Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.46.2.5
      1 /*	$NetBSD: uvm_swap.c,v 1.46.2.5 2001/11/14 19:19:09 nathanw Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.46.2.5 2001/11/14 19:19:09 nathanw Exp $");
     36 
     37 #include "fs_nfs.h"
     38 #include "opt_uvmhist.h"
     39 #include "opt_compat_netbsd.h"
     40 #include "opt_ddb.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/buf.h>
     45 #include <sys/conf.h>
     46 #include <sys/lwp.h>
     47 #include <sys/proc.h>
     48 #include <sys/namei.h>
     49 #include <sys/disklabel.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/malloc.h>
     53 #include <sys/vnode.h>
     54 #include <sys/file.h>
     55 #include <sys/extent.h>
     56 #include <sys/mount.h>
     57 #include <sys/pool.h>
     58 #include <sys/syscallargs.h>
     59 #include <sys/swap.h>
     60 
     61 #include <uvm/uvm.h>
     62 
     63 #include <miscfs/specfs/specdev.h>
     64 
     65 /*
     66  * uvm_swap.c: manage configuration and i/o to swap space.
     67  */
     68 
     69 /*
     70  * swap space is managed in the following way:
     71  *
     72  * each swap partition or file is described by a "swapdev" structure.
     73  * each "swapdev" structure contains a "swapent" structure which contains
     74  * information that is passed up to the user (via system calls).
     75  *
     76  * each swap partition is assigned a "priority" (int) which controls
     77  * swap parition usage.
     78  *
     79  * the system maintains a global data structure describing all swap
     80  * partitions/files.   there is a sorted LIST of "swappri" structures
     81  * which describe "swapdev"'s at that priority.   this LIST is headed
     82  * by the "swap_priority" global var.    each "swappri" contains a
     83  * CIRCLEQ of "swapdev" structures at that priority.
     84  *
     85  * locking:
     86  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
     87  *    system call and prevents the swap priority list from changing
     88  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     89  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
     90  *    structures including the priority list, the swapdev structures,
     91  *    and the swapmap extent.
     92  *
     93  * each swap device has the following info:
     94  *  - swap device in use (could be disabled, preventing future use)
     95  *  - swap enabled (allows new allocations on swap)
     96  *  - map info in /dev/drum
     97  *  - vnode pointer
     98  * for swap files only:
     99  *  - block size
    100  *  - max byte count in buffer
    101  *  - buffer
    102  *  - credentials to use when doing i/o to file
    103  *
    104  * userland controls and configures swap with the swapctl(2) system call.
    105  * the sys_swapctl performs the following operations:
    106  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    107  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    108  *	(passed in via "arg") of a size passed in via "misc" ... we load
    109  *	the current swap config into the array.
    110  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    111  *	priority in "misc", start swapping on it.
    112  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    113  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    114  *	"misc")
    115  */
    116 
    117 /*
    118  * swapdev: describes a single swap partition/file
    119  *
    120  * note the following should be true:
    121  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    122  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    123  */
    124 struct swapdev {
    125 	struct oswapent swd_ose;
    126 #define	swd_dev		swd_ose.ose_dev		/* device id */
    127 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    128 #define	swd_priority	swd_ose.ose_priority	/* our priority */
    129 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    130 	char			*swd_path;	/* saved pathname of device */
    131 	int			swd_pathlen;	/* length of pathname */
    132 	int			swd_npages;	/* #pages we can use */
    133 	int			swd_npginuse;	/* #pages in use */
    134 	int			swd_npgbad;	/* #pages bad */
    135 	int			swd_drumoffset;	/* page0 offset in drum */
    136 	int			swd_drumsize;	/* #pages in drum */
    137 	struct extent		*swd_ex;	/* extent for this swapdev */
    138 	char			swd_exname[12];	/* name of extent above */
    139 	struct vnode		*swd_vp;	/* backing vnode */
    140 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    141 
    142 	int			swd_bsize;	/* blocksize (bytes) */
    143 	int			swd_maxactive;	/* max active i/o reqs */
    144 	struct buf_queue	swd_tab;	/* buffer list */
    145 	int			swd_active;	/* number of active buffers */
    146 	struct ucred		*swd_cred;	/* cred for file access */
    147 };
    148 
    149 /*
    150  * swap device priority entry; the list is kept sorted on `spi_priority'.
    151  */
    152 struct swappri {
    153 	int			spi_priority;     /* priority */
    154 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    155 	/* circleq of swapdevs at this priority */
    156 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    157 };
    158 
    159 /*
    160  * The following two structures are used to keep track of data transfers
    161  * on swap devices associated with regular files.
    162  * NOTE: this code is more or less a copy of vnd.c; we use the same
    163  * structure names here to ease porting..
    164  */
    165 struct vndxfer {
    166 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    167 	struct swapdev	*vx_sdp;
    168 	int		vx_error;
    169 	int		vx_pending;	/* # of pending aux buffers */
    170 	int		vx_flags;
    171 #define VX_BUSY		1
    172 #define VX_DEAD		2
    173 };
    174 
    175 struct vndbuf {
    176 	struct buf	vb_buf;
    177 	struct vndxfer	*vb_xfer;
    178 };
    179 
    180 
    181 /*
    182  * We keep a of pool vndbuf's and vndxfer structures.
    183  */
    184 static struct pool vndxfer_pool;
    185 static struct pool vndbuf_pool;
    186 
    187 #define	getvndxfer(vnx)	do {						\
    188 	int s = splbio();						\
    189 	vnx = pool_get(&vndxfer_pool, PR_MALLOCOK|PR_WAITOK);		\
    190 	splx(s);							\
    191 } while (0)
    192 
    193 #define putvndxfer(vnx) {						\
    194 	pool_put(&vndxfer_pool, (void *)(vnx));				\
    195 }
    196 
    197 #define	getvndbuf(vbp)	do {						\
    198 	int s = splbio();						\
    199 	vbp = pool_get(&vndbuf_pool, PR_MALLOCOK|PR_WAITOK);		\
    200 	splx(s);							\
    201 } while (0)
    202 
    203 #define putvndbuf(vbp) {						\
    204 	pool_put(&vndbuf_pool, (void *)(vbp));				\
    205 }
    206 
    207 /* /dev/drum */
    208 bdev_decl(sw);
    209 cdev_decl(sw);
    210 
    211 /*
    212  * local variables
    213  */
    214 static struct extent *swapmap;		/* controls the mapping of /dev/drum */
    215 
    216 /* list of all active swap devices [by priority] */
    217 LIST_HEAD(swap_priority, swappri);
    218 static struct swap_priority swap_priority;
    219 
    220 /* locks */
    221 struct lock swap_syscall_lock;
    222 
    223 /*
    224  * prototypes
    225  */
    226 static struct swapdev	*swapdrum_getsdp __P((int));
    227 
    228 static struct swapdev	*swaplist_find __P((struct vnode *, int));
    229 static void		 swaplist_insert __P((struct swapdev *,
    230 					     struct swappri *, int));
    231 static void		 swaplist_trim __P((void));
    232 
    233 static int swap_on __P((struct proc *, struct swapdev *));
    234 static int swap_off __P((struct proc *, struct swapdev *));
    235 
    236 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
    237 static void sw_reg_iodone __P((struct buf *));
    238 static void sw_reg_start __P((struct swapdev *));
    239 
    240 static int uvm_swap_io __P((struct vm_page **, int, int, int));
    241 
    242 /*
    243  * uvm_swap_init: init the swap system data structures and locks
    244  *
    245  * => called at boot time from init_main.c after the filesystems
    246  *	are brought up (which happens after uvm_init())
    247  */
    248 void
    249 uvm_swap_init()
    250 {
    251 	UVMHIST_FUNC("uvm_swap_init");
    252 
    253 	UVMHIST_CALLED(pdhist);
    254 	/*
    255 	 * first, init the swap list, its counter, and its lock.
    256 	 * then get a handle on the vnode for /dev/drum by using
    257 	 * the its dev_t number ("swapdev", from MD conf.c).
    258 	 */
    259 
    260 	LIST_INIT(&swap_priority);
    261 	uvmexp.nswapdev = 0;
    262 	lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
    263 	simple_lock_init(&uvm.swap_data_lock);
    264 
    265 	if (bdevvp(swapdev, &swapdev_vp))
    266 		panic("uvm_swap_init: can't get vnode for swap device");
    267 
    268 	/*
    269 	 * create swap block resource map to map /dev/drum.   the range
    270 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    271 	 * that block 0 is reserved (used to indicate an allocation
    272 	 * failure, or no allocation).
    273 	 */
    274 	swapmap = extent_create("swapmap", 1, INT_MAX,
    275 				M_VMSWAP, 0, 0, EX_NOWAIT);
    276 	if (swapmap == 0)
    277 		panic("uvm_swap_init: extent_create failed");
    278 
    279 	/*
    280 	 * allocate pools for structures used for swapping to files.
    281 	 */
    282 
    283 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0,
    284 	    "swp vnx", 0, NULL, NULL, 0);
    285 
    286 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0,
    287 	    "swp vnd", 0, NULL, NULL, 0);
    288 
    289 	/*
    290 	 * done!
    291 	 */
    292 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    293 }
    294 
    295 /*
    296  * swaplist functions: functions that operate on the list of swap
    297  * devices on the system.
    298  */
    299 
    300 /*
    301  * swaplist_insert: insert swap device "sdp" into the global list
    302  *
    303  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    304  * => caller must provide a newly malloc'd swappri structure (we will
    305  *	FREE it if we don't need it... this it to prevent malloc blocking
    306  *	here while adding swap)
    307  */
    308 static void
    309 swaplist_insert(sdp, newspp, priority)
    310 	struct swapdev *sdp;
    311 	struct swappri *newspp;
    312 	int priority;
    313 {
    314 	struct swappri *spp, *pspp;
    315 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    316 
    317 	/*
    318 	 * find entry at or after which to insert the new device.
    319 	 */
    320 	pspp = NULL;
    321 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    322 		if (priority <= spp->spi_priority)
    323 			break;
    324 		pspp = spp;
    325 	}
    326 
    327 	/*
    328 	 * new priority?
    329 	 */
    330 	if (spp == NULL || spp->spi_priority != priority) {
    331 		spp = newspp;  /* use newspp! */
    332 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    333 			    priority, 0, 0, 0);
    334 
    335 		spp->spi_priority = priority;
    336 		CIRCLEQ_INIT(&spp->spi_swapdev);
    337 
    338 		if (pspp)
    339 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    340 		else
    341 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    342 	} else {
    343 	  	/* we don't need a new priority structure, free it */
    344 		FREE(newspp, M_VMSWAP);
    345 	}
    346 
    347 	/*
    348 	 * priority found (or created).   now insert on the priority's
    349 	 * circleq list and bump the total number of swapdevs.
    350 	 */
    351 	sdp->swd_priority = priority;
    352 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    353 	uvmexp.nswapdev++;
    354 }
    355 
    356 /*
    357  * swaplist_find: find and optionally remove a swap device from the
    358  *	global list.
    359  *
    360  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    361  * => we return the swapdev we found (and removed)
    362  */
    363 static struct swapdev *
    364 swaplist_find(vp, remove)
    365 	struct vnode *vp;
    366 	boolean_t remove;
    367 {
    368 	struct swapdev *sdp;
    369 	struct swappri *spp;
    370 
    371 	/*
    372 	 * search the lists for the requested vp
    373 	 */
    374 
    375 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    376 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    377 			if (sdp->swd_vp == vp) {
    378 				if (remove) {
    379 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    380 					    sdp, swd_next);
    381 					uvmexp.nswapdev--;
    382 				}
    383 				return(sdp);
    384 			}
    385 		}
    386 	}
    387 	return (NULL);
    388 }
    389 
    390 
    391 /*
    392  * swaplist_trim: scan priority list for empty priority entries and kill
    393  *	them.
    394  *
    395  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    396  */
    397 static void
    398 swaplist_trim()
    399 {
    400 	struct swappri *spp, *nextspp;
    401 
    402 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    403 		nextspp = LIST_NEXT(spp, spi_swappri);
    404 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    405 		    (void *)&spp->spi_swapdev)
    406 			continue;
    407 		LIST_REMOVE(spp, spi_swappri);
    408 		free(spp, M_VMSWAP);
    409 	}
    410 }
    411 
    412 /*
    413  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    414  *	to the "swapdev" that maps that section of the drum.
    415  *
    416  * => each swapdev takes one big contig chunk of the drum
    417  * => caller must hold uvm.swap_data_lock
    418  */
    419 static struct swapdev *
    420 swapdrum_getsdp(pgno)
    421 	int pgno;
    422 {
    423 	struct swapdev *sdp;
    424 	struct swappri *spp;
    425 
    426 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    427 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    428 			if (sdp->swd_flags & SWF_FAKE)
    429 				continue;
    430 			if (pgno >= sdp->swd_drumoffset &&
    431 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    432 				return sdp;
    433 			}
    434 		}
    435 	}
    436 	return NULL;
    437 }
    438 
    439 
    440 /*
    441  * sys_swapctl: main entry point for swapctl(2) system call
    442  * 	[with two helper functions: swap_on and swap_off]
    443  */
    444 int
    445 sys_swapctl(l, v, retval)
    446 	struct lwp *l;
    447 	void *v;
    448 	register_t *retval;
    449 {
    450 	struct sys_swapctl_args /* {
    451 		syscallarg(int) cmd;
    452 		syscallarg(void *) arg;
    453 		syscallarg(int) misc;
    454 	} */ *uap = (struct sys_swapctl_args *)v;
    455 	struct proc *p = l->l_proc;
    456 	struct vnode *vp;
    457 	struct nameidata nd;
    458 	struct swappri *spp;
    459 	struct swapdev *sdp;
    460 	struct swapent *sep;
    461 	char	userpath[PATH_MAX + 1];
    462 	size_t	len;
    463 	int	count, error, misc;
    464 	int	priority;
    465 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    466 
    467 	misc = SCARG(uap, misc);
    468 
    469 	/*
    470 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    471 	 */
    472 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
    473 
    474 	/*
    475 	 * we handle the non-priv NSWAP and STATS request first.
    476 	 *
    477 	 * SWAP_NSWAP: return number of config'd swap devices
    478 	 * [can also be obtained with uvmexp sysctl]
    479 	 */
    480 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    481 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    482 		    0, 0, 0);
    483 		*retval = uvmexp.nswapdev;
    484 		error = 0;
    485 		goto out;
    486 	}
    487 
    488 	/*
    489 	 * SWAP_STATS: get stats on current # of configured swap devs
    490 	 *
    491 	 * note that the swap_priority list can't change as long
    492 	 * as we are holding the swap_syscall_lock.  we don't want
    493 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
    494 	 * copyout() and we don't want to be holding that lock then!
    495 	 */
    496 	if (SCARG(uap, cmd) == SWAP_STATS
    497 #if defined(COMPAT_13)
    498 	    || SCARG(uap, cmd) == SWAP_OSTATS
    499 #endif
    500 	    ) {
    501 		sep = (struct swapent *)SCARG(uap, arg);
    502 		count = 0;
    503 
    504 		LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    505 			for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    506 			     sdp != (void *)&spp->spi_swapdev && misc-- > 0;
    507 			     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    508 			  	/*
    509 				 * backwards compatibility for system call.
    510 				 * note that we use 'struct oswapent' as an
    511 				 * overlay into both 'struct swapdev' and
    512 				 * the userland 'struct swapent', as we
    513 				 * want to retain backwards compatibility
    514 				 * with NetBSD 1.3.
    515 				 */
    516 				sdp->swd_ose.ose_inuse =
    517 				    btodb((u_int64_t)sdp->swd_npginuse <<
    518 				    PAGE_SHIFT);
    519 				error = copyout(&sdp->swd_ose, sep,
    520 						sizeof(struct oswapent));
    521 
    522 				/* now copy out the path if necessary */
    523 #if defined(COMPAT_13)
    524 				if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
    525 #else
    526 				if (error == 0)
    527 #endif
    528 					error = copyout(sdp->swd_path,
    529 					    &sep->se_path, sdp->swd_pathlen);
    530 
    531 				if (error)
    532 					goto out;
    533 				count++;
    534 #if defined(COMPAT_13)
    535 				if (SCARG(uap, cmd) == SWAP_OSTATS)
    536 					sep = (struct swapent *)
    537 					    ((struct oswapent *)sep + 1);
    538 				else
    539 #endif
    540 					sep++;
    541 			}
    542 		}
    543 
    544 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    545 
    546 		*retval = count;
    547 		error = 0;
    548 		goto out;
    549 	}
    550 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    551 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    552 
    553 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    554 		goto out;
    555 	}
    556 
    557 	/*
    558 	 * all other requests require superuser privs.   verify.
    559 	 */
    560 	if ((error = suser(p->p_ucred, &p->p_acflag)))
    561 		goto out;
    562 
    563 	/*
    564 	 * at this point we expect a path name in arg.   we will
    565 	 * use namei() to gain a vnode reference (vref), and lock
    566 	 * the vnode (VOP_LOCK).
    567 	 *
    568 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    569 	 * miniroot)
    570 	 */
    571 	if (SCARG(uap, arg) == NULL) {
    572 		vp = rootvp;		/* miniroot */
    573 		if (vget(vp, LK_EXCLUSIVE)) {
    574 			error = EBUSY;
    575 			goto out;
    576 		}
    577 		if (SCARG(uap, cmd) == SWAP_ON &&
    578 		    copystr("miniroot", userpath, sizeof userpath, &len))
    579 			panic("swapctl: miniroot copy failed");
    580 	} else {
    581 		int	space;
    582 		char	*where;
    583 
    584 		if (SCARG(uap, cmd) == SWAP_ON) {
    585 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    586 			    sizeof userpath, &len)))
    587 				goto out;
    588 			space = UIO_SYSSPACE;
    589 			where = userpath;
    590 		} else {
    591 			space = UIO_USERSPACE;
    592 			where = (char *)SCARG(uap, arg);
    593 		}
    594 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
    595 		if ((error = namei(&nd)))
    596 			goto out;
    597 		vp = nd.ni_vp;
    598 	}
    599 	/* note: "vp" is referenced and locked */
    600 
    601 	error = 0;		/* assume no error */
    602 	switch(SCARG(uap, cmd)) {
    603 
    604 	case SWAP_DUMPDEV:
    605 		if (vp->v_type != VBLK) {
    606 			error = ENOTBLK;
    607 			break;
    608 		}
    609 		dumpdev = vp->v_rdev;
    610 		break;
    611 
    612 	case SWAP_CTL:
    613 		/*
    614 		 * get new priority, remove old entry (if any) and then
    615 		 * reinsert it in the correct place.  finally, prune out
    616 		 * any empty priority structures.
    617 		 */
    618 		priority = SCARG(uap, misc);
    619 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    620 		simple_lock(&uvm.swap_data_lock);
    621 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
    622 			error = ENOENT;
    623 		} else {
    624 			swaplist_insert(sdp, spp, priority);
    625 			swaplist_trim();
    626 		}
    627 		simple_unlock(&uvm.swap_data_lock);
    628 		if (error)
    629 			free(spp, M_VMSWAP);
    630 		break;
    631 
    632 	case SWAP_ON:
    633 
    634 		/*
    635 		 * check for duplicates.   if none found, then insert a
    636 		 * dummy entry on the list to prevent someone else from
    637 		 * trying to enable this device while we are working on
    638 		 * it.
    639 		 */
    640 
    641 		priority = SCARG(uap, misc);
    642 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    643 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    644 		simple_lock(&uvm.swap_data_lock);
    645 		if (swaplist_find(vp, 0) != NULL) {
    646 			error = EBUSY;
    647 			simple_unlock(&uvm.swap_data_lock);
    648 			free(sdp, M_VMSWAP);
    649 			free(spp, M_VMSWAP);
    650 			break;
    651 		}
    652 		memset(sdp, 0, sizeof(*sdp));
    653 		sdp->swd_flags = SWF_FAKE;	/* placeholder only */
    654 		sdp->swd_vp = vp;
    655 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    656 		BUFQ_INIT(&sdp->swd_tab);
    657 
    658 		/*
    659 		 * XXX Is NFS elaboration necessary?
    660 		 */
    661 		if (vp->v_type == VREG) {
    662 			sdp->swd_cred = crdup(p->p_ucred);
    663 		}
    664 
    665 		swaplist_insert(sdp, spp, priority);
    666 		simple_unlock(&uvm.swap_data_lock);
    667 
    668 		sdp->swd_pathlen = len;
    669 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    670 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    671 			panic("swapctl: copystr");
    672 
    673 		/*
    674 		 * we've now got a FAKE placeholder in the swap list.
    675 		 * now attempt to enable swap on it.  if we fail, undo
    676 		 * what we've done and kill the fake entry we just inserted.
    677 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    678 		 */
    679 
    680 		if ((error = swap_on(p, sdp)) != 0) {
    681 			simple_lock(&uvm.swap_data_lock);
    682 			(void) swaplist_find(vp, 1);  /* kill fake entry */
    683 			swaplist_trim();
    684 			simple_unlock(&uvm.swap_data_lock);
    685 			if (vp->v_type == VREG) {
    686 				crfree(sdp->swd_cred);
    687 			}
    688 			free(sdp->swd_path, M_VMSWAP);
    689 			free(sdp, M_VMSWAP);
    690 			break;
    691 		}
    692 		break;
    693 
    694 	case SWAP_OFF:
    695 		simple_lock(&uvm.swap_data_lock);
    696 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
    697 			simple_unlock(&uvm.swap_data_lock);
    698 			error = ENXIO;
    699 			break;
    700 		}
    701 
    702 		/*
    703 		 * If a device isn't in use or enabled, we
    704 		 * can't stop swapping from it (again).
    705 		 */
    706 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    707 			simple_unlock(&uvm.swap_data_lock);
    708 			error = EBUSY;
    709 			break;
    710 		}
    711 
    712 		/*
    713 		 * do the real work.
    714 		 */
    715 		error = swap_off(p, sdp);
    716 		break;
    717 
    718 	default:
    719 		error = EINVAL;
    720 	}
    721 
    722 	/*
    723 	 * done!  release the ref gained by namei() and unlock.
    724 	 */
    725 	vput(vp);
    726 
    727 out:
    728 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
    729 
    730 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    731 	return (error);
    732 }
    733 
    734 /*
    735  * swap_on: attempt to enable a swapdev for swapping.   note that the
    736  *	swapdev is already on the global list, but disabled (marked
    737  *	SWF_FAKE).
    738  *
    739  * => we avoid the start of the disk (to protect disk labels)
    740  * => we also avoid the miniroot, if we are swapping to root.
    741  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
    742  *	if needed.
    743  */
    744 static int
    745 swap_on(p, sdp)
    746 	struct proc *p;
    747 	struct swapdev *sdp;
    748 {
    749 	static int count = 0;	/* static */
    750 	struct vnode *vp;
    751 	int error, npages, nblocks, size;
    752 	long addr;
    753 	u_long result;
    754 	struct vattr va;
    755 #ifdef NFS
    756 	extern int (**nfsv2_vnodeop_p) __P((void *));
    757 #endif /* NFS */
    758 	dev_t dev;
    759 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    760 
    761 	/*
    762 	 * we want to enable swapping on sdp.   the swd_vp contains
    763 	 * the vnode we want (locked and ref'd), and the swd_dev
    764 	 * contains the dev_t of the file, if it a block device.
    765 	 */
    766 
    767 	vp = sdp->swd_vp;
    768 	dev = sdp->swd_dev;
    769 
    770 	/*
    771 	 * open the swap file (mostly useful for block device files to
    772 	 * let device driver know what is up).
    773 	 *
    774 	 * we skip the open/close for root on swap because the root
    775 	 * has already been opened when root was mounted (mountroot).
    776 	 */
    777 	if (vp != rootvp) {
    778 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
    779 			return (error);
    780 	}
    781 
    782 	/* XXX this only works for block devices */
    783 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    784 
    785 	/*
    786 	 * we now need to determine the size of the swap area.   for
    787 	 * block specials we can call the d_psize function.
    788 	 * for normal files, we must stat [get attrs].
    789 	 *
    790 	 * we put the result in nblks.
    791 	 * for normal files, we also want the filesystem block size
    792 	 * (which we get with statfs).
    793 	 */
    794 	switch (vp->v_type) {
    795 	case VBLK:
    796 		if (bdevsw[major(dev)].d_psize == 0 ||
    797 		    (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
    798 			error = ENXIO;
    799 			goto bad;
    800 		}
    801 		break;
    802 
    803 	case VREG:
    804 		if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
    805 			goto bad;
    806 		nblocks = (int)btodb(va.va_size);
    807 		if ((error =
    808 		     VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
    809 			goto bad;
    810 
    811 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    812 		/*
    813 		 * limit the max # of outstanding I/O requests we issue
    814 		 * at any one time.   take it easy on NFS servers.
    815 		 */
    816 #ifdef NFS
    817 		if (vp->v_op == nfsv2_vnodeop_p)
    818 			sdp->swd_maxactive = 2; /* XXX */
    819 		else
    820 #endif /* NFS */
    821 			sdp->swd_maxactive = 8; /* XXX */
    822 		break;
    823 
    824 	default:
    825 		error = ENXIO;
    826 		goto bad;
    827 	}
    828 
    829 	/*
    830 	 * save nblocks in a safe place and convert to pages.
    831 	 */
    832 
    833 	sdp->swd_ose.ose_nblks = nblocks;
    834 	npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
    835 
    836 	/*
    837 	 * for block special files, we want to make sure that leave
    838 	 * the disklabel and bootblocks alone, so we arrange to skip
    839 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    840 	 * note that because of this the "size" can be less than the
    841 	 * actual number of blocks on the device.
    842 	 */
    843 	if (vp->v_type == VBLK) {
    844 		/* we use pages 1 to (size - 1) [inclusive] */
    845 		size = npages - 1;
    846 		addr = 1;
    847 	} else {
    848 		/* we use pages 0 to (size - 1) [inclusive] */
    849 		size = npages;
    850 		addr = 0;
    851 	}
    852 
    853 	/*
    854 	 * make sure we have enough blocks for a reasonable sized swap
    855 	 * area.   we want at least one page.
    856 	 */
    857 
    858 	if (size < 1) {
    859 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    860 		error = EINVAL;
    861 		goto bad;
    862 	}
    863 
    864 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    865 
    866 	/*
    867 	 * now we need to allocate an extent to manage this swap device
    868 	 */
    869 	snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
    870 	    count++);
    871 
    872 	/* note that extent_create's 3rd arg is inclusive, thus "- 1" */
    873 	sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
    874 				    0, 0, EX_WAITOK);
    875 	/* allocate the `saved' region from the extent so it won't be used */
    876 	if (addr) {
    877 		if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
    878 			panic("disklabel region");
    879 	}
    880 
    881 	/*
    882 	 * if the vnode we are swapping to is the root vnode
    883 	 * (i.e. we are swapping to the miniroot) then we want
    884 	 * to make sure we don't overwrite it.   do a statfs to
    885 	 * find its size and skip over it.
    886 	 */
    887 	if (vp == rootvp) {
    888 		struct mount *mp;
    889 		struct statfs *sp;
    890 		int rootblocks, rootpages;
    891 
    892 		mp = rootvnode->v_mount;
    893 		sp = &mp->mnt_stat;
    894 		rootblocks = sp->f_blocks * btodb(sp->f_bsize);
    895 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    896 		if (rootpages > size)
    897 			panic("swap_on: miniroot larger than swap?");
    898 
    899 		if (extent_alloc_region(sdp->swd_ex, addr,
    900 					rootpages, EX_WAITOK))
    901 			panic("swap_on: unable to preserve miniroot");
    902 
    903 		size -= rootpages;
    904 		printf("Preserved %d pages of miniroot ", rootpages);
    905 		printf("leaving %d pages of swap\n", size);
    906 	}
    907 
    908   	/*
    909 	 * try to add anons to reflect the new swap space.
    910 	 */
    911 
    912 	error = uvm_anon_add(size);
    913 	if (error) {
    914 		goto bad;
    915 	}
    916 
    917 	/*
    918 	 * add a ref to vp to reflect usage as a swap device.
    919 	 */
    920 	vref(vp);
    921 
    922 	/*
    923 	 * now add the new swapdev to the drum and enable.
    924 	 */
    925 	if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
    926 	    EX_WAITOK, &result))
    927 		panic("swapdrum_add");
    928 
    929 	sdp->swd_drumoffset = (int)result;
    930 	sdp->swd_drumsize = npages;
    931 	sdp->swd_npages = size;
    932 	simple_lock(&uvm.swap_data_lock);
    933 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    934 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    935 	uvmexp.swpages += size;
    936 	simple_unlock(&uvm.swap_data_lock);
    937 	return (0);
    938 
    939 	/*
    940 	 * failure: clean up and return error.
    941 	 */
    942 
    943 bad:
    944 	if (sdp->swd_ex) {
    945 		extent_destroy(sdp->swd_ex);
    946 	}
    947 	if (vp != rootvp) {
    948 		(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
    949 	}
    950 	return (error);
    951 }
    952 
    953 /*
    954  * swap_off: stop swapping on swapdev
    955  *
    956  * => swap data should be locked, we will unlock.
    957  */
    958 static int
    959 swap_off(p, sdp)
    960 	struct proc *p;
    961 	struct swapdev *sdp;
    962 {
    963 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
    964 	UVMHIST_LOG(pdhist, "  dev=%x", sdp->swd_dev,0,0,0);
    965 
    966 	/* disable the swap area being removed */
    967 	sdp->swd_flags &= ~SWF_ENABLE;
    968 	simple_unlock(&uvm.swap_data_lock);
    969 
    970 	/*
    971 	 * the idea is to find all the pages that are paged out to this
    972 	 * device, and page them all in.  in uvm, swap-backed pageable
    973 	 * memory can take two forms: aobjs and anons.  call the
    974 	 * swapoff hook for each subsystem to bring in pages.
    975 	 */
    976 
    977 	if (uao_swap_off(sdp->swd_drumoffset,
    978 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
    979 	    anon_swap_off(sdp->swd_drumoffset,
    980 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
    981 
    982 		simple_lock(&uvm.swap_data_lock);
    983 		sdp->swd_flags |= SWF_ENABLE;
    984 		simple_unlock(&uvm.swap_data_lock);
    985 		return ENOMEM;
    986 	}
    987 	KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
    988 
    989 	/*
    990 	 * done with the vnode and saved creds.
    991 	 * drop our ref on the vnode before calling VOP_CLOSE()
    992 	 * so that spec_close() can tell if this is the last close.
    993 	 */
    994 	if (sdp->swd_vp->v_type == VREG) {
    995 		crfree(sdp->swd_cred);
    996 	}
    997 	vrele(sdp->swd_vp);
    998 	if (sdp->swd_vp != rootvp) {
    999 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
   1000 	}
   1001 
   1002 	/* remove anons from the system */
   1003 	uvm_anon_remove(sdp->swd_npages);
   1004 
   1005 	simple_lock(&uvm.swap_data_lock);
   1006 	uvmexp.swpages -= sdp->swd_npages;
   1007 
   1008 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
   1009 		panic("swap_off: swapdev not in list\n");
   1010 	swaplist_trim();
   1011 	simple_unlock(&uvm.swap_data_lock);
   1012 
   1013 	/*
   1014 	 * free all resources!
   1015 	 */
   1016 	extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
   1017 		    EX_WAITOK);
   1018 	extent_destroy(sdp->swd_ex);
   1019 	free(sdp, M_VMSWAP);
   1020 	return (0);
   1021 }
   1022 
   1023 /*
   1024  * /dev/drum interface and i/o functions
   1025  */
   1026 
   1027 /*
   1028  * swread: the read function for the drum (just a call to physio)
   1029  */
   1030 /*ARGSUSED*/
   1031 int
   1032 swread(dev, uio, ioflag)
   1033 	dev_t dev;
   1034 	struct uio *uio;
   1035 	int ioflag;
   1036 {
   1037 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1038 
   1039 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1040 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1041 }
   1042 
   1043 /*
   1044  * swwrite: the write function for the drum (just a call to physio)
   1045  */
   1046 /*ARGSUSED*/
   1047 int
   1048 swwrite(dev, uio, ioflag)
   1049 	dev_t dev;
   1050 	struct uio *uio;
   1051 	int ioflag;
   1052 {
   1053 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1054 
   1055 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1056 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1057 }
   1058 
   1059 /*
   1060  * swstrategy: perform I/O on the drum
   1061  *
   1062  * => we must map the i/o request from the drum to the correct swapdev.
   1063  */
   1064 void
   1065 swstrategy(bp)
   1066 	struct buf *bp;
   1067 {
   1068 	struct swapdev *sdp;
   1069 	struct vnode *vp;
   1070 	int s, pageno, bn;
   1071 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1072 
   1073 	/*
   1074 	 * convert block number to swapdev.   note that swapdev can't
   1075 	 * be yanked out from under us because we are holding resources
   1076 	 * in it (i.e. the blocks we are doing I/O on).
   1077 	 */
   1078 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1079 	simple_lock(&uvm.swap_data_lock);
   1080 	sdp = swapdrum_getsdp(pageno);
   1081 	simple_unlock(&uvm.swap_data_lock);
   1082 	if (sdp == NULL) {
   1083 		bp->b_error = EINVAL;
   1084 		bp->b_flags |= B_ERROR;
   1085 		biodone(bp);
   1086 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1087 		return;
   1088 	}
   1089 
   1090 	/*
   1091 	 * convert drum page number to block number on this swapdev.
   1092 	 */
   1093 
   1094 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1095 	bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1096 
   1097 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1098 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1099 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1100 
   1101 	/*
   1102 	 * for block devices we finish up here.
   1103 	 * for regular files we have to do more work which we delegate
   1104 	 * to sw_reg_strategy().
   1105 	 */
   1106 
   1107 	switch (sdp->swd_vp->v_type) {
   1108 	default:
   1109 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
   1110 
   1111 	case VBLK:
   1112 
   1113 		/*
   1114 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1115 		 * on the swapdev (sdp).
   1116 		 */
   1117 		s = splbio();
   1118 		bp->b_blkno = bn;		/* swapdev block number */
   1119 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1120 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1121 
   1122 		/*
   1123 		 * if we are doing a write, we have to redirect the i/o on
   1124 		 * drum's v_numoutput counter to the swapdevs.
   1125 		 */
   1126 		if ((bp->b_flags & B_READ) == 0) {
   1127 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1128 			vp->v_numoutput++;	/* put it on swapdev */
   1129 		}
   1130 
   1131 		/*
   1132 		 * finally plug in swapdev vnode and start I/O
   1133 		 */
   1134 		bp->b_vp = vp;
   1135 		splx(s);
   1136 		VOP_STRATEGY(bp);
   1137 		return;
   1138 
   1139 	case VREG:
   1140 		/*
   1141 		 * delegate to sw_reg_strategy function.
   1142 		 */
   1143 		sw_reg_strategy(sdp, bp, bn);
   1144 		return;
   1145 	}
   1146 	/* NOTREACHED */
   1147 }
   1148 
   1149 /*
   1150  * sw_reg_strategy: handle swap i/o to regular files
   1151  */
   1152 static void
   1153 sw_reg_strategy(sdp, bp, bn)
   1154 	struct swapdev	*sdp;
   1155 	struct buf	*bp;
   1156 	int		bn;
   1157 {
   1158 	struct vnode	*vp;
   1159 	struct vndxfer	*vnx;
   1160 	daddr_t		nbn;
   1161 	caddr_t		addr;
   1162 	off_t		byteoff;
   1163 	int		s, off, nra, error, sz, resid;
   1164 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1165 
   1166 	/*
   1167 	 * allocate a vndxfer head for this transfer and point it to
   1168 	 * our buffer.
   1169 	 */
   1170 	getvndxfer(vnx);
   1171 	vnx->vx_flags = VX_BUSY;
   1172 	vnx->vx_error = 0;
   1173 	vnx->vx_pending = 0;
   1174 	vnx->vx_bp = bp;
   1175 	vnx->vx_sdp = sdp;
   1176 
   1177 	/*
   1178 	 * setup for main loop where we read filesystem blocks into
   1179 	 * our buffer.
   1180 	 */
   1181 	error = 0;
   1182 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1183 	addr = bp->b_data;		/* current position in buffer */
   1184 	byteoff = dbtob((u_int64_t)bn);
   1185 
   1186 	for (resid = bp->b_resid; resid; resid -= sz) {
   1187 		struct vndbuf	*nbp;
   1188 
   1189 		/*
   1190 		 * translate byteoffset into block number.  return values:
   1191 		 *   vp = vnode of underlying device
   1192 		 *  nbn = new block number (on underlying vnode dev)
   1193 		 *  nra = num blocks we can read-ahead (excludes requested
   1194 		 *	block)
   1195 		 */
   1196 		nra = 0;
   1197 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1198 				 	&vp, &nbn, &nra);
   1199 
   1200 		if (error == 0 && nbn == (daddr_t)-1) {
   1201 			/*
   1202 			 * this used to just set error, but that doesn't
   1203 			 * do the right thing.  Instead, it causes random
   1204 			 * memory errors.  The panic() should remain until
   1205 			 * this condition doesn't destabilize the system.
   1206 			 */
   1207 #if 1
   1208 			panic("sw_reg_strategy: swap to sparse file");
   1209 #else
   1210 			error = EIO;	/* failure */
   1211 #endif
   1212 		}
   1213 
   1214 		/*
   1215 		 * punt if there was an error or a hole in the file.
   1216 		 * we must wait for any i/o ops we have already started
   1217 		 * to finish before returning.
   1218 		 *
   1219 		 * XXX we could deal with holes here but it would be
   1220 		 * a hassle (in the write case).
   1221 		 */
   1222 		if (error) {
   1223 			s = splbio();
   1224 			vnx->vx_error = error;	/* pass error up */
   1225 			goto out;
   1226 		}
   1227 
   1228 		/*
   1229 		 * compute the size ("sz") of this transfer (in bytes).
   1230 		 */
   1231 		off = byteoff % sdp->swd_bsize;
   1232 		sz = (1 + nra) * sdp->swd_bsize - off;
   1233 		if (sz > resid)
   1234 			sz = resid;
   1235 
   1236 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1237 			    "vp %p/%p offset 0x%x/0x%x",
   1238 			    sdp->swd_vp, vp, byteoff, nbn);
   1239 
   1240 		/*
   1241 		 * now get a buf structure.   note that the vb_buf is
   1242 		 * at the front of the nbp structure so that you can
   1243 		 * cast pointers between the two structure easily.
   1244 		 */
   1245 		getvndbuf(nbp);
   1246 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
   1247 		nbp->vb_buf.b_bcount   = sz;
   1248 		nbp->vb_buf.b_bufsize  = sz;
   1249 		nbp->vb_buf.b_error    = 0;
   1250 		nbp->vb_buf.b_data     = addr;
   1251 		nbp->vb_buf.b_lblkno   = 0;
   1252 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1253 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1254 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
   1255 		nbp->vb_buf.b_vp       = vp;
   1256 		if (vp->v_type == VBLK) {
   1257 			nbp->vb_buf.b_dev = vp->v_rdev;
   1258 		}
   1259 		LIST_INIT(&nbp->vb_buf.b_dep);
   1260 
   1261 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1262 
   1263 		/*
   1264 		 * Just sort by block number
   1265 		 */
   1266 		s = splbio();
   1267 		if (vnx->vx_error != 0) {
   1268 			putvndbuf(nbp);
   1269 			goto out;
   1270 		}
   1271 		vnx->vx_pending++;
   1272 
   1273 		/* sort it in and start I/O if we are not over our limit */
   1274 		disksort_blkno(&sdp->swd_tab, &nbp->vb_buf);
   1275 		sw_reg_start(sdp);
   1276 		splx(s);
   1277 
   1278 		/*
   1279 		 * advance to the next I/O
   1280 		 */
   1281 		byteoff += sz;
   1282 		addr += sz;
   1283 	}
   1284 
   1285 	s = splbio();
   1286 
   1287 out: /* Arrive here at splbio */
   1288 	vnx->vx_flags &= ~VX_BUSY;
   1289 	if (vnx->vx_pending == 0) {
   1290 		if (vnx->vx_error != 0) {
   1291 			bp->b_error = vnx->vx_error;
   1292 			bp->b_flags |= B_ERROR;
   1293 		}
   1294 		putvndxfer(vnx);
   1295 		biodone(bp);
   1296 	}
   1297 	splx(s);
   1298 }
   1299 
   1300 /*
   1301  * sw_reg_start: start an I/O request on the requested swapdev
   1302  *
   1303  * => reqs are sorted by disksort (above)
   1304  */
   1305 static void
   1306 sw_reg_start(sdp)
   1307 	struct swapdev	*sdp;
   1308 {
   1309 	struct buf	*bp;
   1310 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1311 
   1312 	/* recursion control */
   1313 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1314 		return;
   1315 
   1316 	sdp->swd_flags |= SWF_BUSY;
   1317 
   1318 	while (sdp->swd_active < sdp->swd_maxactive) {
   1319 		bp = BUFQ_FIRST(&sdp->swd_tab);
   1320 		if (bp == NULL)
   1321 			break;
   1322 		BUFQ_REMOVE(&sdp->swd_tab, bp);
   1323 		sdp->swd_active++;
   1324 
   1325 		UVMHIST_LOG(pdhist,
   1326 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1327 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1328 		if ((bp->b_flags & B_READ) == 0)
   1329 			bp->b_vp->v_numoutput++;
   1330 
   1331 		VOP_STRATEGY(bp);
   1332 	}
   1333 	sdp->swd_flags &= ~SWF_BUSY;
   1334 }
   1335 
   1336 /*
   1337  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1338  *
   1339  * => note that we can recover the vndbuf struct by casting the buf ptr
   1340  */
   1341 static void
   1342 sw_reg_iodone(bp)
   1343 	struct buf *bp;
   1344 {
   1345 	struct vndbuf *vbp = (struct vndbuf *) bp;
   1346 	struct vndxfer *vnx = vbp->vb_xfer;
   1347 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1348 	struct swapdev	*sdp = vnx->vx_sdp;
   1349 	int		s, resid;
   1350 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1351 
   1352 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1353 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1354 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1355 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1356 
   1357 	/*
   1358 	 * protect vbp at splbio and update.
   1359 	 */
   1360 
   1361 	s = splbio();
   1362 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1363 	pbp->b_resid -= resid;
   1364 	vnx->vx_pending--;
   1365 
   1366 	if (vbp->vb_buf.b_error) {
   1367 		UVMHIST_LOG(pdhist, "  got error=%d !",
   1368 		    vbp->vb_buf.b_error, 0, 0, 0);
   1369 
   1370 		/* pass error upward */
   1371 		vnx->vx_error = vbp->vb_buf.b_error;
   1372 	}
   1373 
   1374 	/*
   1375 	 * kill vbp structure
   1376 	 */
   1377 	putvndbuf(vbp);
   1378 
   1379 	/*
   1380 	 * wrap up this transaction if it has run to completion or, in
   1381 	 * case of an error, when all auxiliary buffers have returned.
   1382 	 */
   1383 	if (vnx->vx_error != 0) {
   1384 		/* pass error upward */
   1385 		pbp->b_flags |= B_ERROR;
   1386 		pbp->b_error = vnx->vx_error;
   1387 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1388 			putvndxfer(vnx);
   1389 			biodone(pbp);
   1390 		}
   1391 	} else if (pbp->b_resid == 0) {
   1392 		KASSERT(vnx->vx_pending == 0);
   1393 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1394 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1395 			    pbp, vnx->vx_error, 0, 0);
   1396 			putvndxfer(vnx);
   1397 			biodone(pbp);
   1398 		}
   1399 	}
   1400 
   1401 	/*
   1402 	 * done!   start next swapdev I/O if one is pending
   1403 	 */
   1404 	sdp->swd_active--;
   1405 	sw_reg_start(sdp);
   1406 	splx(s);
   1407 }
   1408 
   1409 
   1410 /*
   1411  * uvm_swap_alloc: allocate space on swap
   1412  *
   1413  * => allocation is done "round robin" down the priority list, as we
   1414  *	allocate in a priority we "rotate" the circle queue.
   1415  * => space can be freed with uvm_swap_free
   1416  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1417  * => we lock uvm.swap_data_lock
   1418  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1419  */
   1420 int
   1421 uvm_swap_alloc(nslots, lessok)
   1422 	int *nslots;	/* IN/OUT */
   1423 	boolean_t lessok;
   1424 {
   1425 	struct swapdev *sdp;
   1426 	struct swappri *spp;
   1427 	u_long	result;
   1428 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1429 
   1430 	/*
   1431 	 * no swap devices configured yet?   definite failure.
   1432 	 */
   1433 	if (uvmexp.nswapdev < 1)
   1434 		return 0;
   1435 
   1436 	/*
   1437 	 * lock data lock, convert slots into blocks, and enter loop
   1438 	 */
   1439 	simple_lock(&uvm.swap_data_lock);
   1440 
   1441 ReTry:	/* XXXMRG */
   1442 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1443 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1444 			/* if it's not enabled, then we can't swap from it */
   1445 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1446 				continue;
   1447 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1448 				continue;
   1449 			if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
   1450 					 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
   1451 					 &result) != 0) {
   1452 				continue;
   1453 			}
   1454 
   1455 			/*
   1456 			 * successful allocation!  now rotate the circleq.
   1457 			 */
   1458 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1459 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1460 			sdp->swd_npginuse += *nslots;
   1461 			uvmexp.swpginuse += *nslots;
   1462 			simple_unlock(&uvm.swap_data_lock);
   1463 			/* done!  return drum slot number */
   1464 			UVMHIST_LOG(pdhist,
   1465 			    "success!  returning %d slots starting at %d",
   1466 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1467 			return (result + sdp->swd_drumoffset);
   1468 		}
   1469 	}
   1470 
   1471 	/* XXXMRG: BEGIN HACK */
   1472 	if (*nslots > 1 && lessok) {
   1473 		*nslots = 1;
   1474 		goto ReTry;	/* XXXMRG: ugh!  extent should support this for us */
   1475 	}
   1476 	/* XXXMRG: END HACK */
   1477 
   1478 	simple_unlock(&uvm.swap_data_lock);
   1479 	return 0;
   1480 }
   1481 
   1482 /*
   1483  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1484  *
   1485  * => we lock uvm.swap_data_lock
   1486  */
   1487 void
   1488 uvm_swap_markbad(startslot, nslots)
   1489 	int startslot;
   1490 	int nslots;
   1491 {
   1492 	struct swapdev *sdp;
   1493 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1494 
   1495 	simple_lock(&uvm.swap_data_lock);
   1496 	sdp = swapdrum_getsdp(startslot);
   1497 
   1498 	/*
   1499 	 * we just keep track of how many pages have been marked bad
   1500 	 * in this device, to make everything add up in swap_off().
   1501 	 * we assume here that the range of slots will all be within
   1502 	 * one swap device.
   1503 	 */
   1504 
   1505 	sdp->swd_npgbad += nslots;
   1506 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1507 	simple_unlock(&uvm.swap_data_lock);
   1508 }
   1509 
   1510 /*
   1511  * uvm_swap_free: free swap slots
   1512  *
   1513  * => this can be all or part of an allocation made by uvm_swap_alloc
   1514  * => we lock uvm.swap_data_lock
   1515  */
   1516 void
   1517 uvm_swap_free(startslot, nslots)
   1518 	int startslot;
   1519 	int nslots;
   1520 {
   1521 	struct swapdev *sdp;
   1522 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1523 
   1524 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1525 	    startslot, 0, 0);
   1526 
   1527 	/*
   1528 	 * ignore attempts to free the "bad" slot.
   1529 	 */
   1530 
   1531 	if (startslot == SWSLOT_BAD) {
   1532 		return;
   1533 	}
   1534 
   1535 	/*
   1536 	 * convert drum slot offset back to sdp, free the blocks
   1537 	 * in the extent, and return.   must hold pri lock to do
   1538 	 * lookup and access the extent.
   1539 	 */
   1540 
   1541 	simple_lock(&uvm.swap_data_lock);
   1542 	sdp = swapdrum_getsdp(startslot);
   1543 	KASSERT(uvmexp.nswapdev >= 1);
   1544 	KASSERT(sdp != NULL);
   1545 	KASSERT(sdp->swd_npginuse >= nslots);
   1546 	if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
   1547 			EX_MALLOCOK|EX_NOWAIT) != 0) {
   1548 		printf("warning: resource shortage: %d pages of swap lost\n",
   1549 			nslots);
   1550 	}
   1551 	sdp->swd_npginuse -= nslots;
   1552 	uvmexp.swpginuse -= nslots;
   1553 	simple_unlock(&uvm.swap_data_lock);
   1554 }
   1555 
   1556 /*
   1557  * uvm_swap_put: put any number of pages into a contig place on swap
   1558  *
   1559  * => can be sync or async
   1560  */
   1561 
   1562 int
   1563 uvm_swap_put(swslot, ppsp, npages, flags)
   1564 	int swslot;
   1565 	struct vm_page **ppsp;
   1566 	int npages;
   1567 	int flags;
   1568 {
   1569 	int error;
   1570 
   1571 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1572 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1573 	return error;
   1574 }
   1575 
   1576 /*
   1577  * uvm_swap_get: get a single page from swap
   1578  *
   1579  * => usually a sync op (from fault)
   1580  */
   1581 
   1582 int
   1583 uvm_swap_get(page, swslot, flags)
   1584 	struct vm_page *page;
   1585 	int swslot, flags;
   1586 {
   1587 	int error;
   1588 
   1589 	uvmexp.nswget++;
   1590 	KASSERT(flags & PGO_SYNCIO);
   1591 	if (swslot == SWSLOT_BAD) {
   1592 		return EIO;
   1593 	}
   1594 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1595 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1596 	if (error == 0) {
   1597 
   1598 		/*
   1599 		 * this page is no longer only in swap.
   1600 		 */
   1601 
   1602 		simple_lock(&uvm.swap_data_lock);
   1603 		KASSERT(uvmexp.swpgonly > 0);
   1604 		uvmexp.swpgonly--;
   1605 		simple_unlock(&uvm.swap_data_lock);
   1606 	}
   1607 	return error;
   1608 }
   1609 
   1610 /*
   1611  * uvm_swap_io: do an i/o operation to swap
   1612  */
   1613 
   1614 static int
   1615 uvm_swap_io(pps, startslot, npages, flags)
   1616 	struct vm_page **pps;
   1617 	int startslot, npages, flags;
   1618 {
   1619 	daddr_t startblk;
   1620 	struct	buf *bp;
   1621 	vaddr_t kva;
   1622 	int	error, s, mapinflags;
   1623 	boolean_t write, async;
   1624 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1625 
   1626 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1627 	    startslot, npages, flags, 0);
   1628 
   1629 	write = (flags & B_READ) == 0;
   1630 	async = (flags & B_ASYNC) != 0;
   1631 
   1632 	/*
   1633 	 * convert starting drum slot to block number
   1634 	 */
   1635 
   1636 	startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
   1637 
   1638 	/*
   1639 	 * first, map the pages into the kernel.
   1640 	 */
   1641 
   1642 	mapinflags = !write ?
   1643 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1644 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1645 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1646 
   1647 	/*
   1648 	 * now allocate a buf for the i/o.
   1649 	 */
   1650 
   1651 	s = splbio();
   1652 	bp = pool_get(&bufpool, PR_WAITOK);
   1653 	splx(s);
   1654 
   1655 	/*
   1656 	 * fill in the bp/sbp.   we currently route our i/o through
   1657 	 * /dev/drum's vnode [swapdev_vp].
   1658 	 */
   1659 
   1660 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
   1661 	bp->b_proc = &proc0;	/* XXX */
   1662 	bp->b_vnbufs.le_next = NOLIST;
   1663 	bp->b_data = (caddr_t)kva;
   1664 	bp->b_blkno = startblk;
   1665 	bp->b_vp = swapdev_vp;
   1666 	bp->b_dev = swapdev_vp->v_rdev;
   1667 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1668 	LIST_INIT(&bp->b_dep);
   1669 
   1670 	/*
   1671 	 * bump v_numoutput (counter of number of active outputs).
   1672 	 */
   1673 
   1674 	if (write) {
   1675 		s = splbio();
   1676 		swapdev_vp->v_numoutput++;
   1677 		splx(s);
   1678 	}
   1679 
   1680 	/*
   1681 	 * for async ops we must set up the iodone handler.
   1682 	 */
   1683 
   1684 	if (async) {
   1685 		bp->b_flags |= B_CALL;
   1686 		bp->b_iodone = uvm_aio_biodone;
   1687 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1688 	}
   1689 	UVMHIST_LOG(pdhist,
   1690 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1691 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1692 
   1693 	/*
   1694 	 * now we start the I/O, and if async, return.
   1695 	 */
   1696 
   1697 	VOP_STRATEGY(bp);
   1698 	if (async)
   1699 		return 0;
   1700 
   1701 	/*
   1702 	 * must be sync i/o.   wait for it to finish
   1703 	 */
   1704 
   1705 	error = biowait(bp);
   1706 
   1707 	/*
   1708 	 * kill the pager mapping
   1709 	 */
   1710 
   1711 	uvm_pagermapout(kva, npages);
   1712 
   1713 	/*
   1714 	 * now dispose of the buf and we're done.
   1715 	 */
   1716 
   1717 	s = splbio();
   1718 	if (write)
   1719 		vwakeup(bp);
   1720 	pool_put(&bufpool, bp);
   1721 	splx(s);
   1722 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1723 	return (error);
   1724 }
   1725