Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.54.2.1
      1 /*	$NetBSD: uvm_swap.c,v 1.54.2.1 2001/11/12 21:19:58 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.54.2.1 2001/11/12 21:19:58 thorpej Exp $");
     36 
     37 #include "fs_nfs.h"
     38 #include "opt_uvmhist.h"
     39 #include "opt_compat_netbsd.h"
     40 #include "opt_ddb.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/buf.h>
     45 #include <sys/conf.h>
     46 #include <sys/proc.h>
     47 #include <sys/namei.h>
     48 #include <sys/disklabel.h>
     49 #include <sys/errno.h>
     50 #include <sys/kernel.h>
     51 #include <sys/malloc.h>
     52 #include <sys/vnode.h>
     53 #include <sys/file.h>
     54 #include <sys/extent.h>
     55 #include <sys/mount.h>
     56 #include <sys/pool.h>
     57 #include <sys/syscallargs.h>
     58 #include <sys/swap.h>
     59 
     60 #include <uvm/uvm.h>
     61 
     62 #include <miscfs/specfs/specdev.h>
     63 
     64 /*
     65  * uvm_swap.c: manage configuration and i/o to swap space.
     66  */
     67 
     68 /*
     69  * swap space is managed in the following way:
     70  *
     71  * each swap partition or file is described by a "swapdev" structure.
     72  * each "swapdev" structure contains a "swapent" structure which contains
     73  * information that is passed up to the user (via system calls).
     74  *
     75  * each swap partition is assigned a "priority" (int) which controls
     76  * swap parition usage.
     77  *
     78  * the system maintains a global data structure describing all swap
     79  * partitions/files.   there is a sorted LIST of "swappri" structures
     80  * which describe "swapdev"'s at that priority.   this LIST is headed
     81  * by the "swap_priority" global var.    each "swappri" contains a
     82  * CIRCLEQ of "swapdev" structures at that priority.
     83  *
     84  * locking:
     85  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
     86  *    system call and prevents the swap priority list from changing
     87  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     88  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
     89  *    structures including the priority list, the swapdev structures,
     90  *    and the swapmap extent.
     91  *
     92  * each swap device has the following info:
     93  *  - swap device in use (could be disabled, preventing future use)
     94  *  - swap enabled (allows new allocations on swap)
     95  *  - map info in /dev/drum
     96  *  - vnode pointer
     97  * for swap files only:
     98  *  - block size
     99  *  - max byte count in buffer
    100  *  - buffer
    101  *  - credentials to use when doing i/o to file
    102  *
    103  * userland controls and configures swap with the swapctl(2) system call.
    104  * the sys_swapctl performs the following operations:
    105  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    106  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    107  *	(passed in via "arg") of a size passed in via "misc" ... we load
    108  *	the current swap config into the array.
    109  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    110  *	priority in "misc", start swapping on it.
    111  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    112  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    113  *	"misc")
    114  */
    115 
    116 /*
    117  * swapdev: describes a single swap partition/file
    118  *
    119  * note the following should be true:
    120  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    121  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    122  */
    123 struct swapdev {
    124 	struct oswapent swd_ose;
    125 #define	swd_dev		swd_ose.ose_dev		/* device id */
    126 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    127 #define	swd_priority	swd_ose.ose_priority	/* our priority */
    128 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    129 	char			*swd_path;	/* saved pathname of device */
    130 	int			swd_pathlen;	/* length of pathname */
    131 	int			swd_npages;	/* #pages we can use */
    132 	int			swd_npginuse;	/* #pages in use */
    133 	int			swd_npgbad;	/* #pages bad */
    134 	int			swd_drumoffset;	/* page0 offset in drum */
    135 	int			swd_drumsize;	/* #pages in drum */
    136 	struct extent		*swd_ex;	/* extent for this swapdev */
    137 	char			swd_exname[12];	/* name of extent above */
    138 	struct vnode		*swd_vp;	/* backing vnode */
    139 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    140 
    141 	int			swd_bsize;	/* blocksize (bytes) */
    142 	int			swd_maxactive;	/* max active i/o reqs */
    143 	struct buf_queue	swd_tab;	/* buffer list */
    144 	int			swd_active;	/* number of active buffers */
    145 	struct ucred		*swd_cred;	/* cred for file access */
    146 };
    147 
    148 /*
    149  * swap device priority entry; the list is kept sorted on `spi_priority'.
    150  */
    151 struct swappri {
    152 	int			spi_priority;     /* priority */
    153 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    154 	/* circleq of swapdevs at this priority */
    155 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    156 };
    157 
    158 /*
    159  * The following two structures are used to keep track of data transfers
    160  * on swap devices associated with regular files.
    161  * NOTE: this code is more or less a copy of vnd.c; we use the same
    162  * structure names here to ease porting..
    163  */
    164 struct vndxfer {
    165 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    166 	struct swapdev	*vx_sdp;
    167 	int		vx_error;
    168 	int		vx_pending;	/* # of pending aux buffers */
    169 	int		vx_flags;
    170 #define VX_BUSY		1
    171 #define VX_DEAD		2
    172 };
    173 
    174 struct vndbuf {
    175 	struct buf	vb_buf;
    176 	struct vndxfer	*vb_xfer;
    177 };
    178 
    179 
    180 /*
    181  * We keep a of pool vndbuf's and vndxfer structures.
    182  */
    183 static struct pool vndxfer_pool;
    184 static struct pool vndbuf_pool;
    185 
    186 #define	getvndxfer(vnx)	do {						\
    187 	int s = splbio();						\
    188 	vnx = pool_get(&vndxfer_pool, PR_MALLOCOK|PR_WAITOK);		\
    189 	splx(s);							\
    190 } while (0)
    191 
    192 #define putvndxfer(vnx) {						\
    193 	pool_put(&vndxfer_pool, (void *)(vnx));				\
    194 }
    195 
    196 #define	getvndbuf(vbp)	do {						\
    197 	int s = splbio();						\
    198 	vbp = pool_get(&vndbuf_pool, PR_MALLOCOK|PR_WAITOK);		\
    199 	splx(s);							\
    200 } while (0)
    201 
    202 #define putvndbuf(vbp) {						\
    203 	pool_put(&vndbuf_pool, (void *)(vbp));				\
    204 }
    205 
    206 /* /dev/drum */
    207 bdev_decl(sw);
    208 cdev_decl(sw);
    209 
    210 /*
    211  * local variables
    212  */
    213 static struct extent *swapmap;		/* controls the mapping of /dev/drum */
    214 
    215 /* list of all active swap devices [by priority] */
    216 LIST_HEAD(swap_priority, swappri);
    217 static struct swap_priority swap_priority;
    218 
    219 /* locks */
    220 struct lock swap_syscall_lock;
    221 
    222 /*
    223  * prototypes
    224  */
    225 static struct swapdev	*swapdrum_getsdp __P((int));
    226 
    227 static struct swapdev	*swaplist_find __P((struct vnode *, int));
    228 static void		 swaplist_insert __P((struct swapdev *,
    229 					     struct swappri *, int));
    230 static void		 swaplist_trim __P((void));
    231 
    232 static int swap_on __P((struct proc *, struct swapdev *));
    233 static int swap_off __P((struct proc *, struct swapdev *));
    234 
    235 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
    236 static void sw_reg_iodone __P((struct buf *));
    237 static void sw_reg_start __P((struct swapdev *));
    238 
    239 static int uvm_swap_io __P((struct vm_page **, int, int, int));
    240 
    241 /*
    242  * uvm_swap_init: init the swap system data structures and locks
    243  *
    244  * => called at boot time from init_main.c after the filesystems
    245  *	are brought up (which happens after uvm_init())
    246  */
    247 void
    248 uvm_swap_init()
    249 {
    250 	UVMHIST_FUNC("uvm_swap_init");
    251 
    252 	UVMHIST_CALLED(pdhist);
    253 	/*
    254 	 * first, init the swap list, its counter, and its lock.
    255 	 * then get a handle on the vnode for /dev/drum by using
    256 	 * the its dev_t number ("swapdev", from MD conf.c).
    257 	 */
    258 
    259 	LIST_INIT(&swap_priority);
    260 	uvmexp.nswapdev = 0;
    261 	lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
    262 	simple_lock_init(&uvm.swap_data_lock);
    263 
    264 	if (bdevvp(swapdev, &swapdev_vp))
    265 		panic("uvm_swap_init: can't get vnode for swap device");
    266 
    267 	/*
    268 	 * create swap block resource map to map /dev/drum.   the range
    269 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    270 	 * that block 0 is reserved (used to indicate an allocation
    271 	 * failure, or no allocation).
    272 	 */
    273 	swapmap = extent_create("swapmap", 1, INT_MAX,
    274 				M_VMSWAP, 0, 0, EX_NOWAIT);
    275 	if (swapmap == 0)
    276 		panic("uvm_swap_init: extent_create failed");
    277 
    278 	/*
    279 	 * allocate pools for structures used for swapping to files.
    280 	 */
    281 
    282 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0,
    283 	    "swp vnx", 0, NULL, NULL, 0);
    284 
    285 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0,
    286 	    "swp vnd", 0, NULL, NULL, 0);
    287 
    288 	/*
    289 	 * done!
    290 	 */
    291 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    292 }
    293 
    294 /*
    295  * swaplist functions: functions that operate on the list of swap
    296  * devices on the system.
    297  */
    298 
    299 /*
    300  * swaplist_insert: insert swap device "sdp" into the global list
    301  *
    302  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    303  * => caller must provide a newly malloc'd swappri structure (we will
    304  *	FREE it if we don't need it... this it to prevent malloc blocking
    305  *	here while adding swap)
    306  */
    307 static void
    308 swaplist_insert(sdp, newspp, priority)
    309 	struct swapdev *sdp;
    310 	struct swappri *newspp;
    311 	int priority;
    312 {
    313 	struct swappri *spp, *pspp;
    314 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    315 
    316 	/*
    317 	 * find entry at or after which to insert the new device.
    318 	 */
    319 	pspp = NULL;
    320 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    321 		if (priority <= spp->spi_priority)
    322 			break;
    323 		pspp = spp;
    324 	}
    325 
    326 	/*
    327 	 * new priority?
    328 	 */
    329 	if (spp == NULL || spp->spi_priority != priority) {
    330 		spp = newspp;  /* use newspp! */
    331 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    332 			    priority, 0, 0, 0);
    333 
    334 		spp->spi_priority = priority;
    335 		CIRCLEQ_INIT(&spp->spi_swapdev);
    336 
    337 		if (pspp)
    338 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    339 		else
    340 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    341 	} else {
    342 	  	/* we don't need a new priority structure, free it */
    343 		FREE(newspp, M_VMSWAP);
    344 	}
    345 
    346 	/*
    347 	 * priority found (or created).   now insert on the priority's
    348 	 * circleq list and bump the total number of swapdevs.
    349 	 */
    350 	sdp->swd_priority = priority;
    351 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    352 	uvmexp.nswapdev++;
    353 }
    354 
    355 /*
    356  * swaplist_find: find and optionally remove a swap device from the
    357  *	global list.
    358  *
    359  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    360  * => we return the swapdev we found (and removed)
    361  */
    362 static struct swapdev *
    363 swaplist_find(vp, remove)
    364 	struct vnode *vp;
    365 	boolean_t remove;
    366 {
    367 	struct swapdev *sdp;
    368 	struct swappri *spp;
    369 
    370 	/*
    371 	 * search the lists for the requested vp
    372 	 */
    373 
    374 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    375 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    376 			if (sdp->swd_vp == vp) {
    377 				if (remove) {
    378 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    379 					    sdp, swd_next);
    380 					uvmexp.nswapdev--;
    381 				}
    382 				return(sdp);
    383 			}
    384 		}
    385 	}
    386 	return (NULL);
    387 }
    388 
    389 
    390 /*
    391  * swaplist_trim: scan priority list for empty priority entries and kill
    392  *	them.
    393  *
    394  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    395  */
    396 static void
    397 swaplist_trim()
    398 {
    399 	struct swappri *spp, *nextspp;
    400 
    401 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    402 		nextspp = LIST_NEXT(spp, spi_swappri);
    403 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    404 		    (void *)&spp->spi_swapdev)
    405 			continue;
    406 		LIST_REMOVE(spp, spi_swappri);
    407 		free(spp, M_VMSWAP);
    408 	}
    409 }
    410 
    411 /*
    412  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    413  *	to the "swapdev" that maps that section of the drum.
    414  *
    415  * => each swapdev takes one big contig chunk of the drum
    416  * => caller must hold uvm.swap_data_lock
    417  */
    418 static struct swapdev *
    419 swapdrum_getsdp(pgno)
    420 	int pgno;
    421 {
    422 	struct swapdev *sdp;
    423 	struct swappri *spp;
    424 
    425 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    426 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    427 			if (sdp->swd_flags & SWF_FAKE)
    428 				continue;
    429 			if (pgno >= sdp->swd_drumoffset &&
    430 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    431 				return sdp;
    432 			}
    433 		}
    434 	}
    435 	return NULL;
    436 }
    437 
    438 
    439 /*
    440  * sys_swapctl: main entry point for swapctl(2) system call
    441  * 	[with two helper functions: swap_on and swap_off]
    442  */
    443 int
    444 sys_swapctl(p, v, retval)
    445 	struct proc *p;
    446 	void *v;
    447 	register_t *retval;
    448 {
    449 	struct sys_swapctl_args /* {
    450 		syscallarg(int) cmd;
    451 		syscallarg(void *) arg;
    452 		syscallarg(int) misc;
    453 	} */ *uap = (struct sys_swapctl_args *)v;
    454 	struct vnode *vp;
    455 	struct nameidata nd;
    456 	struct swappri *spp;
    457 	struct swapdev *sdp;
    458 	struct swapent *sep;
    459 	char	userpath[PATH_MAX + 1];
    460 	size_t	len;
    461 	int	count, error, misc;
    462 	int	priority;
    463 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    464 
    465 	misc = SCARG(uap, misc);
    466 
    467 	/*
    468 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    469 	 */
    470 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
    471 
    472 	/*
    473 	 * we handle the non-priv NSWAP and STATS request first.
    474 	 *
    475 	 * SWAP_NSWAP: return number of config'd swap devices
    476 	 * [can also be obtained with uvmexp sysctl]
    477 	 */
    478 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    479 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    480 		    0, 0, 0);
    481 		*retval = uvmexp.nswapdev;
    482 		error = 0;
    483 		goto out;
    484 	}
    485 
    486 	/*
    487 	 * SWAP_STATS: get stats on current # of configured swap devs
    488 	 *
    489 	 * note that the swap_priority list can't change as long
    490 	 * as we are holding the swap_syscall_lock.  we don't want
    491 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
    492 	 * copyout() and we don't want to be holding that lock then!
    493 	 */
    494 	if (SCARG(uap, cmd) == SWAP_STATS
    495 #if defined(COMPAT_13)
    496 	    || SCARG(uap, cmd) == SWAP_OSTATS
    497 #endif
    498 	    ) {
    499 		sep = (struct swapent *)SCARG(uap, arg);
    500 		count = 0;
    501 
    502 		LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    503 			for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    504 			     sdp != (void *)&spp->spi_swapdev && misc-- > 0;
    505 			     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    506 			  	/*
    507 				 * backwards compatibility for system call.
    508 				 * note that we use 'struct oswapent' as an
    509 				 * overlay into both 'struct swapdev' and
    510 				 * the userland 'struct swapent', as we
    511 				 * want to retain backwards compatibility
    512 				 * with NetBSD 1.3.
    513 				 */
    514 				sdp->swd_ose.ose_inuse =
    515 				    btodb((u_int64_t)sdp->swd_npginuse <<
    516 				    PAGE_SHIFT);
    517 				error = copyout(&sdp->swd_ose, sep,
    518 						sizeof(struct oswapent));
    519 
    520 				/* now copy out the path if necessary */
    521 #if defined(COMPAT_13)
    522 				if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
    523 #else
    524 				if (error == 0)
    525 #endif
    526 					error = copyout(sdp->swd_path,
    527 					    &sep->se_path, sdp->swd_pathlen);
    528 
    529 				if (error)
    530 					goto out;
    531 				count++;
    532 #if defined(COMPAT_13)
    533 				if (SCARG(uap, cmd) == SWAP_OSTATS)
    534 					sep = (struct swapent *)
    535 					    ((struct oswapent *)sep + 1);
    536 				else
    537 #endif
    538 					sep++;
    539 			}
    540 		}
    541 
    542 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    543 
    544 		*retval = count;
    545 		error = 0;
    546 		goto out;
    547 	}
    548 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    549 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    550 
    551 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    552 		goto out;
    553 	}
    554 
    555 	/*
    556 	 * all other requests require superuser privs.   verify.
    557 	 */
    558 	if ((error = suser(p->p_ucred, &p->p_acflag)))
    559 		goto out;
    560 
    561 	/*
    562 	 * at this point we expect a path name in arg.   we will
    563 	 * use namei() to gain a vnode reference (vref), and lock
    564 	 * the vnode (VOP_LOCK).
    565 	 *
    566 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    567 	 * miniroot)
    568 	 */
    569 	if (SCARG(uap, arg) == NULL) {
    570 		vp = rootvp;		/* miniroot */
    571 		if (vget(vp, LK_EXCLUSIVE)) {
    572 			error = EBUSY;
    573 			goto out;
    574 		}
    575 		if (SCARG(uap, cmd) == SWAP_ON &&
    576 		    copystr("miniroot", userpath, sizeof userpath, &len))
    577 			panic("swapctl: miniroot copy failed");
    578 	} else {
    579 		int	space;
    580 		char	*where;
    581 
    582 		if (SCARG(uap, cmd) == SWAP_ON) {
    583 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    584 			    sizeof userpath, &len)))
    585 				goto out;
    586 			space = UIO_SYSSPACE;
    587 			where = userpath;
    588 		} else {
    589 			space = UIO_USERSPACE;
    590 			where = (char *)SCARG(uap, arg);
    591 		}
    592 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
    593 		if ((error = namei(&nd)))
    594 			goto out;
    595 		vp = nd.ni_vp;
    596 	}
    597 	/* note: "vp" is referenced and locked */
    598 
    599 	error = 0;		/* assume no error */
    600 	switch(SCARG(uap, cmd)) {
    601 
    602 	case SWAP_DUMPDEV:
    603 		if (vp->v_type != VBLK) {
    604 			error = ENOTBLK;
    605 			break;
    606 		}
    607 		dumpdev = vp->v_rdev;
    608 		break;
    609 
    610 	case SWAP_CTL:
    611 		/*
    612 		 * get new priority, remove old entry (if any) and then
    613 		 * reinsert it in the correct place.  finally, prune out
    614 		 * any empty priority structures.
    615 		 */
    616 		priority = SCARG(uap, misc);
    617 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    618 		simple_lock(&uvm.swap_data_lock);
    619 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
    620 			error = ENOENT;
    621 		} else {
    622 			swaplist_insert(sdp, spp, priority);
    623 			swaplist_trim();
    624 		}
    625 		simple_unlock(&uvm.swap_data_lock);
    626 		if (error)
    627 			free(spp, M_VMSWAP);
    628 		break;
    629 
    630 	case SWAP_ON:
    631 
    632 		/*
    633 		 * check for duplicates.   if none found, then insert a
    634 		 * dummy entry on the list to prevent someone else from
    635 		 * trying to enable this device while we are working on
    636 		 * it.
    637 		 */
    638 
    639 		priority = SCARG(uap, misc);
    640 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    641 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    642 		simple_lock(&uvm.swap_data_lock);
    643 		if (swaplist_find(vp, 0) != NULL) {
    644 			error = EBUSY;
    645 			simple_unlock(&uvm.swap_data_lock);
    646 			free(sdp, M_VMSWAP);
    647 			free(spp, M_VMSWAP);
    648 			break;
    649 		}
    650 		memset(sdp, 0, sizeof(*sdp));
    651 		sdp->swd_flags = SWF_FAKE;	/* placeholder only */
    652 		sdp->swd_vp = vp;
    653 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    654 		BUFQ_INIT(&sdp->swd_tab);
    655 
    656 		/*
    657 		 * XXX Is NFS elaboration necessary?
    658 		 */
    659 		if (vp->v_type == VREG) {
    660 			sdp->swd_cred = crdup(p->p_ucred);
    661 		}
    662 
    663 		swaplist_insert(sdp, spp, priority);
    664 		simple_unlock(&uvm.swap_data_lock);
    665 
    666 		sdp->swd_pathlen = len;
    667 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    668 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    669 			panic("swapctl: copystr");
    670 
    671 		/*
    672 		 * we've now got a FAKE placeholder in the swap list.
    673 		 * now attempt to enable swap on it.  if we fail, undo
    674 		 * what we've done and kill the fake entry we just inserted.
    675 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    676 		 */
    677 
    678 		if ((error = swap_on(p, sdp)) != 0) {
    679 			simple_lock(&uvm.swap_data_lock);
    680 			(void) swaplist_find(vp, 1);  /* kill fake entry */
    681 			swaplist_trim();
    682 			simple_unlock(&uvm.swap_data_lock);
    683 			if (vp->v_type == VREG) {
    684 				crfree(sdp->swd_cred);
    685 			}
    686 			free(sdp->swd_path, M_VMSWAP);
    687 			free(sdp, M_VMSWAP);
    688 			break;
    689 		}
    690 		break;
    691 
    692 	case SWAP_OFF:
    693 		simple_lock(&uvm.swap_data_lock);
    694 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
    695 			simple_unlock(&uvm.swap_data_lock);
    696 			error = ENXIO;
    697 			break;
    698 		}
    699 
    700 		/*
    701 		 * If a device isn't in use or enabled, we
    702 		 * can't stop swapping from it (again).
    703 		 */
    704 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    705 			simple_unlock(&uvm.swap_data_lock);
    706 			error = EBUSY;
    707 			break;
    708 		}
    709 
    710 		/*
    711 		 * do the real work.
    712 		 */
    713 		error = swap_off(p, sdp);
    714 		break;
    715 
    716 	default:
    717 		error = EINVAL;
    718 	}
    719 
    720 	/*
    721 	 * done!  release the ref gained by namei() and unlock.
    722 	 */
    723 	vput(vp);
    724 
    725 out:
    726 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
    727 
    728 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    729 	return (error);
    730 }
    731 
    732 /*
    733  * swap_on: attempt to enable a swapdev for swapping.   note that the
    734  *	swapdev is already on the global list, but disabled (marked
    735  *	SWF_FAKE).
    736  *
    737  * => we avoid the start of the disk (to protect disk labels)
    738  * => we also avoid the miniroot, if we are swapping to root.
    739  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
    740  *	if needed.
    741  */
    742 static int
    743 swap_on(p, sdp)
    744 	struct proc *p;
    745 	struct swapdev *sdp;
    746 {
    747 	static int count = 0;	/* static */
    748 	struct vnode *vp;
    749 	int error, npages, nblocks, size;
    750 	long addr;
    751 	u_long result;
    752 	struct vattr va;
    753 #ifdef NFS
    754 	extern int (**nfsv2_vnodeop_p) __P((void *));
    755 #endif /* NFS */
    756 	dev_t dev;
    757 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    758 
    759 	/*
    760 	 * we want to enable swapping on sdp.   the swd_vp contains
    761 	 * the vnode we want (locked and ref'd), and the swd_dev
    762 	 * contains the dev_t of the file, if it a block device.
    763 	 */
    764 
    765 	vp = sdp->swd_vp;
    766 	dev = sdp->swd_dev;
    767 
    768 	/*
    769 	 * open the swap file (mostly useful for block device files to
    770 	 * let device driver know what is up).
    771 	 *
    772 	 * we skip the open/close for root on swap because the root
    773 	 * has already been opened when root was mounted (mountroot).
    774 	 */
    775 	if (vp != rootvp) {
    776 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
    777 			return (error);
    778 	}
    779 
    780 	/* XXX this only works for block devices */
    781 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    782 
    783 	/*
    784 	 * we now need to determine the size of the swap area.   for
    785 	 * block specials we can call the d_psize function.
    786 	 * for normal files, we must stat [get attrs].
    787 	 *
    788 	 * we put the result in nblks.
    789 	 * for normal files, we also want the filesystem block size
    790 	 * (which we get with statfs).
    791 	 */
    792 	switch (vp->v_type) {
    793 	case VBLK:
    794 		if (bdevsw[major(dev)].d_psize == 0 ||
    795 		    (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
    796 			error = ENXIO;
    797 			goto bad;
    798 		}
    799 		break;
    800 
    801 	case VREG:
    802 		if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
    803 			goto bad;
    804 		nblocks = (int)btodb(va.va_size);
    805 		if ((error =
    806 		     VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
    807 			goto bad;
    808 
    809 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    810 		/*
    811 		 * limit the max # of outstanding I/O requests we issue
    812 		 * at any one time.   take it easy on NFS servers.
    813 		 */
    814 #ifdef NFS
    815 		if (vp->v_op == nfsv2_vnodeop_p)
    816 			sdp->swd_maxactive = 2; /* XXX */
    817 		else
    818 #endif /* NFS */
    819 			sdp->swd_maxactive = 8; /* XXX */
    820 		break;
    821 
    822 	default:
    823 		error = ENXIO;
    824 		goto bad;
    825 	}
    826 
    827 	/*
    828 	 * save nblocks in a safe place and convert to pages.
    829 	 */
    830 
    831 	sdp->swd_ose.ose_nblks = nblocks;
    832 	npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
    833 
    834 	/*
    835 	 * for block special files, we want to make sure that leave
    836 	 * the disklabel and bootblocks alone, so we arrange to skip
    837 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    838 	 * note that because of this the "size" can be less than the
    839 	 * actual number of blocks on the device.
    840 	 */
    841 	if (vp->v_type == VBLK) {
    842 		/* we use pages 1 to (size - 1) [inclusive] */
    843 		size = npages - 1;
    844 		addr = 1;
    845 	} else {
    846 		/* we use pages 0 to (size - 1) [inclusive] */
    847 		size = npages;
    848 		addr = 0;
    849 	}
    850 
    851 	/*
    852 	 * make sure we have enough blocks for a reasonable sized swap
    853 	 * area.   we want at least one page.
    854 	 */
    855 
    856 	if (size < 1) {
    857 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    858 		error = EINVAL;
    859 		goto bad;
    860 	}
    861 
    862 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    863 
    864 	/*
    865 	 * now we need to allocate an extent to manage this swap device
    866 	 */
    867 	snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
    868 	    count++);
    869 
    870 	/* note that extent_create's 3rd arg is inclusive, thus "- 1" */
    871 	sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
    872 				    0, 0, EX_WAITOK);
    873 	/* allocate the `saved' region from the extent so it won't be used */
    874 	if (addr) {
    875 		if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
    876 			panic("disklabel region");
    877 	}
    878 
    879 	/*
    880 	 * if the vnode we are swapping to is the root vnode
    881 	 * (i.e. we are swapping to the miniroot) then we want
    882 	 * to make sure we don't overwrite it.   do a statfs to
    883 	 * find its size and skip over it.
    884 	 */
    885 	if (vp == rootvp) {
    886 		struct mount *mp;
    887 		struct statfs *sp;
    888 		int rootblocks, rootpages;
    889 
    890 		mp = rootvnode->v_mount;
    891 		sp = &mp->mnt_stat;
    892 		rootblocks = sp->f_blocks * btodb(sp->f_bsize);
    893 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    894 		if (rootpages > size)
    895 			panic("swap_on: miniroot larger than swap?");
    896 
    897 		if (extent_alloc_region(sdp->swd_ex, addr,
    898 					rootpages, EX_WAITOK))
    899 			panic("swap_on: unable to preserve miniroot");
    900 
    901 		size -= rootpages;
    902 		printf("Preserved %d pages of miniroot ", rootpages);
    903 		printf("leaving %d pages of swap\n", size);
    904 	}
    905 
    906   	/*
    907 	 * try to add anons to reflect the new swap space.
    908 	 */
    909 
    910 	error = uvm_anon_add(size);
    911 	if (error) {
    912 		goto bad;
    913 	}
    914 
    915 	/*
    916 	 * add a ref to vp to reflect usage as a swap device.
    917 	 */
    918 	vref(vp);
    919 
    920 	/*
    921 	 * now add the new swapdev to the drum and enable.
    922 	 */
    923 	if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
    924 	    EX_WAITOK, &result))
    925 		panic("swapdrum_add");
    926 
    927 	sdp->swd_drumoffset = (int)result;
    928 	sdp->swd_drumsize = npages;
    929 	sdp->swd_npages = size;
    930 	simple_lock(&uvm.swap_data_lock);
    931 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    932 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    933 	uvmexp.swpages += size;
    934 	simple_unlock(&uvm.swap_data_lock);
    935 	return (0);
    936 
    937 	/*
    938 	 * failure: clean up and return error.
    939 	 */
    940 
    941 bad:
    942 	if (sdp->swd_ex) {
    943 		extent_destroy(sdp->swd_ex);
    944 	}
    945 	if (vp != rootvp) {
    946 		(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
    947 	}
    948 	return (error);
    949 }
    950 
    951 /*
    952  * swap_off: stop swapping on swapdev
    953  *
    954  * => swap data should be locked, we will unlock.
    955  */
    956 static int
    957 swap_off(p, sdp)
    958 	struct proc *p;
    959 	struct swapdev *sdp;
    960 {
    961 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
    962 	UVMHIST_LOG(pdhist, "  dev=%x", sdp->swd_dev,0,0,0);
    963 
    964 	/* disable the swap area being removed */
    965 	sdp->swd_flags &= ~SWF_ENABLE;
    966 	simple_unlock(&uvm.swap_data_lock);
    967 
    968 	/*
    969 	 * the idea is to find all the pages that are paged out to this
    970 	 * device, and page them all in.  in uvm, swap-backed pageable
    971 	 * memory can take two forms: aobjs and anons.  call the
    972 	 * swapoff hook for each subsystem to bring in pages.
    973 	 */
    974 
    975 	if (uao_swap_off(sdp->swd_drumoffset,
    976 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
    977 	    anon_swap_off(sdp->swd_drumoffset,
    978 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
    979 
    980 		simple_lock(&uvm.swap_data_lock);
    981 		sdp->swd_flags |= SWF_ENABLE;
    982 		simple_unlock(&uvm.swap_data_lock);
    983 		return ENOMEM;
    984 	}
    985 	KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
    986 
    987 	/*
    988 	 * done with the vnode and saved creds.
    989 	 * drop our ref on the vnode before calling VOP_CLOSE()
    990 	 * so that spec_close() can tell if this is the last close.
    991 	 */
    992 	if (sdp->swd_vp->v_type == VREG) {
    993 		crfree(sdp->swd_cred);
    994 	}
    995 	vrele(sdp->swd_vp);
    996 	if (sdp->swd_vp != rootvp) {
    997 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
    998 	}
    999 
   1000 	/* remove anons from the system */
   1001 	uvm_anon_remove(sdp->swd_npages);
   1002 
   1003 	simple_lock(&uvm.swap_data_lock);
   1004 	uvmexp.swpages -= sdp->swd_npages;
   1005 
   1006 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
   1007 		panic("swap_off: swapdev not in list\n");
   1008 	swaplist_trim();
   1009 	simple_unlock(&uvm.swap_data_lock);
   1010 
   1011 	/*
   1012 	 * free all resources!
   1013 	 */
   1014 	extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
   1015 		    EX_WAITOK);
   1016 	extent_destroy(sdp->swd_ex);
   1017 	free(sdp, M_VMSWAP);
   1018 	return (0);
   1019 }
   1020 
   1021 /*
   1022  * /dev/drum interface and i/o functions
   1023  */
   1024 
   1025 /*
   1026  * swread: the read function for the drum (just a call to physio)
   1027  */
   1028 /*ARGSUSED*/
   1029 int
   1030 swread(dev, uio, ioflag)
   1031 	dev_t dev;
   1032 	struct uio *uio;
   1033 	int ioflag;
   1034 {
   1035 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1036 
   1037 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1038 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1039 }
   1040 
   1041 /*
   1042  * swwrite: the write function for the drum (just a call to physio)
   1043  */
   1044 /*ARGSUSED*/
   1045 int
   1046 swwrite(dev, uio, ioflag)
   1047 	dev_t dev;
   1048 	struct uio *uio;
   1049 	int ioflag;
   1050 {
   1051 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1052 
   1053 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1054 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1055 }
   1056 
   1057 /*
   1058  * swstrategy: perform I/O on the drum
   1059  *
   1060  * => we must map the i/o request from the drum to the correct swapdev.
   1061  */
   1062 void
   1063 swstrategy(bp)
   1064 	struct buf *bp;
   1065 {
   1066 	struct swapdev *sdp;
   1067 	struct vnode *vp;
   1068 	int s, pageno, bn;
   1069 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1070 
   1071 	/*
   1072 	 * convert block number to swapdev.   note that swapdev can't
   1073 	 * be yanked out from under us because we are holding resources
   1074 	 * in it (i.e. the blocks we are doing I/O on).
   1075 	 */
   1076 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1077 	simple_lock(&uvm.swap_data_lock);
   1078 	sdp = swapdrum_getsdp(pageno);
   1079 	simple_unlock(&uvm.swap_data_lock);
   1080 	if (sdp == NULL) {
   1081 		bp->b_error = EINVAL;
   1082 		bp->b_flags |= B_ERROR;
   1083 		biodone(bp);
   1084 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1085 		return;
   1086 	}
   1087 
   1088 	/*
   1089 	 * convert drum page number to block number on this swapdev.
   1090 	 */
   1091 
   1092 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1093 	bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1094 
   1095 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1096 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1097 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1098 
   1099 	/*
   1100 	 * for block devices we finish up here.
   1101 	 * for regular files we have to do more work which we delegate
   1102 	 * to sw_reg_strategy().
   1103 	 */
   1104 
   1105 	switch (sdp->swd_vp->v_type) {
   1106 	default:
   1107 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
   1108 
   1109 	case VBLK:
   1110 
   1111 		/*
   1112 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1113 		 * on the swapdev (sdp).
   1114 		 */
   1115 		s = splbio();
   1116 		bp->b_blkno = bn;		/* swapdev block number */
   1117 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1118 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1119 
   1120 		/*
   1121 		 * if we are doing a write, we have to redirect the i/o on
   1122 		 * drum's v_numoutput counter to the swapdevs.
   1123 		 */
   1124 		if ((bp->b_flags & B_READ) == 0) {
   1125 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1126 			vp->v_numoutput++;	/* put it on swapdev */
   1127 		}
   1128 
   1129 		/*
   1130 		 * finally plug in swapdev vnode and start I/O
   1131 		 */
   1132 		bp->b_vp = vp;
   1133 		splx(s);
   1134 		VOP_STRATEGY(bp);
   1135 		return;
   1136 
   1137 	case VREG:
   1138 		/*
   1139 		 * delegate to sw_reg_strategy function.
   1140 		 */
   1141 		sw_reg_strategy(sdp, bp, bn);
   1142 		return;
   1143 	}
   1144 	/* NOTREACHED */
   1145 }
   1146 
   1147 /*
   1148  * sw_reg_strategy: handle swap i/o to regular files
   1149  */
   1150 static void
   1151 sw_reg_strategy(sdp, bp, bn)
   1152 	struct swapdev	*sdp;
   1153 	struct buf	*bp;
   1154 	int		bn;
   1155 {
   1156 	struct vnode	*vp;
   1157 	struct vndxfer	*vnx;
   1158 	daddr_t		nbn;
   1159 	caddr_t		addr;
   1160 	off_t		byteoff;
   1161 	int		s, off, nra, error, sz, resid;
   1162 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1163 
   1164 	/*
   1165 	 * allocate a vndxfer head for this transfer and point it to
   1166 	 * our buffer.
   1167 	 */
   1168 	getvndxfer(vnx);
   1169 	vnx->vx_flags = VX_BUSY;
   1170 	vnx->vx_error = 0;
   1171 	vnx->vx_pending = 0;
   1172 	vnx->vx_bp = bp;
   1173 	vnx->vx_sdp = sdp;
   1174 
   1175 	/*
   1176 	 * setup for main loop where we read filesystem blocks into
   1177 	 * our buffer.
   1178 	 */
   1179 	error = 0;
   1180 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1181 	addr = bp->b_data;		/* current position in buffer */
   1182 	byteoff = dbtob((u_int64_t)bn);
   1183 
   1184 	for (resid = bp->b_resid; resid; resid -= sz) {
   1185 		struct vndbuf	*nbp;
   1186 
   1187 		/*
   1188 		 * translate byteoffset into block number.  return values:
   1189 		 *   vp = vnode of underlying device
   1190 		 *  nbn = new block number (on underlying vnode dev)
   1191 		 *  nra = num blocks we can read-ahead (excludes requested
   1192 		 *	block)
   1193 		 */
   1194 		nra = 0;
   1195 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1196 				 	&vp, &nbn, &nra);
   1197 
   1198 		if (error == 0 && nbn == (daddr_t)-1) {
   1199 			/*
   1200 			 * this used to just set error, but that doesn't
   1201 			 * do the right thing.  Instead, it causes random
   1202 			 * memory errors.  The panic() should remain until
   1203 			 * this condition doesn't destabilize the system.
   1204 			 */
   1205 #if 1
   1206 			panic("sw_reg_strategy: swap to sparse file");
   1207 #else
   1208 			error = EIO;	/* failure */
   1209 #endif
   1210 		}
   1211 
   1212 		/*
   1213 		 * punt if there was an error or a hole in the file.
   1214 		 * we must wait for any i/o ops we have already started
   1215 		 * to finish before returning.
   1216 		 *
   1217 		 * XXX we could deal with holes here but it would be
   1218 		 * a hassle (in the write case).
   1219 		 */
   1220 		if (error) {
   1221 			s = splbio();
   1222 			vnx->vx_error = error;	/* pass error up */
   1223 			goto out;
   1224 		}
   1225 
   1226 		/*
   1227 		 * compute the size ("sz") of this transfer (in bytes).
   1228 		 */
   1229 		off = byteoff % sdp->swd_bsize;
   1230 		sz = (1 + nra) * sdp->swd_bsize - off;
   1231 		if (sz > resid)
   1232 			sz = resid;
   1233 
   1234 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1235 			    "vp %p/%p offset 0x%x/0x%x",
   1236 			    sdp->swd_vp, vp, byteoff, nbn);
   1237 
   1238 		/*
   1239 		 * now get a buf structure.   note that the vb_buf is
   1240 		 * at the front of the nbp structure so that you can
   1241 		 * cast pointers between the two structure easily.
   1242 		 */
   1243 		getvndbuf(nbp);
   1244 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
   1245 		nbp->vb_buf.b_bcount   = sz;
   1246 		nbp->vb_buf.b_bufsize  = sz;
   1247 		nbp->vb_buf.b_error    = 0;
   1248 		nbp->vb_buf.b_data     = addr;
   1249 		nbp->vb_buf.b_lblkno   = 0;
   1250 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1251 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1252 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
   1253 		nbp->vb_buf.b_vp       = vp;
   1254 		if (vp->v_type == VBLK) {
   1255 			nbp->vb_buf.b_dev = vp->v_rdev;
   1256 		}
   1257 		LIST_INIT(&nbp->vb_buf.b_dep);
   1258 
   1259 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1260 
   1261 		/*
   1262 		 * Just sort by block number
   1263 		 */
   1264 		s = splbio();
   1265 		if (vnx->vx_error != 0) {
   1266 			putvndbuf(nbp);
   1267 			goto out;
   1268 		}
   1269 		vnx->vx_pending++;
   1270 
   1271 		/* sort it in and start I/O if we are not over our limit */
   1272 		disksort_blkno(&sdp->swd_tab, &nbp->vb_buf);
   1273 		sw_reg_start(sdp);
   1274 		splx(s);
   1275 
   1276 		/*
   1277 		 * advance to the next I/O
   1278 		 */
   1279 		byteoff += sz;
   1280 		addr += sz;
   1281 	}
   1282 
   1283 	s = splbio();
   1284 
   1285 out: /* Arrive here at splbio */
   1286 	vnx->vx_flags &= ~VX_BUSY;
   1287 	if (vnx->vx_pending == 0) {
   1288 		if (vnx->vx_error != 0) {
   1289 			bp->b_error = vnx->vx_error;
   1290 			bp->b_flags |= B_ERROR;
   1291 		}
   1292 		putvndxfer(vnx);
   1293 		biodone(bp);
   1294 	}
   1295 	splx(s);
   1296 }
   1297 
   1298 /*
   1299  * sw_reg_start: start an I/O request on the requested swapdev
   1300  *
   1301  * => reqs are sorted by disksort (above)
   1302  */
   1303 static void
   1304 sw_reg_start(sdp)
   1305 	struct swapdev	*sdp;
   1306 {
   1307 	struct buf	*bp;
   1308 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1309 
   1310 	/* recursion control */
   1311 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1312 		return;
   1313 
   1314 	sdp->swd_flags |= SWF_BUSY;
   1315 
   1316 	while (sdp->swd_active < sdp->swd_maxactive) {
   1317 		bp = BUFQ_FIRST(&sdp->swd_tab);
   1318 		if (bp == NULL)
   1319 			break;
   1320 		BUFQ_REMOVE(&sdp->swd_tab, bp);
   1321 		sdp->swd_active++;
   1322 
   1323 		UVMHIST_LOG(pdhist,
   1324 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1325 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1326 		if ((bp->b_flags & B_READ) == 0)
   1327 			bp->b_vp->v_numoutput++;
   1328 
   1329 		VOP_STRATEGY(bp);
   1330 	}
   1331 	sdp->swd_flags &= ~SWF_BUSY;
   1332 }
   1333 
   1334 /*
   1335  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1336  *
   1337  * => note that we can recover the vndbuf struct by casting the buf ptr
   1338  */
   1339 static void
   1340 sw_reg_iodone(bp)
   1341 	struct buf *bp;
   1342 {
   1343 	struct vndbuf *vbp = (struct vndbuf *) bp;
   1344 	struct vndxfer *vnx = vbp->vb_xfer;
   1345 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1346 	struct swapdev	*sdp = vnx->vx_sdp;
   1347 	int		s, resid;
   1348 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1349 
   1350 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1351 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1352 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1353 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1354 
   1355 	/*
   1356 	 * protect vbp at splbio and update.
   1357 	 */
   1358 
   1359 	s = splbio();
   1360 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1361 	pbp->b_resid -= resid;
   1362 	vnx->vx_pending--;
   1363 
   1364 	if (vbp->vb_buf.b_error) {
   1365 		UVMHIST_LOG(pdhist, "  got error=%d !",
   1366 		    vbp->vb_buf.b_error, 0, 0, 0);
   1367 
   1368 		/* pass error upward */
   1369 		vnx->vx_error = vbp->vb_buf.b_error;
   1370 	}
   1371 
   1372 	/*
   1373 	 * kill vbp structure
   1374 	 */
   1375 	putvndbuf(vbp);
   1376 
   1377 	/*
   1378 	 * wrap up this transaction if it has run to completion or, in
   1379 	 * case of an error, when all auxiliary buffers have returned.
   1380 	 */
   1381 	if (vnx->vx_error != 0) {
   1382 		/* pass error upward */
   1383 		pbp->b_flags |= B_ERROR;
   1384 		pbp->b_error = vnx->vx_error;
   1385 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1386 			putvndxfer(vnx);
   1387 			biodone(pbp);
   1388 		}
   1389 	} else if (pbp->b_resid == 0) {
   1390 		KASSERT(vnx->vx_pending == 0);
   1391 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1392 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1393 			    pbp, vnx->vx_error, 0, 0);
   1394 			putvndxfer(vnx);
   1395 			biodone(pbp);
   1396 		}
   1397 	}
   1398 
   1399 	/*
   1400 	 * done!   start next swapdev I/O if one is pending
   1401 	 */
   1402 	sdp->swd_active--;
   1403 	sw_reg_start(sdp);
   1404 	splx(s);
   1405 }
   1406 
   1407 
   1408 /*
   1409  * uvm_swap_alloc: allocate space on swap
   1410  *
   1411  * => allocation is done "round robin" down the priority list, as we
   1412  *	allocate in a priority we "rotate" the circle queue.
   1413  * => space can be freed with uvm_swap_free
   1414  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1415  * => we lock uvm.swap_data_lock
   1416  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1417  */
   1418 int
   1419 uvm_swap_alloc(nslots, lessok)
   1420 	int *nslots;	/* IN/OUT */
   1421 	boolean_t lessok;
   1422 {
   1423 	struct swapdev *sdp;
   1424 	struct swappri *spp;
   1425 	u_long	result;
   1426 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1427 
   1428 	/*
   1429 	 * no swap devices configured yet?   definite failure.
   1430 	 */
   1431 	if (uvmexp.nswapdev < 1)
   1432 		return 0;
   1433 
   1434 	/*
   1435 	 * lock data lock, convert slots into blocks, and enter loop
   1436 	 */
   1437 	simple_lock(&uvm.swap_data_lock);
   1438 
   1439 ReTry:	/* XXXMRG */
   1440 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1441 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1442 			/* if it's not enabled, then we can't swap from it */
   1443 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1444 				continue;
   1445 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1446 				continue;
   1447 			if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
   1448 					 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
   1449 					 &result) != 0) {
   1450 				continue;
   1451 			}
   1452 
   1453 			/*
   1454 			 * successful allocation!  now rotate the circleq.
   1455 			 */
   1456 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1457 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1458 			sdp->swd_npginuse += *nslots;
   1459 			uvmexp.swpginuse += *nslots;
   1460 			simple_unlock(&uvm.swap_data_lock);
   1461 			/* done!  return drum slot number */
   1462 			UVMHIST_LOG(pdhist,
   1463 			    "success!  returning %d slots starting at %d",
   1464 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1465 			return (result + sdp->swd_drumoffset);
   1466 		}
   1467 	}
   1468 
   1469 	/* XXXMRG: BEGIN HACK */
   1470 	if (*nslots > 1 && lessok) {
   1471 		*nslots = 1;
   1472 		goto ReTry;	/* XXXMRG: ugh!  extent should support this for us */
   1473 	}
   1474 	/* XXXMRG: END HACK */
   1475 
   1476 	simple_unlock(&uvm.swap_data_lock);
   1477 	return 0;
   1478 }
   1479 
   1480 /*
   1481  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1482  *
   1483  * => we lock uvm.swap_data_lock
   1484  */
   1485 void
   1486 uvm_swap_markbad(startslot, nslots)
   1487 	int startslot;
   1488 	int nslots;
   1489 {
   1490 	struct swapdev *sdp;
   1491 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1492 
   1493 	simple_lock(&uvm.swap_data_lock);
   1494 	sdp = swapdrum_getsdp(startslot);
   1495 
   1496 	/*
   1497 	 * we just keep track of how many pages have been marked bad
   1498 	 * in this device, to make everything add up in swap_off().
   1499 	 * we assume here that the range of slots will all be within
   1500 	 * one swap device.
   1501 	 */
   1502 
   1503 	sdp->swd_npgbad += nslots;
   1504 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1505 	simple_unlock(&uvm.swap_data_lock);
   1506 }
   1507 
   1508 /*
   1509  * uvm_swap_free: free swap slots
   1510  *
   1511  * => this can be all or part of an allocation made by uvm_swap_alloc
   1512  * => we lock uvm.swap_data_lock
   1513  */
   1514 void
   1515 uvm_swap_free(startslot, nslots)
   1516 	int startslot;
   1517 	int nslots;
   1518 {
   1519 	struct swapdev *sdp;
   1520 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1521 
   1522 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1523 	    startslot, 0, 0);
   1524 
   1525 	/*
   1526 	 * ignore attempts to free the "bad" slot.
   1527 	 */
   1528 
   1529 	if (startslot == SWSLOT_BAD) {
   1530 		return;
   1531 	}
   1532 
   1533 	/*
   1534 	 * convert drum slot offset back to sdp, free the blocks
   1535 	 * in the extent, and return.   must hold pri lock to do
   1536 	 * lookup and access the extent.
   1537 	 */
   1538 
   1539 	simple_lock(&uvm.swap_data_lock);
   1540 	sdp = swapdrum_getsdp(startslot);
   1541 	KASSERT(uvmexp.nswapdev >= 1);
   1542 	KASSERT(sdp != NULL);
   1543 	KASSERT(sdp->swd_npginuse >= nslots);
   1544 	if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
   1545 			EX_MALLOCOK|EX_NOWAIT) != 0) {
   1546 		printf("warning: resource shortage: %d pages of swap lost\n",
   1547 			nslots);
   1548 	}
   1549 	sdp->swd_npginuse -= nslots;
   1550 	uvmexp.swpginuse -= nslots;
   1551 	simple_unlock(&uvm.swap_data_lock);
   1552 }
   1553 
   1554 /*
   1555  * uvm_swap_put: put any number of pages into a contig place on swap
   1556  *
   1557  * => can be sync or async
   1558  */
   1559 
   1560 int
   1561 uvm_swap_put(swslot, ppsp, npages, flags)
   1562 	int swslot;
   1563 	struct vm_page **ppsp;
   1564 	int npages;
   1565 	int flags;
   1566 {
   1567 	int error;
   1568 
   1569 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1570 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1571 	return error;
   1572 }
   1573 
   1574 /*
   1575  * uvm_swap_get: get a single page from swap
   1576  *
   1577  * => usually a sync op (from fault)
   1578  */
   1579 
   1580 int
   1581 uvm_swap_get(page, swslot, flags)
   1582 	struct vm_page *page;
   1583 	int swslot, flags;
   1584 {
   1585 	int error;
   1586 
   1587 	uvmexp.nswget++;
   1588 	KASSERT(flags & PGO_SYNCIO);
   1589 	if (swslot == SWSLOT_BAD) {
   1590 		return EIO;
   1591 	}
   1592 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1593 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1594 	if (error == 0) {
   1595 
   1596 		/*
   1597 		 * this page is no longer only in swap.
   1598 		 */
   1599 
   1600 		simple_lock(&uvm.swap_data_lock);
   1601 		KASSERT(uvmexp.swpgonly > 0);
   1602 		uvmexp.swpgonly--;
   1603 		simple_unlock(&uvm.swap_data_lock);
   1604 	}
   1605 	return error;
   1606 }
   1607 
   1608 /*
   1609  * uvm_swap_io: do an i/o operation to swap
   1610  */
   1611 
   1612 static int
   1613 uvm_swap_io(pps, startslot, npages, flags)
   1614 	struct vm_page **pps;
   1615 	int startslot, npages, flags;
   1616 {
   1617 	daddr_t startblk;
   1618 	struct	buf *bp;
   1619 	vaddr_t kva;
   1620 	int	error, s, mapinflags;
   1621 	boolean_t write, async;
   1622 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1623 
   1624 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1625 	    startslot, npages, flags, 0);
   1626 
   1627 	write = (flags & B_READ) == 0;
   1628 	async = (flags & B_ASYNC) != 0;
   1629 
   1630 	/*
   1631 	 * convert starting drum slot to block number
   1632 	 */
   1633 
   1634 	startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
   1635 
   1636 	/*
   1637 	 * first, map the pages into the kernel.
   1638 	 */
   1639 
   1640 	mapinflags = !write ?
   1641 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1642 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1643 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1644 
   1645 	/*
   1646 	 * now allocate a buf for the i/o.
   1647 	 */
   1648 
   1649 	s = splbio();
   1650 	bp = pool_get(&bufpool, PR_WAITOK);
   1651 	splx(s);
   1652 
   1653 	/*
   1654 	 * fill in the bp/sbp.   we currently route our i/o through
   1655 	 * /dev/drum's vnode [swapdev_vp].
   1656 	 */
   1657 
   1658 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
   1659 	bp->b_proc = &proc0;	/* XXX */
   1660 	bp->b_vnbufs.le_next = NOLIST;
   1661 	bp->b_data = (caddr_t)kva;
   1662 	bp->b_blkno = startblk;
   1663 	bp->b_vp = swapdev_vp;
   1664 	bp->b_dev = swapdev_vp->v_rdev;
   1665 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1666 	LIST_INIT(&bp->b_dep);
   1667 
   1668 	/*
   1669 	 * bump v_numoutput (counter of number of active outputs).
   1670 	 */
   1671 
   1672 	if (write) {
   1673 		s = splbio();
   1674 		swapdev_vp->v_numoutput++;
   1675 		splx(s);
   1676 	}
   1677 
   1678 	/*
   1679 	 * for async ops we must set up the iodone handler.
   1680 	 */
   1681 
   1682 	if (async) {
   1683 		bp->b_flags |= B_CALL;
   1684 		bp->b_iodone = uvm_aio_biodone;
   1685 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1686 	}
   1687 	UVMHIST_LOG(pdhist,
   1688 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1689 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1690 
   1691 	/*
   1692 	 * now we start the I/O, and if async, return.
   1693 	 */
   1694 
   1695 	VOP_STRATEGY(bp);
   1696 	if (async)
   1697 		return 0;
   1698 
   1699 	/*
   1700 	 * must be sync i/o.   wait for it to finish
   1701 	 */
   1702 
   1703 	error = biowait(bp);
   1704 
   1705 	/*
   1706 	 * kill the pager mapping
   1707 	 */
   1708 
   1709 	uvm_pagermapout(kva, npages);
   1710 
   1711 	/*
   1712 	 * now dispose of the buf and we're done.
   1713 	 */
   1714 
   1715 	s = splbio();
   1716 	if (write)
   1717 		vwakeup(bp);
   1718 	pool_put(&bufpool, bp);
   1719 	splx(s);
   1720 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1721 	return (error);
   1722 }
   1723