Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.55
      1 /*	$NetBSD: uvm_swap.c,v 1.55 2001/11/01 03:49:30 chs Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     32  */
     33 
     34 #include "fs_nfs.h"
     35 #include "opt_uvmhist.h"
     36 #include "opt_compat_netbsd.h"
     37 #include "opt_ddb.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/buf.h>
     42 #include <sys/conf.h>
     43 #include <sys/proc.h>
     44 #include <sys/namei.h>
     45 #include <sys/disklabel.h>
     46 #include <sys/errno.h>
     47 #include <sys/kernel.h>
     48 #include <sys/malloc.h>
     49 #include <sys/vnode.h>
     50 #include <sys/file.h>
     51 #include <sys/extent.h>
     52 #include <sys/mount.h>
     53 #include <sys/pool.h>
     54 #include <sys/syscallargs.h>
     55 #include <sys/swap.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 #include <miscfs/specfs/specdev.h>
     60 
     61 /*
     62  * uvm_swap.c: manage configuration and i/o to swap space.
     63  */
     64 
     65 /*
     66  * swap space is managed in the following way:
     67  *
     68  * each swap partition or file is described by a "swapdev" structure.
     69  * each "swapdev" structure contains a "swapent" structure which contains
     70  * information that is passed up to the user (via system calls).
     71  *
     72  * each swap partition is assigned a "priority" (int) which controls
     73  * swap parition usage.
     74  *
     75  * the system maintains a global data structure describing all swap
     76  * partitions/files.   there is a sorted LIST of "swappri" structures
     77  * which describe "swapdev"'s at that priority.   this LIST is headed
     78  * by the "swap_priority" global var.    each "swappri" contains a
     79  * CIRCLEQ of "swapdev" structures at that priority.
     80  *
     81  * locking:
     82  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
     83  *    system call and prevents the swap priority list from changing
     84  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     85  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
     86  *    structures including the priority list, the swapdev structures,
     87  *    and the swapmap extent.
     88  *
     89  * each swap device has the following info:
     90  *  - swap device in use (could be disabled, preventing future use)
     91  *  - swap enabled (allows new allocations on swap)
     92  *  - map info in /dev/drum
     93  *  - vnode pointer
     94  * for swap files only:
     95  *  - block size
     96  *  - max byte count in buffer
     97  *  - buffer
     98  *  - credentials to use when doing i/o to file
     99  *
    100  * userland controls and configures swap with the swapctl(2) system call.
    101  * the sys_swapctl performs the following operations:
    102  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    103  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    104  *	(passed in via "arg") of a size passed in via "misc" ... we load
    105  *	the current swap config into the array.
    106  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    107  *	priority in "misc", start swapping on it.
    108  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    109  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    110  *	"misc")
    111  */
    112 
    113 /*
    114  * swapdev: describes a single swap partition/file
    115  *
    116  * note the following should be true:
    117  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    118  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    119  */
    120 struct swapdev {
    121 	struct oswapent swd_ose;
    122 #define	swd_dev		swd_ose.ose_dev		/* device id */
    123 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    124 #define	swd_priority	swd_ose.ose_priority	/* our priority */
    125 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    126 	char			*swd_path;	/* saved pathname of device */
    127 	int			swd_pathlen;	/* length of pathname */
    128 	int			swd_npages;	/* #pages we can use */
    129 	int			swd_npginuse;	/* #pages in use */
    130 	int			swd_npgbad;	/* #pages bad */
    131 	int			swd_drumoffset;	/* page0 offset in drum */
    132 	int			swd_drumsize;	/* #pages in drum */
    133 	struct extent		*swd_ex;	/* extent for this swapdev */
    134 	char			swd_exname[12];	/* name of extent above */
    135 	struct vnode		*swd_vp;	/* backing vnode */
    136 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    137 
    138 	int			swd_bsize;	/* blocksize (bytes) */
    139 	int			swd_maxactive;	/* max active i/o reqs */
    140 	struct buf_queue	swd_tab;	/* buffer list */
    141 	int			swd_active;	/* number of active buffers */
    142 	struct ucred		*swd_cred;	/* cred for file access */
    143 };
    144 
    145 /*
    146  * swap device priority entry; the list is kept sorted on `spi_priority'.
    147  */
    148 struct swappri {
    149 	int			spi_priority;     /* priority */
    150 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    151 	/* circleq of swapdevs at this priority */
    152 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    153 };
    154 
    155 /*
    156  * The following two structures are used to keep track of data transfers
    157  * on swap devices associated with regular files.
    158  * NOTE: this code is more or less a copy of vnd.c; we use the same
    159  * structure names here to ease porting..
    160  */
    161 struct vndxfer {
    162 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    163 	struct swapdev	*vx_sdp;
    164 	int		vx_error;
    165 	int		vx_pending;	/* # of pending aux buffers */
    166 	int		vx_flags;
    167 #define VX_BUSY		1
    168 #define VX_DEAD		2
    169 };
    170 
    171 struct vndbuf {
    172 	struct buf	vb_buf;
    173 	struct vndxfer	*vb_xfer;
    174 };
    175 
    176 
    177 /*
    178  * We keep a of pool vndbuf's and vndxfer structures.
    179  */
    180 static struct pool vndxfer_pool;
    181 static struct pool vndbuf_pool;
    182 
    183 #define	getvndxfer(vnx)	do {						\
    184 	int s = splbio();						\
    185 	vnx = pool_get(&vndxfer_pool, PR_MALLOCOK|PR_WAITOK);		\
    186 	splx(s);							\
    187 } while (0)
    188 
    189 #define putvndxfer(vnx) {						\
    190 	pool_put(&vndxfer_pool, (void *)(vnx));				\
    191 }
    192 
    193 #define	getvndbuf(vbp)	do {						\
    194 	int s = splbio();						\
    195 	vbp = pool_get(&vndbuf_pool, PR_MALLOCOK|PR_WAITOK);		\
    196 	splx(s);							\
    197 } while (0)
    198 
    199 #define putvndbuf(vbp) {						\
    200 	pool_put(&vndbuf_pool, (void *)(vbp));				\
    201 }
    202 
    203 /* /dev/drum */
    204 bdev_decl(sw);
    205 cdev_decl(sw);
    206 
    207 /*
    208  * local variables
    209  */
    210 static struct extent *swapmap;		/* controls the mapping of /dev/drum */
    211 
    212 /* list of all active swap devices [by priority] */
    213 LIST_HEAD(swap_priority, swappri);
    214 static struct swap_priority swap_priority;
    215 
    216 /* locks */
    217 struct lock swap_syscall_lock;
    218 
    219 /*
    220  * prototypes
    221  */
    222 static struct swapdev	*swapdrum_getsdp __P((int));
    223 
    224 static struct swapdev	*swaplist_find __P((struct vnode *, int));
    225 static void		 swaplist_insert __P((struct swapdev *,
    226 					     struct swappri *, int));
    227 static void		 swaplist_trim __P((void));
    228 
    229 static int swap_on __P((struct proc *, struct swapdev *));
    230 static int swap_off __P((struct proc *, struct swapdev *));
    231 
    232 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
    233 static void sw_reg_iodone __P((struct buf *));
    234 static void sw_reg_start __P((struct swapdev *));
    235 
    236 static int uvm_swap_io __P((struct vm_page **, int, int, int));
    237 
    238 /*
    239  * uvm_swap_init: init the swap system data structures and locks
    240  *
    241  * => called at boot time from init_main.c after the filesystems
    242  *	are brought up (which happens after uvm_init())
    243  */
    244 void
    245 uvm_swap_init()
    246 {
    247 	UVMHIST_FUNC("uvm_swap_init");
    248 
    249 	UVMHIST_CALLED(pdhist);
    250 	/*
    251 	 * first, init the swap list, its counter, and its lock.
    252 	 * then get a handle on the vnode for /dev/drum by using
    253 	 * the its dev_t number ("swapdev", from MD conf.c).
    254 	 */
    255 
    256 	LIST_INIT(&swap_priority);
    257 	uvmexp.nswapdev = 0;
    258 	lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
    259 	simple_lock_init(&uvm.swap_data_lock);
    260 
    261 	if (bdevvp(swapdev, &swapdev_vp))
    262 		panic("uvm_swap_init: can't get vnode for swap device");
    263 
    264 	/*
    265 	 * create swap block resource map to map /dev/drum.   the range
    266 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    267 	 * that block 0 is reserved (used to indicate an allocation
    268 	 * failure, or no allocation).
    269 	 */
    270 	swapmap = extent_create("swapmap", 1, INT_MAX,
    271 				M_VMSWAP, 0, 0, EX_NOWAIT);
    272 	if (swapmap == 0)
    273 		panic("uvm_swap_init: extent_create failed");
    274 
    275 	/*
    276 	 * allocate pools for structures used for swapping to files.
    277 	 */
    278 
    279 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0,
    280 	    "swp vnx", 0, NULL, NULL, 0);
    281 
    282 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0,
    283 	    "swp vnd", 0, NULL, NULL, 0);
    284 
    285 	/*
    286 	 * done!
    287 	 */
    288 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    289 }
    290 
    291 /*
    292  * swaplist functions: functions that operate on the list of swap
    293  * devices on the system.
    294  */
    295 
    296 /*
    297  * swaplist_insert: insert swap device "sdp" into the global list
    298  *
    299  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    300  * => caller must provide a newly malloc'd swappri structure (we will
    301  *	FREE it if we don't need it... this it to prevent malloc blocking
    302  *	here while adding swap)
    303  */
    304 static void
    305 swaplist_insert(sdp, newspp, priority)
    306 	struct swapdev *sdp;
    307 	struct swappri *newspp;
    308 	int priority;
    309 {
    310 	struct swappri *spp, *pspp;
    311 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    312 
    313 	/*
    314 	 * find entry at or after which to insert the new device.
    315 	 */
    316 	pspp = NULL;
    317 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    318 		if (priority <= spp->spi_priority)
    319 			break;
    320 		pspp = spp;
    321 	}
    322 
    323 	/*
    324 	 * new priority?
    325 	 */
    326 	if (spp == NULL || spp->spi_priority != priority) {
    327 		spp = newspp;  /* use newspp! */
    328 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    329 			    priority, 0, 0, 0);
    330 
    331 		spp->spi_priority = priority;
    332 		CIRCLEQ_INIT(&spp->spi_swapdev);
    333 
    334 		if (pspp)
    335 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    336 		else
    337 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    338 	} else {
    339 	  	/* we don't need a new priority structure, free it */
    340 		FREE(newspp, M_VMSWAP);
    341 	}
    342 
    343 	/*
    344 	 * priority found (or created).   now insert on the priority's
    345 	 * circleq list and bump the total number of swapdevs.
    346 	 */
    347 	sdp->swd_priority = priority;
    348 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    349 	uvmexp.nswapdev++;
    350 }
    351 
    352 /*
    353  * swaplist_find: find and optionally remove a swap device from the
    354  *	global list.
    355  *
    356  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    357  * => we return the swapdev we found (and removed)
    358  */
    359 static struct swapdev *
    360 swaplist_find(vp, remove)
    361 	struct vnode *vp;
    362 	boolean_t remove;
    363 {
    364 	struct swapdev *sdp;
    365 	struct swappri *spp;
    366 
    367 	/*
    368 	 * search the lists for the requested vp
    369 	 */
    370 
    371 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    372 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    373 			if (sdp->swd_vp == vp) {
    374 				if (remove) {
    375 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    376 					    sdp, swd_next);
    377 					uvmexp.nswapdev--;
    378 				}
    379 				return(sdp);
    380 			}
    381 		}
    382 	}
    383 	return (NULL);
    384 }
    385 
    386 
    387 /*
    388  * swaplist_trim: scan priority list for empty priority entries and kill
    389  *	them.
    390  *
    391  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    392  */
    393 static void
    394 swaplist_trim()
    395 {
    396 	struct swappri *spp, *nextspp;
    397 
    398 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    399 		nextspp = LIST_NEXT(spp, spi_swappri);
    400 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    401 		    (void *)&spp->spi_swapdev)
    402 			continue;
    403 		LIST_REMOVE(spp, spi_swappri);
    404 		free(spp, M_VMSWAP);
    405 	}
    406 }
    407 
    408 /*
    409  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    410  *	to the "swapdev" that maps that section of the drum.
    411  *
    412  * => each swapdev takes one big contig chunk of the drum
    413  * => caller must hold uvm.swap_data_lock
    414  */
    415 static struct swapdev *
    416 swapdrum_getsdp(pgno)
    417 	int pgno;
    418 {
    419 	struct swapdev *sdp;
    420 	struct swappri *spp;
    421 
    422 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    423 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    424 			if (sdp->swd_flags & SWF_FAKE)
    425 				continue;
    426 			if (pgno >= sdp->swd_drumoffset &&
    427 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    428 				return sdp;
    429 			}
    430 		}
    431 	}
    432 	return NULL;
    433 }
    434 
    435 
    436 /*
    437  * sys_swapctl: main entry point for swapctl(2) system call
    438  * 	[with two helper functions: swap_on and swap_off]
    439  */
    440 int
    441 sys_swapctl(p, v, retval)
    442 	struct proc *p;
    443 	void *v;
    444 	register_t *retval;
    445 {
    446 	struct sys_swapctl_args /* {
    447 		syscallarg(int) cmd;
    448 		syscallarg(void *) arg;
    449 		syscallarg(int) misc;
    450 	} */ *uap = (struct sys_swapctl_args *)v;
    451 	struct vnode *vp;
    452 	struct nameidata nd;
    453 	struct swappri *spp;
    454 	struct swapdev *sdp;
    455 	struct swapent *sep;
    456 	char	userpath[PATH_MAX + 1];
    457 	size_t	len;
    458 	int	count, error, misc;
    459 	int	priority;
    460 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    461 
    462 	misc = SCARG(uap, misc);
    463 
    464 	/*
    465 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    466 	 */
    467 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
    468 
    469 	/*
    470 	 * we handle the non-priv NSWAP and STATS request first.
    471 	 *
    472 	 * SWAP_NSWAP: return number of config'd swap devices
    473 	 * [can also be obtained with uvmexp sysctl]
    474 	 */
    475 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    476 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    477 		    0, 0, 0);
    478 		*retval = uvmexp.nswapdev;
    479 		error = 0;
    480 		goto out;
    481 	}
    482 
    483 	/*
    484 	 * SWAP_STATS: get stats on current # of configured swap devs
    485 	 *
    486 	 * note that the swap_priority list can't change as long
    487 	 * as we are holding the swap_syscall_lock.  we don't want
    488 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
    489 	 * copyout() and we don't want to be holding that lock then!
    490 	 */
    491 	if (SCARG(uap, cmd) == SWAP_STATS
    492 #if defined(COMPAT_13)
    493 	    || SCARG(uap, cmd) == SWAP_OSTATS
    494 #endif
    495 	    ) {
    496 		sep = (struct swapent *)SCARG(uap, arg);
    497 		count = 0;
    498 
    499 		LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    500 			for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    501 			     sdp != (void *)&spp->spi_swapdev && misc-- > 0;
    502 			     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    503 			  	/*
    504 				 * backwards compatibility for system call.
    505 				 * note that we use 'struct oswapent' as an
    506 				 * overlay into both 'struct swapdev' and
    507 				 * the userland 'struct swapent', as we
    508 				 * want to retain backwards compatibility
    509 				 * with NetBSD 1.3.
    510 				 */
    511 				sdp->swd_ose.ose_inuse =
    512 				    btodb((u_int64_t)sdp->swd_npginuse <<
    513 				    PAGE_SHIFT);
    514 				error = copyout(&sdp->swd_ose, sep,
    515 						sizeof(struct oswapent));
    516 
    517 				/* now copy out the path if necessary */
    518 #if defined(COMPAT_13)
    519 				if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
    520 #else
    521 				if (error == 0)
    522 #endif
    523 					error = copyout(sdp->swd_path,
    524 					    &sep->se_path, sdp->swd_pathlen);
    525 
    526 				if (error)
    527 					goto out;
    528 				count++;
    529 #if defined(COMPAT_13)
    530 				if (SCARG(uap, cmd) == SWAP_OSTATS)
    531 					sep = (struct swapent *)
    532 					    ((struct oswapent *)sep + 1);
    533 				else
    534 #endif
    535 					sep++;
    536 			}
    537 		}
    538 
    539 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    540 
    541 		*retval = count;
    542 		error = 0;
    543 		goto out;
    544 	}
    545 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    546 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    547 
    548 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    549 		goto out;
    550 	}
    551 
    552 	/*
    553 	 * all other requests require superuser privs.   verify.
    554 	 */
    555 	if ((error = suser(p->p_ucred, &p->p_acflag)))
    556 		goto out;
    557 
    558 	/*
    559 	 * at this point we expect a path name in arg.   we will
    560 	 * use namei() to gain a vnode reference (vref), and lock
    561 	 * the vnode (VOP_LOCK).
    562 	 *
    563 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    564 	 * miniroot)
    565 	 */
    566 	if (SCARG(uap, arg) == NULL) {
    567 		vp = rootvp;		/* miniroot */
    568 		if (vget(vp, LK_EXCLUSIVE)) {
    569 			error = EBUSY;
    570 			goto out;
    571 		}
    572 		if (SCARG(uap, cmd) == SWAP_ON &&
    573 		    copystr("miniroot", userpath, sizeof userpath, &len))
    574 			panic("swapctl: miniroot copy failed");
    575 	} else {
    576 		int	space;
    577 		char	*where;
    578 
    579 		if (SCARG(uap, cmd) == SWAP_ON) {
    580 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    581 			    sizeof userpath, &len)))
    582 				goto out;
    583 			space = UIO_SYSSPACE;
    584 			where = userpath;
    585 		} else {
    586 			space = UIO_USERSPACE;
    587 			where = (char *)SCARG(uap, arg);
    588 		}
    589 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
    590 		if ((error = namei(&nd)))
    591 			goto out;
    592 		vp = nd.ni_vp;
    593 	}
    594 	/* note: "vp" is referenced and locked */
    595 
    596 	error = 0;		/* assume no error */
    597 	switch(SCARG(uap, cmd)) {
    598 
    599 	case SWAP_DUMPDEV:
    600 		if (vp->v_type != VBLK) {
    601 			error = ENOTBLK;
    602 			break;
    603 		}
    604 		dumpdev = vp->v_rdev;
    605 		break;
    606 
    607 	case SWAP_CTL:
    608 		/*
    609 		 * get new priority, remove old entry (if any) and then
    610 		 * reinsert it in the correct place.  finally, prune out
    611 		 * any empty priority structures.
    612 		 */
    613 		priority = SCARG(uap, misc);
    614 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    615 		simple_lock(&uvm.swap_data_lock);
    616 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
    617 			error = ENOENT;
    618 		} else {
    619 			swaplist_insert(sdp, spp, priority);
    620 			swaplist_trim();
    621 		}
    622 		simple_unlock(&uvm.swap_data_lock);
    623 		if (error)
    624 			free(spp, M_VMSWAP);
    625 		break;
    626 
    627 	case SWAP_ON:
    628 
    629 		/*
    630 		 * check for duplicates.   if none found, then insert a
    631 		 * dummy entry on the list to prevent someone else from
    632 		 * trying to enable this device while we are working on
    633 		 * it.
    634 		 */
    635 
    636 		priority = SCARG(uap, misc);
    637 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    638 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    639 		simple_lock(&uvm.swap_data_lock);
    640 		if (swaplist_find(vp, 0) != NULL) {
    641 			error = EBUSY;
    642 			simple_unlock(&uvm.swap_data_lock);
    643 			free(sdp, M_VMSWAP);
    644 			free(spp, M_VMSWAP);
    645 			break;
    646 		}
    647 		memset(sdp, 0, sizeof(*sdp));
    648 		sdp->swd_flags = SWF_FAKE;	/* placeholder only */
    649 		sdp->swd_vp = vp;
    650 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    651 		BUFQ_INIT(&sdp->swd_tab);
    652 
    653 		/*
    654 		 * XXX Is NFS elaboration necessary?
    655 		 */
    656 		if (vp->v_type == VREG) {
    657 			sdp->swd_cred = crdup(p->p_ucred);
    658 		}
    659 
    660 		swaplist_insert(sdp, spp, priority);
    661 		simple_unlock(&uvm.swap_data_lock);
    662 
    663 		sdp->swd_pathlen = len;
    664 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    665 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    666 			panic("swapctl: copystr");
    667 
    668 		/*
    669 		 * we've now got a FAKE placeholder in the swap list.
    670 		 * now attempt to enable swap on it.  if we fail, undo
    671 		 * what we've done and kill the fake entry we just inserted.
    672 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    673 		 */
    674 
    675 		if ((error = swap_on(p, sdp)) != 0) {
    676 			simple_lock(&uvm.swap_data_lock);
    677 			(void) swaplist_find(vp, 1);  /* kill fake entry */
    678 			swaplist_trim();
    679 			simple_unlock(&uvm.swap_data_lock);
    680 			if (vp->v_type == VREG) {
    681 				crfree(sdp->swd_cred);
    682 			}
    683 			free(sdp->swd_path, M_VMSWAP);
    684 			free(sdp, M_VMSWAP);
    685 			break;
    686 		}
    687 		break;
    688 
    689 	case SWAP_OFF:
    690 		simple_lock(&uvm.swap_data_lock);
    691 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
    692 			simple_unlock(&uvm.swap_data_lock);
    693 			error = ENXIO;
    694 			break;
    695 		}
    696 
    697 		/*
    698 		 * If a device isn't in use or enabled, we
    699 		 * can't stop swapping from it (again).
    700 		 */
    701 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    702 			simple_unlock(&uvm.swap_data_lock);
    703 			error = EBUSY;
    704 			break;
    705 		}
    706 
    707 		/*
    708 		 * do the real work.
    709 		 */
    710 		error = swap_off(p, sdp);
    711 		break;
    712 
    713 	default:
    714 		error = EINVAL;
    715 	}
    716 
    717 	/*
    718 	 * done!  release the ref gained by namei() and unlock.
    719 	 */
    720 	vput(vp);
    721 
    722 out:
    723 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
    724 
    725 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    726 	return (error);
    727 }
    728 
    729 /*
    730  * swap_on: attempt to enable a swapdev for swapping.   note that the
    731  *	swapdev is already on the global list, but disabled (marked
    732  *	SWF_FAKE).
    733  *
    734  * => we avoid the start of the disk (to protect disk labels)
    735  * => we also avoid the miniroot, if we are swapping to root.
    736  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
    737  *	if needed.
    738  */
    739 static int
    740 swap_on(p, sdp)
    741 	struct proc *p;
    742 	struct swapdev *sdp;
    743 {
    744 	static int count = 0;	/* static */
    745 	struct vnode *vp;
    746 	int error, npages, nblocks, size;
    747 	long addr;
    748 	u_long result;
    749 	struct vattr va;
    750 #ifdef NFS
    751 	extern int (**nfsv2_vnodeop_p) __P((void *));
    752 #endif /* NFS */
    753 	dev_t dev;
    754 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    755 
    756 	/*
    757 	 * we want to enable swapping on sdp.   the swd_vp contains
    758 	 * the vnode we want (locked and ref'd), and the swd_dev
    759 	 * contains the dev_t of the file, if it a block device.
    760 	 */
    761 
    762 	vp = sdp->swd_vp;
    763 	dev = sdp->swd_dev;
    764 
    765 	/*
    766 	 * open the swap file (mostly useful for block device files to
    767 	 * let device driver know what is up).
    768 	 *
    769 	 * we skip the open/close for root on swap because the root
    770 	 * has already been opened when root was mounted (mountroot).
    771 	 */
    772 	if (vp != rootvp) {
    773 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
    774 			return (error);
    775 	}
    776 
    777 	/* XXX this only works for block devices */
    778 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    779 
    780 	/*
    781 	 * we now need to determine the size of the swap area.   for
    782 	 * block specials we can call the d_psize function.
    783 	 * for normal files, we must stat [get attrs].
    784 	 *
    785 	 * we put the result in nblks.
    786 	 * for normal files, we also want the filesystem block size
    787 	 * (which we get with statfs).
    788 	 */
    789 	switch (vp->v_type) {
    790 	case VBLK:
    791 		if (bdevsw[major(dev)].d_psize == 0 ||
    792 		    (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
    793 			error = ENXIO;
    794 			goto bad;
    795 		}
    796 		break;
    797 
    798 	case VREG:
    799 		if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
    800 			goto bad;
    801 		nblocks = (int)btodb(va.va_size);
    802 		if ((error =
    803 		     VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
    804 			goto bad;
    805 
    806 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    807 		/*
    808 		 * limit the max # of outstanding I/O requests we issue
    809 		 * at any one time.   take it easy on NFS servers.
    810 		 */
    811 #ifdef NFS
    812 		if (vp->v_op == nfsv2_vnodeop_p)
    813 			sdp->swd_maxactive = 2; /* XXX */
    814 		else
    815 #endif /* NFS */
    816 			sdp->swd_maxactive = 8; /* XXX */
    817 		break;
    818 
    819 	default:
    820 		error = ENXIO;
    821 		goto bad;
    822 	}
    823 
    824 	/*
    825 	 * save nblocks in a safe place and convert to pages.
    826 	 */
    827 
    828 	sdp->swd_ose.ose_nblks = nblocks;
    829 	npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
    830 
    831 	/*
    832 	 * for block special files, we want to make sure that leave
    833 	 * the disklabel and bootblocks alone, so we arrange to skip
    834 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    835 	 * note that because of this the "size" can be less than the
    836 	 * actual number of blocks on the device.
    837 	 */
    838 	if (vp->v_type == VBLK) {
    839 		/* we use pages 1 to (size - 1) [inclusive] */
    840 		size = npages - 1;
    841 		addr = 1;
    842 	} else {
    843 		/* we use pages 0 to (size - 1) [inclusive] */
    844 		size = npages;
    845 		addr = 0;
    846 	}
    847 
    848 	/*
    849 	 * make sure we have enough blocks for a reasonable sized swap
    850 	 * area.   we want at least one page.
    851 	 */
    852 
    853 	if (size < 1) {
    854 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    855 		error = EINVAL;
    856 		goto bad;
    857 	}
    858 
    859 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    860 
    861 	/*
    862 	 * now we need to allocate an extent to manage this swap device
    863 	 */
    864 	snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
    865 	    count++);
    866 
    867 	/* note that extent_create's 3rd arg is inclusive, thus "- 1" */
    868 	sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
    869 				    0, 0, EX_WAITOK);
    870 	/* allocate the `saved' region from the extent so it won't be used */
    871 	if (addr) {
    872 		if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
    873 			panic("disklabel region");
    874 	}
    875 
    876 	/*
    877 	 * if the vnode we are swapping to is the root vnode
    878 	 * (i.e. we are swapping to the miniroot) then we want
    879 	 * to make sure we don't overwrite it.   do a statfs to
    880 	 * find its size and skip over it.
    881 	 */
    882 	if (vp == rootvp) {
    883 		struct mount *mp;
    884 		struct statfs *sp;
    885 		int rootblocks, rootpages;
    886 
    887 		mp = rootvnode->v_mount;
    888 		sp = &mp->mnt_stat;
    889 		rootblocks = sp->f_blocks * btodb(sp->f_bsize);
    890 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    891 		if (rootpages > size)
    892 			panic("swap_on: miniroot larger than swap?");
    893 
    894 		if (extent_alloc_region(sdp->swd_ex, addr,
    895 					rootpages, EX_WAITOK))
    896 			panic("swap_on: unable to preserve miniroot");
    897 
    898 		size -= rootpages;
    899 		printf("Preserved %d pages of miniroot ", rootpages);
    900 		printf("leaving %d pages of swap\n", size);
    901 	}
    902 
    903   	/*
    904 	 * try to add anons to reflect the new swap space.
    905 	 */
    906 
    907 	error = uvm_anon_add(size);
    908 	if (error) {
    909 		goto bad;
    910 	}
    911 
    912 	/*
    913 	 * add a ref to vp to reflect usage as a swap device.
    914 	 */
    915 	vref(vp);
    916 
    917 	/*
    918 	 * now add the new swapdev to the drum and enable.
    919 	 */
    920 	if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
    921 	    EX_WAITOK, &result))
    922 		panic("swapdrum_add");
    923 
    924 	sdp->swd_drumoffset = (int)result;
    925 	sdp->swd_drumsize = npages;
    926 	sdp->swd_npages = size;
    927 	simple_lock(&uvm.swap_data_lock);
    928 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    929 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    930 	uvmexp.swpages += size;
    931 	simple_unlock(&uvm.swap_data_lock);
    932 	return (0);
    933 
    934 	/*
    935 	 * failure: clean up and return error.
    936 	 */
    937 
    938 bad:
    939 	if (sdp->swd_ex) {
    940 		extent_destroy(sdp->swd_ex);
    941 	}
    942 	if (vp != rootvp) {
    943 		(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
    944 	}
    945 	return (error);
    946 }
    947 
    948 /*
    949  * swap_off: stop swapping on swapdev
    950  *
    951  * => swap data should be locked, we will unlock.
    952  */
    953 static int
    954 swap_off(p, sdp)
    955 	struct proc *p;
    956 	struct swapdev *sdp;
    957 {
    958 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
    959 	UVMHIST_LOG(pdhist, "  dev=%x", sdp->swd_dev,0,0,0);
    960 
    961 	/* disable the swap area being removed */
    962 	sdp->swd_flags &= ~SWF_ENABLE;
    963 	simple_unlock(&uvm.swap_data_lock);
    964 
    965 	/*
    966 	 * the idea is to find all the pages that are paged out to this
    967 	 * device, and page them all in.  in uvm, swap-backed pageable
    968 	 * memory can take two forms: aobjs and anons.  call the
    969 	 * swapoff hook for each subsystem to bring in pages.
    970 	 */
    971 
    972 	if (uao_swap_off(sdp->swd_drumoffset,
    973 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
    974 	    anon_swap_off(sdp->swd_drumoffset,
    975 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
    976 
    977 		simple_lock(&uvm.swap_data_lock);
    978 		sdp->swd_flags |= SWF_ENABLE;
    979 		simple_unlock(&uvm.swap_data_lock);
    980 		return ENOMEM;
    981 	}
    982 	KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
    983 
    984 	/*
    985 	 * done with the vnode and saved creds.
    986 	 * drop our ref on the vnode before calling VOP_CLOSE()
    987 	 * so that spec_close() can tell if this is the last close.
    988 	 */
    989 	if (sdp->swd_vp->v_type == VREG) {
    990 		crfree(sdp->swd_cred);
    991 	}
    992 	vrele(sdp->swd_vp);
    993 	if (sdp->swd_vp != rootvp) {
    994 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
    995 	}
    996 
    997 	/* remove anons from the system */
    998 	uvm_anon_remove(sdp->swd_npages);
    999 
   1000 	simple_lock(&uvm.swap_data_lock);
   1001 	uvmexp.swpages -= sdp->swd_npages;
   1002 
   1003 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
   1004 		panic("swap_off: swapdev not in list\n");
   1005 	swaplist_trim();
   1006 	simple_unlock(&uvm.swap_data_lock);
   1007 
   1008 	/*
   1009 	 * free all resources!
   1010 	 */
   1011 	extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
   1012 		    EX_WAITOK);
   1013 	extent_destroy(sdp->swd_ex);
   1014 	free(sdp, M_VMSWAP);
   1015 	return (0);
   1016 }
   1017 
   1018 /*
   1019  * /dev/drum interface and i/o functions
   1020  */
   1021 
   1022 /*
   1023  * swread: the read function for the drum (just a call to physio)
   1024  */
   1025 /*ARGSUSED*/
   1026 int
   1027 swread(dev, uio, ioflag)
   1028 	dev_t dev;
   1029 	struct uio *uio;
   1030 	int ioflag;
   1031 {
   1032 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1033 
   1034 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1035 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1036 }
   1037 
   1038 /*
   1039  * swwrite: the write function for the drum (just a call to physio)
   1040  */
   1041 /*ARGSUSED*/
   1042 int
   1043 swwrite(dev, uio, ioflag)
   1044 	dev_t dev;
   1045 	struct uio *uio;
   1046 	int ioflag;
   1047 {
   1048 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1049 
   1050 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1051 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1052 }
   1053 
   1054 /*
   1055  * swstrategy: perform I/O on the drum
   1056  *
   1057  * => we must map the i/o request from the drum to the correct swapdev.
   1058  */
   1059 void
   1060 swstrategy(bp)
   1061 	struct buf *bp;
   1062 {
   1063 	struct swapdev *sdp;
   1064 	struct vnode *vp;
   1065 	int s, pageno, bn;
   1066 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1067 
   1068 	/*
   1069 	 * convert block number to swapdev.   note that swapdev can't
   1070 	 * be yanked out from under us because we are holding resources
   1071 	 * in it (i.e. the blocks we are doing I/O on).
   1072 	 */
   1073 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1074 	simple_lock(&uvm.swap_data_lock);
   1075 	sdp = swapdrum_getsdp(pageno);
   1076 	simple_unlock(&uvm.swap_data_lock);
   1077 	if (sdp == NULL) {
   1078 		bp->b_error = EINVAL;
   1079 		bp->b_flags |= B_ERROR;
   1080 		biodone(bp);
   1081 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1082 		return;
   1083 	}
   1084 
   1085 	/*
   1086 	 * convert drum page number to block number on this swapdev.
   1087 	 */
   1088 
   1089 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1090 	bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1091 
   1092 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1093 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1094 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1095 
   1096 	/*
   1097 	 * for block devices we finish up here.
   1098 	 * for regular files we have to do more work which we delegate
   1099 	 * to sw_reg_strategy().
   1100 	 */
   1101 
   1102 	switch (sdp->swd_vp->v_type) {
   1103 	default:
   1104 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
   1105 
   1106 	case VBLK:
   1107 
   1108 		/*
   1109 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1110 		 * on the swapdev (sdp).
   1111 		 */
   1112 		s = splbio();
   1113 		bp->b_blkno = bn;		/* swapdev block number */
   1114 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1115 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1116 
   1117 		/*
   1118 		 * if we are doing a write, we have to redirect the i/o on
   1119 		 * drum's v_numoutput counter to the swapdevs.
   1120 		 */
   1121 		if ((bp->b_flags & B_READ) == 0) {
   1122 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1123 			vp->v_numoutput++;	/* put it on swapdev */
   1124 		}
   1125 
   1126 		/*
   1127 		 * finally plug in swapdev vnode and start I/O
   1128 		 */
   1129 		bp->b_vp = vp;
   1130 		splx(s);
   1131 		VOP_STRATEGY(bp);
   1132 		return;
   1133 
   1134 	case VREG:
   1135 		/*
   1136 		 * delegate to sw_reg_strategy function.
   1137 		 */
   1138 		sw_reg_strategy(sdp, bp, bn);
   1139 		return;
   1140 	}
   1141 	/* NOTREACHED */
   1142 }
   1143 
   1144 /*
   1145  * sw_reg_strategy: handle swap i/o to regular files
   1146  */
   1147 static void
   1148 sw_reg_strategy(sdp, bp, bn)
   1149 	struct swapdev	*sdp;
   1150 	struct buf	*bp;
   1151 	int		bn;
   1152 {
   1153 	struct vnode	*vp;
   1154 	struct vndxfer	*vnx;
   1155 	daddr_t		nbn;
   1156 	caddr_t		addr;
   1157 	off_t		byteoff;
   1158 	int		s, off, nra, error, sz, resid;
   1159 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1160 
   1161 	/*
   1162 	 * allocate a vndxfer head for this transfer and point it to
   1163 	 * our buffer.
   1164 	 */
   1165 	getvndxfer(vnx);
   1166 	vnx->vx_flags = VX_BUSY;
   1167 	vnx->vx_error = 0;
   1168 	vnx->vx_pending = 0;
   1169 	vnx->vx_bp = bp;
   1170 	vnx->vx_sdp = sdp;
   1171 
   1172 	/*
   1173 	 * setup for main loop where we read filesystem blocks into
   1174 	 * our buffer.
   1175 	 */
   1176 	error = 0;
   1177 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1178 	addr = bp->b_data;		/* current position in buffer */
   1179 	byteoff = dbtob((u_int64_t)bn);
   1180 
   1181 	for (resid = bp->b_resid; resid; resid -= sz) {
   1182 		struct vndbuf	*nbp;
   1183 
   1184 		/*
   1185 		 * translate byteoffset into block number.  return values:
   1186 		 *   vp = vnode of underlying device
   1187 		 *  nbn = new block number (on underlying vnode dev)
   1188 		 *  nra = num blocks we can read-ahead (excludes requested
   1189 		 *	block)
   1190 		 */
   1191 		nra = 0;
   1192 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1193 				 	&vp, &nbn, &nra);
   1194 
   1195 		if (error == 0 && nbn == (daddr_t)-1) {
   1196 			/*
   1197 			 * this used to just set error, but that doesn't
   1198 			 * do the right thing.  Instead, it causes random
   1199 			 * memory errors.  The panic() should remain until
   1200 			 * this condition doesn't destabilize the system.
   1201 			 */
   1202 #if 1
   1203 			panic("sw_reg_strategy: swap to sparse file");
   1204 #else
   1205 			error = EIO;	/* failure */
   1206 #endif
   1207 		}
   1208 
   1209 		/*
   1210 		 * punt if there was an error or a hole in the file.
   1211 		 * we must wait for any i/o ops we have already started
   1212 		 * to finish before returning.
   1213 		 *
   1214 		 * XXX we could deal with holes here but it would be
   1215 		 * a hassle (in the write case).
   1216 		 */
   1217 		if (error) {
   1218 			s = splbio();
   1219 			vnx->vx_error = error;	/* pass error up */
   1220 			goto out;
   1221 		}
   1222 
   1223 		/*
   1224 		 * compute the size ("sz") of this transfer (in bytes).
   1225 		 */
   1226 		off = byteoff % sdp->swd_bsize;
   1227 		sz = (1 + nra) * sdp->swd_bsize - off;
   1228 		if (sz > resid)
   1229 			sz = resid;
   1230 
   1231 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1232 			    "vp %p/%p offset 0x%x/0x%x",
   1233 			    sdp->swd_vp, vp, byteoff, nbn);
   1234 
   1235 		/*
   1236 		 * now get a buf structure.   note that the vb_buf is
   1237 		 * at the front of the nbp structure so that you can
   1238 		 * cast pointers between the two structure easily.
   1239 		 */
   1240 		getvndbuf(nbp);
   1241 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
   1242 		nbp->vb_buf.b_bcount   = sz;
   1243 		nbp->vb_buf.b_bufsize  = sz;
   1244 		nbp->vb_buf.b_error    = 0;
   1245 		nbp->vb_buf.b_data     = addr;
   1246 		nbp->vb_buf.b_lblkno   = 0;
   1247 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1248 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1249 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
   1250 		nbp->vb_buf.b_vp       = vp;
   1251 		if (vp->v_type == VBLK) {
   1252 			nbp->vb_buf.b_dev = vp->v_rdev;
   1253 		}
   1254 		LIST_INIT(&nbp->vb_buf.b_dep);
   1255 
   1256 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1257 
   1258 		/*
   1259 		 * Just sort by block number
   1260 		 */
   1261 		s = splbio();
   1262 		if (vnx->vx_error != 0) {
   1263 			putvndbuf(nbp);
   1264 			goto out;
   1265 		}
   1266 		vnx->vx_pending++;
   1267 
   1268 		/* sort it in and start I/O if we are not over our limit */
   1269 		disksort_blkno(&sdp->swd_tab, &nbp->vb_buf);
   1270 		sw_reg_start(sdp);
   1271 		splx(s);
   1272 
   1273 		/*
   1274 		 * advance to the next I/O
   1275 		 */
   1276 		byteoff += sz;
   1277 		addr += sz;
   1278 	}
   1279 
   1280 	s = splbio();
   1281 
   1282 out: /* Arrive here at splbio */
   1283 	vnx->vx_flags &= ~VX_BUSY;
   1284 	if (vnx->vx_pending == 0) {
   1285 		if (vnx->vx_error != 0) {
   1286 			bp->b_error = vnx->vx_error;
   1287 			bp->b_flags |= B_ERROR;
   1288 		}
   1289 		putvndxfer(vnx);
   1290 		biodone(bp);
   1291 	}
   1292 	splx(s);
   1293 }
   1294 
   1295 /*
   1296  * sw_reg_start: start an I/O request on the requested swapdev
   1297  *
   1298  * => reqs are sorted by disksort (above)
   1299  */
   1300 static void
   1301 sw_reg_start(sdp)
   1302 	struct swapdev	*sdp;
   1303 {
   1304 	struct buf	*bp;
   1305 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1306 
   1307 	/* recursion control */
   1308 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1309 		return;
   1310 
   1311 	sdp->swd_flags |= SWF_BUSY;
   1312 
   1313 	while (sdp->swd_active < sdp->swd_maxactive) {
   1314 		bp = BUFQ_FIRST(&sdp->swd_tab);
   1315 		if (bp == NULL)
   1316 			break;
   1317 		BUFQ_REMOVE(&sdp->swd_tab, bp);
   1318 		sdp->swd_active++;
   1319 
   1320 		UVMHIST_LOG(pdhist,
   1321 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1322 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1323 		if ((bp->b_flags & B_READ) == 0)
   1324 			bp->b_vp->v_numoutput++;
   1325 
   1326 		VOP_STRATEGY(bp);
   1327 	}
   1328 	sdp->swd_flags &= ~SWF_BUSY;
   1329 }
   1330 
   1331 /*
   1332  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1333  *
   1334  * => note that we can recover the vndbuf struct by casting the buf ptr
   1335  */
   1336 static void
   1337 sw_reg_iodone(bp)
   1338 	struct buf *bp;
   1339 {
   1340 	struct vndbuf *vbp = (struct vndbuf *) bp;
   1341 	struct vndxfer *vnx = vbp->vb_xfer;
   1342 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1343 	struct swapdev	*sdp = vnx->vx_sdp;
   1344 	int		s, resid;
   1345 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1346 
   1347 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1348 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1349 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1350 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1351 
   1352 	/*
   1353 	 * protect vbp at splbio and update.
   1354 	 */
   1355 
   1356 	s = splbio();
   1357 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1358 	pbp->b_resid -= resid;
   1359 	vnx->vx_pending--;
   1360 
   1361 	if (vbp->vb_buf.b_error) {
   1362 		UVMHIST_LOG(pdhist, "  got error=%d !",
   1363 		    vbp->vb_buf.b_error, 0, 0, 0);
   1364 
   1365 		/* pass error upward */
   1366 		vnx->vx_error = vbp->vb_buf.b_error;
   1367 	}
   1368 
   1369 	/*
   1370 	 * kill vbp structure
   1371 	 */
   1372 	putvndbuf(vbp);
   1373 
   1374 	/*
   1375 	 * wrap up this transaction if it has run to completion or, in
   1376 	 * case of an error, when all auxiliary buffers have returned.
   1377 	 */
   1378 	if (vnx->vx_error != 0) {
   1379 		/* pass error upward */
   1380 		pbp->b_flags |= B_ERROR;
   1381 		pbp->b_error = vnx->vx_error;
   1382 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1383 			putvndxfer(vnx);
   1384 			biodone(pbp);
   1385 		}
   1386 	} else if (pbp->b_resid == 0) {
   1387 		KASSERT(vnx->vx_pending == 0);
   1388 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1389 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1390 			    pbp, vnx->vx_error, 0, 0);
   1391 			putvndxfer(vnx);
   1392 			biodone(pbp);
   1393 		}
   1394 	}
   1395 
   1396 	/*
   1397 	 * done!   start next swapdev I/O if one is pending
   1398 	 */
   1399 	sdp->swd_active--;
   1400 	sw_reg_start(sdp);
   1401 	splx(s);
   1402 }
   1403 
   1404 
   1405 /*
   1406  * uvm_swap_alloc: allocate space on swap
   1407  *
   1408  * => allocation is done "round robin" down the priority list, as we
   1409  *	allocate in a priority we "rotate" the circle queue.
   1410  * => space can be freed with uvm_swap_free
   1411  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1412  * => we lock uvm.swap_data_lock
   1413  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1414  */
   1415 int
   1416 uvm_swap_alloc(nslots, lessok)
   1417 	int *nslots;	/* IN/OUT */
   1418 	boolean_t lessok;
   1419 {
   1420 	struct swapdev *sdp;
   1421 	struct swappri *spp;
   1422 	u_long	result;
   1423 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1424 
   1425 	/*
   1426 	 * no swap devices configured yet?   definite failure.
   1427 	 */
   1428 	if (uvmexp.nswapdev < 1)
   1429 		return 0;
   1430 
   1431 	/*
   1432 	 * lock data lock, convert slots into blocks, and enter loop
   1433 	 */
   1434 	simple_lock(&uvm.swap_data_lock);
   1435 
   1436 ReTry:	/* XXXMRG */
   1437 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1438 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1439 			/* if it's not enabled, then we can't swap from it */
   1440 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1441 				continue;
   1442 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1443 				continue;
   1444 			if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
   1445 					 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
   1446 					 &result) != 0) {
   1447 				continue;
   1448 			}
   1449 
   1450 			/*
   1451 			 * successful allocation!  now rotate the circleq.
   1452 			 */
   1453 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1454 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1455 			sdp->swd_npginuse += *nslots;
   1456 			uvmexp.swpginuse += *nslots;
   1457 			simple_unlock(&uvm.swap_data_lock);
   1458 			/* done!  return drum slot number */
   1459 			UVMHIST_LOG(pdhist,
   1460 			    "success!  returning %d slots starting at %d",
   1461 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1462 			return (result + sdp->swd_drumoffset);
   1463 		}
   1464 	}
   1465 
   1466 	/* XXXMRG: BEGIN HACK */
   1467 	if (*nslots > 1 && lessok) {
   1468 		*nslots = 1;
   1469 		goto ReTry;	/* XXXMRG: ugh!  extent should support this for us */
   1470 	}
   1471 	/* XXXMRG: END HACK */
   1472 
   1473 	simple_unlock(&uvm.swap_data_lock);
   1474 	return 0;
   1475 }
   1476 
   1477 /*
   1478  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1479  *
   1480  * => we lock uvm.swap_data_lock
   1481  */
   1482 void
   1483 uvm_swap_markbad(startslot, nslots)
   1484 	int startslot;
   1485 	int nslots;
   1486 {
   1487 	struct swapdev *sdp;
   1488 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1489 
   1490 	simple_lock(&uvm.swap_data_lock);
   1491 	sdp = swapdrum_getsdp(startslot);
   1492 
   1493 	/*
   1494 	 * we just keep track of how many pages have been marked bad
   1495 	 * in this device, to make everything add up in swap_off().
   1496 	 * we assume here that the range of slots will all be within
   1497 	 * one swap device.
   1498 	 */
   1499 
   1500 	sdp->swd_npgbad += nslots;
   1501 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1502 	simple_unlock(&uvm.swap_data_lock);
   1503 }
   1504 
   1505 /*
   1506  * uvm_swap_free: free swap slots
   1507  *
   1508  * => this can be all or part of an allocation made by uvm_swap_alloc
   1509  * => we lock uvm.swap_data_lock
   1510  */
   1511 void
   1512 uvm_swap_free(startslot, nslots)
   1513 	int startslot;
   1514 	int nslots;
   1515 {
   1516 	struct swapdev *sdp;
   1517 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1518 
   1519 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1520 	    startslot, 0, 0);
   1521 
   1522 	/*
   1523 	 * ignore attempts to free the "bad" slot.
   1524 	 */
   1525 
   1526 	if (startslot == SWSLOT_BAD) {
   1527 		return;
   1528 	}
   1529 
   1530 	/*
   1531 	 * convert drum slot offset back to sdp, free the blocks
   1532 	 * in the extent, and return.   must hold pri lock to do
   1533 	 * lookup and access the extent.
   1534 	 */
   1535 
   1536 	simple_lock(&uvm.swap_data_lock);
   1537 	sdp = swapdrum_getsdp(startslot);
   1538 	KASSERT(uvmexp.nswapdev >= 1);
   1539 	KASSERT(sdp != NULL);
   1540 	KASSERT(sdp->swd_npginuse >= nslots);
   1541 	if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
   1542 			EX_MALLOCOK|EX_NOWAIT) != 0) {
   1543 		printf("warning: resource shortage: %d pages of swap lost\n",
   1544 			nslots);
   1545 	}
   1546 	sdp->swd_npginuse -= nslots;
   1547 	uvmexp.swpginuse -= nslots;
   1548 	simple_unlock(&uvm.swap_data_lock);
   1549 }
   1550 
   1551 /*
   1552  * uvm_swap_put: put any number of pages into a contig place on swap
   1553  *
   1554  * => can be sync or async
   1555  */
   1556 
   1557 int
   1558 uvm_swap_put(swslot, ppsp, npages, flags)
   1559 	int swslot;
   1560 	struct vm_page **ppsp;
   1561 	int npages;
   1562 	int flags;
   1563 {
   1564 	int result;
   1565 
   1566 	result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1567 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1568 	return (result);
   1569 }
   1570 
   1571 /*
   1572  * uvm_swap_get: get a single page from swap
   1573  *
   1574  * => usually a sync op (from fault)
   1575  */
   1576 
   1577 int
   1578 uvm_swap_get(page, swslot, flags)
   1579 	struct vm_page *page;
   1580 	int swslot, flags;
   1581 {
   1582 	int	result;
   1583 
   1584 	uvmexp.nswget++;
   1585 	KASSERT(flags & PGO_SYNCIO);
   1586 	if (swslot == SWSLOT_BAD) {
   1587 		return EIO;
   1588 	}
   1589 	result = uvm_swap_io(&page, swslot, 1, B_READ |
   1590 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1591 	if (result == 0) {
   1592 
   1593 		/*
   1594 		 * this page is no longer only in swap.
   1595 		 */
   1596 
   1597 		simple_lock(&uvm.swap_data_lock);
   1598 		uvmexp.swpgonly--;
   1599 		simple_unlock(&uvm.swap_data_lock);
   1600 	}
   1601 	return (result);
   1602 }
   1603 
   1604 /*
   1605  * uvm_swap_io: do an i/o operation to swap
   1606  */
   1607 
   1608 static int
   1609 uvm_swap_io(pps, startslot, npages, flags)
   1610 	struct vm_page **pps;
   1611 	int startslot, npages, flags;
   1612 {
   1613 	daddr_t startblk;
   1614 	struct	buf *bp;
   1615 	vaddr_t kva;
   1616 	int	error, s, mapinflags;
   1617 	boolean_t write, async;
   1618 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1619 
   1620 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1621 	    startslot, npages, flags, 0);
   1622 
   1623 	write = (flags & B_READ) == 0;
   1624 	async = (flags & B_ASYNC) != 0;
   1625 
   1626 	/*
   1627 	 * convert starting drum slot to block number
   1628 	 */
   1629 
   1630 	startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
   1631 
   1632 	/*
   1633 	 * first, map the pages into the kernel.
   1634 	 */
   1635 
   1636 	mapinflags = !write ?
   1637 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1638 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1639 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1640 
   1641 	/*
   1642 	 * now allocate a buf for the i/o.
   1643 	 */
   1644 
   1645 	s = splbio();
   1646 	bp = pool_get(&bufpool, PR_WAITOK);
   1647 	splx(s);
   1648 
   1649 	/*
   1650 	 * fill in the bp/sbp.   we currently route our i/o through
   1651 	 * /dev/drum's vnode [swapdev_vp].
   1652 	 */
   1653 
   1654 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
   1655 	bp->b_proc = &proc0;	/* XXX */
   1656 	bp->b_vnbufs.le_next = NOLIST;
   1657 	bp->b_data = (caddr_t)kva;
   1658 	bp->b_blkno = startblk;
   1659 	bp->b_vp = swapdev_vp;
   1660 	bp->b_dev = swapdev_vp->v_rdev;
   1661 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1662 	LIST_INIT(&bp->b_dep);
   1663 
   1664 	/*
   1665 	 * bump v_numoutput (counter of number of active outputs).
   1666 	 */
   1667 
   1668 	if (write) {
   1669 		s = splbio();
   1670 		swapdev_vp->v_numoutput++;
   1671 		splx(s);
   1672 	}
   1673 
   1674 	/*
   1675 	 * for async ops we must set up the iodone handler.
   1676 	 */
   1677 
   1678 	if (async) {
   1679 		bp->b_flags |= B_CALL;
   1680 		bp->b_iodone = uvm_aio_biodone;
   1681 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1682 	}
   1683 	UVMHIST_LOG(pdhist,
   1684 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1685 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1686 
   1687 	/*
   1688 	 * now we start the I/O, and if async, return.
   1689 	 */
   1690 
   1691 	VOP_STRATEGY(bp);
   1692 	if (async)
   1693 		return 0;
   1694 
   1695 	/*
   1696 	 * must be sync i/o.   wait for it to finish
   1697 	 */
   1698 
   1699 	error = biowait(bp);
   1700 
   1701 	/*
   1702 	 * kill the pager mapping
   1703 	 */
   1704 
   1705 	uvm_pagermapout(kva, npages);
   1706 
   1707 	/*
   1708 	 * now dispose of the buf and we're done.
   1709 	 */
   1710 
   1711 	s = splbio();
   1712 	if (write)
   1713 		vwakeup(bp);
   1714 	pool_put(&bufpool, bp);
   1715 	splx(s);
   1716 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1717 	return (error);
   1718 }
   1719