvm.swap_data_lock);
729 error = EBUSY;
730 break;
731 }
732
733 /*
734 * do the real work.
735 */
736 if ((error = swap_off(p, sdp)) != 0)
737 goto out;
738
739 break;
740
741 default:
742 error = EINVAL;
743 }
744
745 /*
746 * done! release the ref gained by namei() and unlock.
747 */
748 vput(vp);
749
750 out:
751 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
752
753 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
754 return (error);
755 }
756
757 /*
758 * swap_on: attempt to enable a swapdev for swapping. note that the
759 * swapdev is already on the global list, but disabled (marked
760 * SWF_FAKE).
761 *
762 * => we avoid the start of the disk (to protect disk labels)
763 * => we also avoid the miniroot, if we are swapping to root.
764 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
765 * if needed.
766 */
767 static int
768 swap_on(p, sdp)
769 struct proc *p;
770 struct swapdev *sdp;
771 {
772 static int count = 0; /* static */
773 struct vnode *vp;
774 int error, npages, nblocks, size;
775 long addr;
776 struct vattr va;
777 #ifdef NFS
778 extern int (**nfsv2_vnodeop_p) __P((void *));
779 #endif /* NFS */
780 dev_t dev;
781 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
782
783 /*
784 * we want to enable swapping on sdp. the swd_vp contains
785 * the vnode we want (locked and ref'd), and the swd_dev
786 * contains the dev_t of the file, if it a block device.
787 */
788
789 vp = sdp->swd_vp;
790 dev = sdp->swd_dev;
791
792 /*
793 * open the swap file (mostly useful for block device files to
794 * let device driver know what is up).
795 *
796 * we skip the open/close for root on swap because the root
797 * has already been opened when root was mounted (mountroot).
798 */
799 if (vp != rootvp) {
800 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
801 return (error);
802 }
803
804 /* XXX this only works for block devices */
805 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
806
807 /*
808 * we now need to determine the size of the swap area. for
809 * block specials we can call the d_psize function.
810 * for normal files, we must stat [get attrs].
811 *
812 * we put the result in nblks.
813 * for normal files, we also want the filesystem block size
814 * (which we get with statfs).
815 */
816 switch (vp->v_type) {
817 case VBLK:
818 if (bdevsw[major(dev)].d_psize == 0 ||
819 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
820 error = ENXIO;
821 goto bad;
822 }
823 break;
824
825 case VREG:
826 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
827 goto bad;
828 nblocks = (int)btodb(va.va_size);
829 if ((error =
830 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
831 goto bad;
832
833 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
834 /*
835 * limit the max # of outstanding I/O requests we issue
836 * at any one time. take it easy on NFS servers.
837 */
838 #ifdef NFS
839 if (vp->v_op == nfsv2_vnodeop_p)
840 sdp->swd_maxactive = 2; /* XXX */
841 else
842 #endif /* NFS */
843 sdp->swd_maxactive = 8; /* XXX */
844 break;
845
846 default:
847 error = ENXIO;
848 goto bad;
849 }
850
851 /*
852 * save nblocks in a safe place and convert to pages.
853 */
854
855 sdp->swd_ose.ose_nblks = nblocks;
856 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
857
858 /*
859 * for block special files, we want to make sure that leave
860 * the disklabel and bootblocks alone, so we arrange to skip
861 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
862 * note that because of this the "size" can be less than the
863 * actual number of blocks on the device.
864 */
865 if (vp->v_type == VBLK) {
866 /* we use pages 1 to (size - 1) [inclusive] */
867 size = npages - 1;
868 addr = 1;
869 } else {
870 /* we use pages 0 to (size - 1) [inclusive] */
871 size = npages;
872 addr = 0;
873 }
874
875 /*
876 * make sure we have enough blocks for a reasonable sized swap
877 * area. we want at least one page.
878 */
879
880 if (size < 1) {
881 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
882 error = EINVAL;
883 goto bad;
884 }
885
886 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
887
888 /*
889 * now we need to allocate an extent to manage this swap device
890 */
891 snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
892 count++);
893
894 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
895 sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
896 0, 0, EX_WAITOK);
897 /* allocate the `saved' region from the extent so it won't be used */
898 if (addr) {
899 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
900 panic("disklabel region");
901 }
902
903 /*
904 * if the vnode we are swapping to is the root vnode
905 * (i.e. we are swapping to the miniroot) then we want
906 * to make sure we don't overwrite it. do a statfs to
907 * find its size and skip over it.
908 */
909 if (vp == rootvp) {
910 struct mount *mp;
911 struct statfs *sp;
912 int rootblocks, rootpages;
913
914 mp = rootvnode->v_mount;
915 sp = &mp->mnt_stat;
916 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
917 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
918 if (rootpages > size)
919 panic("swap_on: miniroot larger than swap?");
920
921 if (extent_alloc_region(sdp->swd_ex, addr,
922 rootpages, EX_WAITOK))
923 panic("swap_on: unable to preserve miniroot");
924
925 size -= rootpages;
926 printf("Preserved %d pages of miniroot ", rootpages);
927 printf("leaving %d pages of swap\n", size);
928 }
929
930 /*
931 * try to add anons to reflect the new swap space.
932 */
933
934 error = uvm_anon_add(size);
935 if (error) {
936 goto bad;
937 }
938
939 /*
940 * add a ref to vp to reflect usage as a swap device.
941 */
942 vref(vp);
943
944 /*
945 * now add the new swapdev to the drum and enable.
946 */
947 simple_lock(&uvm.swap_data_lock);
948 swapdrum_add(sdp, npages);
949 sdp->swd_npages = size;
950 sdp->swd_flags &= ~SWF_FAKE; /* going live */
951 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
952 uvmexp.swpages += size;
953 simple_unlock(&uvm.swap_data_lock);
954 return (0);
955
956 /*
957 * failure: clean up and return error.
958 */
959
960 bad:
961 if (sdp->swd_ex) {
962 extent_destroy(sdp->swd_ex);
963 }
964 if (vp != rootvp) {
965 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
966 }
967 return (error);
968 }
969
970 /*
971 * swap_off: stop swapping on swapdev
972 *
973 * => swap data should be locked, we will unlock.
974 */
975 static int
976 swap_off(p, sdp)
977 struct proc *p;
978 struct swapdev *sdp;
979 {
980 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
981 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev,0,0,0);
982
983 /* disable the swap area being removed */
984 sdp->swd_flags &= ~SWF_ENABLE;
985 simple_unlock(&uvm.swap_data_lock);
986
987 /*
988 * the idea is to find all the pages that are paged out to this
989 * device, and page them all in. in uvm, swap-backed pageable
990 * memory can take two forms: aobjs and anons. call the
991 * swapoff hook for each subsystem to bring in pages.
992 */
993
994 if (uao_swap_off(sdp->swd_drumoffset,
995 sdp->swd_drumoffset + sdp->swd_drumsize) ||
996 anon_swap_off(sdp->swd_drumoffset,
997 sdp->swd_drumoffset + sdp->swd_drumsize)) {
998
999 simple_lock(&uvm.swap_data_lock);
1000 sdp->swd_flags |= SWF_ENABLE;
1001 simple_unlock(&uvm.swap_data_lock);
1002 return ENOMEM;
1003 }
1004
1005 #ifdef DIAGNOSTIC
1006 if (sdp->swd_npginuse != sdp->swd_npgbad) {
1007 panic("swap_off: sdp %p - %d pages still in use (%d bad)\n",
1008 sdp, sdp->swd_npginuse, sdp->swd_npgbad);
1009 }
1010 #endif
1011
1012 /*
1013 * done with the vnode and saved creds.
1014 * drop our ref on the vnode before calling VOP_CLOSE()
1015 * so that spec_close() can tell if this is the last close.
1016 */
1017 if (sdp->swd_vp->v_type == VREG) {
1018 crfree(sdp->swd_cred);
1019 }
1020 vrele(sdp->swd_vp);
1021 if (sdp->swd_vp != rootvp) {
1022 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1023 }
1024
1025 /* remove anons from the system */
1026 uvm_anon_remove(sdp->swd_npages);
1027
1028 simple_lock(&uvm.swap_data_lock);
1029 uvmexp.swpages -= sdp->swd_npages;
1030
1031 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1032 panic("swap_off: swapdev not in list\n");
1033 swaplist_trim();
1034
1035 /*
1036 * free all resources!
1037 */
1038 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1039 EX_WAITOK);
1040 extent_destroy(sdp->swd_ex);
1041 free(sdp, M_VMSWAP);
1042 simple_unlock(&uvm.swap_data_lock);
1043 return (0);
1044 }
1045
1046 /*
1047 * /dev/drum interface and i/o functions
1048 */
1049
1050 /*
1051 * swread: the read function for the drum (just a call to physio)
1052 */
1053 /*ARGSUSED*/
1054 int
1055 swread(dev, uio, ioflag)
1056 dev_t dev;
1057 struct uio *uio;
1058 int ioflag;
1059 {
1060 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1061
1062 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1063 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1064 }
1065
1066 /*
1067 * swwrite: the write function for the drum (just a call to physio)
1068 */
1069 /*ARGSUSED*/
1070 int
1071 swwrite(dev, uio, ioflag)
1072 dev_t dev;
1073 struct uio *uio;
1074 int ioflag;
1075 {
1076 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1077
1078 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1079 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1080 }
1081
1082 /*
1083 * swstrategy: perform I/O on the drum
1084 *
1085 * => we must map the i/o request from the drum to the correct swapdev.
1086 */
1087 void
1088 swstrategy(bp)
1089 struct buf *bp;
1090 {
1091 struct swapdev *sdp;
1092 struct vnode *vp;
1093 int s, pageno, bn;
1094 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1095
1096 /*
1097 * convert block number to swapdev. note that swapdev can't
1098 * be yanked out from under us because we are holding resources
1099 * in it (i.e. the blocks we are doing I/O on).
1100 */
1101 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1102 simple_lock(&uvm.swap_data_lock);
1103 sdp = swapdrum_getsdp(pageno);
1104 simple_unlock(&uvm.swap_data_lock);
1105 if (sdp == NULL) {
1106 bp->b_error = EINVAL;
1107 bp->b_flags |= B_ERROR;
1108 biodone(bp);
1109 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1110 return;
1111 }
1112
1113 /*
1114 * convert drum page number to block number on this swapdev.
1115 */
1116
1117 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1118 bn = btodb(pageno << PAGE_SHIFT); /* convert to diskblock */
1119
1120 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1121 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1122 sdp->swd_drumoffset, bn, bp->b_bcount);
1123
1124 /*
1125 * for block devices we finish up here.
1126 * for regular files we have to do more work which we delegate
1127 * to sw_reg_strategy().
1128 */
1129
1130 switch (sdp->swd_vp->v_type) {
1131 default:
1132 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1133
1134 case VBLK:
1135
1136 /*
1137 * must convert "bp" from an I/O on /dev/drum to an I/O
1138 * on the swapdev (sdp).
1139 */
1140 s = splbio();
1141 bp->b_blkno = bn; /* swapdev block number */
1142 vp = sdp->swd_vp; /* swapdev vnode pointer */
1143 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1144 VHOLD(vp); /* "hold" swapdev vp for i/o */
1145
1146 /*
1147 * if we are doing a write, we have to redirect the i/o on
1148 * drum's v_numoutput counter to the swapdevs.
1149 */
1150 if ((bp->b_flags & B_READ) == 0) {
1151 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1152 vp->v_numoutput++; /* put it on swapdev */
1153 }
1154
1155 /*
1156 * dissassocate buffer with /dev/drum vnode
1157 * [could be null if buf was from physio]
1158 */
1159 if (bp->b_vp != NULL)
1160 brelvp(bp);
1161
1162 /*
1163 * finally plug in swapdev vnode and start I/O
1164 */
1165 bp->b_vp = vp;
1166 splx(s);
1167 VOP_STRATEGY(bp);
1168 return;
1169
1170 case VREG:
1171 /*
1172 * delegate to sw_reg_strategy function.
1173 */
1174 sw_reg_strategy(sdp, bp, bn);
1175 return;
1176 }
1177 /* NOTREACHED */
1178 }
1179
1180 /*
1181 * sw_reg_strategy: handle swap i/o to regular files
1182 */
1183 static void
1184 sw_reg_strategy(sdp, bp, bn)
1185 struct swapdev *sdp;
1186 struct buf *bp;
1187 int bn;
1188 {
1189 struct vnode *vp;
1190 struct vndxfer *vnx;
1191 daddr_t nbn, byteoff;
1192 caddr_t addr;
1193 int s, off, nra, error, sz, resid;
1194 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1195
1196 /*
1197 * allocate a vndxfer head for this transfer and point it to
1198 * our buffer.
1199 */
1200 getvndxfer(vnx);
1201 vnx->vx_flags = VX_BUSY;
1202 vnx->vx_error = 0;
1203 vnx->vx_pending = 0;
1204 vnx->vx_bp = bp;
1205 vnx->vx_sdp = sdp;
1206
1207 /*
1208 * setup for main loop where we read filesystem blocks into
1209 * our buffer.
1210 */
1211 error = 0;
1212 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1213 addr = bp->b_data; /* current position in buffer */
1214 byteoff = dbtob(bn);
1215
1216 for (resid = bp->b_resid; resid; resid -= sz) {
1217 struct vndbuf *nbp;
1218
1219 /*
1220 * translate byteoffset into block number. return values:
1221 * vp = vnode of underlying device
1222 * nbn = new block number (on underlying vnode dev)
1223 * nra = num blocks we can read-ahead (excludes requested
1224 * block)
1225 */
1226 nra = 0;
1227 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1228 &vp, &nbn, &nra);
1229
1230 if (error == 0 && nbn == (daddr_t)-1) {
1231 /*
1232 * this used to just set error, but that doesn't
1233 * do the right thing. Instead, it causes random
1234 * memory errors. The panic() should remain until
1235 * this condition doesn't destabilize the system.
1236 */
1237 #if 1
1238 panic("sw_reg_strategy: swap to sparse file");
1239 #else
1240 error = EIO; /* failure */
1241 #endif
1242 }
1243
1244 /*
1245 * punt if there was an error or a hole in the file.
1246 * we must wait for any i/o ops we have already started
1247 * to finish before returning.
1248 *
1249 * XXX we could deal with holes here but it would be
1250 * a hassle (in the write case).
1251 */
1252 if (error) {
1253 s = splbio();
1254 vnx->vx_error = error; /* pass error up */
1255 goto out;
1256 }
1257
1258 /*
1259 * compute the size ("sz") of this transfer (in bytes).
1260 */
1261 off = byteoff % sdp->swd_bsize;
1262 sz = (1 + nra) * sdp->swd_bsize - off;
1263 if (sz > resid)
1264 sz = resid;
1265
1266 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1267 "vp %p/%p offset 0x%x/0x%x",
1268 sdp->swd_vp, vp, byteoff, nbn);
1269
1270 /*
1271 * now get a buf structure. note that the vb_buf is
1272 * at the front of the nbp structure so that you can
1273 * cast pointers between the two structure easily.
1274 */
1275 getvndbuf(nbp);
1276 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1277 nbp->vb_buf.b_bcount = sz;
1278 nbp->vb_buf.b_bufsize = sz;
1279 nbp->vb_buf.b_error = 0;
1280 nbp->vb_buf.b_data = addr;
1281 nbp->vb_buf.b_lblkno = 0;
1282 nbp->vb_buf.b_blkno = nbn + btodb(off);
1283 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1284 nbp->vb_buf.b_iodone = sw_reg_iodone;
1285 nbp->vb_buf.b_vp = NULL;
1286 LIST_INIT(&nbp->vb_buf.b_dep);
1287
1288 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1289
1290 /*
1291 * Just sort by block number
1292 */
1293 s = splbio();
1294 if (vnx->vx_error != 0) {
1295 putvndbuf(nbp);
1296 goto out;
1297 }
1298 vnx->vx_pending++;
1299
1300 /* assoc new buffer with underlying vnode */
1301 bgetvp(vp, &nbp->vb_buf);
1302
1303 /* sort it in and start I/O if we are not over our limit */
1304 disksort_blkno(&sdp->swd_tab, &nbp->vb_buf);
1305 sw_reg_start(sdp);
1306 splx(s);
1307
1308 /*
1309 * advance to the next I/O
1310 */
1311 byteoff += sz;
1312 addr += sz;
1313 }
1314
1315 s = splbio();
1316
1317 out: /* Arrive here at splbio */
1318 vnx->vx_flags &= ~VX_BUSY;
1319 if (vnx->vx_pending == 0) {
1320 if (vnx->vx_error != 0) {
1321 bp->b_error = vnx->vx_error;
1322 bp->b_flags |= B_ERROR;
1323 }
1324 putvndxfer(vnx);
1325 biodone(bp);
1326 }
1327 splx(s);
1328 }
1329
1330 /*
1331 * sw_reg_start: start an I/O request on the requested swapdev
1332 *
1333 * => reqs are sorted by disksort (above)
1334 */
1335 static void
1336 sw_reg_start(sdp)
1337 struct swapdev *sdp;
1338 {
1339 struct buf *bp;
1340 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1341
1342 /* recursion control */
1343 if ((sdp->swd_flags & SWF_BUSY) != 0)
1344 return;
1345
1346 sdp->swd_flags |= SWF_BUSY;
1347
1348 while (sdp->swd_active < sdp->swd_maxactive) {
1349 bp = BUFQ_FIRST(&sdp->swd_tab);
1350 if (bp == NULL)
1351 break;
1352 BUFQ_REMOVE(&sdp->swd_tab, bp);
1353 sdp->swd_active++;
1354
1355 UVMHIST_LOG(pdhist,
1356 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1357 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1358 if ((bp->b_flags & B_READ) == 0)
1359 bp->b_vp->v_numoutput++;
1360
1361 VOP_STRATEGY(bp);
1362 }
1363 sdp->swd_flags &= ~SWF_BUSY;
1364 }
1365
1366 /*
1367 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1368 *
1369 * => note that we can recover the vndbuf struct by casting the buf ptr
1370 */
1371 static void
1372 sw_reg_iodone(bp)
1373 struct buf *bp;
1374 {
1375 struct vndbuf *vbp = (struct vndbuf *) bp;
1376 struct vndxfer *vnx = vbp->vb_xfer;
1377 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1378 struct swapdev *sdp = vnx->vx_sdp;
1379 int s, resid;
1380 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1381
1382 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1383 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1384 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1385 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1386
1387 /*
1388 * protect vbp at splbio and update.
1389 */
1390
1391 s = splbio();
1392 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1393 pbp->b_resid -= resid;
1394 vnx->vx_pending--;
1395
1396 if (vbp->vb_buf.b_error) {
1397 UVMHIST_LOG(pdhist, " got error=%d !",
1398 vbp->vb_buf.b_error, 0, 0, 0);
1399
1400 /* pass error upward */
1401 vnx->vx_error = vbp->vb_buf.b_error;
1402 }
1403
1404 /*
1405 * disassociate this buffer from the vnode.
1406 */
1407 brelvp(&vbp->vb_buf);
1408
1409 /*
1410 * kill vbp structure
1411 */
1412 putvndbuf(vbp);
1413
1414 /*
1415 * wrap up this transaction if it has run to completion or, in
1416 * case of an error, when all auxiliary buffers have returned.
1417 */
1418 if (vnx->vx_error != 0) {
1419 /* pass error upward */
1420 pbp->b_flags |= B_ERROR;
1421 pbp->b_error = vnx->vx_error;
1422 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1423 putvndxfer(vnx);
1424 biodone(pbp);
1425 }
1426 } else if (pbp->b_resid == 0) {
1427 #ifdef DIAGNOSTIC
1428 if (vnx->vx_pending != 0)
1429 panic("sw_reg_iodone: vnx pending: %d",vnx->vx_pending);
1430 #endif
1431
1432 if ((vnx->vx_flags & VX_BUSY) == 0) {
1433 UVMHIST_LOG(pdhist, " iodone error=%d !",
1434 pbp, vnx->vx_error, 0, 0);
1435 putvndxfer(vnx);
1436 biodone(pbp);
1437 }
1438 }
1439
1440 /*
1441 * done! start next swapdev I/O if one is pending
1442 */
1443 sdp->swd_active--;
1444 sw_reg_start(sdp);
1445 splx(s);
1446 }
1447
1448
1449 /*
1450 * uvm_swap_alloc: allocate space on swap
1451 *
1452 * => allocation is done "round robin" down the priority list, as we
1453 * allocate in a priority we "rotate" the circle queue.
1454 * => space can be freed with uvm_swap_free
1455 * => we return the page slot number in /dev/drum (0 == invalid slot)
1456 * => we lock uvm.swap_data_lock
1457 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1458 */
1459 int
1460 uvm_swap_alloc(nslots, lessok)
1461 int *nslots; /* IN/OUT */
1462 boolean_t lessok;
1463 {
1464 struct swapdev *sdp;
1465 struct swappri *spp;
1466 u_long result;
1467 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1468
1469 /*
1470 * no swap devices configured yet? definite failure.
1471 */
1472 if (uvmexp.nswapdev < 1)
1473 return 0;
1474
1475 /*
1476 * lock data lock, convert slots into blocks, and enter loop
1477 */
1478 simple_lock(&uvm.swap_data_lock);
1479
1480 ReTry: /* XXXMRG */
1481 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
1482 spp = LIST_NEXT(spp, spi_swappri)) {
1483 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
1484 sdp != (void *)&spp->spi_swapdev;
1485 sdp = CIRCLEQ_NEXT(sdp,swd_next)) {
1486 /* if it's not enabled, then we can't swap from it */
1487 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1488 continue;
1489 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1490 continue;
1491 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1492 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1493 &result) != 0) {
1494 continue;
1495 }
1496
1497 /*
1498 * successful allocation! now rotate the circleq.
1499 */
1500 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1501 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1502 sdp->swd_npginuse += *nslots;
1503 uvmexp.swpginuse += *nslots;
1504 simple_unlock(&uvm.swap_data_lock);
1505 /* done! return drum slot number */
1506 UVMHIST_LOG(pdhist,
1507 "success! returning %d slots starting at %d",
1508 *nslots, result + sdp->swd_drumoffset, 0, 0);
1509 return(result + sdp->swd_drumoffset);
1510 }
1511 }
1512
1513 /* XXXMRG: BEGIN HACK */
1514 if (*nslots > 1 && lessok) {
1515 *nslots = 1;
1516 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1517 }
1518 /* XXXMRG: END HACK */
1519
1520 simple_unlock(&uvm.swap_data_lock);
1521 return 0; /* failed */
1522 }
1523
1524 /*
1525 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1526 *
1527 * => we lock uvm.swap_data_lock
1528 */
1529 void
1530 uvm_swap_markbad(startslot, nslots)
1531 int startslot;
1532 int nslots;
1533 {
1534 struct swapdev *sdp;
1535 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1536
1537 simple_lock(&uvm.swap_data_lock);
1538 sdp = swapdrum_getsdp(startslot);
1539
1540 /*
1541 * we just keep track of how many pages have been marked bad
1542 * in this device, to make everything add up in swap_off().
1543 * we assume here that the range of slots will all be within
1544 * one swap device.
1545 */
1546
1547 sdp->swd_npgbad += nslots;
1548 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1549 simple_unlock(&uvm.swap_data_lock);
1550 }
1551
1552 /*
1553 * uvm_swap_free: free swap slots
1554 *
1555 * => this can be all or part of an allocation made by uvm_swap_alloc
1556 * => we lock uvm.swap_data_lock
1557 */
1558 void
1559 uvm_swap_free(startslot, nslots)
1560 int startslot;
1561 int nslots;
1562 {
1563 struct swapdev *sdp;
1564 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1565
1566 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1567 startslot, 0, 0);
1568
1569 /*
1570 * ignore attempts to free the "bad" slot.
1571 */
1572 if (startslot == SWSLOT_BAD) {
1573 return;
1574 }
1575
1576 /*
1577 * convert drum slot offset back to sdp, free the blocks
1578 * in the extent, and return. must hold pri lock to do
1579 * lookup and access the extent.
1580 */
1581 simple_lock(&uvm.swap_data_lock);
1582 sdp = swapdrum_getsdp(startslot);
1583
1584 #ifdef DIAGNOSTIC
1585 if (uvmexp.nswapdev < 1)
1586 panic("uvm_swap_free: uvmexp.nswapdev < 1\n");
1587 if (sdp == NULL) {
1588 printf("uvm_swap_free: startslot %d, nslots %d\n", startslot,
1589 nslots);
1590 panic("uvm_swap_free: unmapped address\n");
1591 }
1592 #endif
1593 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1594 EX_MALLOCOK|EX_NOWAIT) != 0) {
1595 printf("warning: resource shortage: %d pages of swap lost\n",
1596 nslots);
1597 }
1598
1599 sdp->swd_npginuse -= nslots;
1600 uvmexp.swpginuse -= nslots;
1601 #ifdef DIAGNOSTIC
1602 if (sdp->swd_npginuse < 0)
1603 panic("uvm_swap_free: inuse < 0");
1604 #endif
1605 simple_unlock(&uvm.swap_data_lock);
1606 }
1607
1608 /*
1609 * uvm_swap_put: put any number of pages into a contig place on swap
1610 *
1611 * => can be sync or async
1612 * => XXXMRG: consider making it an inline or macro
1613 */
1614 int
1615 uvm_swap_put(swslot, ppsp, npages, flags)
1616 int swslot;
1617 struct vm_page **ppsp;
1618 int npages;
1619 int flags;
1620 {
1621 int result;
1622
1623 result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1624 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1625
1626 return (result);
1627 }
1628
1629 /*
1630 * uvm_swap_get: get a single page from swap
1631 *
1632 * => usually a sync op (from fault)
1633 * => XXXMRG: consider making it an inline or macro
1634 */
1635 int
1636 uvm_swap_get(page, swslot, flags)
1637 struct vm_page *page;
1638 int swslot, flags;
1639 {
1640 int result;
1641
1642 uvmexp.nswget++;
1643 #ifdef DIAGNOSTIC
1644 if ((flags & PGO_SYNCIO) == 0)
1645 printf("uvm_swap_get: ASYNC get requested?\n");
1646 #endif
1647
1648 if (swslot == SWSLOT_BAD) {
1649 return VM_PAGER_ERROR;
1650 }
1651
1652 /*
1653 * this page is (about to be) no longer only in swap.
1654 */
1655 simple_lock(&uvm.swap_data_lock);
1656 uvmexp.swpgonly--;
1657 simple_unlock(&uvm.swap_data_lock);
1658
1659 result = uvm_swap_io(&page, swslot, 1, B_READ |
1660 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1661
1662 if (result != VM_PAGER_OK && result != VM_PAGER_PEND) {
1663 /*
1664 * oops, the read failed so it really is still only in swap.
1665 */
1666 simple_lock(&uvm.swap_data_lock);
1667 uvmexp.swpgonly++;
1668 simple_unlock(&uvm.swap_data_lock);
1669 }
1670
1671 return (result);
1672 }
1673
1674 /*
1675 * uvm_swap_io: do an i/o operation to swap
1676 */
1677
1678 static int
1679 uvm_swap_io(pps, startslot, npages, flags)
1680 struct vm_page **pps;
1681 int startslot, npages, flags;
1682 {
1683 daddr_t startblk;
1684 struct buf *bp;
1685 vaddr_t kva;
1686 int result, s, mapinflags, pflag;
1687 boolean_t write, async;
1688 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1689
1690 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1691 startslot, npages, flags, 0);
1692
1693 write = (flags & B_READ) == 0;
1694 async = (flags & B_ASYNC) != 0;
1695
1696 /*
1697 * convert starting drum slot to block number
1698 */
1699 startblk = btodb(startslot << PAGE_SHIFT);
1700
1701 /*
1702 * first, map the pages into the kernel (XXX: currently required
1703 * by buffer system).
1704 */
1705
1706 mapinflags = !write ? UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE;
1707 if (!async)
1708 mapinflags |= UVMPAGER_MAPIN_WAITOK;
1709 kva = uvm_pagermapin(pps, npages, mapinflags);
1710 if (kva == 0)
1711 return (VM_PAGER_AGAIN);
1712
1713 /*
1714 * now allocate a buf for the i/o.
1715 * [make sure we don't put the pagedaemon to sleep...]
1716 */
1717 s = splbio();
1718 pflag = (async || curproc == uvm.pagedaemon_proc) ? 0 : PR_WAITOK;
1719 bp = pool_get(&bufpool, pflag);
1720 splx(s);
1721
1722 /*
1723 * if we failed to get a buf, return "try again"
1724 */
1725 if (bp == NULL)
1726 return (VM_PAGER_AGAIN);
1727
1728 /*
1729 * fill in the bp/sbp. we currently route our i/o through
1730 * /dev/drum's vnode [swapdev_vp].
1731 */
1732 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1733 bp->b_proc = &proc0; /* XXX */
1734 bp->b_vnbufs.le_next = NOLIST;
1735 bp->b_data = (caddr_t)kva;
1736 bp->b_blkno = startblk;
1737 s = splbio();
1738 VHOLD(swapdev_vp);
1739 bp->b_vp = swapdev_vp;
1740 splx(s);
1741 /* XXXCDC: isn't swapdev_vp always a VCHR? */
1742 /* XXXMRG: probably -- this is obviously something inherited... */
1743 if (swapdev_vp->v_type == VBLK)
1744 bp->b_dev = swapdev_vp->v_rdev;
1745 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1746 LIST_INIT(&bp->b_dep);
1747
1748 /*
1749 * bump v_numoutput (counter of number of active outputs).
1750 */
1751 if (write) {
1752 s = splbio();
1753 swapdev_vp->v_numoutput++;
1754 splx(s);
1755 }
1756
1757 /*
1758 * for async ops we must set up the iodone handler.
1759 */
1760 if (async) {
1761 /* XXXUBC pagedaemon */
1762 bp->b_flags |= B_CALL | (curproc == uvm.pagedaemon_proc ?
1763 B_PDAEMON : 0);
1764 bp->b_iodone = uvm_aio_biodone;
1765 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1766 }
1767 UVMHIST_LOG(pdhist,
1768 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1769 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1770
1771 /*
1772 * now we start the I/O, and if async, return.
1773 */
1774 VOP_STRATEGY(bp);
1775 if (async)
1776 return (VM_PAGER_PEND);
1777
1778 /*
1779 * must be sync i/o. wait for it to finish
1780 */
1781 (void) biowait(bp);
1782 result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
1783
1784 /*
1785 * kill the pager mapping
1786 */
1787 uvm_pagermapout(kva, npages);
1788
1789 /*
1790 * now dispose of the buf
1791 */
1792 s = splbio();
1793 if (bp->b_vp)
1794 brelvp(bp);
1795 if (write)
1796 vwakeup(bp);
1797 pool_put(&bufpool, bp);
1798 splx(s);
1799
1800 /*
1801 * finally return.
1802 */
1803 UVMHIST_LOG(pdhist, "<- done (sync) result=%d", result, 0, 0, 0);
1804 return (result);
1805 }
1806