uvm_swap.c revision 1.45 1 /* $NetBSD: uvm_swap.c,v 1.45 2001/02/12 11:50:50 pk Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include "fs_nfs.h"
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/conf.h>
43 #include <sys/proc.h>
44 #include <sys/namei.h>
45 #include <sys/disklabel.h>
46 #include <sys/errno.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 #include <sys/vnode.h>
50 #include <sys/file.h>
51 #include <sys/extent.h>
52 #include <sys/mount.h>
53 #include <sys/pool.h>
54 #include <sys/syscallargs.h>
55 #include <sys/swap.h>
56
57 #include <uvm/uvm.h>
58
59 #include <miscfs/specfs/specdev.h>
60
61 /*
62 * uvm_swap.c: manage configuration and i/o to swap space.
63 */
64
65 /*
66 * swap space is managed in the following way:
67 *
68 * each swap partition or file is described by a "swapdev" structure.
69 * each "swapdev" structure contains a "swapent" structure which contains
70 * information that is passed up to the user (via system calls).
71 *
72 * each swap partition is assigned a "priority" (int) which controls
73 * swap parition usage.
74 *
75 * the system maintains a global data structure describing all swap
76 * partitions/files. there is a sorted LIST of "swappri" structures
77 * which describe "swapdev"'s at that priority. this LIST is headed
78 * by the "swap_priority" global var. each "swappri" contains a
79 * CIRCLEQ of "swapdev" structures at that priority.
80 *
81 * locking:
82 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
83 * system call and prevents the swap priority list from changing
84 * while we are in the middle of a system call (e.g. SWAP_STATS).
85 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
86 * structures including the priority list, the swapdev structures,
87 * and the swapmap extent.
88 *
89 * each swap device has the following info:
90 * - swap device in use (could be disabled, preventing future use)
91 * - swap enabled (allows new allocations on swap)
92 * - map info in /dev/drum
93 * - vnode pointer
94 * for swap files only:
95 * - block size
96 * - max byte count in buffer
97 * - buffer
98 * - credentials to use when doing i/o to file
99 *
100 * userland controls and configures swap with the swapctl(2) system call.
101 * the sys_swapctl performs the following operations:
102 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
103 * [2] SWAP_STATS: given a pointer to an array of swapent structures
104 * (passed in via "arg") of a size passed in via "misc" ... we load
105 * the current swap config into the array.
106 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
107 * priority in "misc", start swapping on it.
108 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
109 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
110 * "misc")
111 */
112
113 /*
114 * swapdev: describes a single swap partition/file
115 *
116 * note the following should be true:
117 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
118 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
119 */
120 struct swapdev {
121 struct oswapent swd_ose;
122 #define swd_dev swd_ose.ose_dev /* device id */
123 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
124 #define swd_priority swd_ose.ose_priority /* our priority */
125 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
126 char *swd_path; /* saved pathname of device */
127 int swd_pathlen; /* length of pathname */
128 int swd_npages; /* #pages we can use */
129 int swd_npginuse; /* #pages in use */
130 int swd_npgbad; /* #pages bad */
131 int swd_drumoffset; /* page0 offset in drum */
132 int swd_drumsize; /* #pages in drum */
133 struct extent *swd_ex; /* extent for this swapdev */
134 char swd_exname[12]; /* name of extent above */
135 struct vnode *swd_vp; /* backing vnode */
136 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
137
138 int swd_bsize; /* blocksize (bytes) */
139 int swd_maxactive; /* max active i/o reqs */
140 struct buf_queue swd_tab; /* buffer list */
141 int swd_active; /* number of active buffers */
142 struct ucred *swd_cred; /* cred for file access */
143 };
144
145 /*
146 * swap device priority entry; the list is kept sorted on `spi_priority'.
147 */
148 struct swappri {
149 int spi_priority; /* priority */
150 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
151 /* circleq of swapdevs at this priority */
152 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
153 };
154
155 /*
156 * The following two structures are used to keep track of data transfers
157 * on swap devices associated with regular files.
158 * NOTE: this code is more or less a copy of vnd.c; we use the same
159 * structure names here to ease porting..
160 */
161 struct vndxfer {
162 struct buf *vx_bp; /* Pointer to parent buffer */
163 struct swapdev *vx_sdp;
164 int vx_error;
165 int vx_pending; /* # of pending aux buffers */
166 int vx_flags;
167 #define VX_BUSY 1
168 #define VX_DEAD 2
169 };
170
171 struct vndbuf {
172 struct buf vb_buf;
173 struct vndxfer *vb_xfer;
174 };
175
176
177 /*
178 * We keep a of pool vndbuf's and vndxfer structures.
179 */
180 struct pool *vndxfer_pool;
181 struct pool *vndbuf_pool;
182
183 #define getvndxfer(vnx) do { \
184 int s = splbio(); \
185 vnx = pool_get(vndxfer_pool, PR_MALLOCOK|PR_WAITOK); \
186 splx(s); \
187 } while (0)
188
189 #define putvndxfer(vnx) { \
190 pool_put(vndxfer_pool, (void *)(vnx)); \
191 }
192
193 #define getvndbuf(vbp) do { \
194 int s = splbio(); \
195 vbp = pool_get(vndbuf_pool, PR_MALLOCOK|PR_WAITOK); \
196 splx(s); \
197 } while (0)
198
199 #define putvndbuf(vbp) { \
200 pool_put(vndbuf_pool, (void *)(vbp)); \
201 }
202
203 /* /dev/drum */
204 bdev_decl(sw);
205 cdev_decl(sw);
206
207 /*
208 * local variables
209 */
210 static struct extent *swapmap; /* controls the mapping of /dev/drum */
211
212 /* list of all active swap devices [by priority] */
213 LIST_HEAD(swap_priority, swappri);
214 static struct swap_priority swap_priority;
215
216 /* locks */
217 lock_data_t swap_syscall_lock;
218
219 /*
220 * prototypes
221 */
222 static void swapdrum_add __P((struct swapdev *, int));
223 static struct swapdev *swapdrum_getsdp __P((int));
224
225 static struct swapdev *swaplist_find __P((struct vnode *, int));
226 static void swaplist_insert __P((struct swapdev *,
227 struct swappri *, int));
228 static void swaplist_trim __P((void));
229
230 static int swap_on __P((struct proc *, struct swapdev *));
231 static int swap_off __P((struct proc *, struct swapdev *));
232
233 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
234 static void sw_reg_iodone __P((struct buf *));
235 static void sw_reg_start __P((struct swapdev *));
236
237 static int uvm_swap_io __P((struct vm_page **, int, int, int));
238
239 /*
240 * uvm_swap_init: init the swap system data structures and locks
241 *
242 * => called at boot time from init_main.c after the filesystems
243 * are brought up (which happens after uvm_init())
244 */
245 void
246 uvm_swap_init()
247 {
248 UVMHIST_FUNC("uvm_swap_init");
249
250 UVMHIST_CALLED(pdhist);
251 /*
252 * first, init the swap list, its counter, and its lock.
253 * then get a handle on the vnode for /dev/drum by using
254 * the its dev_t number ("swapdev", from MD conf.c).
255 */
256
257 LIST_INIT(&swap_priority);
258 uvmexp.nswapdev = 0;
259 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
260 simple_lock_init(&uvm.swap_data_lock);
261
262 if (bdevvp(swapdev, &swapdev_vp))
263 panic("uvm_swap_init: can't get vnode for swap device");
264
265 /*
266 * create swap block resource map to map /dev/drum. the range
267 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
268 * that block 0 is reserved (used to indicate an allocation
269 * failure, or no allocation).
270 */
271 swapmap = extent_create("swapmap", 1, INT_MAX,
272 M_VMSWAP, 0, 0, EX_NOWAIT);
273 if (swapmap == 0)
274 panic("uvm_swap_init: extent_create failed");
275
276 /*
277 * allocate pools for structures used for swapping to files.
278 */
279
280 vndxfer_pool =
281 pool_create(sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 0,
282 NULL, NULL, 0);
283 if (vndxfer_pool == NULL)
284 panic("swapinit: pool_create failed");
285
286 vndbuf_pool =
287 pool_create(sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 0,
288 NULL, NULL, 0);
289 if (vndbuf_pool == NULL)
290 panic("swapinit: pool_create failed");
291 /*
292 * done!
293 */
294 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
295 }
296
297 /*
298 * swaplist functions: functions that operate on the list of swap
299 * devices on the system.
300 */
301
302 /*
303 * swaplist_insert: insert swap device "sdp" into the global list
304 *
305 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
306 * => caller must provide a newly malloc'd swappri structure (we will
307 * FREE it if we don't need it... this it to prevent malloc blocking
308 * here while adding swap)
309 */
310 static void
311 swaplist_insert(sdp, newspp, priority)
312 struct swapdev *sdp;
313 struct swappri *newspp;
314 int priority;
315 {
316 struct swappri *spp, *pspp;
317 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
318
319 /*
320 * find entry at or after which to insert the new device.
321 */
322 for (pspp = NULL, spp = LIST_FIRST(&swap_priority); spp != NULL;
323 spp = LIST_NEXT(spp, spi_swappri)) {
324 if (priority <= spp->spi_priority)
325 break;
326 pspp = spp;
327 }
328
329 /*
330 * new priority?
331 */
332 if (spp == NULL || spp->spi_priority != priority) {
333 spp = newspp; /* use newspp! */
334 UVMHIST_LOG(pdhist, "created new swappri = %d",
335 priority, 0, 0, 0);
336
337 spp->spi_priority = priority;
338 CIRCLEQ_INIT(&spp->spi_swapdev);
339
340 if (pspp)
341 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
342 else
343 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
344 } else {
345 /* we don't need a new priority structure, free it */
346 FREE(newspp, M_VMSWAP);
347 }
348
349 /*
350 * priority found (or created). now insert on the priority's
351 * circleq list and bump the total number of swapdevs.
352 */
353 sdp->swd_priority = priority;
354 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
355 uvmexp.nswapdev++;
356 }
357
358 /*
359 * swaplist_find: find and optionally remove a swap device from the
360 * global list.
361 *
362 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
363 * => we return the swapdev we found (and removed)
364 */
365 static struct swapdev *
366 swaplist_find(vp, remove)
367 struct vnode *vp;
368 boolean_t remove;
369 {
370 struct swapdev *sdp;
371 struct swappri *spp;
372
373 /*
374 * search the lists for the requested vp
375 */
376 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
377 spp = LIST_NEXT(spp, spi_swappri)) {
378 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
379 sdp != (void *)&spp->spi_swapdev;
380 sdp = CIRCLEQ_NEXT(sdp, swd_next))
381 if (sdp->swd_vp == vp) {
382 if (remove) {
383 CIRCLEQ_REMOVE(&spp->spi_swapdev,
384 sdp, swd_next);
385 uvmexp.nswapdev--;
386 }
387 return(sdp);
388 }
389 }
390 return (NULL);
391 }
392
393
394 /*
395 * swaplist_trim: scan priority list for empty priority entries and kill
396 * them.
397 *
398 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
399 */
400 static void
401 swaplist_trim()
402 {
403 struct swappri *spp, *nextspp;
404
405 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
406 nextspp = LIST_NEXT(spp, spi_swappri);
407 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
408 (void *)&spp->spi_swapdev)
409 continue;
410 LIST_REMOVE(spp, spi_swappri);
411 free(spp, M_VMSWAP);
412 }
413 }
414
415 /*
416 * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
417 *
418 * => caller must hold swap_syscall_lock
419 * => uvm.swap_data_lock should be unlocked (we may sleep)
420 */
421 static void
422 swapdrum_add(sdp, npages)
423 struct swapdev *sdp;
424 int npages;
425 {
426 u_long result;
427
428 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
429 EX_WAITOK, &result))
430 panic("swapdrum_add");
431
432 sdp->swd_drumoffset = result;
433 sdp->swd_drumsize = npages;
434 }
435
436 /*
437 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
438 * to the "swapdev" that maps that section of the drum.
439 *
440 * => each swapdev takes one big contig chunk of the drum
441 * => caller must hold uvm.swap_data_lock
442 */
443 static struct swapdev *
444 swapdrum_getsdp(pgno)
445 int pgno;
446 {
447 struct swapdev *sdp;
448 struct swappri *spp;
449
450 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
451 spp = LIST_NEXT(spp, spi_swappri))
452 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
453 sdp != (void *)&spp->spi_swapdev;
454 sdp = CIRCLEQ_NEXT(sdp, swd_next))
455 if (pgno >= sdp->swd_drumoffset &&
456 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
457 return sdp;
458 }
459 return NULL;
460 }
461
462
463 /*
464 * sys_swapctl: main entry point for swapctl(2) system call
465 * [with two helper functions: swap_on and swap_off]
466 */
467 int
468 sys_swapctl(p, v, retval)
469 struct proc *p;
470 void *v;
471 register_t *retval;
472 {
473 struct sys_swapctl_args /* {
474 syscallarg(int) cmd;
475 syscallarg(void *) arg;
476 syscallarg(int) misc;
477 } */ *uap = (struct sys_swapctl_args *)v;
478 struct vnode *vp;
479 struct nameidata nd;
480 struct swappri *spp;
481 struct swapdev *sdp;
482 struct swapent *sep;
483 char userpath[PATH_MAX + 1];
484 size_t len;
485 int count, error, misc;
486 int priority;
487 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
488
489 misc = SCARG(uap, misc);
490
491 /*
492 * ensure serialized syscall access by grabbing the swap_syscall_lock
493 */
494 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
495
496 /*
497 * we handle the non-priv NSWAP and STATS request first.
498 *
499 * SWAP_NSWAP: return number of config'd swap devices
500 * [can also be obtained with uvmexp sysctl]
501 */
502 if (SCARG(uap, cmd) == SWAP_NSWAP) {
503 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
504 0, 0, 0);
505 *retval = uvmexp.nswapdev;
506 error = 0;
507 goto out;
508 }
509
510 /*
511 * SWAP_STATS: get stats on current # of configured swap devs
512 *
513 * note that the swap_priority list can't change as long
514 * as we are holding the swap_syscall_lock. we don't want
515 * to grab the uvm.swap_data_lock because we may fault&sleep during
516 * copyout() and we don't want to be holding that lock then!
517 */
518 if (SCARG(uap, cmd) == SWAP_STATS
519 #if defined(COMPAT_13)
520 || SCARG(uap, cmd) == SWAP_OSTATS
521 #endif
522 ) {
523 sep = (struct swapent *)SCARG(uap, arg);
524 count = 0;
525
526 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
527 spp = LIST_NEXT(spp, spi_swappri)) {
528 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
529 sdp != (void *)&spp->spi_swapdev && misc-- > 0;
530 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
531 /*
532 * backwards compatibility for system call.
533 * note that we use 'struct oswapent' as an
534 * overlay into both 'struct swapdev' and
535 * the userland 'struct swapent', as we
536 * want to retain backwards compatibility
537 * with NetBSD 1.3.
538 */
539 sdp->swd_ose.ose_inuse =
540 btodb((u_int64_t)sdp->swd_npginuse <<
541 PAGE_SHIFT);
542 error = copyout(&sdp->swd_ose, sep,
543 sizeof(struct oswapent));
544
545 /* now copy out the path if necessary */
546 #if defined(COMPAT_13)
547 if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
548 #else
549 if (error == 0)
550 #endif
551 error = copyout(sdp->swd_path,
552 &sep->se_path, sdp->swd_pathlen);
553
554 if (error)
555 goto out;
556 count++;
557 #if defined(COMPAT_13)
558 if (SCARG(uap, cmd) == SWAP_OSTATS)
559 ((struct oswapent *)sep)++;
560 else
561 #endif
562 sep++;
563 }
564 }
565
566 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
567
568 *retval = count;
569 error = 0;
570 goto out;
571 }
572
573 /*
574 * all other requests require superuser privs. verify.
575 */
576 if ((error = suser(p->p_ucred, &p->p_acflag)))
577 goto out;
578
579 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
580 dev_t *devp = (dev_t *)SCARG(uap, arg);
581
582 error = copyout(&dumpdev, devp, sizeof(dumpdev));
583 goto out;
584 }
585
586 /*
587 * at this point we expect a path name in arg. we will
588 * use namei() to gain a vnode reference (vref), and lock
589 * the vnode (VOP_LOCK).
590 *
591 * XXX: a NULL arg means use the root vnode pointer (e.g. for
592 * miniroot)
593 */
594 if (SCARG(uap, arg) == NULL) {
595 vp = rootvp; /* miniroot */
596 if (vget(vp, LK_EXCLUSIVE)) {
597 error = EBUSY;
598 goto out;
599 }
600 if (SCARG(uap, cmd) == SWAP_ON &&
601 copystr("miniroot", userpath, sizeof userpath, &len))
602 panic("swapctl: miniroot copy failed");
603 } else {
604 int space;
605 char *where;
606
607 if (SCARG(uap, cmd) == SWAP_ON) {
608 if ((error = copyinstr(SCARG(uap, arg), userpath,
609 sizeof userpath, &len)))
610 goto out;
611 space = UIO_SYSSPACE;
612 where = userpath;
613 } else {
614 space = UIO_USERSPACE;
615 where = (char *)SCARG(uap, arg);
616 }
617 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
618 if ((error = namei(&nd)))
619 goto out;
620 vp = nd.ni_vp;
621 }
622 /* note: "vp" is referenced and locked */
623
624 error = 0; /* assume no error */
625 switch(SCARG(uap, cmd)) {
626
627 case SWAP_DUMPDEV:
628 if (vp->v_type != VBLK) {
629 error = ENOTBLK;
630 break;
631 }
632 dumpdev = vp->v_rdev;
633 break;
634
635 case SWAP_CTL:
636 /*
637 * get new priority, remove old entry (if any) and then
638 * reinsert it in the correct place. finally, prune out
639 * any empty priority structures.
640 */
641 priority = SCARG(uap, misc);
642 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
643 simple_lock(&uvm.swap_data_lock);
644 if ((sdp = swaplist_find(vp, 1)) == NULL) {
645 error = ENOENT;
646 } else {
647 swaplist_insert(sdp, spp, priority);
648 swaplist_trim();
649 }
650 simple_unlock(&uvm.swap_data_lock);
651 if (error)
652 free(spp, M_VMSWAP);
653 break;
654
655 case SWAP_ON:
656
657 /*
658 * check for duplicates. if none found, then insert a
659 * dummy entry on the list to prevent someone else from
660 * trying to enable this device while we are working on
661 * it.
662 */
663
664 priority = SCARG(uap, misc);
665 simple_lock(&uvm.swap_data_lock);
666 if ((sdp = swaplist_find(vp, 0)) != NULL) {
667 error = EBUSY;
668 simple_unlock(&uvm.swap_data_lock);
669 break;
670 }
671 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
672 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
673 memset(sdp, 0, sizeof(*sdp));
674 sdp->swd_flags = SWF_FAKE; /* placeholder only */
675 sdp->swd_vp = vp;
676 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
677 BUFQ_INIT(&sdp->swd_tab);
678
679 /*
680 * XXX Is NFS elaboration necessary?
681 */
682 if (vp->v_type == VREG) {
683 sdp->swd_cred = crdup(p->p_ucred);
684 }
685
686 swaplist_insert(sdp, spp, priority);
687 simple_unlock(&uvm.swap_data_lock);
688
689 sdp->swd_pathlen = len;
690 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
691 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
692 panic("swapctl: copystr");
693
694 /*
695 * we've now got a FAKE placeholder in the swap list.
696 * now attempt to enable swap on it. if we fail, undo
697 * what we've done and kill the fake entry we just inserted.
698 * if swap_on is a success, it will clear the SWF_FAKE flag
699 */
700
701 if ((error = swap_on(p, sdp)) != 0) {
702 simple_lock(&uvm.swap_data_lock);
703 (void) swaplist_find(vp, 1); /* kill fake entry */
704 swaplist_trim();
705 simple_unlock(&uvm.swap_data_lock);
706 if (vp->v_type == VREG) {
707 crfree(sdp->swd_cred);
708 }
709 free(sdp->swd_path, M_VMSWAP);
710 free(sdp, M_VMSWAP);
711 break;
712 }
713 break;
714
715 case SWAP_OFF:
716 simple_lock(&uvm.swap_data_lock);
717 if ((sdp = swaplist_find(vp, 0)) == NULL) {
718 simple_unlock(&uvm.swap_data_lock);
719 error = ENXIO;
720 break;
721 }
722
723 /*
724 * If a device isn't in use or enabled, we
725 * can't stop swapping from it (again).
726 */
727 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
728 simple_unlock(&uvm.swap_data_lock);
729 error = EBUSY;
730 break;
731 }
732
733 /*
734 * do the real work.
735 */
736 error = swap_off(p, sdp);
737 break;
738
739 default:
740 error = EINVAL;
741 }
742
743 /*
744 * done! release the ref gained by namei() and unlock.
745 */
746 vput(vp);
747
748 out:
749 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
750
751 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
752 return (error);
753 }
754
755 /*
756 * swap_on: attempt to enable a swapdev for swapping. note that the
757 * swapdev is already on the global list, but disabled (marked
758 * SWF_FAKE).
759 *
760 * => we avoid the start of the disk (to protect disk labels)
761 * => we also avoid the miniroot, if we are swapping to root.
762 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
763 * if needed.
764 */
765 static int
766 swap_on(p, sdp)
767 struct proc *p;
768 struct swapdev *sdp;
769 {
770 static int count = 0; /* static */
771 struct vnode *vp;
772 int error, npages, nblocks, size;
773 long addr;
774 struct vattr va;
775 #ifdef NFS
776 extern int (**nfsv2_vnodeop_p) __P((void *));
777 #endif /* NFS */
778 dev_t dev;
779 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
780
781 /*
782 * we want to enable swapping on sdp. the swd_vp contains
783 * the vnode we want (locked and ref'd), and the swd_dev
784 * contains the dev_t of the file, if it a block device.
785 */
786
787 vp = sdp->swd_vp;
788 dev = sdp->swd_dev;
789
790 /*
791 * open the swap file (mostly useful for block device files to
792 * let device driver know what is up).
793 *
794 * we skip the open/close for root on swap because the root
795 * has already been opened when root was mounted (mountroot).
796 */
797 if (vp != rootvp) {
798 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
799 return (error);
800 }
801
802 /* XXX this only works for block devices */
803 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
804
805 /*
806 * we now need to determine the size of the swap area. for
807 * block specials we can call the d_psize function.
808 * for normal files, we must stat [get attrs].
809 *
810 * we put the result in nblks.
811 * for normal files, we also want the filesystem block size
812 * (which we get with statfs).
813 */
814 switch (vp->v_type) {
815 case VBLK:
816 if (bdevsw[major(dev)].d_psize == 0 ||
817 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
818 error = ENXIO;
819 goto bad;
820 }
821 break;
822
823 case VREG:
824 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
825 goto bad;
826 nblocks = (int)btodb(va.va_size);
827 if ((error =
828 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
829 goto bad;
830
831 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
832 /*
833 * limit the max # of outstanding I/O requests we issue
834 * at any one time. take it easy on NFS servers.
835 */
836 #ifdef NFS
837 if (vp->v_op == nfsv2_vnodeop_p)
838 sdp->swd_maxactive = 2; /* XXX */
839 else
840 #endif /* NFS */
841 sdp->swd_maxactive = 8; /* XXX */
842 break;
843
844 default:
845 error = ENXIO;
846 goto bad;
847 }
848
849 /*
850 * save nblocks in a safe place and convert to pages.
851 */
852
853 sdp->swd_ose.ose_nblks = nblocks;
854 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
855
856 /*
857 * for block special files, we want to make sure that leave
858 * the disklabel and bootblocks alone, so we arrange to skip
859 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
860 * note that because of this the "size" can be less than the
861 * actual number of blocks on the device.
862 */
863 if (vp->v_type == VBLK) {
864 /* we use pages 1 to (size - 1) [inclusive] */
865 size = npages - 1;
866 addr = 1;
867 } else {
868 /* we use pages 0 to (size - 1) [inclusive] */
869 size = npages;
870 addr = 0;
871 }
872
873 /*
874 * make sure we have enough blocks for a reasonable sized swap
875 * area. we want at least one page.
876 */
877
878 if (size < 1) {
879 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
880 error = EINVAL;
881 goto bad;
882 }
883
884 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
885
886 /*
887 * now we need to allocate an extent to manage this swap device
888 */
889 snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
890 count++);
891
892 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
893 sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
894 0, 0, EX_WAITOK);
895 /* allocate the `saved' region from the extent so it won't be used */
896 if (addr) {
897 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
898 panic("disklabel region");
899 }
900
901 /*
902 * if the vnode we are swapping to is the root vnode
903 * (i.e. we are swapping to the miniroot) then we want
904 * to make sure we don't overwrite it. do a statfs to
905 * find its size and skip over it.
906 */
907 if (vp == rootvp) {
908 struct mount *mp;
909 struct statfs *sp;
910 int rootblocks, rootpages;
911
912 mp = rootvnode->v_mount;
913 sp = &mp->mnt_stat;
914 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
915 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
916 if (rootpages > size)
917 panic("swap_on: miniroot larger than swap?");
918
919 if (extent_alloc_region(sdp->swd_ex, addr,
920 rootpages, EX_WAITOK))
921 panic("swap_on: unable to preserve miniroot");
922
923 size -= rootpages;
924 printf("Preserved %d pages of miniroot ", rootpages);
925 printf("leaving %d pages of swap\n", size);
926 }
927
928 /*
929 * try to add anons to reflect the new swap space.
930 */
931
932 error = uvm_anon_add(size);
933 if (error) {
934 goto bad;
935 }
936
937 /*
938 * add a ref to vp to reflect usage as a swap device.
939 */
940 vref(vp);
941
942 /*
943 * now add the new swapdev to the drum and enable.
944 */
945 simple_lock(&uvm.swap_data_lock);
946 swapdrum_add(sdp, npages);
947 sdp->swd_npages = size;
948 sdp->swd_flags &= ~SWF_FAKE; /* going live */
949 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
950 uvmexp.swpages += size;
951 simple_unlock(&uvm.swap_data_lock);
952 return (0);
953
954 /*
955 * failure: clean up and return error.
956 */
957
958 bad:
959 if (sdp->swd_ex) {
960 extent_destroy(sdp->swd_ex);
961 }
962 if (vp != rootvp) {
963 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
964 }
965 return (error);
966 }
967
968 /*
969 * swap_off: stop swapping on swapdev
970 *
971 * => swap data should be locked, we will unlock.
972 */
973 static int
974 swap_off(p, sdp)
975 struct proc *p;
976 struct swapdev *sdp;
977 {
978 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
979 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev,0,0,0);
980
981 /* disable the swap area being removed */
982 sdp->swd_flags &= ~SWF_ENABLE;
983 simple_unlock(&uvm.swap_data_lock);
984
985 /*
986 * the idea is to find all the pages that are paged out to this
987 * device, and page them all in. in uvm, swap-backed pageable
988 * memory can take two forms: aobjs and anons. call the
989 * swapoff hook for each subsystem to bring in pages.
990 */
991
992 if (uao_swap_off(sdp->swd_drumoffset,
993 sdp->swd_drumoffset + sdp->swd_drumsize) ||
994 anon_swap_off(sdp->swd_drumoffset,
995 sdp->swd_drumoffset + sdp->swd_drumsize)) {
996
997 simple_lock(&uvm.swap_data_lock);
998 sdp->swd_flags |= SWF_ENABLE;
999 simple_unlock(&uvm.swap_data_lock);
1000 return ENOMEM;
1001 }
1002
1003 #ifdef DIAGNOSTIC
1004 if (sdp->swd_npginuse != sdp->swd_npgbad) {
1005 panic("swap_off: sdp %p - %d pages still in use (%d bad)\n",
1006 sdp, sdp->swd_npginuse, sdp->swd_npgbad);
1007 }
1008 #endif
1009
1010 /*
1011 * done with the vnode and saved creds.
1012 * drop our ref on the vnode before calling VOP_CLOSE()
1013 * so that spec_close() can tell if this is the last close.
1014 */
1015 if (sdp->swd_vp->v_type == VREG) {
1016 crfree(sdp->swd_cred);
1017 }
1018 vrele(sdp->swd_vp);
1019 if (sdp->swd_vp != rootvp) {
1020 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1021 }
1022
1023 /* remove anons from the system */
1024 uvm_anon_remove(sdp->swd_npages);
1025
1026 simple_lock(&uvm.swap_data_lock);
1027 uvmexp.swpages -= sdp->swd_npages;
1028
1029 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1030 panic("swap_off: swapdev not in list\n");
1031 swaplist_trim();
1032
1033 /*
1034 * free all resources!
1035 */
1036 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1037 EX_WAITOK);
1038 extent_destroy(sdp->swd_ex);
1039 free(sdp, M_VMSWAP);
1040 simple_unlock(&uvm.swap_data_lock);
1041 return (0);
1042 }
1043
1044 /*
1045 * /dev/drum interface and i/o functions
1046 */
1047
1048 /*
1049 * swread: the read function for the drum (just a call to physio)
1050 */
1051 /*ARGSUSED*/
1052 int
1053 swread(dev, uio, ioflag)
1054 dev_t dev;
1055 struct uio *uio;
1056 int ioflag;
1057 {
1058 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1059
1060 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1061 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1062 }
1063
1064 /*
1065 * swwrite: the write function for the drum (just a call to physio)
1066 */
1067 /*ARGSUSED*/
1068 int
1069 swwrite(dev, uio, ioflag)
1070 dev_t dev;
1071 struct uio *uio;
1072 int ioflag;
1073 {
1074 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1075
1076 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1077 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1078 }
1079
1080 /*
1081 * swstrategy: perform I/O on the drum
1082 *
1083 * => we must map the i/o request from the drum to the correct swapdev.
1084 */
1085 void
1086 swstrategy(bp)
1087 struct buf *bp;
1088 {
1089 struct swapdev *sdp;
1090 struct vnode *vp;
1091 int s, pageno, bn;
1092 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1093
1094 /*
1095 * convert block number to swapdev. note that swapdev can't
1096 * be yanked out from under us because we are holding resources
1097 * in it (i.e. the blocks we are doing I/O on).
1098 */
1099 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1100 simple_lock(&uvm.swap_data_lock);
1101 sdp = swapdrum_getsdp(pageno);
1102 simple_unlock(&uvm.swap_data_lock);
1103 if (sdp == NULL) {
1104 bp->b_error = EINVAL;
1105 bp->b_flags |= B_ERROR;
1106 biodone(bp);
1107 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1108 return;
1109 }
1110
1111 /*
1112 * convert drum page number to block number on this swapdev.
1113 */
1114
1115 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1116 bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1117
1118 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1119 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1120 sdp->swd_drumoffset, bn, bp->b_bcount);
1121
1122 /*
1123 * for block devices we finish up here.
1124 * for regular files we have to do more work which we delegate
1125 * to sw_reg_strategy().
1126 */
1127
1128 switch (sdp->swd_vp->v_type) {
1129 default:
1130 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1131
1132 case VBLK:
1133
1134 /*
1135 * must convert "bp" from an I/O on /dev/drum to an I/O
1136 * on the swapdev (sdp).
1137 */
1138 s = splbio();
1139 bp->b_blkno = bn; /* swapdev block number */
1140 vp = sdp->swd_vp; /* swapdev vnode pointer */
1141 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1142 VHOLD(vp); /* "hold" swapdev vp for i/o */
1143
1144 /*
1145 * if we are doing a write, we have to redirect the i/o on
1146 * drum's v_numoutput counter to the swapdevs.
1147 */
1148 if ((bp->b_flags & B_READ) == 0) {
1149 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1150 vp->v_numoutput++; /* put it on swapdev */
1151 }
1152
1153 /*
1154 * dissassocate buffer with /dev/drum vnode
1155 * [could be null if buf was from physio]
1156 */
1157 if (bp->b_vp != NULL)
1158 brelvp(bp);
1159
1160 /*
1161 * finally plug in swapdev vnode and start I/O
1162 */
1163 bp->b_vp = vp;
1164 splx(s);
1165 VOP_STRATEGY(bp);
1166 return;
1167
1168 case VREG:
1169 /*
1170 * delegate to sw_reg_strategy function.
1171 */
1172 sw_reg_strategy(sdp, bp, bn);
1173 return;
1174 }
1175 /* NOTREACHED */
1176 }
1177
1178 /*
1179 * sw_reg_strategy: handle swap i/o to regular files
1180 */
1181 static void
1182 sw_reg_strategy(sdp, bp, bn)
1183 struct swapdev *sdp;
1184 struct buf *bp;
1185 int bn;
1186 {
1187 struct vnode *vp;
1188 struct vndxfer *vnx;
1189 daddr_t nbn;
1190 caddr_t addr;
1191 off_t byteoff;
1192 int s, off, nra, error, sz, resid;
1193 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1194
1195 /*
1196 * allocate a vndxfer head for this transfer and point it to
1197 * our buffer.
1198 */
1199 getvndxfer(vnx);
1200 vnx->vx_flags = VX_BUSY;
1201 vnx->vx_error = 0;
1202 vnx->vx_pending = 0;
1203 vnx->vx_bp = bp;
1204 vnx->vx_sdp = sdp;
1205
1206 /*
1207 * setup for main loop where we read filesystem blocks into
1208 * our buffer.
1209 */
1210 error = 0;
1211 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1212 addr = bp->b_data; /* current position in buffer */
1213 byteoff = dbtob((u_int64_t)bn);
1214
1215 for (resid = bp->b_resid; resid; resid -= sz) {
1216 struct vndbuf *nbp;
1217
1218 /*
1219 * translate byteoffset into block number. return values:
1220 * vp = vnode of underlying device
1221 * nbn = new block number (on underlying vnode dev)
1222 * nra = num blocks we can read-ahead (excludes requested
1223 * block)
1224 */
1225 nra = 0;
1226 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1227 &vp, &nbn, &nra);
1228
1229 if (error == 0 && nbn == (daddr_t)-1) {
1230 /*
1231 * this used to just set error, but that doesn't
1232 * do the right thing. Instead, it causes random
1233 * memory errors. The panic() should remain until
1234 * this condition doesn't destabilize the system.
1235 */
1236 #if 1
1237 panic("sw_reg_strategy: swap to sparse file");
1238 #else
1239 error = EIO; /* failure */
1240 #endif
1241 }
1242
1243 /*
1244 * punt if there was an error or a hole in the file.
1245 * we must wait for any i/o ops we have already started
1246 * to finish before returning.
1247 *
1248 * XXX we could deal with holes here but it would be
1249 * a hassle (in the write case).
1250 */
1251 if (error) {
1252 s = splbio();
1253 vnx->vx_error = error; /* pass error up */
1254 goto out;
1255 }
1256
1257 /*
1258 * compute the size ("sz") of this transfer (in bytes).
1259 */
1260 off = byteoff % sdp->swd_bsize;
1261 sz = (1 + nra) * sdp->swd_bsize - off;
1262 if (sz > resid)
1263 sz = resid;
1264
1265 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1266 "vp %p/%p offset 0x%x/0x%x",
1267 sdp->swd_vp, vp, byteoff, nbn);
1268
1269 /*
1270 * now get a buf structure. note that the vb_buf is
1271 * at the front of the nbp structure so that you can
1272 * cast pointers between the two structure easily.
1273 */
1274 getvndbuf(nbp);
1275 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1276 nbp->vb_buf.b_bcount = sz;
1277 nbp->vb_buf.b_bufsize = sz;
1278 nbp->vb_buf.b_error = 0;
1279 nbp->vb_buf.b_data = addr;
1280 nbp->vb_buf.b_lblkno = 0;
1281 nbp->vb_buf.b_blkno = nbn + btodb(off);
1282 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1283 nbp->vb_buf.b_iodone = sw_reg_iodone;
1284 nbp->vb_buf.b_vp = NULL;
1285 LIST_INIT(&nbp->vb_buf.b_dep);
1286
1287 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1288
1289 /*
1290 * Just sort by block number
1291 */
1292 s = splbio();
1293 if (vnx->vx_error != 0) {
1294 putvndbuf(nbp);
1295 goto out;
1296 }
1297 vnx->vx_pending++;
1298
1299 /* assoc new buffer with underlying vnode */
1300 bgetvp(vp, &nbp->vb_buf);
1301
1302 /* sort it in and start I/O if we are not over our limit */
1303 disksort_blkno(&sdp->swd_tab, &nbp->vb_buf);
1304 sw_reg_start(sdp);
1305 splx(s);
1306
1307 /*
1308 * advance to the next I/O
1309 */
1310 byteoff += sz;
1311 addr += sz;
1312 }
1313
1314 s = splbio();
1315
1316 out: /* Arrive here at splbio */
1317 vnx->vx_flags &= ~VX_BUSY;
1318 if (vnx->vx_pending == 0) {
1319 if (vnx->vx_error != 0) {
1320 bp->b_error = vnx->vx_error;
1321 bp->b_flags |= B_ERROR;
1322 }
1323 putvndxfer(vnx);
1324 biodone(bp);
1325 }
1326 splx(s);
1327 }
1328
1329 /*
1330 * sw_reg_start: start an I/O request on the requested swapdev
1331 *
1332 * => reqs are sorted by disksort (above)
1333 */
1334 static void
1335 sw_reg_start(sdp)
1336 struct swapdev *sdp;
1337 {
1338 struct buf *bp;
1339 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1340
1341 /* recursion control */
1342 if ((sdp->swd_flags & SWF_BUSY) != 0)
1343 return;
1344
1345 sdp->swd_flags |= SWF_BUSY;
1346
1347 while (sdp->swd_active < sdp->swd_maxactive) {
1348 bp = BUFQ_FIRST(&sdp->swd_tab);
1349 if (bp == NULL)
1350 break;
1351 BUFQ_REMOVE(&sdp->swd_tab, bp);
1352 sdp->swd_active++;
1353
1354 UVMHIST_LOG(pdhist,
1355 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1356 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1357 if ((bp->b_flags & B_READ) == 0)
1358 bp->b_vp->v_numoutput++;
1359
1360 VOP_STRATEGY(bp);
1361 }
1362 sdp->swd_flags &= ~SWF_BUSY;
1363 }
1364
1365 /*
1366 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1367 *
1368 * => note that we can recover the vndbuf struct by casting the buf ptr
1369 */
1370 static void
1371 sw_reg_iodone(bp)
1372 struct buf *bp;
1373 {
1374 struct vndbuf *vbp = (struct vndbuf *) bp;
1375 struct vndxfer *vnx = vbp->vb_xfer;
1376 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1377 struct swapdev *sdp = vnx->vx_sdp;
1378 int s, resid;
1379 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1380
1381 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1382 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1383 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1384 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1385
1386 /*
1387 * protect vbp at splbio and update.
1388 */
1389
1390 s = splbio();
1391 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1392 pbp->b_resid -= resid;
1393 vnx->vx_pending--;
1394
1395 if (vbp->vb_buf.b_error) {
1396 UVMHIST_LOG(pdhist, " got error=%d !",
1397 vbp->vb_buf.b_error, 0, 0, 0);
1398
1399 /* pass error upward */
1400 vnx->vx_error = vbp->vb_buf.b_error;
1401 }
1402
1403 /*
1404 * disassociate this buffer from the vnode.
1405 */
1406 brelvp(&vbp->vb_buf);
1407
1408 /*
1409 * kill vbp structure
1410 */
1411 putvndbuf(vbp);
1412
1413 /*
1414 * wrap up this transaction if it has run to completion or, in
1415 * case of an error, when all auxiliary buffers have returned.
1416 */
1417 if (vnx->vx_error != 0) {
1418 /* pass error upward */
1419 pbp->b_flags |= B_ERROR;
1420 pbp->b_error = vnx->vx_error;
1421 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1422 putvndxfer(vnx);
1423 biodone(pbp);
1424 }
1425 } else if (pbp->b_resid == 0) {
1426 #ifdef DIAGNOSTIC
1427 if (vnx->vx_pending != 0)
1428 panic("sw_reg_iodone: vnx pending: %d",vnx->vx_pending);
1429 #endif
1430
1431 if ((vnx->vx_flags & VX_BUSY) == 0) {
1432 UVMHIST_LOG(pdhist, " iodone error=%d !",
1433 pbp, vnx->vx_error, 0, 0);
1434 putvndxfer(vnx);
1435 biodone(pbp);
1436 }
1437 }
1438
1439 /*
1440 * done! start next swapdev I/O if one is pending
1441 */
1442 sdp->swd_active--;
1443 sw_reg_start(sdp);
1444 splx(s);
1445 }
1446
1447
1448 /*
1449 * uvm_swap_alloc: allocate space on swap
1450 *
1451 * => allocation is done "round robin" down the priority list, as we
1452 * allocate in a priority we "rotate" the circle queue.
1453 * => space can be freed with uvm_swap_free
1454 * => we return the page slot number in /dev/drum (0 == invalid slot)
1455 * => we lock uvm.swap_data_lock
1456 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1457 */
1458 int
1459 uvm_swap_alloc(nslots, lessok)
1460 int *nslots; /* IN/OUT */
1461 boolean_t lessok;
1462 {
1463 struct swapdev *sdp;
1464 struct swappri *spp;
1465 u_long result;
1466 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1467
1468 /*
1469 * no swap devices configured yet? definite failure.
1470 */
1471 if (uvmexp.nswapdev < 1)
1472 return 0;
1473
1474 /*
1475 * lock data lock, convert slots into blocks, and enter loop
1476 */
1477 simple_lock(&uvm.swap_data_lock);
1478
1479 ReTry: /* XXXMRG */
1480 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
1481 spp = LIST_NEXT(spp, spi_swappri)) {
1482 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
1483 sdp != (void *)&spp->spi_swapdev;
1484 sdp = CIRCLEQ_NEXT(sdp,swd_next)) {
1485 /* if it's not enabled, then we can't swap from it */
1486 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1487 continue;
1488 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1489 continue;
1490 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1491 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1492 &result) != 0) {
1493 continue;
1494 }
1495
1496 /*
1497 * successful allocation! now rotate the circleq.
1498 */
1499 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1500 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1501 sdp->swd_npginuse += *nslots;
1502 uvmexp.swpginuse += *nslots;
1503 simple_unlock(&uvm.swap_data_lock);
1504 /* done! return drum slot number */
1505 UVMHIST_LOG(pdhist,
1506 "success! returning %d slots starting at %d",
1507 *nslots, result + sdp->swd_drumoffset, 0, 0);
1508 return(result + sdp->swd_drumoffset);
1509 }
1510 }
1511
1512 /* XXXMRG: BEGIN HACK */
1513 if (*nslots > 1 && lessok) {
1514 *nslots = 1;
1515 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1516 }
1517 /* XXXMRG: END HACK */
1518
1519 simple_unlock(&uvm.swap_data_lock);
1520 return 0; /* failed */
1521 }
1522
1523 /*
1524 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1525 *
1526 * => we lock uvm.swap_data_lock
1527 */
1528 void
1529 uvm_swap_markbad(startslot, nslots)
1530 int startslot;
1531 int nslots;
1532 {
1533 struct swapdev *sdp;
1534 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1535
1536 simple_lock(&uvm.swap_data_lock);
1537 sdp = swapdrum_getsdp(startslot);
1538
1539 /*
1540 * we just keep track of how many pages have been marked bad
1541 * in this device, to make everything add up in swap_off().
1542 * we assume here that the range of slots will all be within
1543 * one swap device.
1544 */
1545
1546 sdp->swd_npgbad += nslots;
1547 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1548 simple_unlock(&uvm.swap_data_lock);
1549 }
1550
1551 /*
1552 * uvm_swap_free: free swap slots
1553 *
1554 * => this can be all or part of an allocation made by uvm_swap_alloc
1555 * => we lock uvm.swap_data_lock
1556 */
1557 void
1558 uvm_swap_free(startslot, nslots)
1559 int startslot;
1560 int nslots;
1561 {
1562 struct swapdev *sdp;
1563 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1564
1565 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1566 startslot, 0, 0);
1567
1568 /*
1569 * ignore attempts to free the "bad" slot.
1570 */
1571 if (startslot == SWSLOT_BAD) {
1572 return;
1573 }
1574
1575 /*
1576 * convert drum slot offset back to sdp, free the blocks
1577 * in the extent, and return. must hold pri lock to do
1578 * lookup and access the extent.
1579 */
1580 simple_lock(&uvm.swap_data_lock);
1581 sdp = swapdrum_getsdp(startslot);
1582
1583 #ifdef DIAGNOSTIC
1584 if (uvmexp.nswapdev < 1)
1585 panic("uvm_swap_free: uvmexp.nswapdev < 1\n");
1586 if (sdp == NULL) {
1587 printf("uvm_swap_free: startslot %d, nslots %d\n", startslot,
1588 nslots);
1589 panic("uvm_swap_free: unmapped address\n");
1590 }
1591 #endif
1592 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1593 EX_MALLOCOK|EX_NOWAIT) != 0) {
1594 printf("warning: resource shortage: %d pages of swap lost\n",
1595 nslots);
1596 }
1597
1598 sdp->swd_npginuse -= nslots;
1599 uvmexp.swpginuse -= nslots;
1600 #ifdef DIAGNOSTIC
1601 if (sdp->swd_npginuse < 0)
1602 panic("uvm_swap_free: inuse < 0");
1603 #endif
1604 simple_unlock(&uvm.swap_data_lock);
1605 }
1606
1607 /*
1608 * uvm_swap_put: put any number of pages into a contig place on swap
1609 *
1610 * => can be sync or async
1611 * => XXXMRG: consider making it an inline or macro
1612 */
1613 int
1614 uvm_swap_put(swslot, ppsp, npages, flags)
1615 int swslot;
1616 struct vm_page **ppsp;
1617 int npages;
1618 int flags;
1619 {
1620 int result;
1621
1622 result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1623 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1624
1625 return (result);
1626 }
1627
1628 /*
1629 * uvm_swap_get: get a single page from swap
1630 *
1631 * => usually a sync op (from fault)
1632 * => XXXMRG: consider making it an inline or macro
1633 */
1634 int
1635 uvm_swap_get(page, swslot, flags)
1636 struct vm_page *page;
1637 int swslot, flags;
1638 {
1639 int result;
1640
1641 uvmexp.nswget++;
1642 #ifdef DIAGNOSTIC
1643 if ((flags & PGO_SYNCIO) == 0)
1644 printf("uvm_swap_get: ASYNC get requested?\n");
1645 #endif
1646
1647 if (swslot == SWSLOT_BAD) {
1648 return VM_PAGER_ERROR;
1649 }
1650
1651 /*
1652 * this page is (about to be) no longer only in swap.
1653 */
1654 simple_lock(&uvm.swap_data_lock);
1655 uvmexp.swpgonly--;
1656 simple_unlock(&uvm.swap_data_lock);
1657
1658 result = uvm_swap_io(&page, swslot, 1, B_READ |
1659 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1660
1661 if (result != VM_PAGER_OK && result != VM_PAGER_PEND) {
1662 /*
1663 * oops, the read failed so it really is still only in swap.
1664 */
1665 simple_lock(&uvm.swap_data_lock);
1666 uvmexp.swpgonly++;
1667 simple_unlock(&uvm.swap_data_lock);
1668 }
1669
1670 return (result);
1671 }
1672
1673 /*
1674 * uvm_swap_io: do an i/o operation to swap
1675 */
1676
1677 static int
1678 uvm_swap_io(pps, startslot, npages, flags)
1679 struct vm_page **pps;
1680 int startslot, npages, flags;
1681 {
1682 daddr_t startblk;
1683 struct buf *bp;
1684 vaddr_t kva;
1685 int result, s, mapinflags, pflag;
1686 boolean_t write, async;
1687 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1688
1689 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1690 startslot, npages, flags, 0);
1691
1692 write = (flags & B_READ) == 0;
1693 async = (flags & B_ASYNC) != 0;
1694
1695 /*
1696 * convert starting drum slot to block number
1697 */
1698 startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1699
1700 /*
1701 * first, map the pages into the kernel (XXX: currently required
1702 * by buffer system).
1703 */
1704
1705 mapinflags = !write ? UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE;
1706 if (!async)
1707 mapinflags |= UVMPAGER_MAPIN_WAITOK;
1708 kva = uvm_pagermapin(pps, npages, mapinflags);
1709 if (kva == 0)
1710 return (VM_PAGER_AGAIN);
1711
1712 /*
1713 * now allocate a buf for the i/o.
1714 * [make sure we don't put the pagedaemon to sleep...]
1715 */
1716 s = splbio();
1717 pflag = (async || curproc == uvm.pagedaemon_proc) ? 0 : PR_WAITOK;
1718 bp = pool_get(&bufpool, pflag);
1719 splx(s);
1720
1721 /*
1722 * if we failed to get a buf, return "try again"
1723 */
1724 if (bp == NULL)
1725 return (VM_PAGER_AGAIN);
1726
1727 /*
1728 * fill in the bp/sbp. we currently route our i/o through
1729 * /dev/drum's vnode [swapdev_vp].
1730 */
1731 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1732 bp->b_proc = &proc0; /* XXX */
1733 bp->b_vnbufs.le_next = NOLIST;
1734 bp->b_data = (caddr_t)kva;
1735 bp->b_blkno = startblk;
1736 s = splbio();
1737 VHOLD(swapdev_vp);
1738 bp->b_vp = swapdev_vp;
1739 splx(s);
1740 /* XXXCDC: isn't swapdev_vp always a VCHR? */
1741 /* XXXMRG: probably -- this is obviously something inherited... */
1742 if (swapdev_vp->v_type == VBLK)
1743 bp->b_dev = swapdev_vp->v_rdev;
1744 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1745 LIST_INIT(&bp->b_dep);
1746
1747 /*
1748 * bump v_numoutput (counter of number of active outputs).
1749 */
1750 if (write) {
1751 s = splbio();
1752 swapdev_vp->v_numoutput++;
1753 splx(s);
1754 }
1755
1756 /*
1757 * for async ops we must set up the iodone handler.
1758 */
1759 if (async) {
1760 /* XXXUBC pagedaemon */
1761 bp->b_flags |= B_CALL | (curproc == uvm.pagedaemon_proc ?
1762 B_PDAEMON : 0);
1763 bp->b_iodone = uvm_aio_biodone;
1764 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1765 }
1766 UVMHIST_LOG(pdhist,
1767 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1768 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1769
1770 /*
1771 * now we start the I/O, and if async, return.
1772 */
1773 VOP_STRATEGY(bp);
1774 if (async)
1775 return (VM_PAGER_PEND);
1776
1777 /*
1778 * must be sync i/o. wait for it to finish
1779 */
1780 (void) biowait(bp);
1781 result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
1782
1783 /*
1784 * kill the pager mapping
1785 */
1786 uvm_pagermapout(kva, npages);
1787
1788 /*
1789 * now dispose of the buf
1790 */
1791 s = splbio();
1792 if (bp->b_vp)
1793 brelvp(bp);
1794 if (write)
1795 vwakeup(bp);
1796 pool_put(&bufpool, bp);
1797 splx(s);
1798
1799 /*
1800 * finally return.
1801 */
1802 UVMHIST_LOG(pdhist, "<- done (sync) result=%d", result, 0, 0, 0);
1803 return (result);
1804 }
1805