uvm_swap.c revision 1.53.2.3 1 /* $NetBSD: uvm_swap.c,v 1.53.2.3 2001/10/01 12:48:47 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include "fs_nfs.h"
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/conf.h>
43 #include <sys/proc.h>
44 #include <sys/namei.h>
45 #include <sys/disklabel.h>
46 #include <sys/errno.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 #include <sys/vnode.h>
50 #include <sys/file.h>
51 #include <sys/extent.h>
52 #include <sys/mount.h>
53 #include <sys/pool.h>
54 #include <sys/syscallargs.h>
55 #include <sys/swap.h>
56
57 #include <uvm/uvm.h>
58
59 #include <miscfs/specfs/specdev.h>
60
61 /*
62 * uvm_swap.c: manage configuration and i/o to swap space.
63 */
64
65 /*
66 * swap space is managed in the following way:
67 *
68 * each swap partition or file is described by a "swapdev" structure.
69 * each "swapdev" structure contains a "swapent" structure which contains
70 * information that is passed up to the user (via system calls).
71 *
72 * each swap partition is assigned a "priority" (int) which controls
73 * swap parition usage.
74 *
75 * the system maintains a global data structure describing all swap
76 * partitions/files. there is a sorted LIST of "swappri" structures
77 * which describe "swapdev"'s at that priority. this LIST is headed
78 * by the "swap_priority" global var. each "swappri" contains a
79 * CIRCLEQ of "swapdev" structures at that priority.
80 *
81 * locking:
82 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
83 * system call and prevents the swap priority list from changing
84 * while we are in the middle of a system call (e.g. SWAP_STATS).
85 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
86 * structures including the priority list, the swapdev structures,
87 * and the swapmap extent.
88 *
89 * each swap device has the following info:
90 * - swap device in use (could be disabled, preventing future use)
91 * - swap enabled (allows new allocations on swap)
92 * - map info in /dev/drum
93 * - vnode pointer
94 * for swap files only:
95 * - block size
96 * - max byte count in buffer
97 * - buffer
98 * - credentials to use when doing i/o to file
99 *
100 * userland controls and configures swap with the swapctl(2) system call.
101 * the sys_swapctl performs the following operations:
102 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
103 * [2] SWAP_STATS: given a pointer to an array of swapent structures
104 * (passed in via "arg") of a size passed in via "misc" ... we load
105 * the current swap config into the array.
106 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
107 * priority in "misc", start swapping on it.
108 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
109 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
110 * "misc")
111 */
112
113 /*
114 * swapdev: describes a single swap partition/file
115 *
116 * note the following should be true:
117 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
118 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
119 *
120 * XXX Using `oswapent' is ... really disgusting.
121 */
122 struct swapdev {
123 struct oswapent swd_ose;
124 #define swd_dev swd_ose.ose_dev /* device id */
125 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
126 #define swd_priority swd_ose.ose_priority /* our priority */
127 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
128 char *swd_path; /* saved pathname of device */
129 int swd_pathlen; /* length of pathname */
130 int swd_npages; /* #pages we can use */
131 int swd_npginuse; /* #pages in use */
132 int swd_npgbad; /* #pages bad */
133 int swd_drumoffset; /* page0 offset in drum */
134 int swd_drumsize; /* #pages in drum */
135 struct extent *swd_ex; /* extent for this swapdev */
136 char swd_exname[12]; /* name of extent above */
137 struct vnode *swd_vp; /* backing vnode */
138 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
139
140 int swd_bsize; /* blocksize (bytes) */
141 int swd_maxactive; /* max active i/o reqs */
142 struct buf_queue swd_tab; /* buffer list */
143 int swd_active; /* number of active buffers */
144 struct ucred *swd_cred; /* cred for file access */
145 };
146
147 /*
148 * swap device priority entry; the list is kept sorted on `spi_priority'.
149 */
150 struct swappri {
151 int spi_priority; /* priority */
152 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
153 /* circleq of swapdevs at this priority */
154 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
155 };
156
157 /*
158 * The following two structures are used to keep track of data transfers
159 * on swap devices associated with regular files.
160 * NOTE: this code is more or less a copy of vnd.c; we use the same
161 * structure names here to ease porting..
162 */
163 struct vndxfer {
164 struct buf *vx_bp; /* Pointer to parent buffer */
165 struct swapdev *vx_sdp;
166 int vx_error;
167 int vx_pending; /* # of pending aux buffers */
168 int vx_flags;
169 #define VX_BUSY 1
170 #define VX_DEAD 2
171 };
172
173 struct vndbuf {
174 struct buf vb_buf;
175 struct vndxfer *vb_xfer;
176 };
177
178
179 /*
180 * We keep a of pool vndbuf's and vndxfer structures.
181 */
182 static struct pool vndxfer_pool;
183 static struct pool vndbuf_pool;
184
185 #define getvndxfer(vnx) do { \
186 int s = splbio(); \
187 vnx = pool_get(&vndxfer_pool, PR_MALLOCOK|PR_WAITOK); \
188 splx(s); \
189 } while (0)
190
191 #define putvndxfer(vnx) { \
192 pool_put(&vndxfer_pool, (void *)(vnx)); \
193 }
194
195 #define getvndbuf(vbp) do { \
196 int s = splbio(); \
197 vbp = pool_get(&vndbuf_pool, PR_MALLOCOK|PR_WAITOK); \
198 splx(s); \
199 } while (0)
200
201 #define putvndbuf(vbp) { \
202 pool_put(&vndbuf_pool, (void *)(vbp)); \
203 }
204
205 /* /dev/drum */
206 bdev_decl(sw);
207 cdev_decl(sw);
208
209 /*
210 * local variables
211 */
212 static struct extent *swapmap; /* controls the mapping of /dev/drum */
213
214 /* list of all active swap devices [by priority] */
215 LIST_HEAD(swap_priority, swappri);
216 static struct swap_priority swap_priority;
217
218 /* locks */
219 struct lock swap_syscall_lock;
220
221 /*
222 * prototypes
223 */
224 static struct swapdev *swapdrum_getsdp __P((int));
225
226 static struct swapdev *swaplist_find __P((struct vnode *, int));
227 static void swaplist_insert __P((struct swapdev *,
228 struct swappri *, int));
229 static void swaplist_trim __P((void));
230
231 static int swap_on __P((struct proc *, struct swapdev *));
232 static int swap_off __P((struct proc *, struct swapdev *));
233
234 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
235 static void sw_reg_iodone __P((struct buf *));
236 static void sw_reg_start __P((struct swapdev *));
237
238 static int uvm_swap_io __P((struct vm_page **, int, int, int));
239
240 /*
241 * uvm_swap_init: init the swap system data structures and locks
242 *
243 * => called at boot time from init_main.c after the filesystems
244 * are brought up (which happens after uvm_init())
245 */
246 void
247 uvm_swap_init()
248 {
249 UVMHIST_FUNC("uvm_swap_init");
250
251 UVMHIST_CALLED(pdhist);
252 /*
253 * first, init the swap list, its counter, and its lock.
254 * then get a handle on the vnode for /dev/drum by using
255 * the its dev_t number ("swapdev", from MD conf.c).
256 */
257
258 LIST_INIT(&swap_priority);
259 uvmexp.nswapdev = 0;
260 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
261 simple_lock_init(&uvm.swap_data_lock);
262
263 if (bdevvp(swapdev, &swapdev_vp))
264 panic("uvm_swap_init: can't get vnode for swap device");
265
266 /*
267 * create swap block resource map to map /dev/drum. the range
268 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
269 * that block 0 is reserved (used to indicate an allocation
270 * failure, or no allocation).
271 */
272 swapmap = extent_create("swapmap", 1, INT_MAX,
273 M_VMSWAP, 0, 0, EX_NOWAIT);
274 if (swapmap == 0)
275 panic("uvm_swap_init: extent_create failed");
276
277 /*
278 * allocate pools for structures used for swapping to files.
279 */
280
281 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0,
282 "swp vnx", 0, NULL, NULL, 0);
283
284 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0,
285 "swp vnd", 0, NULL, NULL, 0);
286
287 /*
288 * done!
289 */
290 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
291 }
292
293 /*
294 * swaplist functions: functions that operate on the list of swap
295 * devices on the system.
296 */
297
298 /*
299 * swaplist_insert: insert swap device "sdp" into the global list
300 *
301 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
302 * => caller must provide a newly malloc'd swappri structure (we will
303 * FREE it if we don't need it... this it to prevent malloc blocking
304 * here while adding swap)
305 */
306 static void
307 swaplist_insert(sdp, newspp, priority)
308 struct swapdev *sdp;
309 struct swappri *newspp;
310 int priority;
311 {
312 struct swappri *spp, *pspp;
313 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
314
315 /*
316 * find entry at or after which to insert the new device.
317 */
318 for (pspp = NULL, spp = LIST_FIRST(&swap_priority); spp != NULL;
319 spp = LIST_NEXT(spp, spi_swappri)) {
320 if (priority <= spp->spi_priority)
321 break;
322 pspp = spp;
323 }
324
325 /*
326 * new priority?
327 */
328 if (spp == NULL || spp->spi_priority != priority) {
329 spp = newspp; /* use newspp! */
330 UVMHIST_LOG(pdhist, "created new swappri = %d",
331 priority, 0, 0, 0);
332
333 spp->spi_priority = priority;
334 CIRCLEQ_INIT(&spp->spi_swapdev);
335
336 if (pspp)
337 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
338 else
339 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
340 } else {
341 /* we don't need a new priority structure, free it */
342 FREE(newspp, M_VMSWAP);
343 }
344
345 /*
346 * priority found (or created). now insert on the priority's
347 * circleq list and bump the total number of swapdevs.
348 */
349 sdp->swd_priority = priority;
350 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
351 uvmexp.nswapdev++;
352 }
353
354 /*
355 * swaplist_find: find and optionally remove a swap device from the
356 * global list.
357 *
358 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
359 * => we return the swapdev we found (and removed)
360 */
361 static struct swapdev *
362 swaplist_find(vp, remove)
363 struct vnode *vp;
364 boolean_t remove;
365 {
366 struct swapdev *sdp;
367 struct swappri *spp;
368
369 /*
370 * search the lists for the requested vp
371 */
372 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
373 spp = LIST_NEXT(spp, spi_swappri)) {
374 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
375 sdp != (void *)&spp->spi_swapdev;
376 sdp = CIRCLEQ_NEXT(sdp, swd_next))
377 if (sdp->swd_vp == vp) {
378 if (remove) {
379 CIRCLEQ_REMOVE(&spp->spi_swapdev,
380 sdp, swd_next);
381 uvmexp.nswapdev--;
382 }
383 return(sdp);
384 }
385 }
386 return (NULL);
387 }
388
389
390 /*
391 * swaplist_trim: scan priority list for empty priority entries and kill
392 * them.
393 *
394 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
395 */
396 static void
397 swaplist_trim()
398 {
399 struct swappri *spp, *nextspp;
400
401 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
402 nextspp = LIST_NEXT(spp, spi_swappri);
403 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
404 (void *)&spp->spi_swapdev)
405 continue;
406 LIST_REMOVE(spp, spi_swappri);
407 free(spp, M_VMSWAP);
408 }
409 }
410
411 /*
412 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
413 * to the "swapdev" that maps that section of the drum.
414 *
415 * => each swapdev takes one big contig chunk of the drum
416 * => caller must hold uvm.swap_data_lock
417 */
418 static struct swapdev *
419 swapdrum_getsdp(pgno)
420 int pgno;
421 {
422 struct swapdev *sdp;
423 struct swappri *spp;
424
425 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
426 spp = LIST_NEXT(spp, spi_swappri))
427 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
428 sdp != (void *)&spp->spi_swapdev;
429 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
430 if (sdp->swd_flags & SWF_FAKE)
431 continue;
432 if (pgno >= sdp->swd_drumoffset &&
433 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
434 return sdp;
435 }
436 }
437 return NULL;
438 }
439
440
441 /*
442 * sys_swapctl: main entry point for swapctl(2) system call
443 * [with two helper functions: swap_on and swap_off]
444 */
445 int
446 sys_swapctl(p, v, retval)
447 struct proc *p;
448 void *v;
449 register_t *retval;
450 {
451 struct sys_swapctl_args /* {
452 syscallarg(int) cmd;
453 syscallarg(void *) arg;
454 syscallarg(int) misc;
455 } */ *uap = (struct sys_swapctl_args *)v;
456 struct vnode *vp;
457 struct nameidata nd;
458 struct swappri *spp;
459 struct swapdev *sdp;
460 struct swapent *sep;
461 char userpath[PATH_MAX + 1];
462 size_t len;
463 int count, error, misc;
464 int priority;
465 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
466
467 misc = SCARG(uap, misc);
468
469 /*
470 * ensure serialized syscall access by grabbing the swap_syscall_lock
471 */
472 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
473
474 /*
475 * we handle the non-priv NSWAP and STATS request first.
476 *
477 * SWAP_NSWAP: return number of config'd swap devices
478 * [can also be obtained with uvmexp sysctl]
479 */
480 if (SCARG(uap, cmd) == SWAP_NSWAP) {
481 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
482 0, 0, 0);
483 *retval = uvmexp.nswapdev;
484 error = 0;
485 goto out;
486 }
487
488 /*
489 * SWAP_STATS: get stats on current # of configured swap devs
490 *
491 * note that the swap_priority list can't change as long
492 * as we are holding the swap_syscall_lock. we don't want
493 * to grab the uvm.swap_data_lock because we may fault&sleep during
494 * copyout() and we don't want to be holding that lock then!
495 */
496 if (SCARG(uap, cmd) == SWAP_STATS
497 #if defined(COMPAT_13)
498 || SCARG(uap, cmd) == SWAP_OSTATS
499 #endif
500 ) {
501 sep = (struct swapent *)SCARG(uap, arg);
502 count = 0;
503
504 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
505 spp = LIST_NEXT(spp, spi_swappri)) {
506 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
507 sdp != (void *)&spp->spi_swapdev && misc-- > 0;
508 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
509 /*
510 * backwards compatibility for system call.
511 * note that we use 'struct oswapent' as an
512 * overlay into both 'struct swapdev' and
513 * the userland 'struct swapent', as we
514 * want to retain backwards compatibility
515 * with NetBSD 1.3.
516 */
517 sdp->swd_ose.ose_inuse =
518 btodb((u_int64_t)sdp->swd_npginuse <<
519 PAGE_SHIFT);
520 error = copyout(&sdp->swd_ose, sep,
521 sizeof(struct oswapent));
522
523 /* now copy out the path if necessary */
524 #if defined(COMPAT_13)
525 if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
526 #else
527 if (error == 0)
528 #endif
529 error = copyout(sdp->swd_path,
530 &sep->se_path, sdp->swd_pathlen);
531
532 if (error)
533 goto out;
534 count++;
535 #if defined(COMPAT_13)
536 if (SCARG(uap, cmd) == SWAP_OSTATS)
537 sep = (struct swapent *)
538 ((struct oswapent *)sep + 1);
539 else
540 #endif
541 sep++;
542 }
543 }
544
545 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
546
547 *retval = count;
548 error = 0;
549 goto out;
550 }
551
552 /*
553 * all other requests require superuser privs. verify.
554 */
555 if ((error = suser(p->p_ucred, &p->p_acflag)))
556 goto out;
557
558 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
559 dev_t *devp = (dev_t *)SCARG(uap, arg);
560
561 error = copyout(&dumpdev, devp, sizeof(dumpdev));
562 goto out;
563 }
564
565 /*
566 * at this point we expect a path name in arg. we will
567 * use namei() to gain a vnode reference (vref), and lock
568 * the vnode (VOP_LOCK).
569 *
570 * XXX: a NULL arg means use the root vnode pointer (e.g. for
571 * miniroot)
572 */
573 if (SCARG(uap, arg) == NULL) {
574 vp = rootvp; /* miniroot */
575 if (vget(vp, LK_EXCLUSIVE)) {
576 error = EBUSY;
577 goto out;
578 }
579 if (SCARG(uap, cmd) == SWAP_ON &&
580 copystr("miniroot", userpath, sizeof userpath, &len))
581 panic("swapctl: miniroot copy failed");
582 } else {
583 int space;
584 char *where;
585
586 if (SCARG(uap, cmd) == SWAP_ON) {
587 if ((error = copyinstr(SCARG(uap, arg), userpath,
588 sizeof userpath, &len)))
589 goto out;
590 space = UIO_SYSSPACE;
591 where = userpath;
592 } else {
593 space = UIO_USERSPACE;
594 where = (char *)SCARG(uap, arg);
595 }
596 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
597 if ((error = namei(&nd)))
598 goto out;
599 vp = nd.ni_vp;
600 }
601 /* note: "vp" is referenced and locked */
602
603 error = 0; /* assume no error */
604 switch(SCARG(uap, cmd)) {
605
606 case SWAP_DUMPDEV:
607 if (vp->v_type != VBLK) {
608 error = ENOTBLK;
609 break;
610 }
611 dumpdev = vp->v_rdev;
612 break;
613
614 case SWAP_CTL:
615 /*
616 * get new priority, remove old entry (if any) and then
617 * reinsert it in the correct place. finally, prune out
618 * any empty priority structures.
619 */
620 priority = SCARG(uap, misc);
621 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
622 simple_lock(&uvm.swap_data_lock);
623 if ((sdp = swaplist_find(vp, 1)) == NULL) {
624 error = ENOENT;
625 } else {
626 swaplist_insert(sdp, spp, priority);
627 swaplist_trim();
628 }
629 simple_unlock(&uvm.swap_data_lock);
630 if (error)
631 free(spp, M_VMSWAP);
632 break;
633
634 case SWAP_ON:
635
636 /*
637 * check for duplicates. if none found, then insert a
638 * dummy entry on the list to prevent someone else from
639 * trying to enable this device while we are working on
640 * it.
641 */
642
643 priority = SCARG(uap, misc);
644 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
645 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
646 simple_lock(&uvm.swap_data_lock);
647 if (swaplist_find(vp, 0) != NULL) {
648 error = EBUSY;
649 simple_unlock(&uvm.swap_data_lock);
650 free(sdp, M_VMSWAP);
651 free(spp, M_VMSWAP);
652 break;
653 }
654 memset(sdp, 0, sizeof(*sdp));
655 sdp->swd_flags = SWF_FAKE; /* placeholder only */
656 sdp->swd_vp = vp;
657 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
658 BUFQ_INIT(&sdp->swd_tab);
659
660 /*
661 * XXX Is NFS elaboration necessary?
662 */
663 if (vp->v_type == VREG) {
664 sdp->swd_cred = crdup(p->p_ucred);
665 }
666
667 swaplist_insert(sdp, spp, priority);
668 simple_unlock(&uvm.swap_data_lock);
669
670 sdp->swd_pathlen = len;
671 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
672 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
673 panic("swapctl: copystr");
674
675 /*
676 * we've now got a FAKE placeholder in the swap list.
677 * now attempt to enable swap on it. if we fail, undo
678 * what we've done and kill the fake entry we just inserted.
679 * if swap_on is a success, it will clear the SWF_FAKE flag
680 */
681
682 if ((error = swap_on(p, sdp)) != 0) {
683 simple_lock(&uvm.swap_data_lock);
684 (void) swaplist_find(vp, 1); /* kill fake entry */
685 swaplist_trim();
686 simple_unlock(&uvm.swap_data_lock);
687 if (vp->v_type == VREG) {
688 crfree(sdp->swd_cred);
689 }
690 free(sdp->swd_path, M_VMSWAP);
691 free(sdp, M_VMSWAP);
692 break;
693 }
694 break;
695
696 case SWAP_OFF:
697 simple_lock(&uvm.swap_data_lock);
698 if ((sdp = swaplist_find(vp, 0)) == NULL) {
699 simple_unlock(&uvm.swap_data_lock);
700 error = ENXIO;
701 break;
702 }
703
704 /*
705 * If a device isn't in use or enabled, we
706 * can't stop swapping from it (again).
707 */
708 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
709 simple_unlock(&uvm.swap_data_lock);
710 error = EBUSY;
711 break;
712 }
713
714 /*
715 * do the real work.
716 */
717 error = swap_off(p, sdp);
718 break;
719
720 default:
721 error = EINVAL;
722 }
723
724 /*
725 * done! release the ref gained by namei() and unlock.
726 */
727 vput(vp);
728
729 out:
730 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
731
732 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
733 return (error);
734 }
735
736 /*
737 * swap_on: attempt to enable a swapdev for swapping. note that the
738 * swapdev is already on the global list, but disabled (marked
739 * SWF_FAKE).
740 *
741 * => we avoid the start of the disk (to protect disk labels)
742 * => we also avoid the miniroot, if we are swapping to root.
743 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
744 * if needed.
745 */
746 static int
747 swap_on(p, sdp)
748 struct proc *p;
749 struct swapdev *sdp;
750 {
751 static int count = 0; /* static */
752 struct vnode *vp;
753 int error, npages, nblocks, size;
754 long addr;
755 u_long result;
756 struct vattr va;
757 #ifdef NFS
758 extern int (**nfsv2_vnodeop_p) __P((void *));
759 #endif /* NFS */
760 dev_t dev;
761 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
762
763 /*
764 * we want to enable swapping on sdp. the swd_vp contains
765 * the vnode we want (locked and ref'd), and the swd_dev
766 * contains the dev_t of the file, if it a block device.
767 */
768
769 vp = sdp->swd_vp;
770 dev = sdp->swd_dev;
771
772 /*
773 * open the swap file (mostly useful for block device files to
774 * let device driver know what is up).
775 *
776 * we skip the open/close for root on swap because the root
777 * has already been opened when root was mounted (mountroot).
778 */
779 if (vp != rootvp) {
780 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p, NULL)))
781 return (error);
782 }
783
784 /* XXX this only works for block devices */
785 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
786
787 /*
788 * we now need to determine the size of the swap area. for
789 * block specials we can call the d_psize function.
790 * for normal files, we must stat [get attrs].
791 *
792 * we put the result in nblks.
793 * for normal files, we also want the filesystem block size
794 * (which we get with statfs).
795 */
796 switch (vp->v_type) {
797 case VBLK:
798 if (bdevsw[major(dev)].d_psize == 0 ||
799 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
800 error = ENXIO;
801 goto bad;
802 }
803 break;
804
805 case VREG:
806 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
807 goto bad;
808 nblocks = (int)btodb(va.va_size);
809 if ((error =
810 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
811 goto bad;
812
813 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
814 /*
815 * limit the max # of outstanding I/O requests we issue
816 * at any one time. take it easy on NFS servers.
817 */
818 #ifdef NFS
819 if (vp->v_op == nfsv2_vnodeop_p)
820 sdp->swd_maxactive = 2; /* XXX */
821 else
822 #endif /* NFS */
823 sdp->swd_maxactive = 8; /* XXX */
824 break;
825
826 default:
827 error = ENXIO;
828 goto bad;
829 }
830
831 /*
832 * save nblocks in a safe place and convert to pages.
833 */
834
835 sdp->swd_ose.ose_nblks = nblocks;
836 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
837
838 /*
839 * for block special files, we want to make sure that leave
840 * the disklabel and bootblocks alone, so we arrange to skip
841 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
842 * note that because of this the "size" can be less than the
843 * actual number of blocks on the device.
844 */
845 if (vp->v_type == VBLK) {
846 /* we use pages 1 to (size - 1) [inclusive] */
847 size = npages - 1;
848 addr = 1;
849 } else {
850 /* we use pages 0 to (size - 1) [inclusive] */
851 size = npages;
852 addr = 0;
853 }
854
855 /*
856 * make sure we have enough blocks for a reasonable sized swap
857 * area. we want at least one page.
858 */
859
860 if (size < 1) {
861 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
862 error = EINVAL;
863 goto bad;
864 }
865
866 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
867
868 /*
869 * now we need to allocate an extent to manage this swap device
870 */
871 snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
872 count++);
873
874 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
875 sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
876 0, 0, EX_WAITOK);
877 /* allocate the `saved' region from the extent so it won't be used */
878 if (addr) {
879 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
880 panic("disklabel region");
881 }
882
883 /*
884 * if the vnode we are swapping to is the root vnode
885 * (i.e. we are swapping to the miniroot) then we want
886 * to make sure we don't overwrite it. do a statfs to
887 * find its size and skip over it.
888 */
889 if (vp == rootvp) {
890 struct mount *mp;
891 struct statfs *sp;
892 int rootblocks, rootpages;
893
894 mp = rootvnode->v_mount;
895 sp = &mp->mnt_stat;
896 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
897 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
898 if (rootpages > size)
899 panic("swap_on: miniroot larger than swap?");
900
901 if (extent_alloc_region(sdp->swd_ex, addr,
902 rootpages, EX_WAITOK))
903 panic("swap_on: unable to preserve miniroot");
904
905 size -= rootpages;
906 printf("Preserved %d pages of miniroot ", rootpages);
907 printf("leaving %d pages of swap\n", size);
908 }
909
910 /*
911 * try to add anons to reflect the new swap space.
912 */
913
914 error = uvm_anon_add(size);
915 if (error) {
916 goto bad;
917 }
918
919 /*
920 * add a ref to vp to reflect usage as a swap device.
921 */
922 vref(vp);
923
924 /*
925 * now add the new swapdev to the drum and enable.
926 */
927 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
928 EX_WAITOK, &result))
929 panic("swapdrum_add");
930
931 sdp->swd_drumoffset = (int)result;
932 sdp->swd_drumsize = npages;
933 sdp->swd_npages = size;
934 simple_lock(&uvm.swap_data_lock);
935 sdp->swd_flags &= ~SWF_FAKE; /* going live */
936 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
937 uvmexp.swpages += size;
938 simple_unlock(&uvm.swap_data_lock);
939 return (0);
940
941 /*
942 * failure: clean up and return error.
943 */
944
945 bad:
946 if (sdp->swd_ex) {
947 extent_destroy(sdp->swd_ex);
948 }
949 if (vp != rootvp) {
950 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
951 }
952 return (error);
953 }
954
955 /*
956 * swap_off: stop swapping on swapdev
957 *
958 * => swap data should be locked, we will unlock.
959 */
960 static int
961 swap_off(p, sdp)
962 struct proc *p;
963 struct swapdev *sdp;
964 {
965 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
966 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev,0,0,0);
967
968 /* disable the swap area being removed */
969 sdp->swd_flags &= ~SWF_ENABLE;
970 simple_unlock(&uvm.swap_data_lock);
971
972 /*
973 * the idea is to find all the pages that are paged out to this
974 * device, and page them all in. in uvm, swap-backed pageable
975 * memory can take two forms: aobjs and anons. call the
976 * swapoff hook for each subsystem to bring in pages.
977 */
978
979 if (uao_swap_off(sdp->swd_drumoffset,
980 sdp->swd_drumoffset + sdp->swd_drumsize) ||
981 anon_swap_off(sdp->swd_drumoffset,
982 sdp->swd_drumoffset + sdp->swd_drumsize)) {
983
984 simple_lock(&uvm.swap_data_lock);
985 sdp->swd_flags |= SWF_ENABLE;
986 simple_unlock(&uvm.swap_data_lock);
987 return ENOMEM;
988 }
989 KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
990
991 /*
992 * done with the vnode and saved creds.
993 * drop our ref on the vnode before calling VOP_CLOSE()
994 * so that spec_close() can tell if this is the last close.
995 */
996 if (sdp->swd_vp->v_type == VREG) {
997 crfree(sdp->swd_cred);
998 }
999 vrele(sdp->swd_vp);
1000 if (sdp->swd_vp != rootvp) {
1001 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1002 }
1003
1004 /* remove anons from the system */
1005 uvm_anon_remove(sdp->swd_npages);
1006
1007 simple_lock(&uvm.swap_data_lock);
1008 uvmexp.swpages -= sdp->swd_npages;
1009
1010 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1011 panic("swap_off: swapdev not in list\n");
1012 swaplist_trim();
1013 simple_unlock(&uvm.swap_data_lock);
1014
1015 /*
1016 * free all resources!
1017 */
1018 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1019 EX_WAITOK);
1020 extent_destroy(sdp->swd_ex);
1021 free(sdp, M_VMSWAP);
1022 return (0);
1023 }
1024
1025 /*
1026 * /dev/drum interface and i/o functions
1027 */
1028
1029 /*
1030 * swread: the read function for the drum (just a call to physio)
1031 */
1032 /*ARGSUSED*/
1033 int
1034 swread(devvp, uio, ioflag)
1035 struct vnode *devvp;
1036 struct uio *uio;
1037 int ioflag;
1038 {
1039 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1040
1041 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1042 return (physio(swstrategy, NULL, devvp, B_READ, minphys, uio));
1043 }
1044
1045 /*
1046 * swwrite: the write function for the drum (just a call to physio)
1047 */
1048 /*ARGSUSED*/
1049 int
1050 swwrite(devvp, uio, ioflag)
1051 struct vnode *devvp;
1052 struct uio *uio;
1053 int ioflag;
1054 {
1055 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1056
1057 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1058 return (physio(swstrategy, NULL, devvp, B_WRITE, minphys, uio));
1059 }
1060
1061 /*
1062 * swstrategy: perform I/O on the drum
1063 *
1064 * => we must map the i/o request from the drum to the correct swapdev.
1065 */
1066 void
1067 swstrategy(bp)
1068 struct buf *bp;
1069 {
1070 struct swapdev *sdp;
1071 struct vnode *vp;
1072 int s, pageno, bn;
1073 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1074
1075 /*
1076 * convert block number to swapdev. note that swapdev can't
1077 * be yanked out from under us because we are holding resources
1078 * in it (i.e. the blocks we are doing I/O on).
1079 */
1080 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1081 simple_lock(&uvm.swap_data_lock);
1082 sdp = swapdrum_getsdp(pageno);
1083 simple_unlock(&uvm.swap_data_lock);
1084 if (sdp == NULL) {
1085 bp->b_error = EINVAL;
1086 bp->b_flags |= B_ERROR;
1087 biodone(bp);
1088 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1089 return;
1090 }
1091
1092 /*
1093 * convert drum page number to block number on this swapdev.
1094 */
1095
1096 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1097 bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1098
1099 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1100 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1101 sdp->swd_drumoffset, bn, bp->b_bcount);
1102
1103 /*
1104 * for block devices we finish up here.
1105 * for regular files we have to do more work which we delegate
1106 * to sw_reg_strategy().
1107 */
1108
1109 switch (sdp->swd_vp->v_type) {
1110 default:
1111 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1112
1113 case VBLK:
1114
1115 /*
1116 * must convert "bp" from an I/O on /dev/drum to an I/O
1117 * on the swapdev (sdp).
1118 */
1119 s = splbio();
1120 bp->b_blkno = bn; /* swapdev block number */
1121 vp = sdp->swd_vp; /* swapdev vnode pointer */
1122 bp->b_devvp = vp; /* swapdev vnode pointer */
1123
1124 /*
1125 * if we are doing a write, we have to redirect the i/o on
1126 * drum's v_numoutput counter to the swapdevs.
1127 */
1128 if ((bp->b_flags & B_READ) == 0) {
1129 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1130 vp->v_numoutput++; /* put it on swapdev */
1131 }
1132
1133 /*
1134 * finally plug in swapdev vnode and start I/O
1135 */
1136 bp->b_vp = vp;
1137 splx(s);
1138 VOP_STRATEGY(bp);
1139 return;
1140
1141 case VREG:
1142 /*
1143 * delegate to sw_reg_strategy function.
1144 */
1145 sw_reg_strategy(sdp, bp, bn);
1146 return;
1147 }
1148 /* NOTREACHED */
1149 }
1150
1151 /*
1152 * sw_reg_strategy: handle swap i/o to regular files
1153 */
1154 static void
1155 sw_reg_strategy(sdp, bp, bn)
1156 struct swapdev *sdp;
1157 struct buf *bp;
1158 int bn;
1159 {
1160 struct vnode *vp;
1161 struct vndxfer *vnx;
1162 daddr_t nbn;
1163 caddr_t addr;
1164 off_t byteoff;
1165 int s, off, nra, error, sz, resid;
1166 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1167
1168 /*
1169 * allocate a vndxfer head for this transfer and point it to
1170 * our buffer.
1171 */
1172 getvndxfer(vnx);
1173 vnx->vx_flags = VX_BUSY;
1174 vnx->vx_error = 0;
1175 vnx->vx_pending = 0;
1176 vnx->vx_bp = bp;
1177 vnx->vx_sdp = sdp;
1178
1179 /*
1180 * setup for main loop where we read filesystem blocks into
1181 * our buffer.
1182 */
1183 error = 0;
1184 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1185 addr = bp->b_data; /* current position in buffer */
1186 byteoff = dbtob((u_int64_t)bn);
1187
1188 for (resid = bp->b_resid; resid; resid -= sz) {
1189 struct vndbuf *nbp;
1190
1191 /*
1192 * translate byteoffset into block number. return values:
1193 * vp = vnode of underlying device
1194 * nbn = new block number (on underlying vnode dev)
1195 * nra = num blocks we can read-ahead (excludes requested
1196 * block)
1197 */
1198 nra = 0;
1199 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1200 &vp, &nbn, &nra);
1201
1202 if (error == 0 && nbn == (daddr_t)-1) {
1203 /*
1204 * this used to just set error, but that doesn't
1205 * do the right thing. Instead, it causes random
1206 * memory errors. The panic() should remain until
1207 * this condition doesn't destabilize the system.
1208 */
1209 #if 1
1210 panic("sw_reg_strategy: swap to sparse file");
1211 #else
1212 error = EIO; /* failure */
1213 #endif
1214 }
1215
1216 /*
1217 * punt if there was an error or a hole in the file.
1218 * we must wait for any i/o ops we have already started
1219 * to finish before returning.
1220 *
1221 * XXX we could deal with holes here but it would be
1222 * a hassle (in the write case).
1223 */
1224 if (error) {
1225 s = splbio();
1226 vnx->vx_error = error; /* pass error up */
1227 goto out;
1228 }
1229
1230 /*
1231 * compute the size ("sz") of this transfer (in bytes).
1232 */
1233 off = byteoff % sdp->swd_bsize;
1234 sz = (1 + nra) * sdp->swd_bsize - off;
1235 if (sz > resid)
1236 sz = resid;
1237
1238 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1239 "vp %p/%p offset 0x%x/0x%x",
1240 sdp->swd_vp, vp, byteoff, nbn);
1241
1242 /*
1243 * now get a buf structure. note that the vb_buf is
1244 * at the front of the nbp structure so that you can
1245 * cast pointers between the two structure easily.
1246 */
1247 getvndbuf(nbp);
1248 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1249 nbp->vb_buf.b_bcount = sz;
1250 nbp->vb_buf.b_bufsize = sz;
1251 nbp->vb_buf.b_error = 0;
1252 nbp->vb_buf.b_data = addr;
1253 nbp->vb_buf.b_lblkno = 0;
1254 nbp->vb_buf.b_blkno = nbn + btodb(off);
1255 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1256 nbp->vb_buf.b_iodone = sw_reg_iodone;
1257 nbp->vb_buf.b_vp = vp;
1258 if (vp->v_type == VBLK) {
1259 nbp->vb_buf.b_devvp = vp;
1260 }
1261 LIST_INIT(&nbp->vb_buf.b_dep);
1262
1263 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1264
1265 /*
1266 * Just sort by block number
1267 */
1268 s = splbio();
1269 if (vnx->vx_error != 0) {
1270 putvndbuf(nbp);
1271 goto out;
1272 }
1273 vnx->vx_pending++;
1274
1275 /* sort it in and start I/O if we are not over our limit */
1276 disksort_blkno(&sdp->swd_tab, &nbp->vb_buf);
1277 sw_reg_start(sdp);
1278 splx(s);
1279
1280 /*
1281 * advance to the next I/O
1282 */
1283 byteoff += sz;
1284 addr += sz;
1285 }
1286
1287 s = splbio();
1288
1289 out: /* Arrive here at splbio */
1290 vnx->vx_flags &= ~VX_BUSY;
1291 if (vnx->vx_pending == 0) {
1292 if (vnx->vx_error != 0) {
1293 bp->b_error = vnx->vx_error;
1294 bp->b_flags |= B_ERROR;
1295 }
1296 putvndxfer(vnx);
1297 biodone(bp);
1298 }
1299 splx(s);
1300 }
1301
1302 /*
1303 * sw_reg_start: start an I/O request on the requested swapdev
1304 *
1305 * => reqs are sorted by disksort (above)
1306 */
1307 static void
1308 sw_reg_start(sdp)
1309 struct swapdev *sdp;
1310 {
1311 struct buf *bp;
1312 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1313
1314 /* recursion control */
1315 if ((sdp->swd_flags & SWF_BUSY) != 0)
1316 return;
1317
1318 sdp->swd_flags |= SWF_BUSY;
1319
1320 while (sdp->swd_active < sdp->swd_maxactive) {
1321 bp = BUFQ_FIRST(&sdp->swd_tab);
1322 if (bp == NULL)
1323 break;
1324 BUFQ_REMOVE(&sdp->swd_tab, bp);
1325 sdp->swd_active++;
1326
1327 UVMHIST_LOG(pdhist,
1328 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1329 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1330 if ((bp->b_flags & B_READ) == 0)
1331 bp->b_vp->v_numoutput++;
1332
1333 VOP_STRATEGY(bp);
1334 }
1335 sdp->swd_flags &= ~SWF_BUSY;
1336 }
1337
1338 /*
1339 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1340 *
1341 * => note that we can recover the vndbuf struct by casting the buf ptr
1342 */
1343 static void
1344 sw_reg_iodone(bp)
1345 struct buf *bp;
1346 {
1347 struct vndbuf *vbp = (struct vndbuf *) bp;
1348 struct vndxfer *vnx = vbp->vb_xfer;
1349 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1350 struct swapdev *sdp = vnx->vx_sdp;
1351 int s, resid;
1352 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1353
1354 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1355 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1356 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1357 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1358
1359 /*
1360 * protect vbp at splbio and update.
1361 */
1362
1363 s = splbio();
1364 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1365 pbp->b_resid -= resid;
1366 vnx->vx_pending--;
1367
1368 if (vbp->vb_buf.b_error) {
1369 UVMHIST_LOG(pdhist, " got error=%d !",
1370 vbp->vb_buf.b_error, 0, 0, 0);
1371
1372 /* pass error upward */
1373 vnx->vx_error = vbp->vb_buf.b_error;
1374 }
1375
1376 /*
1377 * kill vbp structure
1378 */
1379 putvndbuf(vbp);
1380
1381 /*
1382 * wrap up this transaction if it has run to completion or, in
1383 * case of an error, when all auxiliary buffers have returned.
1384 */
1385 if (vnx->vx_error != 0) {
1386 /* pass error upward */
1387 pbp->b_flags |= B_ERROR;
1388 pbp->b_error = vnx->vx_error;
1389 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1390 putvndxfer(vnx);
1391 biodone(pbp);
1392 }
1393 } else if (pbp->b_resid == 0) {
1394 KASSERT(vnx->vx_pending == 0);
1395 if ((vnx->vx_flags & VX_BUSY) == 0) {
1396 UVMHIST_LOG(pdhist, " iodone error=%d !",
1397 pbp, vnx->vx_error, 0, 0);
1398 putvndxfer(vnx);
1399 biodone(pbp);
1400 }
1401 }
1402
1403 /*
1404 * done! start next swapdev I/O if one is pending
1405 */
1406 sdp->swd_active--;
1407 sw_reg_start(sdp);
1408 splx(s);
1409 }
1410
1411
1412 /*
1413 * uvm_swap_alloc: allocate space on swap
1414 *
1415 * => allocation is done "round robin" down the priority list, as we
1416 * allocate in a priority we "rotate" the circle queue.
1417 * => space can be freed with uvm_swap_free
1418 * => we return the page slot number in /dev/drum (0 == invalid slot)
1419 * => we lock uvm.swap_data_lock
1420 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1421 */
1422 int
1423 uvm_swap_alloc(nslots, lessok)
1424 int *nslots; /* IN/OUT */
1425 boolean_t lessok;
1426 {
1427 struct swapdev *sdp;
1428 struct swappri *spp;
1429 u_long result;
1430 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1431
1432 /*
1433 * no swap devices configured yet? definite failure.
1434 */
1435 if (uvmexp.nswapdev < 1)
1436 return 0;
1437
1438 /*
1439 * lock data lock, convert slots into blocks, and enter loop
1440 */
1441 simple_lock(&uvm.swap_data_lock);
1442
1443 ReTry: /* XXXMRG */
1444 for (spp = LIST_FIRST(&swap_priority); spp != NULL;
1445 spp = LIST_NEXT(spp, spi_swappri)) {
1446 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
1447 sdp != (void *)&spp->spi_swapdev;
1448 sdp = CIRCLEQ_NEXT(sdp,swd_next)) {
1449 /* if it's not enabled, then we can't swap from it */
1450 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1451 continue;
1452 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1453 continue;
1454 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1455 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1456 &result) != 0) {
1457 continue;
1458 }
1459
1460 /*
1461 * successful allocation! now rotate the circleq.
1462 */
1463 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1464 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1465 sdp->swd_npginuse += *nslots;
1466 uvmexp.swpginuse += *nslots;
1467 simple_unlock(&uvm.swap_data_lock);
1468 /* done! return drum slot number */
1469 UVMHIST_LOG(pdhist,
1470 "success! returning %d slots starting at %d",
1471 *nslots, result + sdp->swd_drumoffset, 0, 0);
1472 return(result + sdp->swd_drumoffset);
1473 }
1474 }
1475
1476 /* XXXMRG: BEGIN HACK */
1477 if (*nslots > 1 && lessok) {
1478 *nslots = 1;
1479 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1480 }
1481 /* XXXMRG: END HACK */
1482
1483 simple_unlock(&uvm.swap_data_lock);
1484 return 0; /* failed */
1485 }
1486
1487 /*
1488 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1489 *
1490 * => we lock uvm.swap_data_lock
1491 */
1492 void
1493 uvm_swap_markbad(startslot, nslots)
1494 int startslot;
1495 int nslots;
1496 {
1497 struct swapdev *sdp;
1498 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1499
1500 simple_lock(&uvm.swap_data_lock);
1501 sdp = swapdrum_getsdp(startslot);
1502
1503 /*
1504 * we just keep track of how many pages have been marked bad
1505 * in this device, to make everything add up in swap_off().
1506 * we assume here that the range of slots will all be within
1507 * one swap device.
1508 */
1509
1510 sdp->swd_npgbad += nslots;
1511 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1512 simple_unlock(&uvm.swap_data_lock);
1513 }
1514
1515 /*
1516 * uvm_swap_free: free swap slots
1517 *
1518 * => this can be all or part of an allocation made by uvm_swap_alloc
1519 * => we lock uvm.swap_data_lock
1520 */
1521 void
1522 uvm_swap_free(startslot, nslots)
1523 int startslot;
1524 int nslots;
1525 {
1526 struct swapdev *sdp;
1527 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1528
1529 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1530 startslot, 0, 0);
1531
1532 /*
1533 * ignore attempts to free the "bad" slot.
1534 */
1535
1536 if (startslot == SWSLOT_BAD) {
1537 return;
1538 }
1539
1540 /*
1541 * convert drum slot offset back to sdp, free the blocks
1542 * in the extent, and return. must hold pri lock to do
1543 * lookup and access the extent.
1544 */
1545
1546 simple_lock(&uvm.swap_data_lock);
1547 sdp = swapdrum_getsdp(startslot);
1548 KASSERT(uvmexp.nswapdev >= 1);
1549 KASSERT(sdp != NULL);
1550 KASSERT(sdp->swd_npginuse >= nslots);
1551 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1552 EX_MALLOCOK|EX_NOWAIT) != 0) {
1553 printf("warning: resource shortage: %d pages of swap lost\n",
1554 nslots);
1555 }
1556 sdp->swd_npginuse -= nslots;
1557 uvmexp.swpginuse -= nslots;
1558 simple_unlock(&uvm.swap_data_lock);
1559 }
1560
1561 /*
1562 * uvm_swap_put: put any number of pages into a contig place on swap
1563 *
1564 * => can be sync or async
1565 */
1566
1567 int
1568 uvm_swap_put(swslot, ppsp, npages, flags)
1569 int swslot;
1570 struct vm_page **ppsp;
1571 int npages;
1572 int flags;
1573 {
1574 int result;
1575
1576 result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1577 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1578 return (result);
1579 }
1580
1581 /*
1582 * uvm_swap_get: get a single page from swap
1583 *
1584 * => usually a sync op (from fault)
1585 */
1586
1587 int
1588 uvm_swap_get(page, swslot, flags)
1589 struct vm_page *page;
1590 int swslot, flags;
1591 {
1592 int result;
1593
1594 uvmexp.nswget++;
1595 KASSERT(flags & PGO_SYNCIO);
1596 if (swslot == SWSLOT_BAD) {
1597 return EIO;
1598 }
1599 result = uvm_swap_io(&page, swslot, 1, B_READ |
1600 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1601 if (result == 0) {
1602
1603 /*
1604 * this page is no longer only in swap.
1605 */
1606
1607 simple_lock(&uvm.swap_data_lock);
1608 uvmexp.swpgonly--;
1609 simple_unlock(&uvm.swap_data_lock);
1610 }
1611 return (result);
1612 }
1613
1614 /*
1615 * uvm_swap_io: do an i/o operation to swap
1616 */
1617
1618 static int
1619 uvm_swap_io(pps, startslot, npages, flags)
1620 struct vm_page **pps;
1621 int startslot, npages, flags;
1622 {
1623 daddr_t startblk;
1624 struct buf *bp;
1625 vaddr_t kva;
1626 int error, s, mapinflags;
1627 boolean_t write, async;
1628 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1629
1630 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1631 startslot, npages, flags, 0);
1632
1633 write = (flags & B_READ) == 0;
1634 async = (flags & B_ASYNC) != 0;
1635
1636 /*
1637 * convert starting drum slot to block number
1638 */
1639
1640 startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1641
1642 /*
1643 * first, map the pages into the kernel.
1644 */
1645
1646 mapinflags = !write ?
1647 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1648 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1649 kva = uvm_pagermapin(pps, npages, mapinflags);
1650
1651 /*
1652 * now allocate a buf for the i/o.
1653 */
1654
1655 s = splbio();
1656 bp = pool_get(&bufpool, PR_WAITOK);
1657 splx(s);
1658
1659 /*
1660 * fill in the bp/sbp. we currently route our i/o through
1661 * /dev/drum's vnode [swapdev_vp].
1662 */
1663
1664 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1665 bp->b_proc = &proc0; /* XXX */
1666 bp->b_vnbufs.le_next = NOLIST;
1667 bp->b_data = (caddr_t)kva;
1668 bp->b_blkno = startblk;
1669 bp->b_vp = swapdev_vp;
1670 /* XXXthorpej -- what is this about? */
1671 bp->b_devvp = swapdev_vp;
1672 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1673 LIST_INIT(&bp->b_dep);
1674
1675 /*
1676 * bump v_numoutput (counter of number of active outputs).
1677 */
1678
1679 if (write) {
1680 s = splbio();
1681 swapdev_vp->v_numoutput++;
1682 splx(s);
1683 }
1684
1685 /*
1686 * for async ops we must set up the iodone handler.
1687 */
1688
1689 if (async) {
1690 bp->b_flags |= B_CALL;
1691 bp->b_iodone = uvm_aio_biodone;
1692 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1693 }
1694 UVMHIST_LOG(pdhist,
1695 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1696 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1697
1698 /*
1699 * now we start the I/O, and if async, return.
1700 */
1701
1702 VOP_STRATEGY(bp);
1703 if (async)
1704 return 0;
1705
1706 /*
1707 * must be sync i/o. wait for it to finish
1708 */
1709
1710 error = biowait(bp);
1711
1712 /*
1713 * kill the pager mapping
1714 */
1715
1716 uvm_pagermapout(kva, npages);
1717
1718 /*
1719 * now dispose of the buf and we're done.
1720 */
1721
1722 s = splbio();
1723 if (write)
1724 vwakeup(bp);
1725 pool_put(&bufpool, bp);
1726 splx(s);
1727 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1728 return (error);
1729 }
1730