uvm_swap.c revision 1.46.2.6 1 /* $NetBSD: uvm_swap.c,v 1.46.2.6 2002/01/08 00:35:07 nathanw Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.46.2.6 2002/01/08 00:35:07 nathanw Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/conf.h>
46 #include <sys/lwp.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/extent.h>
56 #include <sys/mount.h>
57 #include <sys/pool.h>
58 #include <sys/syscallargs.h>
59 #include <sys/swap.h>
60
61 #include <uvm/uvm.h>
62
63 #include <miscfs/specfs/specdev.h>
64
65 /*
66 * uvm_swap.c: manage configuration and i/o to swap space.
67 */
68
69 /*
70 * swap space is managed in the following way:
71 *
72 * each swap partition or file is described by a "swapdev" structure.
73 * each "swapdev" structure contains a "swapent" structure which contains
74 * information that is passed up to the user (via system calls).
75 *
76 * each swap partition is assigned a "priority" (int) which controls
77 * swap parition usage.
78 *
79 * the system maintains a global data structure describing all swap
80 * partitions/files. there is a sorted LIST of "swappri" structures
81 * which describe "swapdev"'s at that priority. this LIST is headed
82 * by the "swap_priority" global var. each "swappri" contains a
83 * CIRCLEQ of "swapdev" structures at that priority.
84 *
85 * locking:
86 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
87 * system call and prevents the swap priority list from changing
88 * while we are in the middle of a system call (e.g. SWAP_STATS).
89 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
90 * structures including the priority list, the swapdev structures,
91 * and the swapmap extent.
92 *
93 * each swap device has the following info:
94 * - swap device in use (could be disabled, preventing future use)
95 * - swap enabled (allows new allocations on swap)
96 * - map info in /dev/drum
97 * - vnode pointer
98 * for swap files only:
99 * - block size
100 * - max byte count in buffer
101 * - buffer
102 *
103 * userland controls and configures swap with the swapctl(2) system call.
104 * the sys_swapctl performs the following operations:
105 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
106 * [2] SWAP_STATS: given a pointer to an array of swapent structures
107 * (passed in via "arg") of a size passed in via "misc" ... we load
108 * the current swap config into the array.
109 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
110 * priority in "misc", start swapping on it.
111 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
112 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
113 * "misc")
114 */
115
116 /*
117 * swapdev: describes a single swap partition/file
118 *
119 * note the following should be true:
120 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
121 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
122 */
123 struct swapdev {
124 struct oswapent swd_ose;
125 #define swd_dev swd_ose.ose_dev /* device id */
126 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
127 #define swd_priority swd_ose.ose_priority /* our priority */
128 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
129 char *swd_path; /* saved pathname of device */
130 int swd_pathlen; /* length of pathname */
131 int swd_npages; /* #pages we can use */
132 int swd_npginuse; /* #pages in use */
133 int swd_npgbad; /* #pages bad */
134 int swd_drumoffset; /* page0 offset in drum */
135 int swd_drumsize; /* #pages in drum */
136 struct extent *swd_ex; /* extent for this swapdev */
137 char swd_exname[12]; /* name of extent above */
138 struct vnode *swd_vp; /* backing vnode */
139 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
140
141 int swd_bsize; /* blocksize (bytes) */
142 int swd_maxactive; /* max active i/o reqs */
143 struct buf_queue swd_tab; /* buffer list */
144 int swd_active; /* number of active buffers */
145 };
146
147 /*
148 * swap device priority entry; the list is kept sorted on `spi_priority'.
149 */
150 struct swappri {
151 int spi_priority; /* priority */
152 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
153 /* circleq of swapdevs at this priority */
154 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
155 };
156
157 /*
158 * The following two structures are used to keep track of data transfers
159 * on swap devices associated with regular files.
160 * NOTE: this code is more or less a copy of vnd.c; we use the same
161 * structure names here to ease porting..
162 */
163 struct vndxfer {
164 struct buf *vx_bp; /* Pointer to parent buffer */
165 struct swapdev *vx_sdp;
166 int vx_error;
167 int vx_pending; /* # of pending aux buffers */
168 int vx_flags;
169 #define VX_BUSY 1
170 #define VX_DEAD 2
171 };
172
173 struct vndbuf {
174 struct buf vb_buf;
175 struct vndxfer *vb_xfer;
176 };
177
178
179 /*
180 * We keep a of pool vndbuf's and vndxfer structures.
181 */
182 static struct pool vndxfer_pool;
183 static struct pool vndbuf_pool;
184
185 #define getvndxfer(vnx) do { \
186 int s = splbio(); \
187 vnx = pool_get(&vndxfer_pool, PR_MALLOCOK|PR_WAITOK); \
188 splx(s); \
189 } while (0)
190
191 #define putvndxfer(vnx) { \
192 pool_put(&vndxfer_pool, (void *)(vnx)); \
193 }
194
195 #define getvndbuf(vbp) do { \
196 int s = splbio(); \
197 vbp = pool_get(&vndbuf_pool, PR_MALLOCOK|PR_WAITOK); \
198 splx(s); \
199 } while (0)
200
201 #define putvndbuf(vbp) { \
202 pool_put(&vndbuf_pool, (void *)(vbp)); \
203 }
204
205 /* /dev/drum */
206 bdev_decl(sw);
207 cdev_decl(sw);
208
209 /*
210 * local variables
211 */
212 static struct extent *swapmap; /* controls the mapping of /dev/drum */
213
214 /* list of all active swap devices [by priority] */
215 LIST_HEAD(swap_priority, swappri);
216 static struct swap_priority swap_priority;
217
218 /* locks */
219 struct lock swap_syscall_lock;
220
221 /*
222 * prototypes
223 */
224 static struct swapdev *swapdrum_getsdp __P((int));
225
226 static struct swapdev *swaplist_find __P((struct vnode *, int));
227 static void swaplist_insert __P((struct swapdev *,
228 struct swappri *, int));
229 static void swaplist_trim __P((void));
230
231 static int swap_on __P((struct proc *, struct swapdev *));
232 static int swap_off __P((struct proc *, struct swapdev *));
233
234 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
235 static void sw_reg_iodone __P((struct buf *));
236 static void sw_reg_start __P((struct swapdev *));
237
238 static int uvm_swap_io __P((struct vm_page **, int, int, int));
239
240 /*
241 * uvm_swap_init: init the swap system data structures and locks
242 *
243 * => called at boot time from init_main.c after the filesystems
244 * are brought up (which happens after uvm_init())
245 */
246 void
247 uvm_swap_init()
248 {
249 UVMHIST_FUNC("uvm_swap_init");
250
251 UVMHIST_CALLED(pdhist);
252 /*
253 * first, init the swap list, its counter, and its lock.
254 * then get a handle on the vnode for /dev/drum by using
255 * the its dev_t number ("swapdev", from MD conf.c).
256 */
257
258 LIST_INIT(&swap_priority);
259 uvmexp.nswapdev = 0;
260 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
261 simple_lock_init(&uvm.swap_data_lock);
262
263 if (bdevvp(swapdev, &swapdev_vp))
264 panic("uvm_swap_init: can't get vnode for swap device");
265
266 /*
267 * create swap block resource map to map /dev/drum. the range
268 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
269 * that block 0 is reserved (used to indicate an allocation
270 * failure, or no allocation).
271 */
272 swapmap = extent_create("swapmap", 1, INT_MAX,
273 M_VMSWAP, 0, 0, EX_NOWAIT);
274 if (swapmap == 0)
275 panic("uvm_swap_init: extent_create failed");
276
277 /*
278 * allocate pools for structures used for swapping to files.
279 */
280
281 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0,
282 "swp vnx", 0, NULL, NULL, 0);
283
284 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0,
285 "swp vnd", 0, NULL, NULL, 0);
286
287 /*
288 * done!
289 */
290 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
291 }
292
293 /*
294 * swaplist functions: functions that operate on the list of swap
295 * devices on the system.
296 */
297
298 /*
299 * swaplist_insert: insert swap device "sdp" into the global list
300 *
301 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
302 * => caller must provide a newly malloc'd swappri structure (we will
303 * FREE it if we don't need it... this it to prevent malloc blocking
304 * here while adding swap)
305 */
306 static void
307 swaplist_insert(sdp, newspp, priority)
308 struct swapdev *sdp;
309 struct swappri *newspp;
310 int priority;
311 {
312 struct swappri *spp, *pspp;
313 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
314
315 /*
316 * find entry at or after which to insert the new device.
317 */
318 pspp = NULL;
319 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
320 if (priority <= spp->spi_priority)
321 break;
322 pspp = spp;
323 }
324
325 /*
326 * new priority?
327 */
328 if (spp == NULL || spp->spi_priority != priority) {
329 spp = newspp; /* use newspp! */
330 UVMHIST_LOG(pdhist, "created new swappri = %d",
331 priority, 0, 0, 0);
332
333 spp->spi_priority = priority;
334 CIRCLEQ_INIT(&spp->spi_swapdev);
335
336 if (pspp)
337 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
338 else
339 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
340 } else {
341 /* we don't need a new priority structure, free it */
342 FREE(newspp, M_VMSWAP);
343 }
344
345 /*
346 * priority found (or created). now insert on the priority's
347 * circleq list and bump the total number of swapdevs.
348 */
349 sdp->swd_priority = priority;
350 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
351 uvmexp.nswapdev++;
352 }
353
354 /*
355 * swaplist_find: find and optionally remove a swap device from the
356 * global list.
357 *
358 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
359 * => we return the swapdev we found (and removed)
360 */
361 static struct swapdev *
362 swaplist_find(vp, remove)
363 struct vnode *vp;
364 boolean_t remove;
365 {
366 struct swapdev *sdp;
367 struct swappri *spp;
368
369 /*
370 * search the lists for the requested vp
371 */
372
373 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
374 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
375 if (sdp->swd_vp == vp) {
376 if (remove) {
377 CIRCLEQ_REMOVE(&spp->spi_swapdev,
378 sdp, swd_next);
379 uvmexp.nswapdev--;
380 }
381 return(sdp);
382 }
383 }
384 }
385 return (NULL);
386 }
387
388
389 /*
390 * swaplist_trim: scan priority list for empty priority entries and kill
391 * them.
392 *
393 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
394 */
395 static void
396 swaplist_trim()
397 {
398 struct swappri *spp, *nextspp;
399
400 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
401 nextspp = LIST_NEXT(spp, spi_swappri);
402 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
403 (void *)&spp->spi_swapdev)
404 continue;
405 LIST_REMOVE(spp, spi_swappri);
406 free(spp, M_VMSWAP);
407 }
408 }
409
410 /*
411 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
412 * to the "swapdev" that maps that section of the drum.
413 *
414 * => each swapdev takes one big contig chunk of the drum
415 * => caller must hold uvm.swap_data_lock
416 */
417 static struct swapdev *
418 swapdrum_getsdp(pgno)
419 int pgno;
420 {
421 struct swapdev *sdp;
422 struct swappri *spp;
423
424 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
425 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
426 if (sdp->swd_flags & SWF_FAKE)
427 continue;
428 if (pgno >= sdp->swd_drumoffset &&
429 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
430 return sdp;
431 }
432 }
433 }
434 return NULL;
435 }
436
437
438 /*
439 * sys_swapctl: main entry point for swapctl(2) system call
440 * [with two helper functions: swap_on and swap_off]
441 */
442 int
443 sys_swapctl(l, v, retval)
444 struct lwp *l;
445 void *v;
446 register_t *retval;
447 {
448 struct sys_swapctl_args /* {
449 syscallarg(int) cmd;
450 syscallarg(void *) arg;
451 syscallarg(int) misc;
452 } */ *uap = (struct sys_swapctl_args *)v;
453 struct proc *p = l->l_proc;
454 struct vnode *vp;
455 struct nameidata nd;
456 struct swappri *spp;
457 struct swapdev *sdp;
458 struct swapent *sep;
459 char userpath[PATH_MAX + 1];
460 size_t len;
461 int count, error, misc;
462 int priority;
463 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
464
465 misc = SCARG(uap, misc);
466
467 /*
468 * ensure serialized syscall access by grabbing the swap_syscall_lock
469 */
470 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
471
472 /*
473 * we handle the non-priv NSWAP and STATS request first.
474 *
475 * SWAP_NSWAP: return number of config'd swap devices
476 * [can also be obtained with uvmexp sysctl]
477 */
478 if (SCARG(uap, cmd) == SWAP_NSWAP) {
479 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
480 0, 0, 0);
481 *retval = uvmexp.nswapdev;
482 error = 0;
483 goto out;
484 }
485
486 /*
487 * SWAP_STATS: get stats on current # of configured swap devs
488 *
489 * note that the swap_priority list can't change as long
490 * as we are holding the swap_syscall_lock. we don't want
491 * to grab the uvm.swap_data_lock because we may fault&sleep during
492 * copyout() and we don't want to be holding that lock then!
493 */
494 if (SCARG(uap, cmd) == SWAP_STATS
495 #if defined(COMPAT_13)
496 || SCARG(uap, cmd) == SWAP_OSTATS
497 #endif
498 ) {
499 sep = (struct swapent *)SCARG(uap, arg);
500 count = 0;
501
502 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
503 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
504 sdp != (void *)&spp->spi_swapdev && misc-- > 0;
505 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
506 /*
507 * backwards compatibility for system call.
508 * note that we use 'struct oswapent' as an
509 * overlay into both 'struct swapdev' and
510 * the userland 'struct swapent', as we
511 * want to retain backwards compatibility
512 * with NetBSD 1.3.
513 */
514 sdp->swd_ose.ose_inuse =
515 btodb((u_int64_t)sdp->swd_npginuse <<
516 PAGE_SHIFT);
517 error = copyout(&sdp->swd_ose, sep,
518 sizeof(struct oswapent));
519
520 /* now copy out the path if necessary */
521 #if defined(COMPAT_13)
522 if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
523 #else
524 if (error == 0)
525 #endif
526 error = copyout(sdp->swd_path,
527 &sep->se_path, sdp->swd_pathlen);
528
529 if (error)
530 goto out;
531 count++;
532 #if defined(COMPAT_13)
533 if (SCARG(uap, cmd) == SWAP_OSTATS)
534 sep = (struct swapent *)
535 ((struct oswapent *)sep + 1);
536 else
537 #endif
538 sep++;
539 }
540 }
541
542 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
543
544 *retval = count;
545 error = 0;
546 goto out;
547 }
548 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
549 dev_t *devp = (dev_t *)SCARG(uap, arg);
550
551 error = copyout(&dumpdev, devp, sizeof(dumpdev));
552 goto out;
553 }
554
555 /*
556 * all other requests require superuser privs. verify.
557 */
558 if ((error = suser(p->p_ucred, &p->p_acflag)))
559 goto out;
560
561 /*
562 * at this point we expect a path name in arg. we will
563 * use namei() to gain a vnode reference (vref), and lock
564 * the vnode (VOP_LOCK).
565 *
566 * XXX: a NULL arg means use the root vnode pointer (e.g. for
567 * miniroot)
568 */
569 if (SCARG(uap, arg) == NULL) {
570 vp = rootvp; /* miniroot */
571 if (vget(vp, LK_EXCLUSIVE)) {
572 error = EBUSY;
573 goto out;
574 }
575 if (SCARG(uap, cmd) == SWAP_ON &&
576 copystr("miniroot", userpath, sizeof userpath, &len))
577 panic("swapctl: miniroot copy failed");
578 } else {
579 int space;
580 char *where;
581
582 if (SCARG(uap, cmd) == SWAP_ON) {
583 if ((error = copyinstr(SCARG(uap, arg), userpath,
584 sizeof userpath, &len)))
585 goto out;
586 space = UIO_SYSSPACE;
587 where = userpath;
588 } else {
589 space = UIO_USERSPACE;
590 where = (char *)SCARG(uap, arg);
591 }
592 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
593 if ((error = namei(&nd)))
594 goto out;
595 vp = nd.ni_vp;
596 }
597 /* note: "vp" is referenced and locked */
598
599 error = 0; /* assume no error */
600 switch(SCARG(uap, cmd)) {
601
602 case SWAP_DUMPDEV:
603 if (vp->v_type != VBLK) {
604 error = ENOTBLK;
605 break;
606 }
607 dumpdev = vp->v_rdev;
608 break;
609
610 case SWAP_CTL:
611 /*
612 * get new priority, remove old entry (if any) and then
613 * reinsert it in the correct place. finally, prune out
614 * any empty priority structures.
615 */
616 priority = SCARG(uap, misc);
617 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
618 simple_lock(&uvm.swap_data_lock);
619 if ((sdp = swaplist_find(vp, 1)) == NULL) {
620 error = ENOENT;
621 } else {
622 swaplist_insert(sdp, spp, priority);
623 swaplist_trim();
624 }
625 simple_unlock(&uvm.swap_data_lock);
626 if (error)
627 free(spp, M_VMSWAP);
628 break;
629
630 case SWAP_ON:
631
632 /*
633 * check for duplicates. if none found, then insert a
634 * dummy entry on the list to prevent someone else from
635 * trying to enable this device while we are working on
636 * it.
637 */
638
639 priority = SCARG(uap, misc);
640 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
641 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
642 simple_lock(&uvm.swap_data_lock);
643 if (swaplist_find(vp, 0) != NULL) {
644 error = EBUSY;
645 simple_unlock(&uvm.swap_data_lock);
646 free(sdp, M_VMSWAP);
647 free(spp, M_VMSWAP);
648 break;
649 }
650 memset(sdp, 0, sizeof(*sdp));
651 sdp->swd_flags = SWF_FAKE; /* placeholder only */
652 sdp->swd_vp = vp;
653 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
654 BUFQ_INIT(&sdp->swd_tab);
655
656 swaplist_insert(sdp, spp, priority);
657 simple_unlock(&uvm.swap_data_lock);
658
659 sdp->swd_pathlen = len;
660 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
661 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
662 panic("swapctl: copystr");
663
664 /*
665 * we've now got a FAKE placeholder in the swap list.
666 * now attempt to enable swap on it. if we fail, undo
667 * what we've done and kill the fake entry we just inserted.
668 * if swap_on is a success, it will clear the SWF_FAKE flag
669 */
670
671 if ((error = swap_on(p, sdp)) != 0) {
672 simple_lock(&uvm.swap_data_lock);
673 (void) swaplist_find(vp, 1); /* kill fake entry */
674 swaplist_trim();
675 simple_unlock(&uvm.swap_data_lock);
676 free(sdp->swd_path, M_VMSWAP);
677 free(sdp, M_VMSWAP);
678 break;
679 }
680 break;
681
682 case SWAP_OFF:
683 simple_lock(&uvm.swap_data_lock);
684 if ((sdp = swaplist_find(vp, 0)) == NULL) {
685 simple_unlock(&uvm.swap_data_lock);
686 error = ENXIO;
687 break;
688 }
689
690 /*
691 * If a device isn't in use or enabled, we
692 * can't stop swapping from it (again).
693 */
694 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
695 simple_unlock(&uvm.swap_data_lock);
696 error = EBUSY;
697 break;
698 }
699
700 /*
701 * do the real work.
702 */
703 error = swap_off(p, sdp);
704 break;
705
706 default:
707 error = EINVAL;
708 }
709
710 /*
711 * done! release the ref gained by namei() and unlock.
712 */
713 vput(vp);
714
715 out:
716 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
717
718 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
719 return (error);
720 }
721
722 /*
723 * swap_on: attempt to enable a swapdev for swapping. note that the
724 * swapdev is already on the global list, but disabled (marked
725 * SWF_FAKE).
726 *
727 * => we avoid the start of the disk (to protect disk labels)
728 * => we also avoid the miniroot, if we are swapping to root.
729 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
730 * if needed.
731 */
732 static int
733 swap_on(p, sdp)
734 struct proc *p;
735 struct swapdev *sdp;
736 {
737 static int count = 0; /* static */
738 struct vnode *vp;
739 int error, npages, nblocks, size;
740 long addr;
741 u_long result;
742 struct vattr va;
743 #ifdef NFS
744 extern int (**nfsv2_vnodeop_p) __P((void *));
745 #endif /* NFS */
746 dev_t dev;
747 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
748
749 /*
750 * we want to enable swapping on sdp. the swd_vp contains
751 * the vnode we want (locked and ref'd), and the swd_dev
752 * contains the dev_t of the file, if it a block device.
753 */
754
755 vp = sdp->swd_vp;
756 dev = sdp->swd_dev;
757
758 /*
759 * open the swap file (mostly useful for block device files to
760 * let device driver know what is up).
761 *
762 * we skip the open/close for root on swap because the root
763 * has already been opened when root was mounted (mountroot).
764 */
765 if (vp != rootvp) {
766 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
767 return (error);
768 }
769
770 /* XXX this only works for block devices */
771 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
772
773 /*
774 * we now need to determine the size of the swap area. for
775 * block specials we can call the d_psize function.
776 * for normal files, we must stat [get attrs].
777 *
778 * we put the result in nblks.
779 * for normal files, we also want the filesystem block size
780 * (which we get with statfs).
781 */
782 switch (vp->v_type) {
783 case VBLK:
784 if (bdevsw[major(dev)].d_psize == 0 ||
785 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
786 error = ENXIO;
787 goto bad;
788 }
789 break;
790
791 case VREG:
792 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
793 goto bad;
794 nblocks = (int)btodb(va.va_size);
795 if ((error =
796 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
797 goto bad;
798
799 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
800 /*
801 * limit the max # of outstanding I/O requests we issue
802 * at any one time. take it easy on NFS servers.
803 */
804 #ifdef NFS
805 if (vp->v_op == nfsv2_vnodeop_p)
806 sdp->swd_maxactive = 2; /* XXX */
807 else
808 #endif /* NFS */
809 sdp->swd_maxactive = 8; /* XXX */
810 break;
811
812 default:
813 error = ENXIO;
814 goto bad;
815 }
816
817 /*
818 * save nblocks in a safe place and convert to pages.
819 */
820
821 sdp->swd_ose.ose_nblks = nblocks;
822 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
823
824 /*
825 * for block special files, we want to make sure that leave
826 * the disklabel and bootblocks alone, so we arrange to skip
827 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
828 * note that because of this the "size" can be less than the
829 * actual number of blocks on the device.
830 */
831 if (vp->v_type == VBLK) {
832 /* we use pages 1 to (size - 1) [inclusive] */
833 size = npages - 1;
834 addr = 1;
835 } else {
836 /* we use pages 0 to (size - 1) [inclusive] */
837 size = npages;
838 addr = 0;
839 }
840
841 /*
842 * make sure we have enough blocks for a reasonable sized swap
843 * area. we want at least one page.
844 */
845
846 if (size < 1) {
847 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
848 error = EINVAL;
849 goto bad;
850 }
851
852 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
853
854 /*
855 * now we need to allocate an extent to manage this swap device
856 */
857 snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
858 count++);
859
860 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
861 sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
862 0, 0, EX_WAITOK);
863 /* allocate the `saved' region from the extent so it won't be used */
864 if (addr) {
865 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
866 panic("disklabel region");
867 }
868
869 /*
870 * if the vnode we are swapping to is the root vnode
871 * (i.e. we are swapping to the miniroot) then we want
872 * to make sure we don't overwrite it. do a statfs to
873 * find its size and skip over it.
874 */
875 if (vp == rootvp) {
876 struct mount *mp;
877 struct statfs *sp;
878 int rootblocks, rootpages;
879
880 mp = rootvnode->v_mount;
881 sp = &mp->mnt_stat;
882 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
883 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
884 if (rootpages > size)
885 panic("swap_on: miniroot larger than swap?");
886
887 if (extent_alloc_region(sdp->swd_ex, addr,
888 rootpages, EX_WAITOK))
889 panic("swap_on: unable to preserve miniroot");
890
891 size -= rootpages;
892 printf("Preserved %d pages of miniroot ", rootpages);
893 printf("leaving %d pages of swap\n", size);
894 }
895
896 /*
897 * try to add anons to reflect the new swap space.
898 */
899
900 error = uvm_anon_add(size);
901 if (error) {
902 goto bad;
903 }
904
905 /*
906 * add a ref to vp to reflect usage as a swap device.
907 */
908 vref(vp);
909
910 /*
911 * now add the new swapdev to the drum and enable.
912 */
913 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
914 EX_WAITOK, &result))
915 panic("swapdrum_add");
916
917 sdp->swd_drumoffset = (int)result;
918 sdp->swd_drumsize = npages;
919 sdp->swd_npages = size;
920 simple_lock(&uvm.swap_data_lock);
921 sdp->swd_flags &= ~SWF_FAKE; /* going live */
922 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
923 uvmexp.swpages += size;
924 simple_unlock(&uvm.swap_data_lock);
925 return (0);
926
927 /*
928 * failure: clean up and return error.
929 */
930
931 bad:
932 if (sdp->swd_ex) {
933 extent_destroy(sdp->swd_ex);
934 }
935 if (vp != rootvp) {
936 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
937 }
938 return (error);
939 }
940
941 /*
942 * swap_off: stop swapping on swapdev
943 *
944 * => swap data should be locked, we will unlock.
945 */
946 static int
947 swap_off(p, sdp)
948 struct proc *p;
949 struct swapdev *sdp;
950 {
951 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
952 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev,0,0,0);
953
954 /* disable the swap area being removed */
955 sdp->swd_flags &= ~SWF_ENABLE;
956 simple_unlock(&uvm.swap_data_lock);
957
958 /*
959 * the idea is to find all the pages that are paged out to this
960 * device, and page them all in. in uvm, swap-backed pageable
961 * memory can take two forms: aobjs and anons. call the
962 * swapoff hook for each subsystem to bring in pages.
963 */
964
965 if (uao_swap_off(sdp->swd_drumoffset,
966 sdp->swd_drumoffset + sdp->swd_drumsize) ||
967 anon_swap_off(sdp->swd_drumoffset,
968 sdp->swd_drumoffset + sdp->swd_drumsize)) {
969
970 simple_lock(&uvm.swap_data_lock);
971 sdp->swd_flags |= SWF_ENABLE;
972 simple_unlock(&uvm.swap_data_lock);
973 return ENOMEM;
974 }
975 KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
976
977 /*
978 * done with the vnode.
979 * drop our ref on the vnode before calling VOP_CLOSE()
980 * so that spec_close() can tell if this is the last close.
981 */
982 vrele(sdp->swd_vp);
983 if (sdp->swd_vp != rootvp) {
984 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
985 }
986
987 /* remove anons from the system */
988 uvm_anon_remove(sdp->swd_npages);
989
990 simple_lock(&uvm.swap_data_lock);
991 uvmexp.swpages -= sdp->swd_npages;
992
993 if (swaplist_find(sdp->swd_vp, 1) == NULL)
994 panic("swap_off: swapdev not in list\n");
995 swaplist_trim();
996 simple_unlock(&uvm.swap_data_lock);
997
998 /*
999 * free all resources!
1000 */
1001 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1002 EX_WAITOK);
1003 extent_destroy(sdp->swd_ex);
1004 free(sdp, M_VMSWAP);
1005 return (0);
1006 }
1007
1008 /*
1009 * /dev/drum interface and i/o functions
1010 */
1011
1012 /*
1013 * swread: the read function for the drum (just a call to physio)
1014 */
1015 /*ARGSUSED*/
1016 int
1017 swread(dev, uio, ioflag)
1018 dev_t dev;
1019 struct uio *uio;
1020 int ioflag;
1021 {
1022 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1023
1024 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1025 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1026 }
1027
1028 /*
1029 * swwrite: the write function for the drum (just a call to physio)
1030 */
1031 /*ARGSUSED*/
1032 int
1033 swwrite(dev, uio, ioflag)
1034 dev_t dev;
1035 struct uio *uio;
1036 int ioflag;
1037 {
1038 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1039
1040 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1041 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1042 }
1043
1044 /*
1045 * swstrategy: perform I/O on the drum
1046 *
1047 * => we must map the i/o request from the drum to the correct swapdev.
1048 */
1049 void
1050 swstrategy(bp)
1051 struct buf *bp;
1052 {
1053 struct swapdev *sdp;
1054 struct vnode *vp;
1055 int s, pageno, bn;
1056 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1057
1058 /*
1059 * convert block number to swapdev. note that swapdev can't
1060 * be yanked out from under us because we are holding resources
1061 * in it (i.e. the blocks we are doing I/O on).
1062 */
1063 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1064 simple_lock(&uvm.swap_data_lock);
1065 sdp = swapdrum_getsdp(pageno);
1066 simple_unlock(&uvm.swap_data_lock);
1067 if (sdp == NULL) {
1068 bp->b_error = EINVAL;
1069 bp->b_flags |= B_ERROR;
1070 biodone(bp);
1071 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1072 return;
1073 }
1074
1075 /*
1076 * convert drum page number to block number on this swapdev.
1077 */
1078
1079 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1080 bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1081
1082 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1083 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1084 sdp->swd_drumoffset, bn, bp->b_bcount);
1085
1086 /*
1087 * for block devices we finish up here.
1088 * for regular files we have to do more work which we delegate
1089 * to sw_reg_strategy().
1090 */
1091
1092 switch (sdp->swd_vp->v_type) {
1093 default:
1094 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1095
1096 case VBLK:
1097
1098 /*
1099 * must convert "bp" from an I/O on /dev/drum to an I/O
1100 * on the swapdev (sdp).
1101 */
1102 s = splbio();
1103 bp->b_blkno = bn; /* swapdev block number */
1104 vp = sdp->swd_vp; /* swapdev vnode pointer */
1105 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1106
1107 /*
1108 * if we are doing a write, we have to redirect the i/o on
1109 * drum's v_numoutput counter to the swapdevs.
1110 */
1111 if ((bp->b_flags & B_READ) == 0) {
1112 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1113 vp->v_numoutput++; /* put it on swapdev */
1114 }
1115
1116 /*
1117 * finally plug in swapdev vnode and start I/O
1118 */
1119 bp->b_vp = vp;
1120 splx(s);
1121 VOP_STRATEGY(bp);
1122 return;
1123
1124 case VREG:
1125 /*
1126 * delegate to sw_reg_strategy function.
1127 */
1128 sw_reg_strategy(sdp, bp, bn);
1129 return;
1130 }
1131 /* NOTREACHED */
1132 }
1133
1134 /*
1135 * sw_reg_strategy: handle swap i/o to regular files
1136 */
1137 static void
1138 sw_reg_strategy(sdp, bp, bn)
1139 struct swapdev *sdp;
1140 struct buf *bp;
1141 int bn;
1142 {
1143 struct vnode *vp;
1144 struct vndxfer *vnx;
1145 daddr_t nbn;
1146 caddr_t addr;
1147 off_t byteoff;
1148 int s, off, nra, error, sz, resid;
1149 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1150
1151 /*
1152 * allocate a vndxfer head for this transfer and point it to
1153 * our buffer.
1154 */
1155 getvndxfer(vnx);
1156 vnx->vx_flags = VX_BUSY;
1157 vnx->vx_error = 0;
1158 vnx->vx_pending = 0;
1159 vnx->vx_bp = bp;
1160 vnx->vx_sdp = sdp;
1161
1162 /*
1163 * setup for main loop where we read filesystem blocks into
1164 * our buffer.
1165 */
1166 error = 0;
1167 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1168 addr = bp->b_data; /* current position in buffer */
1169 byteoff = dbtob((u_int64_t)bn);
1170
1171 for (resid = bp->b_resid; resid; resid -= sz) {
1172 struct vndbuf *nbp;
1173
1174 /*
1175 * translate byteoffset into block number. return values:
1176 * vp = vnode of underlying device
1177 * nbn = new block number (on underlying vnode dev)
1178 * nra = num blocks we can read-ahead (excludes requested
1179 * block)
1180 */
1181 nra = 0;
1182 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1183 &vp, &nbn, &nra);
1184
1185 if (error == 0 && nbn == (daddr_t)-1) {
1186 /*
1187 * this used to just set error, but that doesn't
1188 * do the right thing. Instead, it causes random
1189 * memory errors. The panic() should remain until
1190 * this condition doesn't destabilize the system.
1191 */
1192 #if 1
1193 panic("sw_reg_strategy: swap to sparse file");
1194 #else
1195 error = EIO; /* failure */
1196 #endif
1197 }
1198
1199 /*
1200 * punt if there was an error or a hole in the file.
1201 * we must wait for any i/o ops we have already started
1202 * to finish before returning.
1203 *
1204 * XXX we could deal with holes here but it would be
1205 * a hassle (in the write case).
1206 */
1207 if (error) {
1208 s = splbio();
1209 vnx->vx_error = error; /* pass error up */
1210 goto out;
1211 }
1212
1213 /*
1214 * compute the size ("sz") of this transfer (in bytes).
1215 */
1216 off = byteoff % sdp->swd_bsize;
1217 sz = (1 + nra) * sdp->swd_bsize - off;
1218 if (sz > resid)
1219 sz = resid;
1220
1221 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1222 "vp %p/%p offset 0x%x/0x%x",
1223 sdp->swd_vp, vp, byteoff, nbn);
1224
1225 /*
1226 * now get a buf structure. note that the vb_buf is
1227 * at the front of the nbp structure so that you can
1228 * cast pointers between the two structure easily.
1229 */
1230 getvndbuf(nbp);
1231 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1232 nbp->vb_buf.b_bcount = sz;
1233 nbp->vb_buf.b_bufsize = sz;
1234 nbp->vb_buf.b_error = 0;
1235 nbp->vb_buf.b_data = addr;
1236 nbp->vb_buf.b_lblkno = 0;
1237 nbp->vb_buf.b_blkno = nbn + btodb(off);
1238 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1239 nbp->vb_buf.b_iodone = sw_reg_iodone;
1240 nbp->vb_buf.b_vp = vp;
1241 if (vp->v_type == VBLK) {
1242 nbp->vb_buf.b_dev = vp->v_rdev;
1243 }
1244 LIST_INIT(&nbp->vb_buf.b_dep);
1245
1246 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1247
1248 /*
1249 * Just sort by block number
1250 */
1251 s = splbio();
1252 if (vnx->vx_error != 0) {
1253 putvndbuf(nbp);
1254 goto out;
1255 }
1256 vnx->vx_pending++;
1257
1258 /* sort it in and start I/O if we are not over our limit */
1259 disksort_blkno(&sdp->swd_tab, &nbp->vb_buf);
1260 sw_reg_start(sdp);
1261 splx(s);
1262
1263 /*
1264 * advance to the next I/O
1265 */
1266 byteoff += sz;
1267 addr += sz;
1268 }
1269
1270 s = splbio();
1271
1272 out: /* Arrive here at splbio */
1273 vnx->vx_flags &= ~VX_BUSY;
1274 if (vnx->vx_pending == 0) {
1275 if (vnx->vx_error != 0) {
1276 bp->b_error = vnx->vx_error;
1277 bp->b_flags |= B_ERROR;
1278 }
1279 putvndxfer(vnx);
1280 biodone(bp);
1281 }
1282 splx(s);
1283 }
1284
1285 /*
1286 * sw_reg_start: start an I/O request on the requested swapdev
1287 *
1288 * => reqs are sorted by disksort (above)
1289 */
1290 static void
1291 sw_reg_start(sdp)
1292 struct swapdev *sdp;
1293 {
1294 struct buf *bp;
1295 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1296
1297 /* recursion control */
1298 if ((sdp->swd_flags & SWF_BUSY) != 0)
1299 return;
1300
1301 sdp->swd_flags |= SWF_BUSY;
1302
1303 while (sdp->swd_active < sdp->swd_maxactive) {
1304 bp = BUFQ_FIRST(&sdp->swd_tab);
1305 if (bp == NULL)
1306 break;
1307 BUFQ_REMOVE(&sdp->swd_tab, bp);
1308 sdp->swd_active++;
1309
1310 UVMHIST_LOG(pdhist,
1311 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1312 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1313 if ((bp->b_flags & B_READ) == 0)
1314 bp->b_vp->v_numoutput++;
1315
1316 VOP_STRATEGY(bp);
1317 }
1318 sdp->swd_flags &= ~SWF_BUSY;
1319 }
1320
1321 /*
1322 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1323 *
1324 * => note that we can recover the vndbuf struct by casting the buf ptr
1325 */
1326 static void
1327 sw_reg_iodone(bp)
1328 struct buf *bp;
1329 {
1330 struct vndbuf *vbp = (struct vndbuf *) bp;
1331 struct vndxfer *vnx = vbp->vb_xfer;
1332 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1333 struct swapdev *sdp = vnx->vx_sdp;
1334 int s, resid;
1335 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1336
1337 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1338 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1339 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1340 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1341
1342 /*
1343 * protect vbp at splbio and update.
1344 */
1345
1346 s = splbio();
1347 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1348 pbp->b_resid -= resid;
1349 vnx->vx_pending--;
1350
1351 if (vbp->vb_buf.b_error) {
1352 UVMHIST_LOG(pdhist, " got error=%d !",
1353 vbp->vb_buf.b_error, 0, 0, 0);
1354
1355 /* pass error upward */
1356 vnx->vx_error = vbp->vb_buf.b_error;
1357 }
1358
1359 /*
1360 * kill vbp structure
1361 */
1362 putvndbuf(vbp);
1363
1364 /*
1365 * wrap up this transaction if it has run to completion or, in
1366 * case of an error, when all auxiliary buffers have returned.
1367 */
1368 if (vnx->vx_error != 0) {
1369 /* pass error upward */
1370 pbp->b_flags |= B_ERROR;
1371 pbp->b_error = vnx->vx_error;
1372 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1373 putvndxfer(vnx);
1374 biodone(pbp);
1375 }
1376 } else if (pbp->b_resid == 0) {
1377 KASSERT(vnx->vx_pending == 0);
1378 if ((vnx->vx_flags & VX_BUSY) == 0) {
1379 UVMHIST_LOG(pdhist, " iodone error=%d !",
1380 pbp, vnx->vx_error, 0, 0);
1381 putvndxfer(vnx);
1382 biodone(pbp);
1383 }
1384 }
1385
1386 /*
1387 * done! start next swapdev I/O if one is pending
1388 */
1389 sdp->swd_active--;
1390 sw_reg_start(sdp);
1391 splx(s);
1392 }
1393
1394
1395 /*
1396 * uvm_swap_alloc: allocate space on swap
1397 *
1398 * => allocation is done "round robin" down the priority list, as we
1399 * allocate in a priority we "rotate" the circle queue.
1400 * => space can be freed with uvm_swap_free
1401 * => we return the page slot number in /dev/drum (0 == invalid slot)
1402 * => we lock uvm.swap_data_lock
1403 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1404 */
1405 int
1406 uvm_swap_alloc(nslots, lessok)
1407 int *nslots; /* IN/OUT */
1408 boolean_t lessok;
1409 {
1410 struct swapdev *sdp;
1411 struct swappri *spp;
1412 u_long result;
1413 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1414
1415 /*
1416 * no swap devices configured yet? definite failure.
1417 */
1418 if (uvmexp.nswapdev < 1)
1419 return 0;
1420
1421 /*
1422 * lock data lock, convert slots into blocks, and enter loop
1423 */
1424 simple_lock(&uvm.swap_data_lock);
1425
1426 ReTry: /* XXXMRG */
1427 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1428 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1429 /* if it's not enabled, then we can't swap from it */
1430 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1431 continue;
1432 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1433 continue;
1434 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1435 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1436 &result) != 0) {
1437 continue;
1438 }
1439
1440 /*
1441 * successful allocation! now rotate the circleq.
1442 */
1443 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1444 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1445 sdp->swd_npginuse += *nslots;
1446 uvmexp.swpginuse += *nslots;
1447 simple_unlock(&uvm.swap_data_lock);
1448 /* done! return drum slot number */
1449 UVMHIST_LOG(pdhist,
1450 "success! returning %d slots starting at %d",
1451 *nslots, result + sdp->swd_drumoffset, 0, 0);
1452 return (result + sdp->swd_drumoffset);
1453 }
1454 }
1455
1456 /* XXXMRG: BEGIN HACK */
1457 if (*nslots > 1 && lessok) {
1458 *nslots = 1;
1459 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1460 }
1461 /* XXXMRG: END HACK */
1462
1463 simple_unlock(&uvm.swap_data_lock);
1464 return 0;
1465 }
1466
1467 /*
1468 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1469 *
1470 * => we lock uvm.swap_data_lock
1471 */
1472 void
1473 uvm_swap_markbad(startslot, nslots)
1474 int startslot;
1475 int nslots;
1476 {
1477 struct swapdev *sdp;
1478 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1479
1480 simple_lock(&uvm.swap_data_lock);
1481 sdp = swapdrum_getsdp(startslot);
1482
1483 /*
1484 * we just keep track of how many pages have been marked bad
1485 * in this device, to make everything add up in swap_off().
1486 * we assume here that the range of slots will all be within
1487 * one swap device.
1488 */
1489
1490 sdp->swd_npgbad += nslots;
1491 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1492 simple_unlock(&uvm.swap_data_lock);
1493 }
1494
1495 /*
1496 * uvm_swap_free: free swap slots
1497 *
1498 * => this can be all or part of an allocation made by uvm_swap_alloc
1499 * => we lock uvm.swap_data_lock
1500 */
1501 void
1502 uvm_swap_free(startslot, nslots)
1503 int startslot;
1504 int nslots;
1505 {
1506 struct swapdev *sdp;
1507 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1508
1509 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1510 startslot, 0, 0);
1511
1512 /*
1513 * ignore attempts to free the "bad" slot.
1514 */
1515
1516 if (startslot == SWSLOT_BAD) {
1517 return;
1518 }
1519
1520 /*
1521 * convert drum slot offset back to sdp, free the blocks
1522 * in the extent, and return. must hold pri lock to do
1523 * lookup and access the extent.
1524 */
1525
1526 simple_lock(&uvm.swap_data_lock);
1527 sdp = swapdrum_getsdp(startslot);
1528 KASSERT(uvmexp.nswapdev >= 1);
1529 KASSERT(sdp != NULL);
1530 KASSERT(sdp->swd_npginuse >= nslots);
1531 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1532 EX_MALLOCOK|EX_NOWAIT) != 0) {
1533 printf("warning: resource shortage: %d pages of swap lost\n",
1534 nslots);
1535 }
1536 sdp->swd_npginuse -= nslots;
1537 uvmexp.swpginuse -= nslots;
1538 simple_unlock(&uvm.swap_data_lock);
1539 }
1540
1541 /*
1542 * uvm_swap_put: put any number of pages into a contig place on swap
1543 *
1544 * => can be sync or async
1545 */
1546
1547 int
1548 uvm_swap_put(swslot, ppsp, npages, flags)
1549 int swslot;
1550 struct vm_page **ppsp;
1551 int npages;
1552 int flags;
1553 {
1554 int error;
1555
1556 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1557 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1558 return error;
1559 }
1560
1561 /*
1562 * uvm_swap_get: get a single page from swap
1563 *
1564 * => usually a sync op (from fault)
1565 */
1566
1567 int
1568 uvm_swap_get(page, swslot, flags)
1569 struct vm_page *page;
1570 int swslot, flags;
1571 {
1572 int error;
1573
1574 uvmexp.nswget++;
1575 KASSERT(flags & PGO_SYNCIO);
1576 if (swslot == SWSLOT_BAD) {
1577 return EIO;
1578 }
1579 error = uvm_swap_io(&page, swslot, 1, B_READ |
1580 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1581 if (error == 0) {
1582
1583 /*
1584 * this page is no longer only in swap.
1585 */
1586
1587 simple_lock(&uvm.swap_data_lock);
1588 KASSERT(uvmexp.swpgonly > 0);
1589 uvmexp.swpgonly--;
1590 simple_unlock(&uvm.swap_data_lock);
1591 }
1592 return error;
1593 }
1594
1595 /*
1596 * uvm_swap_io: do an i/o operation to swap
1597 */
1598
1599 static int
1600 uvm_swap_io(pps, startslot, npages, flags)
1601 struct vm_page **pps;
1602 int startslot, npages, flags;
1603 {
1604 daddr_t startblk;
1605 struct buf *bp;
1606 vaddr_t kva;
1607 int error, s, mapinflags;
1608 boolean_t write, async;
1609 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1610
1611 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1612 startslot, npages, flags, 0);
1613
1614 write = (flags & B_READ) == 0;
1615 async = (flags & B_ASYNC) != 0;
1616
1617 /*
1618 * convert starting drum slot to block number
1619 */
1620
1621 startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1622
1623 /*
1624 * first, map the pages into the kernel.
1625 */
1626
1627 mapinflags = !write ?
1628 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1629 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1630 kva = uvm_pagermapin(pps, npages, mapinflags);
1631
1632 /*
1633 * now allocate a buf for the i/o.
1634 */
1635
1636 s = splbio();
1637 bp = pool_get(&bufpool, PR_WAITOK);
1638 splx(s);
1639
1640 /*
1641 * fill in the bp/sbp. we currently route our i/o through
1642 * /dev/drum's vnode [swapdev_vp].
1643 */
1644
1645 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1646 bp->b_proc = &proc0; /* XXX */
1647 bp->b_vnbufs.le_next = NOLIST;
1648 bp->b_data = (caddr_t)kva;
1649 bp->b_blkno = startblk;
1650 bp->b_vp = swapdev_vp;
1651 bp->b_dev = swapdev_vp->v_rdev;
1652 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1653 LIST_INIT(&bp->b_dep);
1654
1655 /*
1656 * bump v_numoutput (counter of number of active outputs).
1657 */
1658
1659 if (write) {
1660 s = splbio();
1661 swapdev_vp->v_numoutput++;
1662 splx(s);
1663 }
1664
1665 /*
1666 * for async ops we must set up the iodone handler.
1667 */
1668
1669 if (async) {
1670 bp->b_flags |= B_CALL;
1671 bp->b_iodone = uvm_aio_biodone;
1672 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1673 }
1674 UVMHIST_LOG(pdhist,
1675 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1676 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1677
1678 /*
1679 * now we start the I/O, and if async, return.
1680 */
1681
1682 VOP_STRATEGY(bp);
1683 if (async)
1684 return 0;
1685
1686 /*
1687 * must be sync i/o. wait for it to finish
1688 */
1689
1690 error = biowait(bp);
1691
1692 /*
1693 * kill the pager mapping
1694 */
1695
1696 uvm_pagermapout(kva, npages);
1697
1698 /*
1699 * now dispose of the buf and we're done.
1700 */
1701
1702 s = splbio();
1703 if (write)
1704 vwakeup(bp);
1705 pool_put(&bufpool, bp);
1706 splx(s);
1707 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1708 return (error);
1709 }
1710