uvm_swap.c revision 1.52 1 /* $NetBSD: uvm_swap.c,v 1.52 2001/05/26 16:32:47 chs Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include "fs_nfs.h"
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/conf.h>
43 #include <sys/proc.h>
44 #include <sys/namei.h>
45 #include <sys/disklabel.h>
46 #include <sys/errno.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 #include <sys/vnode.h>
50 #include <sys/file.h>
51 #include <sys/extent.h>
52 #include <sys/mount.h>
53 #include <sys/pool.h>
54 #include <sys/syscallargs.h>
55 #include <sys/swap.h>
56
57 #include <uvm/uvm.h>
58
59 #include <miscfs/specfs/specdev.h>
60
61 /*
62 * uvm_swap.c: manage configuration and i/o to swap space.
63 */
64
65 /*
66 * swap space is managed in the following way:
67 *
68 * each swap partition or file is described by a "swapdev" structure.
69 * each "swapdev" structure contains a "swapent" structure which contains
70 * information that is passed up to the user (via system calls).
71 *
72 * each swap partition is assigned a "priority" (int) which controls
73 * swap parition usage.
74 *
75 * the system maintains a global data structure describing all swap
76 * partitions/files. there is a sorted LIST of "swappri" structures
77 * which describe "swapdev"'s at that priority. this LIST is headed
78 * by the "swap_priority" global var. each "swappri" contains a
79 * CIRCLEQ of "swapdev" structures at that priority.
80 *
81 * locking:
82 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
83 * system call and prevents the swap priority list from changing
84 * while we are in the middle of a system call (e.g. SWAP_STATS).
85 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
86 * structures including the priority list, the swapdev structures,
87 * and the swapmap extent.
88 *
89 * each swap device has the following info:
90 * - swap device in use (could be disabled, preventing future use)
91 * - swap enabled (allows new allocations on swap)
92 * - map info in /dev/drum
93 * - vnode pointer
94 * for swap files only:
95 * - block size
96 * - max byte count in buffer
97 * - buffer
98 * - credentials to use when doing i/o to file
99 *
100 * userland controls and configures swap with the swapctl(2) system call.
101 * the sys_swapctl performs the following operations:
102 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
103 * [2] SWAP_STATS: given a pointer to an array of swapent structures
104 * (passed in via "arg") of a size passed in via "misc" ... we load
105 * the current swap config into the array.
106 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
107 * priority in "misc", start swapping on it.
108 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
109 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
110 * "misc")
111 */
112
113 /*
114 * swapdev: describes a single swap partition/file
115 *
116 * note the following should be true:
117 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
118 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
119 */
120 struct swapdev {
121 struct oswapent swd_ose;
122 #define swd_dev swd_ose.ose_dev /* device id */
123 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
124 #define swd_priority swd_ose.ose_priority /* our priority */
125 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
126 char *swd_path; /* saved pathname of device */
127 int swd_pathlen; /* length of pathname */
128 int swd_npages; /* #pages we can use */
129 int swd_npginuse; /* #pages in use */
130 int swd_npgbad; /* #pages bad */
131 int swd_drumoffset; /* page0 offset in drum */
132 int swd_drumsize; /* #pages in drum */
133 struct extent *swd_ex; /* extent for this swapdev */
134 char swd_exname[12]; /* name of extent above */
135 struct vnode *swd_vp; /* backing vnode */
136 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
137
138 int swd_bsize; /* blocksize (bytes) */
139 int swd_maxactive; /* max active i/o reqs */
140 struct buf_queue swd_tab; /* buffer list */
141 int swd_active; /* number of active buffers */
142 struct ucred *swd_cred; /* cred for file access */
143 };
144
145 /*
146 * swap device priority entry; the list is kept sorted on `spi_priority'.
147 */
148 struct swappri {
149 int spi_priority; /* priority */
150 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
151 /* circleq of swapdevs at this priority */
152 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
153 };
154
155 /*
156 * The following two structures are used to keep track of data transfers
157 * on swap devices associated with regular files.
158 * NOTE: this code is more or less a copy of vnd.c; we use the same
159 * structure names here to ease porting..
160 */
161 struct vndxfer {
162 struct buf *vx_bp; /* Pointer to parent buffer */
163 struct swapdev *vx_sdp;
164 int vx_error;
165 int vx_pending; /* # of pending aux buffers */
166 int vx_flags;
167 #define VX_BUSY 1
168 #define VX_DEAD 2
169 };
170
171 struct vndbuf {
172 struct buf vb_buf;
173 struct vndxfer *vb_xfer;
174 };
175
176
177 /*
178 * We keep a of pool vndbuf's and vndxfer structures.
179 */
180 static struct pool vndxfer_pool;
181 static struct pool vndbuf_pool;
182
183 #define getvndxfer(vnx) do { \
184 int s = splbio(); \
185 vnx = pool_get(&vndxfer_pool, PR_MALLOCOK|PR_WAITOK); \
186 splx(s); \
187 } while (0)
188
189 #define putvndxfer(vnx) { \
190 pool_put(&vndxfer_pool, (void *)(vnx)); \
191 }
192
193 #define getvndbuf(vbp) do { \
194 int s = splbio(); \
195 vbp = pool_get(&vndbuf_pool, PR_MALLOCOK|PR_WAITOK); \
196 splx(s); \
197 } while (0)
198
199 #define putvndbuf(vbp) { \
200 pool_put(&vndbuf_pool, (void *)(vbp)); \
201 }
202
203 /* /dev/drum */
204 bdev_decl(sw);
205 cdev_decl(sw);
206
207 /*
208 * local variables
209 */
210 static struct extent *swapmap; /* controls the mapping of /dev/drum */
211
212 /* list of all active swap devices [by priority] */
213 LIST_HEAD(swap_priority, swappri);
214 static struct swap_priority swap_priority;
215
216 /* locks */
217 struct lock swap_syscall_lock;
218
219 /*
220 * prototypes
221 */
222 static struct swapdev *swapdrum_getsdp __P((int));
223
224 static struct swapdev *swaplist_find __P((struct vnode *, int));
225 static void swaplist_insert __P((struct swapdev *,
226 struct swappri *, int));
227 static void swaplist_trim __P((void));
228
229 static int swap_on __P((struct proc *, struct swapdev *));
230 static int swap_off __P((struct proc *, struct swapdev *));
231
232 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
233 static void sw_reg_iodone __P((struct buf *));
234 static void sw_reg_start __P((struct swapdev *));
235
236 static int uvm_swap_io __P((struct vm_page **, int, int, int));
237
238 /*
239 * uvm_swap_init: init the swap system data structures and locks
240 *
241 * => called at boot time from init_main.c after the filesystems
242 * are brought up (which happens after uvm_init())
243 */
244 void
245 uvm_swap_init()
246 {
247 UVMHIST_FUNC("uvm_swap_init");
248
249 UVMHIST_CALLED(pdhist);
250 /*
251 * first, init the swap list, its counter, and its lock.
252 * then get a handle on the vnode for /dev/drum by using
253 * the its dev_t number ("swapdev", from MD conf.c).
254 */
255
256 LIST_INIT(&swap_priority);
257 uvmexp.nswapdev = 0;
258 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
259 simple_lock_init(&uvm.swap_data_lock);
260
261 if (bdevvp(swapdev, &swapdev_vp))
262 panic("uvm_swap_init: can't get vnode for swap device");
263
264 /*
265 * create swap block resource map to map /dev/drum. the range
266 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
267 * that block 0 is reserved (used to indicate an allocation
268 * failure, or no allocation).
269 */
270 swapmap = extent_create("swapmap", 1, INT_MAX,
271 M_VMSWAP, 0, 0, EX_NOWAIT);
272 if (swapmap == 0)
273 panic("uvm_swap_init: extent_create failed");
274
275 /*
276 * allocate pools for structures used for swapping to files.
277 */
278
279 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0,
280 "swp vnx", 0, NULL, NULL, 0);
281
282 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0,
283 "swp vnd", 0, NULL, NULL, 0);
284
285 /*
286 * done!
287 */
288 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
289 }
290
291 /*
292 * swaplist functions: functions that operate on the list of swap
293 * devices on the system.
294 */
295
296 /*
297 * swaplist_insert: insert swap device "sdp" into the global list
298 *
299 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
300 * => caller must provide a newly malloc'd swappri structure (we will
301 * FREE it if we don't need it... this it to prevent malloc blocking
302 * here while adding swap)
303 */
304 static void
305 swaplist_insert(sdp, newspp, priority)
306 struct swapdev *sdp;
307 struct swappri *newspp;
308 int priority;
309 {
310 struct swappri *spp, *pspp;
311 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
312
313 /*
314 * find entry at or after which to insert the new device.
315 */
316 for (pspp = NULL, spp = LIST_FIRST(&swap_priority); spp != NULL;
317 spp = LIST_NEXT(spp, spi_swappri)) {
318 if (priority <= spp->spi_priority)
319 break;
320 pspp = spp;
321 }
322
323 /*
324 * new priority?
325 */
326 if (spp == NULL || spp->spi_priority != priority) {
327 spp = newspp; /* use newspp! */
328 UVMHIST_LOG(pdhist, "created new swappri = %d",
329 priority, 0, 0, 0);
330
331 spp->spi_priority = priority;
332 CIRCLEQ_INIT(&spp->spi_swapdev);
333
334 if (pspp)
335 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
336 else
337 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
338 } else {
339 /* we don't need a new priority structure, free it */
340 FREE(newspp, M_VMSWAP);
341 }
342
343 /*
344 * priority found (or created). now insert on the priority's
345 * circleq list and bump the total number of swapdevs.
346 */
347 sdp->swd_priority = priority;
348 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
349 uvmexp.nswapdev++;
350 }
351
352 /*
353 * swaplist_find: find and optionally remove a swap device from the
354 * global list.
355 *
356 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
357 * => we return the swapdev we found (and removed)
358 */
359 static struct swapdev *
360 swaplist_find(vp, remove)
361 struct vnode *vp;
362 boolean_t remove;
363 {
364 struct swapdev *sdp;
365 struct swappri *spp;
366
367 /*
368 * search the lists for the requested vp
369 */
370 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
371 spp = LIST_NEXT(spp, spi_swappri)) {
372 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
373 sdp != (void *)&spp->spi_swapdev;
374 sdp = CIRCLEQ_NEXT(sdp, swd_next))
375 if (sdp->swd_vp == vp) {
376 if (remove) {
377 CIRCLEQ_REMOVE(&spp->spi_swapdev,
378 sdp, swd_next);
379 uvmexp.nswapdev--;
380 }
381 return(sdp);
382 }
383 }
384 return (NULL);
385 }
386
387
388 /*
389 * swaplist_trim: scan priority list for empty priority entries and kill
390 * them.
391 *
392 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
393 */
394 static void
395 swaplist_trim()
396 {
397 struct swappri *spp, *nextspp;
398
399 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
400 nextspp = LIST_NEXT(spp, spi_swappri);
401 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
402 (void *)&spp->spi_swapdev)
403 continue;
404 LIST_REMOVE(spp, spi_swappri);
405 free(spp, M_VMSWAP);
406 }
407 }
408
409 /*
410 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
411 * to the "swapdev" that maps that section of the drum.
412 *
413 * => each swapdev takes one big contig chunk of the drum
414 * => caller must hold uvm.swap_data_lock
415 */
416 static struct swapdev *
417 swapdrum_getsdp(pgno)
418 int pgno;
419 {
420 struct swapdev *sdp;
421 struct swappri *spp;
422
423 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
424 spp = LIST_NEXT(spp, spi_swappri))
425 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
426 sdp != (void *)&spp->spi_swapdev;
427 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
428 if (sdp->swd_flags & SWF_FAKE)
429 continue;
430 if (pgno >= sdp->swd_drumoffset &&
431 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
432 return sdp;
433 }
434 }
435 return NULL;
436 }
437
438
439 /*
440 * sys_swapctl: main entry point for swapctl(2) system call
441 * [with two helper functions: swap_on and swap_off]
442 */
443 int
444 sys_swapctl(p, v, retval)
445 struct proc *p;
446 void *v;
447 register_t *retval;
448 {
449 struct sys_swapctl_args /* {
450 syscallarg(int) cmd;
451 syscallarg(void *) arg;
452 syscallarg(int) misc;
453 } */ *uap = (struct sys_swapctl_args *)v;
454 struct vnode *vp;
455 struct nameidata nd;
456 struct swappri *spp;
457 struct swapdev *sdp;
458 struct swapent *sep;
459 char userpath[PATH_MAX + 1];
460 size_t len;
461 int count, error, misc;
462 int priority;
463 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
464
465 misc = SCARG(uap, misc);
466
467 /*
468 * ensure serialized syscall access by grabbing the swap_syscall_lock
469 */
470 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
471
472 /*
473 * we handle the non-priv NSWAP and STATS request first.
474 *
475 * SWAP_NSWAP: return number of config'd swap devices
476 * [can also be obtained with uvmexp sysctl]
477 */
478 if (SCARG(uap, cmd) == SWAP_NSWAP) {
479 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
480 0, 0, 0);
481 *retval = uvmexp.nswapdev;
482 error = 0;
483 goto out;
484 }
485
486 /*
487 * SWAP_STATS: get stats on current # of configured swap devs
488 *
489 * note that the swap_priority list can't change as long
490 * as we are holding the swap_syscall_lock. we don't want
491 * to grab the uvm.swap_data_lock because we may fault&sleep during
492 * copyout() and we don't want to be holding that lock then!
493 */
494 if (SCARG(uap, cmd) == SWAP_STATS
495 #if defined(COMPAT_13)
496 || SCARG(uap, cmd) == SWAP_OSTATS
497 #endif
498 ) {
499 sep = (struct swapent *)SCARG(uap, arg);
500 count = 0;
501
502 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
503 spp = LIST_NEXT(spp, spi_swappri)) {
504 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
505 sdp != (void *)&spp->spi_swapdev && misc-- > 0;
506 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
507 /*
508 * backwards compatibility for system call.
509 * note that we use 'struct oswapent' as an
510 * overlay into both 'struct swapdev' and
511 * the userland 'struct swapent', as we
512 * want to retain backwards compatibility
513 * with NetBSD 1.3.
514 */
515 sdp->swd_ose.ose_inuse =
516 btodb((u_int64_t)sdp->swd_npginuse <<
517 PAGE_SHIFT);
518 error = copyout(&sdp->swd_ose, sep,
519 sizeof(struct oswapent));
520
521 /* now copy out the path if necessary */
522 #if defined(COMPAT_13)
523 if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
524 #else
525 if (error == 0)
526 #endif
527 error = copyout(sdp->swd_path,
528 &sep->se_path, sdp->swd_pathlen);
529
530 if (error)
531 goto out;
532 count++;
533 #if defined(COMPAT_13)
534 if (SCARG(uap, cmd) == SWAP_OSTATS)
535 sep = (struct swapent *)
536 ((struct oswapent *)sep + 1);
537 else
538 #endif
539 sep++;
540 }
541 }
542
543 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
544
545 *retval = count;
546 error = 0;
547 goto out;
548 }
549
550 /*
551 * all other requests require superuser privs. verify.
552 */
553 if ((error = suser(p->p_ucred, &p->p_acflag)))
554 goto out;
555
556 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
557 dev_t *devp = (dev_t *)SCARG(uap, arg);
558
559 error = copyout(&dumpdev, devp, sizeof(dumpdev));
560 goto out;
561 }
562
563 /*
564 * at this point we expect a path name in arg. we will
565 * use namei() to gain a vnode reference (vref), and lock
566 * the vnode (VOP_LOCK).
567 *
568 * XXX: a NULL arg means use the root vnode pointer (e.g. for
569 * miniroot)
570 */
571 if (SCARG(uap, arg) == NULL) {
572 vp = rootvp; /* miniroot */
573 if (vget(vp, LK_EXCLUSIVE)) {
574 error = EBUSY;
575 goto out;
576 }
577 if (SCARG(uap, cmd) == SWAP_ON &&
578 copystr("miniroot", userpath, sizeof userpath, &len))
579 panic("swapctl: miniroot copy failed");
580 } else {
581 int space;
582 char *where;
583
584 if (SCARG(uap, cmd) == SWAP_ON) {
585 if ((error = copyinstr(SCARG(uap, arg), userpath,
586 sizeof userpath, &len)))
587 goto out;
588 space = UIO_SYSSPACE;
589 where = userpath;
590 } else {
591 space = UIO_USERSPACE;
592 where = (char *)SCARG(uap, arg);
593 }
594 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
595 if ((error = namei(&nd)))
596 goto out;
597 vp = nd.ni_vp;
598 }
599 /* note: "vp" is referenced and locked */
600
601 error = 0; /* assume no error */
602 switch(SCARG(uap, cmd)) {
603
604 case SWAP_DUMPDEV:
605 if (vp->v_type != VBLK) {
606 error = ENOTBLK;
607 break;
608 }
609 dumpdev = vp->v_rdev;
610 break;
611
612 case SWAP_CTL:
613 /*
614 * get new priority, remove old entry (if any) and then
615 * reinsert it in the correct place. finally, prune out
616 * any empty priority structures.
617 */
618 priority = SCARG(uap, misc);
619 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
620 simple_lock(&uvm.swap_data_lock);
621 if ((sdp = swaplist_find(vp, 1)) == NULL) {
622 error = ENOENT;
623 } else {
624 swaplist_insert(sdp, spp, priority);
625 swaplist_trim();
626 }
627 simple_unlock(&uvm.swap_data_lock);
628 if (error)
629 free(spp, M_VMSWAP);
630 break;
631
632 case SWAP_ON:
633
634 /*
635 * check for duplicates. if none found, then insert a
636 * dummy entry on the list to prevent someone else from
637 * trying to enable this device while we are working on
638 * it.
639 */
640
641 priority = SCARG(uap, misc);
642 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
643 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
644 simple_lock(&uvm.swap_data_lock);
645 if (swaplist_find(vp, 0) != NULL) {
646 error = EBUSY;
647 simple_unlock(&uvm.swap_data_lock);
648 free(sdp, M_VMSWAP);
649 free(spp, M_VMSWAP);
650 break;
651 }
652 memset(sdp, 0, sizeof(*sdp));
653 sdp->swd_flags = SWF_FAKE; /* placeholder only */
654 sdp->swd_vp = vp;
655 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
656 BUFQ_INIT(&sdp->swd_tab);
657
658 /*
659 * XXX Is NFS elaboration necessary?
660 */
661 if (vp->v_type == VREG) {
662 sdp->swd_cred = crdup(p->p_ucred);
663 }
664
665 swaplist_insert(sdp, spp, priority);
666 simple_unlock(&uvm.swap_data_lock);
667
668 sdp->swd_pathlen = len;
669 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
670 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
671 panic("swapctl: copystr");
672
673 /*
674 * we've now got a FAKE placeholder in the swap list.
675 * now attempt to enable swap on it. if we fail, undo
676 * what we've done and kill the fake entry we just inserted.
677 * if swap_on is a success, it will clear the SWF_FAKE flag
678 */
679
680 if ((error = swap_on(p, sdp)) != 0) {
681 simple_lock(&uvm.swap_data_lock);
682 (void) swaplist_find(vp, 1); /* kill fake entry */
683 swaplist_trim();
684 simple_unlock(&uvm.swap_data_lock);
685 if (vp->v_type == VREG) {
686 crfree(sdp->swd_cred);
687 }
688 free(sdp->swd_path, M_VMSWAP);
689 free(sdp, M_VMSWAP);
690 break;
691 }
692 break;
693
694 case SWAP_OFF:
695 simple_lock(&uvm.swap_data_lock);
696 if ((sdp = swaplist_find(vp, 0)) == NULL) {
697 simple_unlock(&uvm.swap_data_lock);
698 error = ENXIO;
699 break;
700 }
701
702 /*
703 * If a device isn't in use or enabled, we
704 * can't stop swapping from it (again).
705 */
706 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
707 simple_unlock(&uvm.swap_data_lock);
708 error = EBUSY;
709 break;
710 }
711
712 /*
713 * do the real work.
714 */
715 error = swap_off(p, sdp);
716 break;
717
718 default:
719 error = EINVAL;
720 }
721
722 /*
723 * done! release the ref gained by namei() and unlock.
724 */
725 vput(vp);
726
727 out:
728 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
729
730 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
731 return (error);
732 }
733
734 /*
735 * swap_on: attempt to enable a swapdev for swapping. note that the
736 * swapdev is already on the global list, but disabled (marked
737 * SWF_FAKE).
738 *
739 * => we avoid the start of the disk (to protect disk labels)
740 * => we also avoid the miniroot, if we are swapping to root.
741 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
742 * if needed.
743 */
744 static int
745 swap_on(p, sdp)
746 struct proc *p;
747 struct swapdev *sdp;
748 {
749 static int count = 0; /* static */
750 struct vnode *vp;
751 int error, npages, nblocks, size;
752 long addr;
753 u_long result;
754 struct vattr va;
755 #ifdef NFS
756 extern int (**nfsv2_vnodeop_p) __P((void *));
757 #endif /* NFS */
758 dev_t dev;
759 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
760
761 /*
762 * we want to enable swapping on sdp. the swd_vp contains
763 * the vnode we want (locked and ref'd), and the swd_dev
764 * contains the dev_t of the file, if it a block device.
765 */
766
767 vp = sdp->swd_vp;
768 dev = sdp->swd_dev;
769
770 /*
771 * open the swap file (mostly useful for block device files to
772 * let device driver know what is up).
773 *
774 * we skip the open/close for root on swap because the root
775 * has already been opened when root was mounted (mountroot).
776 */
777 if (vp != rootvp) {
778 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
779 return (error);
780 }
781
782 /* XXX this only works for block devices */
783 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
784
785 /*
786 * we now need to determine the size of the swap area. for
787 * block specials we can call the d_psize function.
788 * for normal files, we must stat [get attrs].
789 *
790 * we put the result in nblks.
791 * for normal files, we also want the filesystem block size
792 * (which we get with statfs).
793 */
794 switch (vp->v_type) {
795 case VBLK:
796 if (bdevsw[major(dev)].d_psize == 0 ||
797 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
798 error = ENXIO;
799 goto bad;
800 }
801 break;
802
803 case VREG:
804 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
805 goto bad;
806 nblocks = (int)btodb(va.va_size);
807 if ((error =
808 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
809 goto bad;
810
811 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
812 /*
813 * limit the max # of outstanding I/O requests we issue
814 * at any one time. take it easy on NFS servers.
815 */
816 #ifdef NFS
817 if (vp->v_op == nfsv2_vnodeop_p)
818 sdp->swd_maxactive = 2; /* XXX */
819 else
820 #endif /* NFS */
821 sdp->swd_maxactive = 8; /* XXX */
822 break;
823
824 default:
825 error = ENXIO;
826 goto bad;
827 }
828
829 /*
830 * save nblocks in a safe place and convert to pages.
831 */
832
833 sdp->swd_ose.ose_nblks = nblocks;
834 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
835
836 /*
837 * for block special files, we want to make sure that leave
838 * the disklabel and bootblocks alone, so we arrange to skip
839 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
840 * note that because of this the "size" can be less than the
841 * actual number of blocks on the device.
842 */
843 if (vp->v_type == VBLK) {
844 /* we use pages 1 to (size - 1) [inclusive] */
845 size = npages - 1;
846 addr = 1;
847 } else {
848 /* we use pages 0 to (size - 1) [inclusive] */
849 size = npages;
850 addr = 0;
851 }
852
853 /*
854 * make sure we have enough blocks for a reasonable sized swap
855 * area. we want at least one page.
856 */
857
858 if (size < 1) {
859 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
860 error = EINVAL;
861 goto bad;
862 }
863
864 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
865
866 /*
867 * now we need to allocate an extent to manage this swap device
868 */
869 snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
870 count++);
871
872 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
873 sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
874 0, 0, EX_WAITOK);
875 /* allocate the `saved' region from the extent so it won't be used */
876 if (addr) {
877 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
878 panic("disklabel region");
879 }
880
881 /*
882 * if the vnode we are swapping to is the root vnode
883 * (i.e. we are swapping to the miniroot) then we want
884 * to make sure we don't overwrite it. do a statfs to
885 * find its size and skip over it.
886 */
887 if (vp == rootvp) {
888 struct mount *mp;
889 struct statfs *sp;
890 int rootblocks, rootpages;
891
892 mp = rootvnode->v_mount;
893 sp = &mp->mnt_stat;
894 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
895 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
896 if (rootpages > size)
897 panic("swap_on: miniroot larger than swap?");
898
899 if (extent_alloc_region(sdp->swd_ex, addr,
900 rootpages, EX_WAITOK))
901 panic("swap_on: unable to preserve miniroot");
902
903 size -= rootpages;
904 printf("Preserved %d pages of miniroot ", rootpages);
905 printf("leaving %d pages of swap\n", size);
906 }
907
908 /*
909 * try to add anons to reflect the new swap space.
910 */
911
912 error = uvm_anon_add(size);
913 if (error) {
914 goto bad;
915 }
916
917 /*
918 * add a ref to vp to reflect usage as a swap device.
919 */
920 vref(vp);
921
922 /*
923 * now add the new swapdev to the drum and enable.
924 */
925 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
926 EX_WAITOK, &result))
927 panic("swapdrum_add");
928
929 sdp->swd_drumoffset = (int)result;
930 sdp->swd_drumsize = npages;
931 sdp->swd_npages = size;
932 simple_lock(&uvm.swap_data_lock);
933 sdp->swd_flags &= ~SWF_FAKE; /* going live */
934 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
935 uvmexp.swpages += size;
936 simple_unlock(&uvm.swap_data_lock);
937 return (0);
938
939 /*
940 * failure: clean up and return error.
941 */
942
943 bad:
944 if (sdp->swd_ex) {
945 extent_destroy(sdp->swd_ex);
946 }
947 if (vp != rootvp) {
948 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
949 }
950 return (error);
951 }
952
953 /*
954 * swap_off: stop swapping on swapdev
955 *
956 * => swap data should be locked, we will unlock.
957 */
958 static int
959 swap_off(p, sdp)
960 struct proc *p;
961 struct swapdev *sdp;
962 {
963 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
964 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev,0,0,0);
965
966 /* disable the swap area being removed */
967 sdp->swd_flags &= ~SWF_ENABLE;
968 simple_unlock(&uvm.swap_data_lock);
969
970 /*
971 * the idea is to find all the pages that are paged out to this
972 * device, and page them all in. in uvm, swap-backed pageable
973 * memory can take two forms: aobjs and anons. call the
974 * swapoff hook for each subsystem to bring in pages.
975 */
976
977 if (uao_swap_off(sdp->swd_drumoffset,
978 sdp->swd_drumoffset + sdp->swd_drumsize) ||
979 anon_swap_off(sdp->swd_drumoffset,
980 sdp->swd_drumoffset + sdp->swd_drumsize)) {
981
982 simple_lock(&uvm.swap_data_lock);
983 sdp->swd_flags |= SWF_ENABLE;
984 simple_unlock(&uvm.swap_data_lock);
985 return ENOMEM;
986 }
987 KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
988
989 /*
990 * done with the vnode and saved creds.
991 * drop our ref on the vnode before calling VOP_CLOSE()
992 * so that spec_close() can tell if this is the last close.
993 */
994 if (sdp->swd_vp->v_type == VREG) {
995 crfree(sdp->swd_cred);
996 }
997 vrele(sdp->swd_vp);
998 if (sdp->swd_vp != rootvp) {
999 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1000 }
1001
1002 /* remove anons from the system */
1003 uvm_anon_remove(sdp->swd_npages);
1004
1005 simple_lock(&uvm.swap_data_lock);
1006 uvmexp.swpages -= sdp->swd_npages;
1007
1008 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1009 panic("swap_off: swapdev not in list\n");
1010 swaplist_trim();
1011 simple_unlock(&uvm.swap_data_lock);
1012
1013 /*
1014 * free all resources!
1015 */
1016 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1017 EX_WAITOK);
1018 extent_destroy(sdp->swd_ex);
1019 free(sdp, M_VMSWAP);
1020 return (0);
1021 }
1022
1023 /*
1024 * /dev/drum interface and i/o functions
1025 */
1026
1027 /*
1028 * swread: the read function for the drum (just a call to physio)
1029 */
1030 /*ARGSUSED*/
1031 int
1032 swread(dev, uio, ioflag)
1033 dev_t dev;
1034 struct uio *uio;
1035 int ioflag;
1036 {
1037 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1038
1039 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1040 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1041 }
1042
1043 /*
1044 * swwrite: the write function for the drum (just a call to physio)
1045 */
1046 /*ARGSUSED*/
1047 int
1048 swwrite(dev, uio, ioflag)
1049 dev_t dev;
1050 struct uio *uio;
1051 int ioflag;
1052 {
1053 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1054
1055 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1056 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1057 }
1058
1059 /*
1060 * swstrategy: perform I/O on the drum
1061 *
1062 * => we must map the i/o request from the drum to the correct swapdev.
1063 */
1064 void
1065 swstrategy(bp)
1066 struct buf *bp;
1067 {
1068 struct swapdev *sdp;
1069 struct vnode *vp;
1070 int s, pageno, bn;
1071 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1072
1073 /*
1074 * convert block number to swapdev. note that swapdev can't
1075 * be yanked out from under us because we are holding resources
1076 * in it (i.e. the blocks we are doing I/O on).
1077 */
1078 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1079 simple_lock(&uvm.swap_data_lock);
1080 sdp = swapdrum_getsdp(pageno);
1081 simple_unlock(&uvm.swap_data_lock);
1082 if (sdp == NULL) {
1083 bp->b_error = EINVAL;
1084 bp->b_flags |= B_ERROR;
1085 biodone(bp);
1086 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1087 return;
1088 }
1089
1090 /*
1091 * convert drum page number to block number on this swapdev.
1092 */
1093
1094 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1095 bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1096
1097 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1098 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1099 sdp->swd_drumoffset, bn, bp->b_bcount);
1100
1101 /*
1102 * for block devices we finish up here.
1103 * for regular files we have to do more work which we delegate
1104 * to sw_reg_strategy().
1105 */
1106
1107 switch (sdp->swd_vp->v_type) {
1108 default:
1109 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1110
1111 case VBLK:
1112
1113 /*
1114 * must convert "bp" from an I/O on /dev/drum to an I/O
1115 * on the swapdev (sdp).
1116 */
1117 s = splbio();
1118 bp->b_blkno = bn; /* swapdev block number */
1119 vp = sdp->swd_vp; /* swapdev vnode pointer */
1120 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1121 VHOLD(vp); /* "hold" swapdev vp for i/o */
1122
1123 /*
1124 * if we are doing a write, we have to redirect the i/o on
1125 * drum's v_numoutput counter to the swapdevs.
1126 */
1127 if ((bp->b_flags & B_READ) == 0) {
1128 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1129 vp->v_numoutput++; /* put it on swapdev */
1130 }
1131
1132 /*
1133 * dissassocate buffer with /dev/drum vnode
1134 * [could be null if buf was from physio]
1135 */
1136 if (bp->b_vp != NULL)
1137 brelvp(bp);
1138
1139 /*
1140 * finally plug in swapdev vnode and start I/O
1141 */
1142 bp->b_vp = vp;
1143 splx(s);
1144 VOP_STRATEGY(bp);
1145 return;
1146
1147 case VREG:
1148 /*
1149 * delegate to sw_reg_strategy function.
1150 */
1151 sw_reg_strategy(sdp, bp, bn);
1152 return;
1153 }
1154 /* NOTREACHED */
1155 }
1156
1157 /*
1158 * sw_reg_strategy: handle swap i/o to regular files
1159 */
1160 static void
1161 sw_reg_strategy(sdp, bp, bn)
1162 struct swapdev *sdp;
1163 struct buf *bp;
1164 int bn;
1165 {
1166 struct vnode *vp;
1167 struct vndxfer *vnx;
1168 daddr_t nbn;
1169 caddr_t addr;
1170 off_t byteoff;
1171 int s, off, nra, error, sz, resid;
1172 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1173
1174 /*
1175 * allocate a vndxfer head for this transfer and point it to
1176 * our buffer.
1177 */
1178 getvndxfer(vnx);
1179 vnx->vx_flags = VX_BUSY;
1180 vnx->vx_error = 0;
1181 vnx->vx_pending = 0;
1182 vnx->vx_bp = bp;
1183 vnx->vx_sdp = sdp;
1184
1185 /*
1186 * setup for main loop where we read filesystem blocks into
1187 * our buffer.
1188 */
1189 error = 0;
1190 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1191 addr = bp->b_data; /* current position in buffer */
1192 byteoff = dbtob((u_int64_t)bn);
1193
1194 for (resid = bp->b_resid; resid; resid -= sz) {
1195 struct vndbuf *nbp;
1196
1197 /*
1198 * translate byteoffset into block number. return values:
1199 * vp = vnode of underlying device
1200 * nbn = new block number (on underlying vnode dev)
1201 * nra = num blocks we can read-ahead (excludes requested
1202 * block)
1203 */
1204 nra = 0;
1205 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1206 &vp, &nbn, &nra);
1207
1208 if (error == 0 && nbn == (daddr_t)-1) {
1209 /*
1210 * this used to just set error, but that doesn't
1211 * do the right thing. Instead, it causes random
1212 * memory errors. The panic() should remain until
1213 * this condition doesn't destabilize the system.
1214 */
1215 #if 1
1216 panic("sw_reg_strategy: swap to sparse file");
1217 #else
1218 error = EIO; /* failure */
1219 #endif
1220 }
1221
1222 /*
1223 * punt if there was an error or a hole in the file.
1224 * we must wait for any i/o ops we have already started
1225 * to finish before returning.
1226 *
1227 * XXX we could deal with holes here but it would be
1228 * a hassle (in the write case).
1229 */
1230 if (error) {
1231 s = splbio();
1232 vnx->vx_error = error; /* pass error up */
1233 goto out;
1234 }
1235
1236 /*
1237 * compute the size ("sz") of this transfer (in bytes).
1238 */
1239 off = byteoff % sdp->swd_bsize;
1240 sz = (1 + nra) * sdp->swd_bsize - off;
1241 if (sz > resid)
1242 sz = resid;
1243
1244 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1245 "vp %p/%p offset 0x%x/0x%x",
1246 sdp->swd_vp, vp, byteoff, nbn);
1247
1248 /*
1249 * now get a buf structure. note that the vb_buf is
1250 * at the front of the nbp structure so that you can
1251 * cast pointers between the two structure easily.
1252 */
1253 getvndbuf(nbp);
1254 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1255 nbp->vb_buf.b_bcount = sz;
1256 nbp->vb_buf.b_bufsize = sz;
1257 nbp->vb_buf.b_error = 0;
1258 nbp->vb_buf.b_data = addr;
1259 nbp->vb_buf.b_lblkno = 0;
1260 nbp->vb_buf.b_blkno = nbn + btodb(off);
1261 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1262 nbp->vb_buf.b_iodone = sw_reg_iodone;
1263 nbp->vb_buf.b_vp = NULL;
1264 LIST_INIT(&nbp->vb_buf.b_dep);
1265
1266 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1267
1268 /*
1269 * Just sort by block number
1270 */
1271 s = splbio();
1272 if (vnx->vx_error != 0) {
1273 putvndbuf(nbp);
1274 goto out;
1275 }
1276 vnx->vx_pending++;
1277
1278 /* assoc new buffer with underlying vnode */
1279 bgetvp(vp, &nbp->vb_buf);
1280
1281 /* sort it in and start I/O if we are not over our limit */
1282 disksort_blkno(&sdp->swd_tab, &nbp->vb_buf);
1283 sw_reg_start(sdp);
1284 splx(s);
1285
1286 /*
1287 * advance to the next I/O
1288 */
1289 byteoff += sz;
1290 addr += sz;
1291 }
1292
1293 s = splbio();
1294
1295 out: /* Arrive here at splbio */
1296 vnx->vx_flags &= ~VX_BUSY;
1297 if (vnx->vx_pending == 0) {
1298 if (vnx->vx_error != 0) {
1299 bp->b_error = vnx->vx_error;
1300 bp->b_flags |= B_ERROR;
1301 }
1302 putvndxfer(vnx);
1303 biodone(bp);
1304 }
1305 splx(s);
1306 }
1307
1308 /*
1309 * sw_reg_start: start an I/O request on the requested swapdev
1310 *
1311 * => reqs are sorted by disksort (above)
1312 */
1313 static void
1314 sw_reg_start(sdp)
1315 struct swapdev *sdp;
1316 {
1317 struct buf *bp;
1318 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1319
1320 /* recursion control */
1321 if ((sdp->swd_flags & SWF_BUSY) != 0)
1322 return;
1323
1324 sdp->swd_flags |= SWF_BUSY;
1325
1326 while (sdp->swd_active < sdp->swd_maxactive) {
1327 bp = BUFQ_FIRST(&sdp->swd_tab);
1328 if (bp == NULL)
1329 break;
1330 BUFQ_REMOVE(&sdp->swd_tab, bp);
1331 sdp->swd_active++;
1332
1333 UVMHIST_LOG(pdhist,
1334 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1335 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1336 if ((bp->b_flags & B_READ) == 0)
1337 bp->b_vp->v_numoutput++;
1338
1339 VOP_STRATEGY(bp);
1340 }
1341 sdp->swd_flags &= ~SWF_BUSY;
1342 }
1343
1344 /*
1345 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1346 *
1347 * => note that we can recover the vndbuf struct by casting the buf ptr
1348 */
1349 static void
1350 sw_reg_iodone(bp)
1351 struct buf *bp;
1352 {
1353 struct vndbuf *vbp = (struct vndbuf *) bp;
1354 struct vndxfer *vnx = vbp->vb_xfer;
1355 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1356 struct swapdev *sdp = vnx->vx_sdp;
1357 int s, resid;
1358 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1359
1360 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1361 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1362 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1363 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1364
1365 /*
1366 * protect vbp at splbio and update.
1367 */
1368
1369 s = splbio();
1370 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1371 pbp->b_resid -= resid;
1372 vnx->vx_pending--;
1373
1374 if (vbp->vb_buf.b_error) {
1375 UVMHIST_LOG(pdhist, " got error=%d !",
1376 vbp->vb_buf.b_error, 0, 0, 0);
1377
1378 /* pass error upward */
1379 vnx->vx_error = vbp->vb_buf.b_error;
1380 }
1381
1382 /*
1383 * disassociate this buffer from the vnode.
1384 */
1385 brelvp(&vbp->vb_buf);
1386
1387 /*
1388 * kill vbp structure
1389 */
1390 putvndbuf(vbp);
1391
1392 /*
1393 * wrap up this transaction if it has run to completion or, in
1394 * case of an error, when all auxiliary buffers have returned.
1395 */
1396 if (vnx->vx_error != 0) {
1397 /* pass error upward */
1398 pbp->b_flags |= B_ERROR;
1399 pbp->b_error = vnx->vx_error;
1400 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1401 putvndxfer(vnx);
1402 biodone(pbp);
1403 }
1404 } else if (pbp->b_resid == 0) {
1405 KASSERT(vnx->vx_pending == 0);
1406 if ((vnx->vx_flags & VX_BUSY) == 0) {
1407 UVMHIST_LOG(pdhist, " iodone error=%d !",
1408 pbp, vnx->vx_error, 0, 0);
1409 putvndxfer(vnx);
1410 biodone(pbp);
1411 }
1412 }
1413
1414 /*
1415 * done! start next swapdev I/O if one is pending
1416 */
1417 sdp->swd_active--;
1418 sw_reg_start(sdp);
1419 splx(s);
1420 }
1421
1422
1423 /*
1424 * uvm_swap_alloc: allocate space on swap
1425 *
1426 * => allocation is done "round robin" down the priority list, as we
1427 * allocate in a priority we "rotate" the circle queue.
1428 * => space can be freed with uvm_swap_free
1429 * => we return the page slot number in /dev/drum (0 == invalid slot)
1430 * => we lock uvm.swap_data_lock
1431 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1432 */
1433 int
1434 uvm_swap_alloc(nslots, lessok)
1435 int *nslots; /* IN/OUT */
1436 boolean_t lessok;
1437 {
1438 struct swapdev *sdp;
1439 struct swappri *spp;
1440 u_long result;
1441 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1442
1443 /*
1444 * no swap devices configured yet? definite failure.
1445 */
1446 if (uvmexp.nswapdev < 1)
1447 return 0;
1448
1449 /*
1450 * lock data lock, convert slots into blocks, and enter loop
1451 */
1452 simple_lock(&uvm.swap_data_lock);
1453
1454 ReTry: /* XXXMRG */
1455 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
1456 spp = LIST_NEXT(spp, spi_swappri)) {
1457 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
1458 sdp != (void *)&spp->spi_swapdev;
1459 sdp = CIRCLEQ_NEXT(sdp,swd_next)) {
1460 /* if it's not enabled, then we can't swap from it */
1461 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1462 continue;
1463 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1464 continue;
1465 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1466 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1467 &result) != 0) {
1468 continue;
1469 }
1470
1471 /*
1472 * successful allocation! now rotate the circleq.
1473 */
1474 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1475 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1476 sdp->swd_npginuse += *nslots;
1477 uvmexp.swpginuse += *nslots;
1478 simple_unlock(&uvm.swap_data_lock);
1479 /* done! return drum slot number */
1480 UVMHIST_LOG(pdhist,
1481 "success! returning %d slots starting at %d",
1482 *nslots, result + sdp->swd_drumoffset, 0, 0);
1483 return(result + sdp->swd_drumoffset);
1484 }
1485 }
1486
1487 /* XXXMRG: BEGIN HACK */
1488 if (*nslots > 1 && lessok) {
1489 *nslots = 1;
1490 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1491 }
1492 /* XXXMRG: END HACK */
1493
1494 simple_unlock(&uvm.swap_data_lock);
1495 return 0; /* failed */
1496 }
1497
1498 /*
1499 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1500 *
1501 * => we lock uvm.swap_data_lock
1502 */
1503 void
1504 uvm_swap_markbad(startslot, nslots)
1505 int startslot;
1506 int nslots;
1507 {
1508 struct swapdev *sdp;
1509 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1510
1511 simple_lock(&uvm.swap_data_lock);
1512 sdp = swapdrum_getsdp(startslot);
1513
1514 /*
1515 * we just keep track of how many pages have been marked bad
1516 * in this device, to make everything add up in swap_off().
1517 * we assume here that the range of slots will all be within
1518 * one swap device.
1519 */
1520
1521 sdp->swd_npgbad += nslots;
1522 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1523 simple_unlock(&uvm.swap_data_lock);
1524 }
1525
1526 /*
1527 * uvm_swap_free: free swap slots
1528 *
1529 * => this can be all or part of an allocation made by uvm_swap_alloc
1530 * => we lock uvm.swap_data_lock
1531 */
1532 void
1533 uvm_swap_free(startslot, nslots)
1534 int startslot;
1535 int nslots;
1536 {
1537 struct swapdev *sdp;
1538 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1539
1540 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1541 startslot, 0, 0);
1542
1543 /*
1544 * ignore attempts to free the "bad" slot.
1545 */
1546
1547 if (startslot == SWSLOT_BAD) {
1548 return;
1549 }
1550
1551 /*
1552 * convert drum slot offset back to sdp, free the blocks
1553 * in the extent, and return. must hold pri lock to do
1554 * lookup and access the extent.
1555 */
1556
1557 simple_lock(&uvm.swap_data_lock);
1558 sdp = swapdrum_getsdp(startslot);
1559 KASSERT(uvmexp.nswapdev >= 1);
1560 KASSERT(sdp != NULL);
1561 KASSERT(sdp->swd_npginuse >= nslots);
1562 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1563 EX_MALLOCOK|EX_NOWAIT) != 0) {
1564 printf("warning: resource shortage: %d pages of swap lost\n",
1565 nslots);
1566 }
1567 sdp->swd_npginuse -= nslots;
1568 uvmexp.swpginuse -= nslots;
1569 simple_unlock(&uvm.swap_data_lock);
1570 }
1571
1572 /*
1573 * uvm_swap_put: put any number of pages into a contig place on swap
1574 *
1575 * => can be sync or async
1576 * => XXXMRG: consider making it an inline or macro
1577 */
1578 int
1579 uvm_swap_put(swslot, ppsp, npages, flags)
1580 int swslot;
1581 struct vm_page **ppsp;
1582 int npages;
1583 int flags;
1584 {
1585 int result;
1586
1587 result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1588 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1589
1590 return (result);
1591 }
1592
1593 /*
1594 * uvm_swap_get: get a single page from swap
1595 *
1596 * => usually a sync op (from fault)
1597 * => XXXMRG: consider making it an inline or macro
1598 */
1599 int
1600 uvm_swap_get(page, swslot, flags)
1601 struct vm_page *page;
1602 int swslot, flags;
1603 {
1604 int result;
1605
1606 uvmexp.nswget++;
1607 KASSERT(flags & PGO_SYNCIO);
1608 if (swslot == SWSLOT_BAD) {
1609 return EIO;
1610 }
1611
1612 /*
1613 * this page is (about to be) no longer only in swap.
1614 */
1615
1616 simple_lock(&uvm.swap_data_lock);
1617 uvmexp.swpgonly--;
1618 simple_unlock(&uvm.swap_data_lock);
1619
1620 result = uvm_swap_io(&page, swslot, 1, B_READ |
1621 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1622
1623 if (result != 0) {
1624
1625 /*
1626 * oops, the read failed so it really is still only in swap.
1627 */
1628
1629 simple_lock(&uvm.swap_data_lock);
1630 uvmexp.swpgonly++;
1631 simple_unlock(&uvm.swap_data_lock);
1632 }
1633
1634 return (result);
1635 }
1636
1637 /*
1638 * uvm_swap_io: do an i/o operation to swap
1639 */
1640
1641 static int
1642 uvm_swap_io(pps, startslot, npages, flags)
1643 struct vm_page **pps;
1644 int startslot, npages, flags;
1645 {
1646 daddr_t startblk;
1647 struct buf *bp;
1648 vaddr_t kva;
1649 int error, s, mapinflags, pflag;
1650 boolean_t write, async;
1651 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1652
1653 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1654 startslot, npages, flags, 0);
1655
1656 write = (flags & B_READ) == 0;
1657 async = (flags & B_ASYNC) != 0;
1658
1659 /*
1660 * convert starting drum slot to block number
1661 */
1662 startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1663
1664 /*
1665 * first, map the pages into the kernel (XXX: currently required
1666 * by buffer system).
1667 */
1668
1669 mapinflags = !write ? UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE;
1670 if (!async)
1671 mapinflags |= UVMPAGER_MAPIN_WAITOK;
1672 kva = uvm_pagermapin(pps, npages, mapinflags);
1673 if (kva == 0)
1674 return (EAGAIN);
1675
1676 /*
1677 * now allocate a buf for the i/o.
1678 * [make sure we don't put the pagedaemon to sleep...]
1679 */
1680 s = splbio();
1681 pflag = (async || curproc == uvm.pagedaemon_proc) ? 0 : PR_WAITOK;
1682 bp = pool_get(&bufpool, pflag);
1683 splx(s);
1684
1685 /*
1686 * if we failed to get a buf, return "try again"
1687 */
1688 if (bp == NULL)
1689 return (EAGAIN);
1690
1691 /*
1692 * fill in the bp/sbp. we currently route our i/o through
1693 * /dev/drum's vnode [swapdev_vp].
1694 */
1695 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1696 bp->b_proc = &proc0; /* XXX */
1697 bp->b_vnbufs.le_next = NOLIST;
1698 bp->b_data = (caddr_t)kva;
1699 bp->b_blkno = startblk;
1700 s = splbio();
1701 VHOLD(swapdev_vp);
1702 bp->b_vp = swapdev_vp;
1703 splx(s);
1704 /* XXXCDC: isn't swapdev_vp always a VCHR? */
1705 /* XXXMRG: probably -- this is obviously something inherited... */
1706 if (swapdev_vp->v_type == VBLK)
1707 bp->b_dev = swapdev_vp->v_rdev;
1708 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1709 LIST_INIT(&bp->b_dep);
1710
1711 /*
1712 * bump v_numoutput (counter of number of active outputs).
1713 */
1714 if (write) {
1715 s = splbio();
1716 swapdev_vp->v_numoutput++;
1717 splx(s);
1718 }
1719
1720 /*
1721 * for async ops we must set up the iodone handler.
1722 */
1723 if (async) {
1724 /* XXXUBC pagedaemon */
1725 bp->b_flags |= B_CALL | (curproc == uvm.pagedaemon_proc ?
1726 B_PDAEMON : 0);
1727 bp->b_iodone = uvm_aio_biodone;
1728 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1729 }
1730 UVMHIST_LOG(pdhist,
1731 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1732 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1733
1734 /*
1735 * now we start the I/O, and if async, return.
1736 */
1737 VOP_STRATEGY(bp);
1738 if (async)
1739 return 0;
1740
1741 /*
1742 * must be sync i/o. wait for it to finish
1743 */
1744 error = biowait(bp);
1745
1746 /*
1747 * kill the pager mapping
1748 */
1749 uvm_pagermapout(kva, npages);
1750
1751 /*
1752 * now dispose of the buf
1753 */
1754 s = splbio();
1755 if (bp->b_vp)
1756 brelvp(bp);
1757 if (write)
1758 vwakeup(bp);
1759 pool_put(&bufpool, bp);
1760 splx(s);
1761
1762 /*
1763 * finally return.
1764 */
1765 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1766 return (error);
1767 }
1768