uvm_swap.c revision 1.5 1 /* $NetBSD: uvm_swap.c,v 1.5 1998/02/10 14:12:31 mrg Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include "opt_uvmhist.h"
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/buf.h>
39 #include <sys/proc.h>
40 #include <sys/namei.h>
41 #include <sys/disklabel.h>
42 #include <sys/errno.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/vnode.h>
46 #include <sys/file.h>
47 #include <sys/extent.h>
48 #include <sys/mount.h>
49 #include <sys/syscallargs.h>
50
51 #include <vm/vm.h>
52 #include <vm/vm_swap.h>
53 #include <vm/vm_conf.h>
54
55 #include <uvm/uvm.h>
56
57 #include <miscfs/specfs/specdev.h>
58
59 /*
60 * uvm_swap.c: manage configuration and i/o to swap space.
61 */
62
63 /*
64 * swap space is managed in the following way:
65 *
66 * each swap partition or file is described by a "swapdev" structure.
67 * each "swapdev" structure contains a "swapent" structure which contains
68 * information that is passed up to the user (via system calls).
69 *
70 * each swap partition is assigned a "priority" (int) which controls
71 * swap parition usage.
72 *
73 * the system maintains a global data structure describing all swap
74 * partitions/files. there is a sorted LIST of "swappri" structures
75 * which describe "swapdev"'s at that priority. this LIST is headed
76 * by the "swap_priority" global var. each "swappri" contains a
77 * CIRCLEQ of "swapdev" structures at that priority.
78 *
79 * the system maintains a fixed pool of "swapbuf" structures for use
80 * at swap i/o time. a swapbuf includes a "buf" structure and an
81 * "aiodone" [we want to avoid malloc()'ing anything at swapout time
82 * since memory may be low].
83 *
84 * locking:
85 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
86 * system call and prevents the swap priority list from changing
87 * while we are in the middle of a system call (e.g. SWAP_STATS).
88 * - swap_data_lock (simple_lock): this lock protects all swap data
89 * structures including the priority list, the swapdev structures,
90 * and the swapmap extent.
91 * - swap_buf_lock (simple_lock): this lock protects the free swapbuf
92 * pool.
93 *
94 * each swap device has the following info:
95 * - swap device in use (could be disabled, preventing future use)
96 * - swap enabled (allows new allocations on swap)
97 * - map info in /dev/drum
98 * - vnode pointer
99 * for swap files only:
100 * - block size
101 * - max byte count in buffer
102 * - buffer
103 * - credentials to use when doing i/o to file
104 *
105 * userland controls and configures swap with the swapctl(2) system call.
106 * the sys_swapctl performs the following operations:
107 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
108 * [2] SWAP_STATS: given a pointer to an array of swapent structures
109 * (passed in via "arg") of a size passed in via "misc" ... we load
110 * the current swap config into the array.
111 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
112 * priority in "misc", start swapping on it.
113 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
114 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
115 * "misc")
116 */
117
118 /*
119 * SWAP_TO_FILES: allows swapping to plain files.
120 */
121
122 #define SWAP_TO_FILES
123
124 /*
125 * swapdev: describes a single swap partition/file
126 *
127 * note the following should be true:
128 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
129 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
130 */
131 struct swapdev {
132 struct swapent swd_se; /* swap entry struct */
133 #define swd_dev swd_se.se_dev /* dev_t for this dev */
134 #define swd_flags swd_se.se_flags /* flags:inuse/enable/fake*/
135 #define swd_priority swd_se.se_priority /* our priority */
136 /* also: swd_se.se_nblks, swd_se.se_inuse */
137 int swd_npages; /* #pages we can use */
138 int swd_npginuse; /* #pages in use */
139 int swd_drumoffset; /* page0 offset in drum */
140 int swd_drumsize; /* #pages in drum */
141 struct extent *swd_ex; /* extent for this swapdev*/
142 struct vnode *swd_vp; /* backing vnode */
143 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
144
145 #ifdef SWAP_TO_FILES
146 int swd_bsize; /* blocksize (bytes) */
147 int swd_maxactive; /* max active i/o reqs */
148 struct buf swd_tab; /* buffer list */
149 struct ucred *swd_cred; /* cred for file access */
150 #endif
151 };
152
153 /*
154 * swap device priority entry; the list is kept sorted on `spi_priority'.
155 */
156 struct swappri {
157 int spi_priority; /* priority */
158 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
159 /* circleq of swapdevs at this priority */
160 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
161 };
162
163 /*
164 * swapbuf, swapbuffer plus async i/o info
165 */
166 struct swapbuf {
167 struct buf sw_buf; /* a buffer structure */
168 struct uvm_aiodesc sw_aio; /* aiodesc structure, used if ASYNC */
169 SIMPLEQ_ENTRY(swapbuf) sw_sq; /* free list pointer */
170 };
171
172 /*
173 * The following two structures are used to keep track of data transfers
174 * on swap devices associated with regular files.
175 * NOTE: this code is more or less a copy of vnd.c; we use the same
176 * structure names here to ease porting..
177 */
178 struct vndxfer {
179 struct buf *vx_bp; /* Pointer to parent buffer */
180 struct swapdev *vx_sdp;
181 int vx_error;
182 int vx_pending; /* # of pending aux buffers */
183 int vx_flags;
184 #define VX_BUSY 1
185 #define VX_DEAD 2
186 };
187
188 struct vndbuf {
189 struct buf vb_buf;
190 struct vndxfer *vb_xfer;
191 };
192
193 /*
194 * XXX: Not a very good idea in a swap strategy module!
195 */
196 #define getvndxfer() \
197 ((struct vndxfer *)malloc(sizeof(struct vndxfer), M_DEVBUF, M_WAITOK))
198
199 #define putvndxfer(vnx) \
200 free((caddr_t)(vnx), M_DEVBUF)
201
202 #define getvndbuf() \
203 ((struct vndbuf *)malloc(sizeof(struct vndbuf), M_DEVBUF, M_WAITOK))
204
205 #define putvndbuf(vbp) \
206 free((caddr_t)(vbp), M_DEVBUF)
207
208 /*
209 * local variables
210 */
211 static struct extent *swapmap; /* controls the mapping of /dev/drum */
212 SIMPLEQ_HEAD(swapbufhead, swapbuf);
213 static struct swapbufhead freesbufs; /* list of free swapbufs */
214 static int sbufs_wanted = 0; /* someone sleeping for swapbufs? */
215 #if NCPU > 1
216 static simple_lock_data_t swap_buf_lock;/* locks freesbufs and sbufs_wanted */
217 #endif
218
219 /* list of all active swap devices [by priority] */
220 LIST_HEAD(swap_priority, swappri);
221 static struct swap_priority swap_priority;
222
223 /* locks */
224 lock_data_t swap_syscall_lock;
225 #if NCPU > 1
226 static simple_lock_data_t swap_data_lock;
227 #endif
228
229 /*
230 * prototypes
231 */
232 static void swapdrum_add __P((struct swapdev *, int));
233 static struct swapdev *swapdrum_getsdp __P((int));
234
235 static struct swapdev *swaplist_find __P((struct vnode *, int));
236 static void swaplist_insert __P((struct swapdev *,
237 struct swappri *, int));
238 static void swaplist_trim __P((void));
239
240 static int swap_on __P((struct proc *, struct swapdev *));
241 #ifdef SWAP_OFF_WORKS
242 static int swap_off __P((struct proc *, struct swapdev *));
243 #endif
244
245 #ifdef SWAP_TO_FILES
246 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
247 static void sw_reg_iodone __P((struct buf *));
248 static void sw_reg_start __P((struct swapdev *));
249 #endif
250
251 static void uvm_swap_aiodone __P((struct uvm_aiodesc *));
252 static void uvm_swap_bufdone __P((struct buf *));
253 static int uvm_swap_io __P((struct vm_page **, int, int, int));
254
255 /*
256 * uvm_swap_init: init the swap system data structures and locks
257 *
258 * => called at boot time from init_main.c after the filesystems
259 * are brought up (which happens after uvm_init())
260 */
261 void
262 uvm_swap_init()
263 {
264 struct swapbuf *sp;
265 struct proc *p = &proc0; /* XXX */
266 int i;
267 UVMHIST_FUNC("uvm_swap_init");
268
269 UVMHIST_CALLED(pdhist);
270 /*
271 * first, init the swap list, its counter, and its lock.
272 * then get a handle on the vnode for /dev/drum by using
273 * the its dev_t number ("swapdev", from MD conf.c).
274 */
275
276 LIST_INIT(&swap_priority);
277 uvmexp.nswapdev = 0;
278 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
279 simple_lock_init(&swap_data_lock);
280 if (bdevvp(swapdev, &swapdev_vp))
281 panic("uvm_swap_init: can't get vnode for swap device");
282
283 /*
284 * create swap block resource map to map /dev/drum. the range
285 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
286 * that block 0 is reserved (used to indicate an allocation
287 * failure, or no allocation).
288 */
289 swapmap = extent_create("swapmap", 1, INT_MAX,
290 M_VMSWAP, 0, 0, EX_NOWAIT);
291 if (swapmap == 0)
292 panic("uvm_swap_init: extent_create failed");
293
294 /*
295 * allocate our private pool of "swapbuf" structures (includes
296 * a "buf" structure). ["nswbuf" comes from param.c and can
297 * be adjusted by MD code before we get here].
298 */
299
300 sp = malloc(sizeof(*sp) * nswbuf, M_VMSWAP, M_NOWAIT);
301 if (sp == NULL)
302 panic("uvm_swap_init: unable to malloc swap bufs");
303 bzero(sp, sizeof(*sp) * nswbuf);
304 SIMPLEQ_INIT(&freesbufs);
305 simple_lock_init(&swap_buf_lock);
306
307 /* build free list */
308 for (i = 0 ; i < nswbuf ; i++, sp++) {
309 /* p == proc0 */
310 sp->sw_buf.b_rcred = sp->sw_buf.b_wcred = p->p_ucred;
311 sp->sw_buf.b_vnbufs.le_next = NOLIST;
312 SIMPLEQ_INSERT_HEAD(&freesbufs, sp, sw_sq);
313 }
314 printf("uvm_swap: allocated %d swap buffer headers\n", nswbuf);
315
316 /*
317 * done!
318 */
319 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
320 }
321
322 /*
323 * swaplist functions: functions that operate on the list of swap
324 * devices on the system.
325 */
326
327 /*
328 * swaplist_insert: insert swap device "sdp" into the global list
329 *
330 * => caller must hold both swap_syscall_lock and swap_data_lock
331 * => caller must provide a newly malloc'd swappri structure (we will
332 * FREE it if we don't need it... this it to prevent malloc blocking
333 * here while adding swap)
334 */
335 static void
336 swaplist_insert(sdp, newspp, priority)
337 struct swapdev *sdp;
338 struct swappri *newspp;
339 int priority;
340 {
341 struct swappri *spp, *pspp;
342 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
343
344 /*
345 * find entry at or after which to insert the new device.
346 */
347 for (pspp = NULL, spp = swap_priority.lh_first; spp != NULL;
348 spp = spp->spi_swappri.le_next) {
349 if (priority <= spp->spi_priority)
350 break;
351 pspp = spp;
352 }
353
354 /*
355 * new priority?
356 */
357 if (spp == NULL || spp->spi_priority != priority) {
358 spp = newspp; /* use newspp! */
359 UVMHIST_LOG(pdhist, "created new swappri = %d", priority, 0, 0, 0);
360
361 spp->spi_priority = priority;
362 CIRCLEQ_INIT(&spp->spi_swapdev);
363
364 if (pspp)
365 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
366 else
367 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
368 } else {
369 /* we don't need a new priority structure, free it */
370 FREE(newspp, M_VMSWAP);
371 }
372
373 /*
374 * priority found (or created). now insert on the priority's
375 * circleq list and bump the total number of swapdevs.
376 */
377 sdp->swd_priority = priority;
378 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
379 uvmexp.nswapdev++;
380
381 /*
382 * done!
383 */
384 }
385
386 /*
387 * swaplist_find: find and optionally remove a swap device from the
388 * global list.
389 *
390 * => caller must hold both swap_syscall_lock and swap_data_lock
391 * => we return the swapdev we found (and removed)
392 */
393 static struct swapdev *
394 swaplist_find(vp, remove)
395 struct vnode *vp;
396 boolean_t remove;
397 {
398 struct swapdev *sdp;
399 struct swappri *spp;
400
401 /*
402 * search the lists for the requested vp
403 */
404 for (spp = swap_priority.lh_first; spp != NULL;
405 spp = spp->spi_swappri.le_next) {
406 for (sdp = spp->spi_swapdev.cqh_first;
407 sdp != (void *)&spp->spi_swapdev;
408 sdp = sdp->swd_next.cqe_next)
409 if (sdp->swd_vp == vp) {
410 if (remove) {
411 CIRCLEQ_REMOVE(&spp->spi_swapdev,
412 sdp, swd_next);
413 uvmexp.nswapdev--;
414 }
415 return(sdp);
416 }
417 }
418 return (NULL);
419 }
420
421
422 /*
423 * swaplist_trim: scan priority list for empty priority entries and kill
424 * them.
425 *
426 * => caller must hold both swap_syscall_lock and swap_data_lock
427 */
428 static void
429 swaplist_trim()
430 {
431 struct swappri *spp, *nextspp;
432
433 for (spp = swap_priority.lh_first; spp != NULL; spp = nextspp) {
434 nextspp = spp->spi_swappri.le_next;
435 if (spp->spi_swapdev.cqh_first != (void *)&spp->spi_swapdev)
436 continue;
437 LIST_REMOVE(spp, spi_swappri);
438 free((caddr_t)spp, M_VMSWAP);
439 }
440 }
441
442 /*
443 * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
444 *
445 * => caller must hold swap_syscall_lock
446 * => swap_data_lock should be unlocked (we may sleep)
447 */
448 static void
449 swapdrum_add(sdp, npages)
450 struct swapdev *sdp;
451 int npages;
452 {
453 u_long result;
454
455 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
456 EX_WAITOK, &result))
457 panic("swapdrum_add");
458
459 sdp->swd_drumoffset = result;
460 sdp->swd_drumsize = npages;
461 }
462
463 /*
464 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
465 * to the "swapdev" that maps that section of the drum.
466 *
467 * => each swapdev takes one big contig chunk of the drum
468 * => caller must hold swap_data_lock
469 */
470 static struct swapdev *
471 swapdrum_getsdp(pgno)
472 int pgno;
473 {
474 struct swapdev *sdp;
475 struct swappri *spp;
476
477 for (spp = swap_priority.lh_first; spp != NULL;
478 spp = spp->spi_swappri.le_next)
479 for (sdp = spp->spi_swapdev.cqh_first;
480 sdp != (void *)&spp->spi_swapdev;
481 sdp = sdp->swd_next.cqe_next)
482 if (pgno >= sdp->swd_drumoffset &&
483 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
484 return sdp;
485 }
486 return NULL;
487 }
488
489
490 /*
491 * sys_swapctl: main entry point for swapctl(2) system call
492 * [with two helper functions: swap_on and swap_off]
493 */
494 int
495 sys_swapctl(p, v, retval)
496 struct proc *p;
497 void *v;
498 register_t *retval;
499 {
500 struct sys_swapctl_args /* {
501 syscallarg(int) cmd;
502 syscallarg(void *) arg;
503 syscallarg(int) misc;
504 } */ *uap = (struct sys_swapctl_args *)v;
505 struct vnode *vp;
506 struct nameidata nd;
507 struct swappri *spp;
508 struct swapdev *sdp;
509 struct swapent *sep;
510 int count, error, misc;
511 int priority;
512 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
513
514 misc = SCARG(uap, misc);
515
516 /*
517 * ensure serialized syscall access by grabbing the swap_syscall_lock
518 */
519 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, (void *)0, curproc);
520
521 /*
522 * we handle the non-priv NSWAP and STATS request first.
523 *
524 * SWAP_NSWAP: return number of config'd swap devices
525 * [can also be obtained with uvmexp sysctl]
526 */
527 if (SCARG(uap, cmd) == SWAP_NSWAP) {
528 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev, 0, 0, 0);
529 *retval = uvmexp.nswapdev;
530 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0, curproc);
531 return (0);
532 }
533
534 /*
535 * SWAP_STATS: get stats on current # of configured swap devs
536 *
537 * note that the swap_priority list can't change as long
538 * as we are holding the swap_syscall_lock. we don't want
539 * to grab the swap_data_lock because we may fault&sleep during
540 * copyout() and we don't want to be holding that lock then!
541 */
542 if (SCARG(uap, cmd) == SWAP_STATS) {
543 sep = (struct swapent *)SCARG(uap, arg);
544 count = 0;
545
546 for (spp = swap_priority.lh_first; spp != NULL;
547 spp = spp->spi_swappri.le_next) {
548 for (sdp = spp->spi_swapdev.cqh_first;
549 sdp != (void *)&spp->spi_swapdev && misc-- > 0;
550 sdp = sdp->swd_next.cqe_next) {
551 /* backwards compatibility for system call */
552 sdp->swd_se.se_inuse =
553 btodb(sdp->swd_npginuse * PAGE_SIZE);
554 error = copyout((caddr_t)&sdp->swd_se,
555 (caddr_t)sep, sizeof(struct swapent));
556 if (error) {
557 lockmgr(&swap_syscall_lock,
558 LK_RELEASE, (void *)0, curproc);
559 return (error);
560 }
561 count++;
562 sep++;
563 }
564 }
565
566 UVMHIST_LOG(pdhist, "<-done SWAP_STATS", 0, 0, 0, 0);
567
568 *retval = count;
569 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0, curproc);
570 return (0);
571 }
572
573 /*
574 * all other requests require superuser privs. verify.
575 */
576 if ((error = suser(p->p_ucred, &p->p_acflag))) {
577 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0, curproc);
578 return (error);
579 }
580
581 /*
582 * at this point we expect a path name in arg. we will
583 * use namei() to gain a vnode reference (vref), and lock
584 * the vnode (VOP_LOCK).
585 *
586 * XXX: a NULL arg means use the root vnode pointer (e.g. for
587 * miniroot
588 */
589 if (SCARG(uap, arg) == NULL) {
590 vp = rootvp; /* miniroot */
591 if (vget(vp, 1)) {
592 lockmgr(&swap_syscall_lock, LK_RELEASE,
593 (void *)0, curproc);
594 return (EBUSY);
595 }
596 } else {
597 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, UIO_USERSPACE,
598 SCARG(uap, arg), p);
599 if ((error = namei(&nd))) {
600 lockmgr(&swap_syscall_lock, LK_RELEASE,
601 (void *)0, curproc);
602 return (error);
603 }
604 vp = nd.ni_vp;
605 }
606 /* note: "vp" is referenced and locked */
607
608 error = 0; /* assume no error */
609 switch(SCARG(uap, cmd)) {
610 case SWAP_CTL:
611 /*
612 * get new priority, remove old entry (if any) and then
613 * reinsert it in the correct place. finally, prune out
614 * any empty priority structures.
615 */
616 priority = SCARG(uap, misc);
617 spp = (struct swappri *)
618 malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
619 simple_lock(&swap_data_lock);
620 if ((sdp = swaplist_find(vp, 1)) == NULL) {
621 error = ENOENT;
622 } else {
623 swaplist_insert(sdp, spp, priority);
624 swaplist_trim();
625 }
626 simple_unlock(&swap_data_lock);
627 if (error)
628 free(spp, M_VMSWAP);
629 break;
630
631 case SWAP_ON:
632 /*
633 * check for duplicates. if none found, then insert a
634 * dummy entry on the list to prevent someone else from
635 * trying to enable this device while we are working on
636 * it.
637 */
638 priority = SCARG(uap, misc);
639 simple_lock(&swap_data_lock);
640 if ((sdp = swaplist_find(vp, 0)) != NULL) {
641 error = EBUSY;
642 simple_unlock(&swap_data_lock);
643 goto bad;
644 }
645 sdp = (struct swapdev *)
646 malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
647 spp = (struct swappri *)
648 malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
649 bzero(sdp, sizeof(*sdp));
650 sdp->swd_flags = SWF_FAKE; /* placeholder only */
651 sdp->swd_vp = vp;
652 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
653 #ifdef SWAP_TO_FILES
654 /*
655 * XXX Is NFS elaboration necessary?
656 */
657 if (vp->v_type == VREG)
658 sdp->swd_cred = crdup(p->p_ucred);
659 #endif
660 swaplist_insert(sdp, spp, priority);
661 simple_unlock(&swap_data_lock);
662
663 /*
664 * we've now got a FAKE placeholder in the swap list.
665 * now attempt to enable swap on it. if we fail, undo
666 * what we've done and kill the fake entry we just inserted.
667 * if swap_on is a success, it will clear the SWF_FAKE flag
668 */
669 if ((error = swap_on(p, sdp)) != 0) {
670 simple_lock(&swap_data_lock);
671 (void) swaplist_find(vp, 1); /* kill fake entry */
672 swaplist_trim();
673 simple_unlock(&swap_data_lock);
674 #ifdef SWAP_TO_FILES
675 if (vp->v_type == VREG)
676 crfree(sdp->swd_cred);
677 #endif
678 free((caddr_t)sdp, M_VMSWAP);
679 break;
680 }
681
682 /*
683 * got it! now add a second reference to vp so that
684 * we keep a reference to the vnode after we return.
685 */
686 vref(vp);
687 break;
688
689 case SWAP_OFF:
690 UVMHIST_LOG(pdhist, "someone is using SWAP_OFF...??", 0,0,0,0);
691 #ifdef SWAP_OFF_WORKS
692 /*
693 * find the entry of interest and ensure it is enabled.
694 */
695 simple_lock(&swap_data_lock);
696 if ((sdp = swaplist_find(vp, 0)) == NULL) {
697 simple_unlock(&swap_data_lock);
698 error = ENXIO;
699 break;
700 }
701 /*
702 * If a device isn't in use or enabled, we
703 * can't stop swapping from it (again).
704 */
705 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
706 simple_unlock(&swap_data_lock);
707 error = EBUSY;
708 goto bad;
709 }
710 /* XXXCDC: should we call with list locked or unlocked? */
711 if ((error = swap_off(p, sdp)) != 0)
712 goto bad;
713 /* XXXCDC: might need relock here */
714
715 /*
716 * now we can kill the entry.
717 */
718 if ((sdp = swaplist_find(vp, 1)) == NULL) {
719 error = ENXIO;
720 break;
721 }
722 simple_unlock(&swap_data_lock);
723 free((caddr_t)sdp, M_VMSWAP);
724 #else
725 error = EINVAL;
726 #endif
727 break;
728
729 default:
730 UVMHIST_LOG(pdhist, "unhandled command: %#x",
731 SCARG(uap, cmd), 0, 0, 0);
732 error = EINVAL;
733 }
734
735 bad:
736 /*
737 * done! use vput to drop our reference and unlock
738 */
739 vput(vp);
740 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0, curproc);
741
742 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
743 return (error);
744 }
745
746 /*
747 * swap_on: attempt to enable a swapdev for swapping. note that the
748 * swapdev is already on the global list, but disabled (marked
749 * SWF_FAKE).
750 *
751 * => we avoid the start of the disk (to protect disk labels)
752 * => we also avoid the miniroot, if we are swapping to root.
753 * => caller should leave swap_data_lock unlocked, we may lock it
754 * if needed.
755 */
756 static int
757 swap_on(p, sdp)
758 struct proc *p;
759 struct swapdev *sdp;
760 {
761 static int count = 0; /* static */
762 struct vnode *vp;
763 int error, npages, nblocks, size;
764 long addr;
765 char *storage;
766 int storagesize;
767 #ifdef SWAP_TO_FILES
768 struct vattr va;
769 #endif
770 #ifdef NFS
771 extern int (**nfsv2_vnodeop_p) __P((void *));
772 #endif /* NFS */
773 dev_t dev;
774 char *name;
775 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
776
777 /*
778 * we want to enable swapping on sdp. the swd_vp contains
779 * the vnode we want (locked and ref'd), and the swd_dev
780 * contains the dev_t of the file, if it a block device.
781 */
782
783 vp = sdp->swd_vp;
784 dev = sdp->swd_dev;
785
786 /*
787 * open the swap file (mostly useful for block device files to
788 * let device driver know what is up).
789 *
790 * we skip the open/close for root on swap because the root
791 * has already been opened when root was mounted (mountroot).
792 */
793 if (vp != rootvp) {
794 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
795 return (error);
796 }
797
798 /* XXX this only works for block devices */
799 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
800
801 /*
802 * we now need to determine the size of the swap area. for
803 * block specials we can call the d_psize function.
804 * for normal files, we must stat [get attrs].
805 *
806 * we put the result in nblks.
807 * for normal files, we also want the filesystem block size
808 * (which we get with statfs).
809 */
810 switch (vp->v_type) {
811 case VBLK:
812 if (bdevsw[major(dev)].d_psize == 0 ||
813 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
814 error = ENXIO;
815 goto bad;
816 }
817 break;
818
819 #ifdef SWAP_TO_FILES
820 case VREG:
821 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
822 goto bad;
823 nblocks = (int)btodb(va.va_size);
824 if ((error =
825 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
826 goto bad;
827
828 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
829 /*
830 * limit the max # of outstanding I/O requests we issue
831 * at any one time. take it easy on NFS servers.
832 */
833 #ifdef NFS
834 if (vp->v_op == nfsv2_vnodeop_p)
835 sdp->swd_maxactive = 2; /* XXX */
836 else
837 #endif /* NFS */
838 sdp->swd_maxactive = 8; /* XXX */
839 break;
840 #endif
841
842 default:
843 error = ENXIO;
844 goto bad;
845 }
846
847 /*
848 * save nblocks in a safe place and convert to pages.
849 */
850
851 sdp->swd_se.se_nblks = nblocks;
852 npages = dbtob(nblocks) / PAGE_SIZE;
853
854 /*
855 * for block special files, we want to make sure that leave
856 * the disklabel and bootblocks alone, so we arrange to skip
857 * over them (randomly choosing to skip PAGE_SIZE bytes).
858 * note that because of this the "size" can be less than the
859 * actual number of blocks on the device.
860 */
861 if (vp->v_type == VBLK) {
862 /* we use pages 1 to (size - 1) [inclusive] */
863 size = npages - 1;
864 addr = 1;
865 } else {
866 /* we use pages 0 to (size - 1) [inclusive] */
867 size = npages;
868 addr = 0;
869 }
870
871 /*
872 * make sure we have enough blocks for a reasonable sized swap
873 * area. we want at least one page.
874 */
875
876 if (size < 1) {
877 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
878 error = EINVAL;
879 goto bad;
880 }
881
882 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
883
884 /*
885 * now we need to allocate an extent to manage this swap device
886 */
887 name = malloc(12, M_VMSWAP, M_WAITOK);
888 sprintf(name, "swap0x%04x", count++);
889
890 /*
891 * XXXCDC: what should we make of this extent storage size stuff
892 *
893 * XXXMRG: well, i've come to realise that we need, at most,
894 * blocks2pages(npages)/2 extents (or so), to cover all possible
895 * allocations that may occur in the extent -- every other page
896 * being allocated.
897 */
898 #if 1
899 storagesize = EXTENT_FIXED_STORAGE_SIZE(maxproc * 2);
900 #else
901 /* XXXMRG: this uses lots of memory */
902 storagesize = EXTENT_FIXED_STORAGE_SIZE(npages / 2);
903 #endif
904 storage = malloc(storagesize, M_VMSWAP, M_WAITOK);
905 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
906 sdp->swd_ex = extent_create(name, 0, npages - 1, M_VMSWAP,
907 storage, storagesize, EX_WAITOK);
908 /* allocate the `saved' region from the extent so it won't be used */
909 if (addr) {
910 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
911 panic("disklabel region");
912 sdp->swd_npginuse += addr;
913 uvmexp.swpginuse += addr;
914 }
915
916
917 /*
918 * if the vnode we are swapping to is the root vnode
919 * (i.e. we are swapping to the miniroot) then we want
920 * to make sure we don't overwrite it. do a statfs to
921 * find its size and skip over it.
922 */
923 if (vp == rootvp) {
924 struct mount *mp;
925 struct statfs *sp;
926 int rootblocks, rootpages;
927
928 mp = rootvnode->v_mount;
929 sp = &mp->mnt_stat;
930 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
931 rootpages = round_page(dbtob(rootblocks)) / PAGE_SIZE;
932 if (rootpages > npages)
933 panic("swap_on: miniroot larger than swap?");
934
935 if (extent_alloc_region(sdp->swd_ex, addr,
936 rootpages, EX_WAITOK))
937 panic("swap_on: unable to preserve miniroot");
938
939 sdp->swd_npginuse += (rootpages - addr);
940 uvmexp.swpginuse += (rootpages - addr);
941
942 printf("Preserved %d pages of miniroot ", rootpages);
943 printf("leaving %d pages of swap\n", size - rootpages);
944 }
945
946 /*
947 * now add the new swapdev to the drum and enable.
948 */
949 simple_lock(&swap_data_lock);
950 swapdrum_add(sdp, npages);
951 sdp->swd_npages = npages;
952 sdp->swd_flags &= ~SWF_FAKE; /* going live */
953 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
954 simple_unlock(&swap_data_lock);
955 uvmexp.swpages += npages;
956
957 /*
958 * add anon's to reflect the swap space we added
959 */
960 uvm_anon_add(size);
961
962 return (0);
963
964 bad:
965 /*
966 * failure: close device if necessary and return error.
967 */
968 if (vp != rootvp)
969 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
970 return (error);
971 }
972
973 #ifdef SWAP_OFF_WORKS
974 /*
975 * swap_off: stop swapping on swapdev
976 *
977 * XXXCDC: what conditions go here?
978 */
979 static int
980 swap_off(p, sdp)
981 struct proc *p;
982 struct swapdev *sdp;
983 {
984 char *name;
985 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
986
987 /* turn off the enable flag */
988 sdp->swd_flags &= ~SWF_ENABLE;
989
990 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev);
991
992 /*
993 * XXX write me
994 *
995 * the idea is to find out which processes are using this swap
996 * device, and page them all in.
997 *
998 * eventually, we should try to move them out to other swap areas
999 * if available.
1000 *
1001 * The alternative is to create a redirection map for this swap
1002 * device. This should work by moving all the pages of data from
1003 * the ex-swap device to another one, and making an entry in the
1004 * redirection map for it. locking is going to be important for
1005 * this!
1006 *
1007 * XXXCDC: also need to shrink anon pool
1008 */
1009
1010 /* until the above code is written, we must ENODEV */
1011 return ENODEV;
1012
1013 extent_free(swapmap, sdp->swd_mapoffset, sdp->swd_mapsize, EX_WAITOK);
1014 name = sdp->swd_ex->ex_name;
1015 extent_destroy(sdp->swd_ex);
1016 free(name, M_VMSWAP);
1017 free((caddr_t)sdp->swd_ex, M_VMSWAP);
1018 if (sdp->swp_vp != rootvp)
1019 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1020 if (sdp->swd_vp)
1021 vrele(sdp->swd_vp);
1022 free((caddr_t)sdp, M_VMSWAP);
1023 return (0);
1024 }
1025 #endif
1026
1027 /*
1028 * /dev/drum interface and i/o functions
1029 */
1030
1031 /*
1032 * swread: the read function for the drum (just a call to physio)
1033 */
1034 /*ARGSUSED*/
1035 int
1036 swread(dev, uio, ioflag)
1037 dev_t dev;
1038 struct uio *uio;
1039 int ioflag;
1040 {
1041 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1042
1043 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1044 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1045 }
1046
1047 /*
1048 * swwrite: the write function for the drum (just a call to physio)
1049 */
1050 /*ARGSUSED*/
1051 int
1052 swwrite(dev, uio, ioflag)
1053 dev_t dev;
1054 struct uio *uio;
1055 int ioflag;
1056 {
1057 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1058
1059 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1060 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1061 }
1062
1063 /*
1064 * swstrategy: perform I/O on the drum
1065 *
1066 * => we must map the i/o request from the drum to the correct swapdev.
1067 */
1068 void
1069 swstrategy(bp)
1070 struct buf *bp;
1071 {
1072 struct swapdev *sdp;
1073 struct vnode *vp;
1074 int pageno;
1075 int bn;
1076 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1077
1078 /*
1079 * convert block number to swapdev. note that swapdev can't
1080 * be yanked out from under us because we are holding resources
1081 * in it (i.e. the blocks we are doing I/O on).
1082 */
1083 pageno = dbtob(bp->b_blkno) / PAGE_SIZE;
1084 simple_lock(&swap_data_lock);
1085 sdp = swapdrum_getsdp(pageno);
1086 simple_unlock(&swap_data_lock);
1087 if (sdp == NULL) {
1088 bp->b_error = EINVAL;
1089 bp->b_flags |= B_ERROR;
1090 biodone(bp);
1091 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1092 return;
1093 }
1094
1095 /*
1096 * convert drum page number to block number on this swapdev.
1097 */
1098
1099 pageno = pageno - sdp->swd_drumoffset; /* page # on swapdev */
1100 bn = btodb(pageno * PAGE_SIZE); /* convert to diskblock */
1101
1102 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld\n",
1103 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1104 sdp->swd_drumoffset, bn, bp->b_bcount);
1105
1106
1107 /*
1108 * for block devices we finish up here.
1109 * for regular files we have to do more work which we deligate
1110 * to sw_reg_strategy().
1111 */
1112
1113 switch (sdp->swd_vp->v_type) {
1114 default:
1115 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1116 case VBLK:
1117
1118 /*
1119 * must convert "bp" from an I/O on /dev/drum to an I/O
1120 * on the swapdev (sdp).
1121 */
1122 bp->b_blkno = bn; /* swapdev block number */
1123 vp = sdp->swd_vp; /* swapdev vnode pointer */
1124 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1125 VHOLD(vp); /* "hold" swapdev vp for i/o */
1126
1127 /*
1128 * if we are doing a write, we have to redirect the i/o on
1129 * drum's v_numoutput counter to the swapdevs.
1130 */
1131 if ((bp->b_flags & B_READ) == 0) {
1132 int s = splbio();
1133 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1134 vp->v_numoutput++; /* put it on swapdev */
1135 splx(s);
1136 }
1137
1138 /*
1139 * dissassocate buffer with /dev/drum vnode
1140 * [could be null if buf was from physio]
1141 */
1142 if (bp->b_vp != NULLVP)
1143 brelvp(bp);
1144
1145 /*
1146 * finally plug in swapdev vnode and start I/O
1147 */
1148 bp->b_vp = vp;
1149 VOP_STRATEGY(bp);
1150 return;
1151 #ifdef SWAP_TO_FILES
1152 case VREG:
1153 /*
1154 * deligate to sw_reg_strategy function.
1155 */
1156 sw_reg_strategy(sdp, bp, bn);
1157 return;
1158 #endif
1159 }
1160 /* NOTREACHED */
1161 }
1162
1163 #ifdef SWAP_TO_FILES
1164 /*
1165 * sw_reg_strategy: handle swap i/o to regular files
1166 */
1167 static void
1168 sw_reg_strategy(sdp, bp, bn)
1169 struct swapdev *sdp;
1170 struct buf *bp;
1171 int bn;
1172 {
1173 struct vnode *vp;
1174 struct vndxfer *vnx;
1175 daddr_t nbn;
1176 caddr_t addr;
1177 int byteoff, s, off, nra, error, sz, resid;
1178 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1179
1180 /*
1181 * allocate a vndxfer head for this transfer and point it to
1182 * our buffer.
1183 */
1184 vnx = getvndxfer();
1185 vnx->vx_flags = VX_BUSY;
1186 vnx->vx_error = 0;
1187 vnx->vx_pending = 0;
1188 vnx->vx_bp = bp;
1189 vnx->vx_sdp = sdp;
1190
1191 /*
1192 * setup for main loop where we read filesystem blocks into
1193 * our buffer.
1194 */
1195 error = 0;
1196 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1197 addr = bp->b_data; /* current position in buffer */
1198 byteoff = dbtob(bn); /* XXX: should it be an off_t? */
1199
1200 for (resid = bp->b_resid; resid; resid -= sz) {
1201 struct vndbuf *nbp;
1202
1203 /*
1204 * translate byteoffset into block number. return values:
1205 * vp = vnode of underlying device
1206 * nbn = new block number (on underlying vnode dev)
1207 * nra = num blocks we can read-ahead (excludes requested
1208 * block)
1209 */
1210 nra = 0;
1211 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1212 &vp, &nbn, &nra);
1213
1214 if (error == 0 && (long)nbn == -1)
1215 error = EIO; /* failure */
1216
1217 /*
1218 * punt if there was an error or a hole in the file.
1219 * we must wait for any i/o ops we have already started
1220 * to finish before returning.
1221 *
1222 * XXX we could deal with holes here but it would be
1223 * a hassle (in the write case).
1224 */
1225 if (error) {
1226 s = splbio();
1227 vnx->vx_error = error; /* pass error up */
1228 goto out;
1229 }
1230
1231 /*
1232 * compute the size ("sz") of this transfer (in bytes).
1233 * XXXCDC: ignores read-ahead for non-zero offset
1234 */
1235 if ((off = (byteoff % sdp->swd_bsize)) != 0)
1236 sz = sdp->swd_bsize - off;
1237 else
1238 sz = (1 + nra) * sdp->swd_bsize;
1239
1240 if (resid < sz)
1241 sz = resid;
1242
1243 UVMHIST_LOG(pdhist, "sw_reg_strategy: vp %p/%p bn 0x%x/0x%x",
1244 sdp->swd_vp, vp, bn, nbn);
1245
1246 /*
1247 * now get a buf structure. note that the vb_buf is
1248 * at the front of the nbp structure so that you can
1249 * cast pointers between the two structure easily.
1250 */
1251 nbp = getvndbuf();
1252 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1253 nbp->vb_buf.b_bcount = sz;
1254 nbp->vb_buf.b_bufsize = bp->b_bufsize; /* XXXCDC: really? */
1255 nbp->vb_buf.b_error = 0;
1256 nbp->vb_buf.b_data = addr;
1257 nbp->vb_buf.b_blkno = nbn + btodb(off);
1258 nbp->vb_buf.b_proc = bp->b_proc;
1259 nbp->vb_buf.b_iodone = sw_reg_iodone;
1260 nbp->vb_buf.b_vp = NULLVP;
1261 nbp->vb_buf.b_rcred = sdp->swd_cred;
1262 nbp->vb_buf.b_wcred = sdp->swd_cred;
1263
1264 /*
1265 * set b_dirtyoff/end and b_vaildoff/end. this is
1266 * required by the NFS client code (otherwise it will
1267 * just discard our I/O request).
1268 */
1269 if (bp->b_dirtyend == 0) {
1270 nbp->vb_buf.b_dirtyoff = 0;
1271 nbp->vb_buf.b_dirtyend = sz;
1272 } else {
1273 nbp->vb_buf.b_dirtyoff =
1274 max(0, bp->b_dirtyoff - (bp->b_bcount-resid));
1275 nbp->vb_buf.b_dirtyend =
1276 min(sz,
1277 max(0, bp->b_dirtyend - (bp->b_bcount-resid)));
1278 }
1279 if (bp->b_validend == 0) {
1280 nbp->vb_buf.b_validoff = 0;
1281 nbp->vb_buf.b_validend = sz;
1282 } else {
1283 nbp->vb_buf.b_validoff =
1284 max(0, bp->b_validoff - (bp->b_bcount-resid));
1285 nbp->vb_buf.b_validend =
1286 min(sz,
1287 max(0, bp->b_validend - (bp->b_bcount-resid)));
1288 }
1289
1290 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1291
1292 /*
1293 * Just sort by block number
1294 */
1295 nbp->vb_buf.b_cylinder = nbp->vb_buf.b_blkno;
1296 s = splbio();
1297 if (vnx->vx_error != 0) {
1298 putvndbuf(nbp);
1299 goto out;
1300 }
1301 vnx->vx_pending++;
1302
1303 /* assoc new buffer with underlying vnode */
1304 bgetvp(vp, &nbp->vb_buf);
1305
1306 /* sort it in and start I/O if we are not over our limit */
1307 disksort(&sdp->swd_tab, &nbp->vb_buf);
1308 sw_reg_start(sdp);
1309 splx(s);
1310
1311 /*
1312 * advance to the next I/O
1313 */
1314 bn += sz;
1315 addr += sz;
1316 }
1317
1318 s = splbio();
1319
1320 out: /* Arrive here at splbio */
1321 vnx->vx_flags &= ~VX_BUSY;
1322 if (vnx->vx_pending == 0) {
1323 if (vnx->vx_error != 0) {
1324 bp->b_error = vnx->vx_error;
1325 bp->b_flags |= B_ERROR;
1326 }
1327 putvndxfer(vnx);
1328 biodone(bp);
1329 }
1330 splx(s);
1331 }
1332
1333 /*
1334 * sw_reg_start: start an I/O request on the requested swapdev
1335 *
1336 * => reqs are sorted by disksort (above)
1337 */
1338 static void
1339 sw_reg_start(sdp)
1340 struct swapdev *sdp;
1341 {
1342 struct buf *bp;
1343 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1344
1345 /* recursion control */
1346 if ((sdp->swd_flags & SWF_BUSY) != 0)
1347 return;
1348
1349 sdp->swd_flags |= SWF_BUSY;
1350
1351 while (sdp->swd_tab.b_active < sdp->swd_maxactive) {
1352 bp = sdp->swd_tab.b_actf;
1353 if (bp == NULL)
1354 break;
1355 sdp->swd_tab.b_actf = bp->b_actf;
1356 sdp->swd_tab.b_active++;
1357
1358 UVMHIST_LOG(pdhist,
1359 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1360 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1361 if ((bp->b_flags & B_READ) == 0)
1362 bp->b_vp->v_numoutput++;
1363 VOP_STRATEGY(bp);
1364 }
1365 sdp->swd_flags &= ~SWF_BUSY;
1366 }
1367
1368 /*
1369 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1370 *
1371 * => note that we can recover the vndbuf struct by casting the buf ptr
1372 */
1373 static void
1374 sw_reg_iodone(bp)
1375 struct buf *bp;
1376 {
1377 struct vndbuf *vbp = (struct vndbuf *) bp;
1378 struct vndxfer *vnx = vbp->vb_xfer;
1379 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1380 struct swapdev *sdp = vnx->vx_sdp;
1381 int s, resid;
1382 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1383
1384 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1385 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1386 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1387 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1388
1389 /*
1390 * protect vbp at splbio and update.
1391 */
1392
1393 s = splbio();
1394 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1395 pbp->b_resid -= resid;
1396 vnx->vx_pending--;
1397
1398 if (vbp->vb_buf.b_error) {
1399 UVMHIST_LOG(pdhist, " got error=%d !",
1400 vbp->vb_buf.b_error, 0, 0, 0);
1401
1402 /* pass error upward */
1403 vnx->vx_error = vbp->vb_buf.b_error;
1404 }
1405
1406 /*
1407 * drop "hold" reference to vnode (if one)
1408 * XXXCDC: always set to NULLVP, this is useless, right?
1409 */
1410 if (vbp->vb_buf.b_vp != NULLVP)
1411 brelvp(&vbp->vb_buf);
1412
1413 /*
1414 * kill vbp structure
1415 */
1416 putvndbuf(vbp);
1417
1418 /*
1419 * wrap up this transaction if it has run to completion or, in
1420 * case of an error, when all auxiliary buffers have returned.
1421 */
1422 if (vnx->vx_error != 0) {
1423 /* pass error upward */
1424 pbp->b_flags |= B_ERROR;
1425 pbp->b_error = vnx->vx_error;
1426 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1427 putvndxfer(vnx);
1428 biodone(pbp);
1429 }
1430 }
1431
1432 if (pbp->b_resid == 0) {
1433 #ifdef DIAGNOSTIC
1434 if (vnx->vx_pending != 0)
1435 panic("sw_reg_iodone: vnx pending: %d", vnx->vx_pending);
1436 #endif
1437
1438 if ((vnx->vx_flags & VX_BUSY) == 0) {
1439 UVMHIST_LOG(pdhist, " iodone error=%d !",
1440 pbp, vnx->vx_error, 0, 0);
1441 putvndxfer(vnx);
1442 biodone(pbp);
1443 }
1444 }
1445
1446 /*
1447 * done! start next swapdev I/O if one is pending
1448 */
1449 sdp->swd_tab.b_active--;
1450 sw_reg_start(sdp);
1451
1452 splx(s);
1453 }
1454 #endif /* SWAP_TO_FILES */
1455
1456
1457 /*
1458 * uvm_swap_alloc: allocate space on swap
1459 *
1460 * => allocation is done "round robin" down the priority list, as we
1461 * allocate in a priority we "rotate" the circle queue.
1462 * => space can be freed with uvm_swap_free
1463 * => we return the page slot number in /dev/drum (0 == invalid slot)
1464 * => we lock swap_data_lock
1465 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1466 */
1467 int
1468 uvm_swap_alloc(nslots, lessok)
1469 int *nslots; /* IN/OUT */
1470 boolean_t lessok;
1471 {
1472 struct swapdev *sdp;
1473 struct swappri *spp;
1474 u_long result;
1475 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1476
1477 /*
1478 * no swap devices configured yet? definite failure.
1479 */
1480 if (uvmexp.nswapdev < 1)
1481 return 0;
1482
1483 /*
1484 * lock data lock, convert slots into blocks, and enter loop
1485 */
1486 simple_lock(&swap_data_lock);
1487
1488 ReTry: /* XXXMRG */
1489 for (spp = swap_priority.lh_first; spp != NULL;
1490 spp = spp->spi_swappri.le_next) {
1491 for (sdp = spp->spi_swapdev.cqh_first;
1492 sdp != (void *)&spp->spi_swapdev;
1493 sdp = sdp->swd_next.cqe_next) {
1494 /* if it's not enabled, then we can't swap from it */
1495 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1496 continue;
1497 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1498 continue;
1499 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1500 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1501 &result) != 0) {
1502 continue;
1503 }
1504
1505 /*
1506 * successful allocation! now rotate the circleq.
1507 */
1508 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1509 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1510 sdp->swd_npginuse += *nslots;
1511 uvmexp.swpginuse += *nslots;
1512 simple_unlock(&swap_data_lock);
1513 /* done! return drum slot number */
1514 UVMHIST_LOG(pdhist,
1515 "success! returning %d slots starting at %d",
1516 *nslots, result + sdp->swd_drumoffset, 0, 0);
1517 #if 0
1518 {
1519 struct swapdev *sdp2;
1520
1521 sdp2 = swapdrum_getsdp(result + sdp->swd_drumoffset);
1522 if (sdp2 == NULL) {
1523 printf("uvm_swap_alloc: nslots=%d, dev=%x, drumoff=%d, result=%ld",
1524 *nslots, sdp->swd_dev, sdp->swd_drumoffset, result);
1525 panic("uvm_swap_alloc: allocating unmapped swap block!");
1526 }
1527 }
1528 #endif
1529 return(result + sdp->swd_drumoffset);
1530 }
1531 }
1532
1533 /* XXXMRG: BEGIN HACK */
1534 if (*nslots > 1 && lessok) {
1535 *nslots = 1;
1536 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1537 }
1538 /* XXXMRG: END HACK */
1539
1540 simple_unlock(&swap_data_lock);
1541 return 0; /* failed */
1542 }
1543
1544 /*
1545 * uvm_swap_free: free swap slots
1546 *
1547 * => this can be all or part of an allocation made by uvm_swap_alloc
1548 * => we lock swap_data_lock
1549 */
1550 void
1551 uvm_swap_free(startslot, nslots)
1552 int startslot;
1553 int nslots;
1554 {
1555 struct swapdev *sdp;
1556 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1557
1558 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1559 startslot, 0, 0);
1560 /*
1561 * convert drum slot offset back to sdp, free the blocks
1562 * in the extent, and return. must hold pri lock to do
1563 * lookup and access the extent.
1564 */
1565 simple_lock(&swap_data_lock);
1566 sdp = swapdrum_getsdp(startslot);
1567
1568 #ifdef DIAGNOSTIC
1569 if (uvmexp.nswapdev < 1)
1570 panic("uvm_swap_free: uvmexp.nswapdev < 1\n");
1571 if (sdp == NULL) {
1572 printf("uvm_swap_free: startslot %d, nslots %d\n", startslot,
1573 nslots);
1574 panic("uvm_swap_free: unmapped address\n");
1575 }
1576 #endif
1577 extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1578 EX_MALLOCOK|EX_NOWAIT);
1579 sdp->swd_npginuse -= nslots;
1580 uvmexp.swpginuse -= nslots;
1581 #ifdef DIAGNOSTIC
1582 if (sdp->swd_npginuse < 0)
1583 panic("uvm_swap_free: inuse < 0");
1584 #endif
1585 simple_unlock(&swap_data_lock);
1586 }
1587
1588 /*
1589 * uvm_swap_put: put any number of pages into a contig place on swap
1590 *
1591 * => can be sync or async
1592 * => XXXMRG: consider making it an inline or macro
1593 */
1594 int
1595 uvm_swap_put(swslot, ppsp, npages, flags)
1596 int swslot;
1597 struct vm_page **ppsp;
1598 int npages;
1599 int flags;
1600 {
1601 int result;
1602
1603 #if 0
1604 flags |= PGO_SYNCIO; /* XXXMRG: tmp, force sync */
1605 #endif
1606
1607 result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1608 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1609
1610 return (result);
1611 }
1612
1613 /*
1614 * uvm_swap_get: get a single page from swap
1615 *
1616 * => usually a sync op (from fault)
1617 * => XXXMRG: consider making it an inline or macro
1618 */
1619 int
1620 uvm_swap_get(page, swslot, flags)
1621 struct vm_page *page;
1622 int swslot, flags;
1623 {
1624 int result;
1625
1626 uvmexp.nswget++;
1627 #ifdef DIAGNOSTIC
1628 if ((flags & PGO_SYNCIO) == 0)
1629 printf("uvm_swap_get: ASYNC get requested?\n");
1630 #endif
1631
1632 result = uvm_swap_io(&page, swslot, 1, B_READ |
1633 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1634
1635 return (result);
1636 }
1637
1638 /*
1639 * uvm_swap_io: do an i/o operation to swap
1640 */
1641
1642 static int
1643 uvm_swap_io(pps, startslot, npages, flags)
1644 struct vm_page **pps;
1645 int startslot, npages, flags;
1646 {
1647 daddr_t startblk;
1648 struct swapbuf *sbp;
1649 struct buf *bp;
1650 vm_offset_t kva;
1651 int result, s, waitf;
1652 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1653
1654 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1655 startslot, npages, flags, 0);
1656 /*
1657 * convert starting drum slot to block number
1658 */
1659 startblk = btodb(startslot * PAGE_SIZE);
1660
1661 /*
1662 * first, map the pages into the kernel (XXX: currently required
1663 * by buffer system). note that we don't let pagermapin alloc
1664 * an aiodesc structure because we don't want to chance a malloc.
1665 * we've got our own pool of aiodesc structures (in swapbuf).
1666 */
1667 waitf = (flags & B_ASYNC) ? M_NOWAIT : M_WAITOK;
1668 kva = uvm_pagermapin(pps, npages, NULL, waitf);
1669 if (kva == NULL)
1670 return (VM_PAGER_AGAIN);
1671
1672 /*
1673 * now allocate a swap buffer off of freesbufs
1674 * [make sure we don't put the pagedaemon to sleep...]
1675 */
1676 s = splbio();
1677 simple_lock(&swap_buf_lock);
1678
1679 /* never put the pagedaemon to sleep! */
1680 if ((flags & B_ASYNC) != 0 || curproc == uvm.pagedaemon_proc) {
1681
1682 sbp = freesbufs.sqh_first;
1683
1684 } else {
1685
1686 /* we can sleep for a sbuf if needed */
1687 while (freesbufs.sqh_first == NULL) {
1688
1689 sbufs_wanted = 1;
1690 UVM_UNLOCK_AND_WAIT(&freesbufs, &swap_buf_lock, 0,
1691 "uvmswiobuf",0);
1692
1693 simple_lock(&swap_buf_lock); /* relock */
1694 }
1695 sbp = freesbufs.sqh_first;
1696 }
1697
1698 if (sbp)
1699 SIMPLEQ_REMOVE_HEAD(&freesbufs, sbp, sw_sq);
1700 simple_unlock(&swap_buf_lock);
1701 splx(s); /* drop splbio */
1702
1703 /*
1704 * if we failed to get a swapbuf, return "try again"
1705 */
1706 if (sbp == NULL)
1707 return (VM_PAGER_AGAIN);
1708
1709 /*
1710 * fill in the bp/sbp. we currently route our i/o through
1711 * /dev/drum's vnode [swapdev_vp].
1712 */
1713 bp = &sbp->sw_buf;
1714 bp->b_flags = B_BUSY | (flags & (B_READ|B_ASYNC));
1715 bp->b_proc = &proc0; /* XXX */
1716 bp->b_data = (caddr_t)kva;
1717 bp->b_blkno = startblk;
1718 VHOLD(swapdev_vp);
1719 bp->b_vp = swapdev_vp;
1720 /* XXXCDC: isn't swapdev_vp always a VCHR? */
1721 /* XXXMRG: probably -- this is obviously something inherited... */
1722 if (swapdev_vp->v_type == VBLK)
1723 bp->b_dev = swapdev_vp->v_rdev;
1724 bp->b_bcount = npages * PAGE_SIZE;
1725
1726 /*
1727 * for pageouts we must set "dirtyoff" [NFS client code needs it].
1728 * and we bump v_numoutput (counter of number of active outputs).
1729 */
1730 if ((bp->b_flags & B_READ) == 0) {
1731 bp->b_dirtyoff = 0;
1732 bp->b_dirtyend = npages * PAGE_SIZE;
1733 s = splbio();
1734 swapdev_vp->v_numoutput++;
1735 splx(s);
1736 }
1737
1738 /*
1739 * for async ops we must set up the aiodesc and setup the callback
1740 * XXX: we expect no async-reads, but we don't prevent it here.
1741 */
1742 if (flags & B_ASYNC) {
1743 sbp->sw_aio.aiodone = uvm_swap_aiodone;
1744 sbp->sw_aio.kva = kva;
1745 sbp->sw_aio.npages = npages;
1746 sbp->sw_aio.pd_ptr = sbp; /* backpointer */
1747 bp->b_flags |= B_CALL; /* set callback */
1748 bp->b_iodone = uvm_swap_bufdone;/* "buf" iodone function */
1749 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1750 }
1751 UVMHIST_LOG(pdhist,
1752 "about to start io: data = 0x%p blkno = 0x%x, bcount = %ld",
1753 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1754
1755 /*
1756 * now we start the I/O, and if async, return.
1757 */
1758 VOP_STRATEGY(bp);
1759 if (flags & B_ASYNC)
1760 return (VM_PAGER_PEND);
1761
1762 /*
1763 * must be sync i/o. wait for it to finish
1764 */
1765 bp->b_error = biowait(bp);
1766 result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
1767
1768 /*
1769 * kill the pager mapping
1770 */
1771 uvm_pagermapout(kva, npages);
1772
1773 /*
1774 * now dispose of the swap buffer
1775 */
1776 s = splbio();
1777 bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY);
1778 if (bp->b_vp)
1779 brelvp(bp);
1780
1781 simple_lock(&swap_buf_lock);
1782 SIMPLEQ_INSERT_HEAD(&freesbufs, sbp, sw_sq);
1783 if (sbufs_wanted) {
1784 sbufs_wanted = 0;
1785 thread_wakeup(&freesbufs);
1786 }
1787 simple_unlock(&swap_buf_lock);
1788 splx(s);
1789
1790 /*
1791 * finally return.
1792 */
1793 UVMHIST_LOG(pdhist, "<- done (sync) result=%d", result, 0, 0, 0);
1794 return (result);
1795 }
1796
1797 /*
1798 * uvm_swap_bufdone: called from the buffer system when the i/o is done
1799 */
1800 static void
1801 uvm_swap_bufdone(bp)
1802 struct buf *bp;
1803 {
1804 struct swapbuf *sbp = (struct swapbuf *) bp;
1805 int s = splbio();
1806 UVMHIST_FUNC("uvm_swap_bufdone"); UVMHIST_CALLED(pdhist);
1807
1808 UVMHIST_LOG(pdhist, "cleaning buf %p", buf, 0, 0, 0);
1809 #ifdef DIAGNOSTIC
1810 /*
1811 * sanity check: swapbufs are private, so they shouldn't be wanted
1812 */
1813 if (bp->b_flags & B_WANTED)
1814 panic("uvm_swap_bufdone: private buf wanted");
1815 #endif
1816
1817 /*
1818 * drop buffers reference to the vnode and its flags.
1819 */
1820 bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY);
1821 if (bp->b_vp)
1822 brelvp(bp);
1823
1824 /*
1825 * now put the aio on the uvm.aio_done list and wake the
1826 * pagedaemon (which will finish up our job in its context).
1827 */
1828 simple_lock(&uvm.pagedaemon_lock); /* locks uvm.aio_done */
1829 TAILQ_INSERT_TAIL(&uvm.aio_done, &sbp->sw_aio, aioq);
1830 simple_unlock(&uvm.pagedaemon_lock);
1831
1832 thread_wakeup(&uvm.pagedaemon);
1833 splx(s);
1834 }
1835
1836 /*
1837 * uvm_swap_aiodone: aiodone function for anonymous memory
1838 *
1839 * => this is called in the context of the pagedaemon (but with the
1840 * page queues unlocked!)
1841 * => our "aio" structure must be part of a "swapbuf"
1842 */
1843 static void
1844 uvm_swap_aiodone(aio)
1845 struct uvm_aiodesc *aio;
1846 {
1847 struct swapbuf *sbp = aio->pd_ptr;
1848 /* XXXMRG: does this work if PAGE_SIZE is a variable, eg SUN4C&&SUN4 */
1849 /* XXX it does with GCC */
1850 struct vm_page *pps[MAXBSIZE/PAGE_SIZE];
1851 int lcv, s;
1852 vm_offset_t addr;
1853 UVMHIST_FUNC("uvm_swap_aiodone"); UVMHIST_CALLED(pdhist);
1854
1855 UVMHIST_LOG(pdhist, "done with aio %p", aio, 0, 0, 0);
1856 #ifdef DIAGNOSTIC
1857 /*
1858 * sanity check
1859 */
1860 if (aio->npages > (MAXBSIZE/PAGE_SIZE))
1861 panic("uvm_swap_aiodone: aio too big!");
1862 #endif
1863
1864 /*
1865 * first, we have to recover the page pointers (pps) by poking in the
1866 * kernel pmap (XXX: should be saved in the buf structure).
1867 */
1868 for (addr = aio->kva, lcv = 0 ; lcv < aio->npages ;
1869 addr += PAGE_SIZE, lcv++) {
1870 pps[lcv] = uvm_pageratop(addr);
1871 }
1872
1873 /*
1874 * now we can dispose of the kernel mappings of the buffer
1875 */
1876 uvm_pagermapout(aio->kva, aio->npages);
1877
1878 /*
1879 * now we can dispose of the pages by using the dropcluster function
1880 * [note that we have no "page of interest" so we pass in null]
1881 */
1882 uvm_pager_dropcluster(NULL, NULL, pps, &aio->npages,
1883 PGO_PDFREECLUST, 0);
1884
1885 /*
1886 * finally, we can dispose of the swapbuf
1887 */
1888 s = splbio();
1889 simple_lock(&swap_buf_lock);
1890 SIMPLEQ_INSERT_HEAD(&freesbufs, sbp, sw_sq);
1891 if (sbufs_wanted) {
1892 sbufs_wanted = 0;
1893 thread_wakeup(&freesbufs);
1894 }
1895 simple_unlock(&swap_buf_lock);
1896 splx(s);
1897
1898 /*
1899 * done!
1900 */
1901 }
1902