uvm_swap.c revision 1.46.2.5 1 /* $NetBSD: uvm_swap.c,v 1.46.2.5 2001/11/14 19:19:09 nathanw Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.46.2.5 2001/11/14 19:19:09 nathanw Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/conf.h>
46 #include <sys/lwp.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/extent.h>
56 #include <sys/mount.h>
57 #include <sys/pool.h>
58 #include <sys/syscallargs.h>
59 #include <sys/swap.h>
60
61 #include <uvm/uvm.h>
62
63 #include <miscfs/specfs/specdev.h>
64
65 /*
66 * uvm_swap.c: manage configuration and i/o to swap space.
67 */
68
69 /*
70 * swap space is managed in the following way:
71 *
72 * each swap partition or file is described by a "swapdev" structure.
73 * each "swapdev" structure contains a "swapent" structure which contains
74 * information that is passed up to the user (via system calls).
75 *
76 * each swap partition is assigned a "priority" (int) which controls
77 * swap parition usage.
78 *
79 * the system maintains a global data structure describing all swap
80 * partitions/files. there is a sorted LIST of "swappri" structures
81 * which describe "swapdev"'s at that priority. this LIST is headed
82 * by the "swap_priority" global var. each "swappri" contains a
83 * CIRCLEQ of "swapdev" structures at that priority.
84 *
85 * locking:
86 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
87 * system call and prevents the swap priority list from changing
88 * while we are in the middle of a system call (e.g. SWAP_STATS).
89 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
90 * structures including the priority list, the swapdev structures,
91 * and the swapmap extent.
92 *
93 * each swap device has the following info:
94 * - swap device in use (could be disabled, preventing future use)
95 * - swap enabled (allows new allocations on swap)
96 * - map info in /dev/drum
97 * - vnode pointer
98 * for swap files only:
99 * - block size
100 * - max byte count in buffer
101 * - buffer
102 * - credentials to use when doing i/o to file
103 *
104 * userland controls and configures swap with the swapctl(2) system call.
105 * the sys_swapctl performs the following operations:
106 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
107 * [2] SWAP_STATS: given a pointer to an array of swapent structures
108 * (passed in via "arg") of a size passed in via "misc" ... we load
109 * the current swap config into the array.
110 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
111 * priority in "misc", start swapping on it.
112 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
113 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
114 * "misc")
115 */
116
117 /*
118 * swapdev: describes a single swap partition/file
119 *
120 * note the following should be true:
121 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
122 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
123 */
124 struct swapdev {
125 struct oswapent swd_ose;
126 #define swd_dev swd_ose.ose_dev /* device id */
127 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
128 #define swd_priority swd_ose.ose_priority /* our priority */
129 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
130 char *swd_path; /* saved pathname of device */
131 int swd_pathlen; /* length of pathname */
132 int swd_npages; /* #pages we can use */
133 int swd_npginuse; /* #pages in use */
134 int swd_npgbad; /* #pages bad */
135 int swd_drumoffset; /* page0 offset in drum */
136 int swd_drumsize; /* #pages in drum */
137 struct extent *swd_ex; /* extent for this swapdev */
138 char swd_exname[12]; /* name of extent above */
139 struct vnode *swd_vp; /* backing vnode */
140 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
141
142 int swd_bsize; /* blocksize (bytes) */
143 int swd_maxactive; /* max active i/o reqs */
144 struct buf_queue swd_tab; /* buffer list */
145 int swd_active; /* number of active buffers */
146 struct ucred *swd_cred; /* cred for file access */
147 };
148
149 /*
150 * swap device priority entry; the list is kept sorted on `spi_priority'.
151 */
152 struct swappri {
153 int spi_priority; /* priority */
154 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
155 /* circleq of swapdevs at this priority */
156 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
157 };
158
159 /*
160 * The following two structures are used to keep track of data transfers
161 * on swap devices associated with regular files.
162 * NOTE: this code is more or less a copy of vnd.c; we use the same
163 * structure names here to ease porting..
164 */
165 struct vndxfer {
166 struct buf *vx_bp; /* Pointer to parent buffer */
167 struct swapdev *vx_sdp;
168 int vx_error;
169 int vx_pending; /* # of pending aux buffers */
170 int vx_flags;
171 #define VX_BUSY 1
172 #define VX_DEAD 2
173 };
174
175 struct vndbuf {
176 struct buf vb_buf;
177 struct vndxfer *vb_xfer;
178 };
179
180
181 /*
182 * We keep a of pool vndbuf's and vndxfer structures.
183 */
184 static struct pool vndxfer_pool;
185 static struct pool vndbuf_pool;
186
187 #define getvndxfer(vnx) do { \
188 int s = splbio(); \
189 vnx = pool_get(&vndxfer_pool, PR_MALLOCOK|PR_WAITOK); \
190 splx(s); \
191 } while (0)
192
193 #define putvndxfer(vnx) { \
194 pool_put(&vndxfer_pool, (void *)(vnx)); \
195 }
196
197 #define getvndbuf(vbp) do { \
198 int s = splbio(); \
199 vbp = pool_get(&vndbuf_pool, PR_MALLOCOK|PR_WAITOK); \
200 splx(s); \
201 } while (0)
202
203 #define putvndbuf(vbp) { \
204 pool_put(&vndbuf_pool, (void *)(vbp)); \
205 }
206
207 /* /dev/drum */
208 bdev_decl(sw);
209 cdev_decl(sw);
210
211 /*
212 * local variables
213 */
214 static struct extent *swapmap; /* controls the mapping of /dev/drum */
215
216 /* list of all active swap devices [by priority] */
217 LIST_HEAD(swap_priority, swappri);
218 static struct swap_priority swap_priority;
219
220 /* locks */
221 struct lock swap_syscall_lock;
222
223 /*
224 * prototypes
225 */
226 static struct swapdev *swapdrum_getsdp __P((int));
227
228 static struct swapdev *swaplist_find __P((struct vnode *, int));
229 static void swaplist_insert __P((struct swapdev *,
230 struct swappri *, int));
231 static void swaplist_trim __P((void));
232
233 static int swap_on __P((struct proc *, struct swapdev *));
234 static int swap_off __P((struct proc *, struct swapdev *));
235
236 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
237 static void sw_reg_iodone __P((struct buf *));
238 static void sw_reg_start __P((struct swapdev *));
239
240 static int uvm_swap_io __P((struct vm_page **, int, int, int));
241
242 /*
243 * uvm_swap_init: init the swap system data structures and locks
244 *
245 * => called at boot time from init_main.c after the filesystems
246 * are brought up (which happens after uvm_init())
247 */
248 void
249 uvm_swap_init()
250 {
251 UVMHIST_FUNC("uvm_swap_init");
252
253 UVMHIST_CALLED(pdhist);
254 /*
255 * first, init the swap list, its counter, and its lock.
256 * then get a handle on the vnode for /dev/drum by using
257 * the its dev_t number ("swapdev", from MD conf.c).
258 */
259
260 LIST_INIT(&swap_priority);
261 uvmexp.nswapdev = 0;
262 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
263 simple_lock_init(&uvm.swap_data_lock);
264
265 if (bdevvp(swapdev, &swapdev_vp))
266 panic("uvm_swap_init: can't get vnode for swap device");
267
268 /*
269 * create swap block resource map to map /dev/drum. the range
270 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
271 * that block 0 is reserved (used to indicate an allocation
272 * failure, or no allocation).
273 */
274 swapmap = extent_create("swapmap", 1, INT_MAX,
275 M_VMSWAP, 0, 0, EX_NOWAIT);
276 if (swapmap == 0)
277 panic("uvm_swap_init: extent_create failed");
278
279 /*
280 * allocate pools for structures used for swapping to files.
281 */
282
283 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0,
284 "swp vnx", 0, NULL, NULL, 0);
285
286 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0,
287 "swp vnd", 0, NULL, NULL, 0);
288
289 /*
290 * done!
291 */
292 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
293 }
294
295 /*
296 * swaplist functions: functions that operate on the list of swap
297 * devices on the system.
298 */
299
300 /*
301 * swaplist_insert: insert swap device "sdp" into the global list
302 *
303 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
304 * => caller must provide a newly malloc'd swappri structure (we will
305 * FREE it if we don't need it... this it to prevent malloc blocking
306 * here while adding swap)
307 */
308 static void
309 swaplist_insert(sdp, newspp, priority)
310 struct swapdev *sdp;
311 struct swappri *newspp;
312 int priority;
313 {
314 struct swappri *spp, *pspp;
315 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
316
317 /*
318 * find entry at or after which to insert the new device.
319 */
320 pspp = NULL;
321 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
322 if (priority <= spp->spi_priority)
323 break;
324 pspp = spp;
325 }
326
327 /*
328 * new priority?
329 */
330 if (spp == NULL || spp->spi_priority != priority) {
331 spp = newspp; /* use newspp! */
332 UVMHIST_LOG(pdhist, "created new swappri = %d",
333 priority, 0, 0, 0);
334
335 spp->spi_priority = priority;
336 CIRCLEQ_INIT(&spp->spi_swapdev);
337
338 if (pspp)
339 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
340 else
341 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
342 } else {
343 /* we don't need a new priority structure, free it */
344 FREE(newspp, M_VMSWAP);
345 }
346
347 /*
348 * priority found (or created). now insert on the priority's
349 * circleq list and bump the total number of swapdevs.
350 */
351 sdp->swd_priority = priority;
352 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
353 uvmexp.nswapdev++;
354 }
355
356 /*
357 * swaplist_find: find and optionally remove a swap device from the
358 * global list.
359 *
360 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
361 * => we return the swapdev we found (and removed)
362 */
363 static struct swapdev *
364 swaplist_find(vp, remove)
365 struct vnode *vp;
366 boolean_t remove;
367 {
368 struct swapdev *sdp;
369 struct swappri *spp;
370
371 /*
372 * search the lists for the requested vp
373 */
374
375 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
376 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
377 if (sdp->swd_vp == vp) {
378 if (remove) {
379 CIRCLEQ_REMOVE(&spp->spi_swapdev,
380 sdp, swd_next);
381 uvmexp.nswapdev--;
382 }
383 return(sdp);
384 }
385 }
386 }
387 return (NULL);
388 }
389
390
391 /*
392 * swaplist_trim: scan priority list for empty priority entries and kill
393 * them.
394 *
395 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
396 */
397 static void
398 swaplist_trim()
399 {
400 struct swappri *spp, *nextspp;
401
402 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
403 nextspp = LIST_NEXT(spp, spi_swappri);
404 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
405 (void *)&spp->spi_swapdev)
406 continue;
407 LIST_REMOVE(spp, spi_swappri);
408 free(spp, M_VMSWAP);
409 }
410 }
411
412 /*
413 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
414 * to the "swapdev" that maps that section of the drum.
415 *
416 * => each swapdev takes one big contig chunk of the drum
417 * => caller must hold uvm.swap_data_lock
418 */
419 static struct swapdev *
420 swapdrum_getsdp(pgno)
421 int pgno;
422 {
423 struct swapdev *sdp;
424 struct swappri *spp;
425
426 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
427 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
428 if (sdp->swd_flags & SWF_FAKE)
429 continue;
430 if (pgno >= sdp->swd_drumoffset &&
431 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
432 return sdp;
433 }
434 }
435 }
436 return NULL;
437 }
438
439
440 /*
441 * sys_swapctl: main entry point for swapctl(2) system call
442 * [with two helper functions: swap_on and swap_off]
443 */
444 int
445 sys_swapctl(l, v, retval)
446 struct lwp *l;
447 void *v;
448 register_t *retval;
449 {
450 struct sys_swapctl_args /* {
451 syscallarg(int) cmd;
452 syscallarg(void *) arg;
453 syscallarg(int) misc;
454 } */ *uap = (struct sys_swapctl_args *)v;
455 struct proc *p = l->l_proc;
456 struct vnode *vp;
457 struct nameidata nd;
458 struct swappri *spp;
459 struct swapdev *sdp;
460 struct swapent *sep;
461 char userpath[PATH_MAX + 1];
462 size_t len;
463 int count, error, misc;
464 int priority;
465 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
466
467 misc = SCARG(uap, misc);
468
469 /*
470 * ensure serialized syscall access by grabbing the swap_syscall_lock
471 */
472 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
473
474 /*
475 * we handle the non-priv NSWAP and STATS request first.
476 *
477 * SWAP_NSWAP: return number of config'd swap devices
478 * [can also be obtained with uvmexp sysctl]
479 */
480 if (SCARG(uap, cmd) == SWAP_NSWAP) {
481 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
482 0, 0, 0);
483 *retval = uvmexp.nswapdev;
484 error = 0;
485 goto out;
486 }
487
488 /*
489 * SWAP_STATS: get stats on current # of configured swap devs
490 *
491 * note that the swap_priority list can't change as long
492 * as we are holding the swap_syscall_lock. we don't want
493 * to grab the uvm.swap_data_lock because we may fault&sleep during
494 * copyout() and we don't want to be holding that lock then!
495 */
496 if (SCARG(uap, cmd) == SWAP_STATS
497 #if defined(COMPAT_13)
498 || SCARG(uap, cmd) == SWAP_OSTATS
499 #endif
500 ) {
501 sep = (struct swapent *)SCARG(uap, arg);
502 count = 0;
503
504 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
505 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
506 sdp != (void *)&spp->spi_swapdev && misc-- > 0;
507 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
508 /*
509 * backwards compatibility for system call.
510 * note that we use 'struct oswapent' as an
511 * overlay into both 'struct swapdev' and
512 * the userland 'struct swapent', as we
513 * want to retain backwards compatibility
514 * with NetBSD 1.3.
515 */
516 sdp->swd_ose.ose_inuse =
517 btodb((u_int64_t)sdp->swd_npginuse <<
518 PAGE_SHIFT);
519 error = copyout(&sdp->swd_ose, sep,
520 sizeof(struct oswapent));
521
522 /* now copy out the path if necessary */
523 #if defined(COMPAT_13)
524 if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
525 #else
526 if (error == 0)
527 #endif
528 error = copyout(sdp->swd_path,
529 &sep->se_path, sdp->swd_pathlen);
530
531 if (error)
532 goto out;
533 count++;
534 #if defined(COMPAT_13)
535 if (SCARG(uap, cmd) == SWAP_OSTATS)
536 sep = (struct swapent *)
537 ((struct oswapent *)sep + 1);
538 else
539 #endif
540 sep++;
541 }
542 }
543
544 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
545
546 *retval = count;
547 error = 0;
548 goto out;
549 }
550 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
551 dev_t *devp = (dev_t *)SCARG(uap, arg);
552
553 error = copyout(&dumpdev, devp, sizeof(dumpdev));
554 goto out;
555 }
556
557 /*
558 * all other requests require superuser privs. verify.
559 */
560 if ((error = suser(p->p_ucred, &p->p_acflag)))
561 goto out;
562
563 /*
564 * at this point we expect a path name in arg. we will
565 * use namei() to gain a vnode reference (vref), and lock
566 * the vnode (VOP_LOCK).
567 *
568 * XXX: a NULL arg means use the root vnode pointer (e.g. for
569 * miniroot)
570 */
571 if (SCARG(uap, arg) == NULL) {
572 vp = rootvp; /* miniroot */
573 if (vget(vp, LK_EXCLUSIVE)) {
574 error = EBUSY;
575 goto out;
576 }
577 if (SCARG(uap, cmd) == SWAP_ON &&
578 copystr("miniroot", userpath, sizeof userpath, &len))
579 panic("swapctl: miniroot copy failed");
580 } else {
581 int space;
582 char *where;
583
584 if (SCARG(uap, cmd) == SWAP_ON) {
585 if ((error = copyinstr(SCARG(uap, arg), userpath,
586 sizeof userpath, &len)))
587 goto out;
588 space = UIO_SYSSPACE;
589 where = userpath;
590 } else {
591 space = UIO_USERSPACE;
592 where = (char *)SCARG(uap, arg);
593 }
594 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
595 if ((error = namei(&nd)))
596 goto out;
597 vp = nd.ni_vp;
598 }
599 /* note: "vp" is referenced and locked */
600
601 error = 0; /* assume no error */
602 switch(SCARG(uap, cmd)) {
603
604 case SWAP_DUMPDEV:
605 if (vp->v_type != VBLK) {
606 error = ENOTBLK;
607 break;
608 }
609 dumpdev = vp->v_rdev;
610 break;
611
612 case SWAP_CTL:
613 /*
614 * get new priority, remove old entry (if any) and then
615 * reinsert it in the correct place. finally, prune out
616 * any empty priority structures.
617 */
618 priority = SCARG(uap, misc);
619 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
620 simple_lock(&uvm.swap_data_lock);
621 if ((sdp = swaplist_find(vp, 1)) == NULL) {
622 error = ENOENT;
623 } else {
624 swaplist_insert(sdp, spp, priority);
625 swaplist_trim();
626 }
627 simple_unlock(&uvm.swap_data_lock);
628 if (error)
629 free(spp, M_VMSWAP);
630 break;
631
632 case SWAP_ON:
633
634 /*
635 * check for duplicates. if none found, then insert a
636 * dummy entry on the list to prevent someone else from
637 * trying to enable this device while we are working on
638 * it.
639 */
640
641 priority = SCARG(uap, misc);
642 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
643 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
644 simple_lock(&uvm.swap_data_lock);
645 if (swaplist_find(vp, 0) != NULL) {
646 error = EBUSY;
647 simple_unlock(&uvm.swap_data_lock);
648 free(sdp, M_VMSWAP);
649 free(spp, M_VMSWAP);
650 break;
651 }
652 memset(sdp, 0, sizeof(*sdp));
653 sdp->swd_flags = SWF_FAKE; /* placeholder only */
654 sdp->swd_vp = vp;
655 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
656 BUFQ_INIT(&sdp->swd_tab);
657
658 /*
659 * XXX Is NFS elaboration necessary?
660 */
661 if (vp->v_type == VREG) {
662 sdp->swd_cred = crdup(p->p_ucred);
663 }
664
665 swaplist_insert(sdp, spp, priority);
666 simple_unlock(&uvm.swap_data_lock);
667
668 sdp->swd_pathlen = len;
669 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
670 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
671 panic("swapctl: copystr");
672
673 /*
674 * we've now got a FAKE placeholder in the swap list.
675 * now attempt to enable swap on it. if we fail, undo
676 * what we've done and kill the fake entry we just inserted.
677 * if swap_on is a success, it will clear the SWF_FAKE flag
678 */
679
680 if ((error = swap_on(p, sdp)) != 0) {
681 simple_lock(&uvm.swap_data_lock);
682 (void) swaplist_find(vp, 1); /* kill fake entry */
683 swaplist_trim();
684 simple_unlock(&uvm.swap_data_lock);
685 if (vp->v_type == VREG) {
686 crfree(sdp->swd_cred);
687 }
688 free(sdp->swd_path, M_VMSWAP);
689 free(sdp, M_VMSWAP);
690 break;
691 }
692 break;
693
694 case SWAP_OFF:
695 simple_lock(&uvm.swap_data_lock);
696 if ((sdp = swaplist_find(vp, 0)) == NULL) {
697 simple_unlock(&uvm.swap_data_lock);
698 error = ENXIO;
699 break;
700 }
701
702 /*
703 * If a device isn't in use or enabled, we
704 * can't stop swapping from it (again).
705 */
706 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
707 simple_unlock(&uvm.swap_data_lock);
708 error = EBUSY;
709 break;
710 }
711
712 /*
713 * do the real work.
714 */
715 error = swap_off(p, sdp);
716 break;
717
718 default:
719 error = EINVAL;
720 }
721
722 /*
723 * done! release the ref gained by namei() and unlock.
724 */
725 vput(vp);
726
727 out:
728 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
729
730 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
731 return (error);
732 }
733
734 /*
735 * swap_on: attempt to enable a swapdev for swapping. note that the
736 * swapdev is already on the global list, but disabled (marked
737 * SWF_FAKE).
738 *
739 * => we avoid the start of the disk (to protect disk labels)
740 * => we also avoid the miniroot, if we are swapping to root.
741 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
742 * if needed.
743 */
744 static int
745 swap_on(p, sdp)
746 struct proc *p;
747 struct swapdev *sdp;
748 {
749 static int count = 0; /* static */
750 struct vnode *vp;
751 int error, npages, nblocks, size;
752 long addr;
753 u_long result;
754 struct vattr va;
755 #ifdef NFS
756 extern int (**nfsv2_vnodeop_p) __P((void *));
757 #endif /* NFS */
758 dev_t dev;
759 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
760
761 /*
762 * we want to enable swapping on sdp. the swd_vp contains
763 * the vnode we want (locked and ref'd), and the swd_dev
764 * contains the dev_t of the file, if it a block device.
765 */
766
767 vp = sdp->swd_vp;
768 dev = sdp->swd_dev;
769
770 /*
771 * open the swap file (mostly useful for block device files to
772 * let device driver know what is up).
773 *
774 * we skip the open/close for root on swap because the root
775 * has already been opened when root was mounted (mountroot).
776 */
777 if (vp != rootvp) {
778 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
779 return (error);
780 }
781
782 /* XXX this only works for block devices */
783 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
784
785 /*
786 * we now need to determine the size of the swap area. for
787 * block specials we can call the d_psize function.
788 * for normal files, we must stat [get attrs].
789 *
790 * we put the result in nblks.
791 * for normal files, we also want the filesystem block size
792 * (which we get with statfs).
793 */
794 switch (vp->v_type) {
795 case VBLK:
796 if (bdevsw[major(dev)].d_psize == 0 ||
797 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
798 error = ENXIO;
799 goto bad;
800 }
801 break;
802
803 case VREG:
804 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
805 goto bad;
806 nblocks = (int)btodb(va.va_size);
807 if ((error =
808 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
809 goto bad;
810
811 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
812 /*
813 * limit the max # of outstanding I/O requests we issue
814 * at any one time. take it easy on NFS servers.
815 */
816 #ifdef NFS
817 if (vp->v_op == nfsv2_vnodeop_p)
818 sdp->swd_maxactive = 2; /* XXX */
819 else
820 #endif /* NFS */
821 sdp->swd_maxactive = 8; /* XXX */
822 break;
823
824 default:
825 error = ENXIO;
826 goto bad;
827 }
828
829 /*
830 * save nblocks in a safe place and convert to pages.
831 */
832
833 sdp->swd_ose.ose_nblks = nblocks;
834 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
835
836 /*
837 * for block special files, we want to make sure that leave
838 * the disklabel and bootblocks alone, so we arrange to skip
839 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
840 * note that because of this the "size" can be less than the
841 * actual number of blocks on the device.
842 */
843 if (vp->v_type == VBLK) {
844 /* we use pages 1 to (size - 1) [inclusive] */
845 size = npages - 1;
846 addr = 1;
847 } else {
848 /* we use pages 0 to (size - 1) [inclusive] */
849 size = npages;
850 addr = 0;
851 }
852
853 /*
854 * make sure we have enough blocks for a reasonable sized swap
855 * area. we want at least one page.
856 */
857
858 if (size < 1) {
859 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
860 error = EINVAL;
861 goto bad;
862 }
863
864 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
865
866 /*
867 * now we need to allocate an extent to manage this swap device
868 */
869 snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
870 count++);
871
872 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
873 sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
874 0, 0, EX_WAITOK);
875 /* allocate the `saved' region from the extent so it won't be used */
876 if (addr) {
877 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
878 panic("disklabel region");
879 }
880
881 /*
882 * if the vnode we are swapping to is the root vnode
883 * (i.e. we are swapping to the miniroot) then we want
884 * to make sure we don't overwrite it. do a statfs to
885 * find its size and skip over it.
886 */
887 if (vp == rootvp) {
888 struct mount *mp;
889 struct statfs *sp;
890 int rootblocks, rootpages;
891
892 mp = rootvnode->v_mount;
893 sp = &mp->mnt_stat;
894 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
895 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
896 if (rootpages > size)
897 panic("swap_on: miniroot larger than swap?");
898
899 if (extent_alloc_region(sdp->swd_ex, addr,
900 rootpages, EX_WAITOK))
901 panic("swap_on: unable to preserve miniroot");
902
903 size -= rootpages;
904 printf("Preserved %d pages of miniroot ", rootpages);
905 printf("leaving %d pages of swap\n", size);
906 }
907
908 /*
909 * try to add anons to reflect the new swap space.
910 */
911
912 error = uvm_anon_add(size);
913 if (error) {
914 goto bad;
915 }
916
917 /*
918 * add a ref to vp to reflect usage as a swap device.
919 */
920 vref(vp);
921
922 /*
923 * now add the new swapdev to the drum and enable.
924 */
925 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
926 EX_WAITOK, &result))
927 panic("swapdrum_add");
928
929 sdp->swd_drumoffset = (int)result;
930 sdp->swd_drumsize = npages;
931 sdp->swd_npages = size;
932 simple_lock(&uvm.swap_data_lock);
933 sdp->swd_flags &= ~SWF_FAKE; /* going live */
934 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
935 uvmexp.swpages += size;
936 simple_unlock(&uvm.swap_data_lock);
937 return (0);
938
939 /*
940 * failure: clean up and return error.
941 */
942
943 bad:
944 if (sdp->swd_ex) {
945 extent_destroy(sdp->swd_ex);
946 }
947 if (vp != rootvp) {
948 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
949 }
950 return (error);
951 }
952
953 /*
954 * swap_off: stop swapping on swapdev
955 *
956 * => swap data should be locked, we will unlock.
957 */
958 static int
959 swap_off(p, sdp)
960 struct proc *p;
961 struct swapdev *sdp;
962 {
963 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
964 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev,0,0,0);
965
966 /* disable the swap area being removed */
967 sdp->swd_flags &= ~SWF_ENABLE;
968 simple_unlock(&uvm.swap_data_lock);
969
970 /*
971 * the idea is to find all the pages that are paged out to this
972 * device, and page them all in. in uvm, swap-backed pageable
973 * memory can take two forms: aobjs and anons. call the
974 * swapoff hook for each subsystem to bring in pages.
975 */
976
977 if (uao_swap_off(sdp->swd_drumoffset,
978 sdp->swd_drumoffset + sdp->swd_drumsize) ||
979 anon_swap_off(sdp->swd_drumoffset,
980 sdp->swd_drumoffset + sdp->swd_drumsize)) {
981
982 simple_lock(&uvm.swap_data_lock);
983 sdp->swd_flags |= SWF_ENABLE;
984 simple_unlock(&uvm.swap_data_lock);
985 return ENOMEM;
986 }
987 KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
988
989 /*
990 * done with the vnode and saved creds.
991 * drop our ref on the vnode before calling VOP_CLOSE()
992 * so that spec_close() can tell if this is the last close.
993 */
994 if (sdp->swd_vp->v_type == VREG) {
995 crfree(sdp->swd_cred);
996 }
997 vrele(sdp->swd_vp);
998 if (sdp->swd_vp != rootvp) {
999 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1000 }
1001
1002 /* remove anons from the system */
1003 uvm_anon_remove(sdp->swd_npages);
1004
1005 simple_lock(&uvm.swap_data_lock);
1006 uvmexp.swpages -= sdp->swd_npages;
1007
1008 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1009 panic("swap_off: swapdev not in list\n");
1010 swaplist_trim();
1011 simple_unlock(&uvm.swap_data_lock);
1012
1013 /*
1014 * free all resources!
1015 */
1016 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1017 EX_WAITOK);
1018 extent_destroy(sdp->swd_ex);
1019 free(sdp, M_VMSWAP);
1020 return (0);
1021 }
1022
1023 /*
1024 * /dev/drum interface and i/o functions
1025 */
1026
1027 /*
1028 * swread: the read function for the drum (just a call to physio)
1029 */
1030 /*ARGSUSED*/
1031 int
1032 swread(dev, uio, ioflag)
1033 dev_t dev;
1034 struct uio *uio;
1035 int ioflag;
1036 {
1037 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1038
1039 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1040 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1041 }
1042
1043 /*
1044 * swwrite: the write function for the drum (just a call to physio)
1045 */
1046 /*ARGSUSED*/
1047 int
1048 swwrite(dev, uio, ioflag)
1049 dev_t dev;
1050 struct uio *uio;
1051 int ioflag;
1052 {
1053 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1054
1055 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1056 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1057 }
1058
1059 /*
1060 * swstrategy: perform I/O on the drum
1061 *
1062 * => we must map the i/o request from the drum to the correct swapdev.
1063 */
1064 void
1065 swstrategy(bp)
1066 struct buf *bp;
1067 {
1068 struct swapdev *sdp;
1069 struct vnode *vp;
1070 int s, pageno, bn;
1071 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1072
1073 /*
1074 * convert block number to swapdev. note that swapdev can't
1075 * be yanked out from under us because we are holding resources
1076 * in it (i.e. the blocks we are doing I/O on).
1077 */
1078 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1079 simple_lock(&uvm.swap_data_lock);
1080 sdp = swapdrum_getsdp(pageno);
1081 simple_unlock(&uvm.swap_data_lock);
1082 if (sdp == NULL) {
1083 bp->b_error = EINVAL;
1084 bp->b_flags |= B_ERROR;
1085 biodone(bp);
1086 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1087 return;
1088 }
1089
1090 /*
1091 * convert drum page number to block number on this swapdev.
1092 */
1093
1094 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1095 bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1096
1097 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1098 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1099 sdp->swd_drumoffset, bn, bp->b_bcount);
1100
1101 /*
1102 * for block devices we finish up here.
1103 * for regular files we have to do more work which we delegate
1104 * to sw_reg_strategy().
1105 */
1106
1107 switch (sdp->swd_vp->v_type) {
1108 default:
1109 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1110
1111 case VBLK:
1112
1113 /*
1114 * must convert "bp" from an I/O on /dev/drum to an I/O
1115 * on the swapdev (sdp).
1116 */
1117 s = splbio();
1118 bp->b_blkno = bn; /* swapdev block number */
1119 vp = sdp->swd_vp; /* swapdev vnode pointer */
1120 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1121
1122 /*
1123 * if we are doing a write, we have to redirect the i/o on
1124 * drum's v_numoutput counter to the swapdevs.
1125 */
1126 if ((bp->b_flags & B_READ) == 0) {
1127 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1128 vp->v_numoutput++; /* put it on swapdev */
1129 }
1130
1131 /*
1132 * finally plug in swapdev vnode and start I/O
1133 */
1134 bp->b_vp = vp;
1135 splx(s);
1136 VOP_STRATEGY(bp);
1137 return;
1138
1139 case VREG:
1140 /*
1141 * delegate to sw_reg_strategy function.
1142 */
1143 sw_reg_strategy(sdp, bp, bn);
1144 return;
1145 }
1146 /* NOTREACHED */
1147 }
1148
1149 /*
1150 * sw_reg_strategy: handle swap i/o to regular files
1151 */
1152 static void
1153 sw_reg_strategy(sdp, bp, bn)
1154 struct swapdev *sdp;
1155 struct buf *bp;
1156 int bn;
1157 {
1158 struct vnode *vp;
1159 struct vndxfer *vnx;
1160 daddr_t nbn;
1161 caddr_t addr;
1162 off_t byteoff;
1163 int s, off, nra, error, sz, resid;
1164 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1165
1166 /*
1167 * allocate a vndxfer head for this transfer and point it to
1168 * our buffer.
1169 */
1170 getvndxfer(vnx);
1171 vnx->vx_flags = VX_BUSY;
1172 vnx->vx_error = 0;
1173 vnx->vx_pending = 0;
1174 vnx->vx_bp = bp;
1175 vnx->vx_sdp = sdp;
1176
1177 /*
1178 * setup for main loop where we read filesystem blocks into
1179 * our buffer.
1180 */
1181 error = 0;
1182 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1183 addr = bp->b_data; /* current position in buffer */
1184 byteoff = dbtob((u_int64_t)bn);
1185
1186 for (resid = bp->b_resid; resid; resid -= sz) {
1187 struct vndbuf *nbp;
1188
1189 /*
1190 * translate byteoffset into block number. return values:
1191 * vp = vnode of underlying device
1192 * nbn = new block number (on underlying vnode dev)
1193 * nra = num blocks we can read-ahead (excludes requested
1194 * block)
1195 */
1196 nra = 0;
1197 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1198 &vp, &nbn, &nra);
1199
1200 if (error == 0 && nbn == (daddr_t)-1) {
1201 /*
1202 * this used to just set error, but that doesn't
1203 * do the right thing. Instead, it causes random
1204 * memory errors. The panic() should remain until
1205 * this condition doesn't destabilize the system.
1206 */
1207 #if 1
1208 panic("sw_reg_strategy: swap to sparse file");
1209 #else
1210 error = EIO; /* failure */
1211 #endif
1212 }
1213
1214 /*
1215 * punt if there was an error or a hole in the file.
1216 * we must wait for any i/o ops we have already started
1217 * to finish before returning.
1218 *
1219 * XXX we could deal with holes here but it would be
1220 * a hassle (in the write case).
1221 */
1222 if (error) {
1223 s = splbio();
1224 vnx->vx_error = error; /* pass error up */
1225 goto out;
1226 }
1227
1228 /*
1229 * compute the size ("sz") of this transfer (in bytes).
1230 */
1231 off = byteoff % sdp->swd_bsize;
1232 sz = (1 + nra) * sdp->swd_bsize - off;
1233 if (sz > resid)
1234 sz = resid;
1235
1236 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1237 "vp %p/%p offset 0x%x/0x%x",
1238 sdp->swd_vp, vp, byteoff, nbn);
1239
1240 /*
1241 * now get a buf structure. note that the vb_buf is
1242 * at the front of the nbp structure so that you can
1243 * cast pointers between the two structure easily.
1244 */
1245 getvndbuf(nbp);
1246 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1247 nbp->vb_buf.b_bcount = sz;
1248 nbp->vb_buf.b_bufsize = sz;
1249 nbp->vb_buf.b_error = 0;
1250 nbp->vb_buf.b_data = addr;
1251 nbp->vb_buf.b_lblkno = 0;
1252 nbp->vb_buf.b_blkno = nbn + btodb(off);
1253 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1254 nbp->vb_buf.b_iodone = sw_reg_iodone;
1255 nbp->vb_buf.b_vp = vp;
1256 if (vp->v_type == VBLK) {
1257 nbp->vb_buf.b_dev = vp->v_rdev;
1258 }
1259 LIST_INIT(&nbp->vb_buf.b_dep);
1260
1261 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1262
1263 /*
1264 * Just sort by block number
1265 */
1266 s = splbio();
1267 if (vnx->vx_error != 0) {
1268 putvndbuf(nbp);
1269 goto out;
1270 }
1271 vnx->vx_pending++;
1272
1273 /* sort it in and start I/O if we are not over our limit */
1274 disksort_blkno(&sdp->swd_tab, &nbp->vb_buf);
1275 sw_reg_start(sdp);
1276 splx(s);
1277
1278 /*
1279 * advance to the next I/O
1280 */
1281 byteoff += sz;
1282 addr += sz;
1283 }
1284
1285 s = splbio();
1286
1287 out: /* Arrive here at splbio */
1288 vnx->vx_flags &= ~VX_BUSY;
1289 if (vnx->vx_pending == 0) {
1290 if (vnx->vx_error != 0) {
1291 bp->b_error = vnx->vx_error;
1292 bp->b_flags |= B_ERROR;
1293 }
1294 putvndxfer(vnx);
1295 biodone(bp);
1296 }
1297 splx(s);
1298 }
1299
1300 /*
1301 * sw_reg_start: start an I/O request on the requested swapdev
1302 *
1303 * => reqs are sorted by disksort (above)
1304 */
1305 static void
1306 sw_reg_start(sdp)
1307 struct swapdev *sdp;
1308 {
1309 struct buf *bp;
1310 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1311
1312 /* recursion control */
1313 if ((sdp->swd_flags & SWF_BUSY) != 0)
1314 return;
1315
1316 sdp->swd_flags |= SWF_BUSY;
1317
1318 while (sdp->swd_active < sdp->swd_maxactive) {
1319 bp = BUFQ_FIRST(&sdp->swd_tab);
1320 if (bp == NULL)
1321 break;
1322 BUFQ_REMOVE(&sdp->swd_tab, bp);
1323 sdp->swd_active++;
1324
1325 UVMHIST_LOG(pdhist,
1326 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1327 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1328 if ((bp->b_flags & B_READ) == 0)
1329 bp->b_vp->v_numoutput++;
1330
1331 VOP_STRATEGY(bp);
1332 }
1333 sdp->swd_flags &= ~SWF_BUSY;
1334 }
1335
1336 /*
1337 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1338 *
1339 * => note that we can recover the vndbuf struct by casting the buf ptr
1340 */
1341 static void
1342 sw_reg_iodone(bp)
1343 struct buf *bp;
1344 {
1345 struct vndbuf *vbp = (struct vndbuf *) bp;
1346 struct vndxfer *vnx = vbp->vb_xfer;
1347 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1348 struct swapdev *sdp = vnx->vx_sdp;
1349 int s, resid;
1350 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1351
1352 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1353 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1354 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1355 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1356
1357 /*
1358 * protect vbp at splbio and update.
1359 */
1360
1361 s = splbio();
1362 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1363 pbp->b_resid -= resid;
1364 vnx->vx_pending--;
1365
1366 if (vbp->vb_buf.b_error) {
1367 UVMHIST_LOG(pdhist, " got error=%d !",
1368 vbp->vb_buf.b_error, 0, 0, 0);
1369
1370 /* pass error upward */
1371 vnx->vx_error = vbp->vb_buf.b_error;
1372 }
1373
1374 /*
1375 * kill vbp structure
1376 */
1377 putvndbuf(vbp);
1378
1379 /*
1380 * wrap up this transaction if it has run to completion or, in
1381 * case of an error, when all auxiliary buffers have returned.
1382 */
1383 if (vnx->vx_error != 0) {
1384 /* pass error upward */
1385 pbp->b_flags |= B_ERROR;
1386 pbp->b_error = vnx->vx_error;
1387 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1388 putvndxfer(vnx);
1389 biodone(pbp);
1390 }
1391 } else if (pbp->b_resid == 0) {
1392 KASSERT(vnx->vx_pending == 0);
1393 if ((vnx->vx_flags & VX_BUSY) == 0) {
1394 UVMHIST_LOG(pdhist, " iodone error=%d !",
1395 pbp, vnx->vx_error, 0, 0);
1396 putvndxfer(vnx);
1397 biodone(pbp);
1398 }
1399 }
1400
1401 /*
1402 * done! start next swapdev I/O if one is pending
1403 */
1404 sdp->swd_active--;
1405 sw_reg_start(sdp);
1406 splx(s);
1407 }
1408
1409
1410 /*
1411 * uvm_swap_alloc: allocate space on swap
1412 *
1413 * => allocation is done "round robin" down the priority list, as we
1414 * allocate in a priority we "rotate" the circle queue.
1415 * => space can be freed with uvm_swap_free
1416 * => we return the page slot number in /dev/drum (0 == invalid slot)
1417 * => we lock uvm.swap_data_lock
1418 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1419 */
1420 int
1421 uvm_swap_alloc(nslots, lessok)
1422 int *nslots; /* IN/OUT */
1423 boolean_t lessok;
1424 {
1425 struct swapdev *sdp;
1426 struct swappri *spp;
1427 u_long result;
1428 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1429
1430 /*
1431 * no swap devices configured yet? definite failure.
1432 */
1433 if (uvmexp.nswapdev < 1)
1434 return 0;
1435
1436 /*
1437 * lock data lock, convert slots into blocks, and enter loop
1438 */
1439 simple_lock(&uvm.swap_data_lock);
1440
1441 ReTry: /* XXXMRG */
1442 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1443 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1444 /* if it's not enabled, then we can't swap from it */
1445 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1446 continue;
1447 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1448 continue;
1449 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1450 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1451 &result) != 0) {
1452 continue;
1453 }
1454
1455 /*
1456 * successful allocation! now rotate the circleq.
1457 */
1458 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1459 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1460 sdp->swd_npginuse += *nslots;
1461 uvmexp.swpginuse += *nslots;
1462 simple_unlock(&uvm.swap_data_lock);
1463 /* done! return drum slot number */
1464 UVMHIST_LOG(pdhist,
1465 "success! returning %d slots starting at %d",
1466 *nslots, result + sdp->swd_drumoffset, 0, 0);
1467 return (result + sdp->swd_drumoffset);
1468 }
1469 }
1470
1471 /* XXXMRG: BEGIN HACK */
1472 if (*nslots > 1 && lessok) {
1473 *nslots = 1;
1474 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1475 }
1476 /* XXXMRG: END HACK */
1477
1478 simple_unlock(&uvm.swap_data_lock);
1479 return 0;
1480 }
1481
1482 /*
1483 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1484 *
1485 * => we lock uvm.swap_data_lock
1486 */
1487 void
1488 uvm_swap_markbad(startslot, nslots)
1489 int startslot;
1490 int nslots;
1491 {
1492 struct swapdev *sdp;
1493 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1494
1495 simple_lock(&uvm.swap_data_lock);
1496 sdp = swapdrum_getsdp(startslot);
1497
1498 /*
1499 * we just keep track of how many pages have been marked bad
1500 * in this device, to make everything add up in swap_off().
1501 * we assume here that the range of slots will all be within
1502 * one swap device.
1503 */
1504
1505 sdp->swd_npgbad += nslots;
1506 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1507 simple_unlock(&uvm.swap_data_lock);
1508 }
1509
1510 /*
1511 * uvm_swap_free: free swap slots
1512 *
1513 * => this can be all or part of an allocation made by uvm_swap_alloc
1514 * => we lock uvm.swap_data_lock
1515 */
1516 void
1517 uvm_swap_free(startslot, nslots)
1518 int startslot;
1519 int nslots;
1520 {
1521 struct swapdev *sdp;
1522 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1523
1524 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1525 startslot, 0, 0);
1526
1527 /*
1528 * ignore attempts to free the "bad" slot.
1529 */
1530
1531 if (startslot == SWSLOT_BAD) {
1532 return;
1533 }
1534
1535 /*
1536 * convert drum slot offset back to sdp, free the blocks
1537 * in the extent, and return. must hold pri lock to do
1538 * lookup and access the extent.
1539 */
1540
1541 simple_lock(&uvm.swap_data_lock);
1542 sdp = swapdrum_getsdp(startslot);
1543 KASSERT(uvmexp.nswapdev >= 1);
1544 KASSERT(sdp != NULL);
1545 KASSERT(sdp->swd_npginuse >= nslots);
1546 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1547 EX_MALLOCOK|EX_NOWAIT) != 0) {
1548 printf("warning: resource shortage: %d pages of swap lost\n",
1549 nslots);
1550 }
1551 sdp->swd_npginuse -= nslots;
1552 uvmexp.swpginuse -= nslots;
1553 simple_unlock(&uvm.swap_data_lock);
1554 }
1555
1556 /*
1557 * uvm_swap_put: put any number of pages into a contig place on swap
1558 *
1559 * => can be sync or async
1560 */
1561
1562 int
1563 uvm_swap_put(swslot, ppsp, npages, flags)
1564 int swslot;
1565 struct vm_page **ppsp;
1566 int npages;
1567 int flags;
1568 {
1569 int error;
1570
1571 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1572 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1573 return error;
1574 }
1575
1576 /*
1577 * uvm_swap_get: get a single page from swap
1578 *
1579 * => usually a sync op (from fault)
1580 */
1581
1582 int
1583 uvm_swap_get(page, swslot, flags)
1584 struct vm_page *page;
1585 int swslot, flags;
1586 {
1587 int error;
1588
1589 uvmexp.nswget++;
1590 KASSERT(flags & PGO_SYNCIO);
1591 if (swslot == SWSLOT_BAD) {
1592 return EIO;
1593 }
1594 error = uvm_swap_io(&page, swslot, 1, B_READ |
1595 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1596 if (error == 0) {
1597
1598 /*
1599 * this page is no longer only in swap.
1600 */
1601
1602 simple_lock(&uvm.swap_data_lock);
1603 KASSERT(uvmexp.swpgonly > 0);
1604 uvmexp.swpgonly--;
1605 simple_unlock(&uvm.swap_data_lock);
1606 }
1607 return error;
1608 }
1609
1610 /*
1611 * uvm_swap_io: do an i/o operation to swap
1612 */
1613
1614 static int
1615 uvm_swap_io(pps, startslot, npages, flags)
1616 struct vm_page **pps;
1617 int startslot, npages, flags;
1618 {
1619 daddr_t startblk;
1620 struct buf *bp;
1621 vaddr_t kva;
1622 int error, s, mapinflags;
1623 boolean_t write, async;
1624 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1625
1626 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1627 startslot, npages, flags, 0);
1628
1629 write = (flags & B_READ) == 0;
1630 async = (flags & B_ASYNC) != 0;
1631
1632 /*
1633 * convert starting drum slot to block number
1634 */
1635
1636 startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1637
1638 /*
1639 * first, map the pages into the kernel.
1640 */
1641
1642 mapinflags = !write ?
1643 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1644 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1645 kva = uvm_pagermapin(pps, npages, mapinflags);
1646
1647 /*
1648 * now allocate a buf for the i/o.
1649 */
1650
1651 s = splbio();
1652 bp = pool_get(&bufpool, PR_WAITOK);
1653 splx(s);
1654
1655 /*
1656 * fill in the bp/sbp. we currently route our i/o through
1657 * /dev/drum's vnode [swapdev_vp].
1658 */
1659
1660 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1661 bp->b_proc = &proc0; /* XXX */
1662 bp->b_vnbufs.le_next = NOLIST;
1663 bp->b_data = (caddr_t)kva;
1664 bp->b_blkno = startblk;
1665 bp->b_vp = swapdev_vp;
1666 bp->b_dev = swapdev_vp->v_rdev;
1667 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1668 LIST_INIT(&bp->b_dep);
1669
1670 /*
1671 * bump v_numoutput (counter of number of active outputs).
1672 */
1673
1674 if (write) {
1675 s = splbio();
1676 swapdev_vp->v_numoutput++;
1677 splx(s);
1678 }
1679
1680 /*
1681 * for async ops we must set up the iodone handler.
1682 */
1683
1684 if (async) {
1685 bp->b_flags |= B_CALL;
1686 bp->b_iodone = uvm_aio_biodone;
1687 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1688 }
1689 UVMHIST_LOG(pdhist,
1690 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1691 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1692
1693 /*
1694 * now we start the I/O, and if async, return.
1695 */
1696
1697 VOP_STRATEGY(bp);
1698 if (async)
1699 return 0;
1700
1701 /*
1702 * must be sync i/o. wait for it to finish
1703 */
1704
1705 error = biowait(bp);
1706
1707 /*
1708 * kill the pager mapping
1709 */
1710
1711 uvm_pagermapout(kva, npages);
1712
1713 /*
1714 * now dispose of the buf and we're done.
1715 */
1716
1717 s = splbio();
1718 if (write)
1719 vwakeup(bp);
1720 pool_put(&bufpool, bp);
1721 splx(s);
1722 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1723 return (error);
1724 }
1725