uvm_swap.c revision 1.60 1 /* $NetBSD: uvm_swap.c,v 1.60 2002/03/09 07:28:20 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.60 2002/03/09 07:28:20 thorpej Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/conf.h>
46 #include <sys/proc.h>
47 #include <sys/namei.h>
48 #include <sys/disklabel.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/vnode.h>
53 #include <sys/file.h>
54 #include <sys/extent.h>
55 #include <sys/mount.h>
56 #include <sys/pool.h>
57 #include <sys/syscallargs.h>
58 #include <sys/swap.h>
59
60 #include <uvm/uvm.h>
61
62 #include <miscfs/specfs/specdev.h>
63
64 /*
65 * uvm_swap.c: manage configuration and i/o to swap space.
66 */
67
68 /*
69 * swap space is managed in the following way:
70 *
71 * each swap partition or file is described by a "swapdev" structure.
72 * each "swapdev" structure contains a "swapent" structure which contains
73 * information that is passed up to the user (via system calls).
74 *
75 * each swap partition is assigned a "priority" (int) which controls
76 * swap parition usage.
77 *
78 * the system maintains a global data structure describing all swap
79 * partitions/files. there is a sorted LIST of "swappri" structures
80 * which describe "swapdev"'s at that priority. this LIST is headed
81 * by the "swap_priority" global var. each "swappri" contains a
82 * CIRCLEQ of "swapdev" structures at that priority.
83 *
84 * locking:
85 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
86 * system call and prevents the swap priority list from changing
87 * while we are in the middle of a system call (e.g. SWAP_STATS).
88 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
89 * structures including the priority list, the swapdev structures,
90 * and the swapmap extent.
91 *
92 * each swap device has the following info:
93 * - swap device in use (could be disabled, preventing future use)
94 * - swap enabled (allows new allocations on swap)
95 * - map info in /dev/drum
96 * - vnode pointer
97 * for swap files only:
98 * - block size
99 * - max byte count in buffer
100 * - buffer
101 *
102 * userland controls and configures swap with the swapctl(2) system call.
103 * the sys_swapctl performs the following operations:
104 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
105 * [2] SWAP_STATS: given a pointer to an array of swapent structures
106 * (passed in via "arg") of a size passed in via "misc" ... we load
107 * the current swap config into the array.
108 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
109 * priority in "misc", start swapping on it.
110 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
111 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
112 * "misc")
113 */
114
115 /*
116 * swapdev: describes a single swap partition/file
117 *
118 * note the following should be true:
119 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
120 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
121 */
122 struct swapdev {
123 struct oswapent swd_ose;
124 #define swd_dev swd_ose.ose_dev /* device id */
125 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
126 #define swd_priority swd_ose.ose_priority /* our priority */
127 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
128 char *swd_path; /* saved pathname of device */
129 int swd_pathlen; /* length of pathname */
130 int swd_npages; /* #pages we can use */
131 int swd_npginuse; /* #pages in use */
132 int swd_npgbad; /* #pages bad */
133 int swd_drumoffset; /* page0 offset in drum */
134 int swd_drumsize; /* #pages in drum */
135 struct extent *swd_ex; /* extent for this swapdev */
136 char swd_exname[12]; /* name of extent above */
137 struct vnode *swd_vp; /* backing vnode */
138 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
139
140 int swd_bsize; /* blocksize (bytes) */
141 int swd_maxactive; /* max active i/o reqs */
142 struct buf_queue swd_tab; /* buffer list */
143 int swd_active; /* number of active buffers */
144 };
145
146 /*
147 * swap device priority entry; the list is kept sorted on `spi_priority'.
148 */
149 struct swappri {
150 int spi_priority; /* priority */
151 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
152 /* circleq of swapdevs at this priority */
153 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
154 };
155
156 /*
157 * The following two structures are used to keep track of data transfers
158 * on swap devices associated with regular files.
159 * NOTE: this code is more or less a copy of vnd.c; we use the same
160 * structure names here to ease porting..
161 */
162 struct vndxfer {
163 struct buf *vx_bp; /* Pointer to parent buffer */
164 struct swapdev *vx_sdp;
165 int vx_error;
166 int vx_pending; /* # of pending aux buffers */
167 int vx_flags;
168 #define VX_BUSY 1
169 #define VX_DEAD 2
170 };
171
172 struct vndbuf {
173 struct buf vb_buf;
174 struct vndxfer *vb_xfer;
175 };
176
177
178 /*
179 * We keep a of pool vndbuf's and vndxfer structures.
180 */
181 static struct pool vndxfer_pool;
182 static struct pool vndbuf_pool;
183
184 #define getvndxfer(vnx) do { \
185 int s = splbio(); \
186 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \
187 splx(s); \
188 } while (0)
189
190 #define putvndxfer(vnx) { \
191 pool_put(&vndxfer_pool, (void *)(vnx)); \
192 }
193
194 #define getvndbuf(vbp) do { \
195 int s = splbio(); \
196 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \
197 splx(s); \
198 } while (0)
199
200 #define putvndbuf(vbp) { \
201 pool_put(&vndbuf_pool, (void *)(vbp)); \
202 }
203
204 /* /dev/drum */
205 bdev_decl(sw);
206 cdev_decl(sw);
207
208 /*
209 * local variables
210 */
211 static struct extent *swapmap; /* controls the mapping of /dev/drum */
212
213 /* list of all active swap devices [by priority] */
214 LIST_HEAD(swap_priority, swappri);
215 static struct swap_priority swap_priority;
216
217 /* locks */
218 struct lock swap_syscall_lock;
219
220 /*
221 * prototypes
222 */
223 static struct swapdev *swapdrum_getsdp __P((int));
224
225 static struct swapdev *swaplist_find __P((struct vnode *, int));
226 static void swaplist_insert __P((struct swapdev *,
227 struct swappri *, int));
228 static void swaplist_trim __P((void));
229
230 static int swap_on __P((struct proc *, struct swapdev *));
231 static int swap_off __P((struct proc *, struct swapdev *));
232
233 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
234 static void sw_reg_iodone __P((struct buf *));
235 static void sw_reg_start __P((struct swapdev *));
236
237 static int uvm_swap_io __P((struct vm_page **, int, int, int));
238
239 /*
240 * uvm_swap_init: init the swap system data structures and locks
241 *
242 * => called at boot time from init_main.c after the filesystems
243 * are brought up (which happens after uvm_init())
244 */
245 void
246 uvm_swap_init()
247 {
248 UVMHIST_FUNC("uvm_swap_init");
249
250 UVMHIST_CALLED(pdhist);
251 /*
252 * first, init the swap list, its counter, and its lock.
253 * then get a handle on the vnode for /dev/drum by using
254 * the its dev_t number ("swapdev", from MD conf.c).
255 */
256
257 LIST_INIT(&swap_priority);
258 uvmexp.nswapdev = 0;
259 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
260 simple_lock_init(&uvm.swap_data_lock);
261
262 if (bdevvp(swapdev, &swapdev_vp))
263 panic("uvm_swap_init: can't get vnode for swap device");
264
265 /*
266 * create swap block resource map to map /dev/drum. the range
267 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
268 * that block 0 is reserved (used to indicate an allocation
269 * failure, or no allocation).
270 */
271 swapmap = extent_create("swapmap", 1, INT_MAX,
272 M_VMSWAP, 0, 0, EX_NOWAIT);
273 if (swapmap == 0)
274 panic("uvm_swap_init: extent_create failed");
275
276 /*
277 * allocate pools for structures used for swapping to files.
278 */
279
280 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0,
281 "swp vnx", NULL);
282
283 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0,
284 "swp vnd", NULL);
285
286 /*
287 * done!
288 */
289 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
290 }
291
292 /*
293 * swaplist functions: functions that operate on the list of swap
294 * devices on the system.
295 */
296
297 /*
298 * swaplist_insert: insert swap device "sdp" into the global list
299 *
300 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
301 * => caller must provide a newly malloc'd swappri structure (we will
302 * FREE it if we don't need it... this it to prevent malloc blocking
303 * here while adding swap)
304 */
305 static void
306 swaplist_insert(sdp, newspp, priority)
307 struct swapdev *sdp;
308 struct swappri *newspp;
309 int priority;
310 {
311 struct swappri *spp, *pspp;
312 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
313
314 /*
315 * find entry at or after which to insert the new device.
316 */
317 pspp = NULL;
318 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
319 if (priority <= spp->spi_priority)
320 break;
321 pspp = spp;
322 }
323
324 /*
325 * new priority?
326 */
327 if (spp == NULL || spp->spi_priority != priority) {
328 spp = newspp; /* use newspp! */
329 UVMHIST_LOG(pdhist, "created new swappri = %d",
330 priority, 0, 0, 0);
331
332 spp->spi_priority = priority;
333 CIRCLEQ_INIT(&spp->spi_swapdev);
334
335 if (pspp)
336 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
337 else
338 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
339 } else {
340 /* we don't need a new priority structure, free it */
341 FREE(newspp, M_VMSWAP);
342 }
343
344 /*
345 * priority found (or created). now insert on the priority's
346 * circleq list and bump the total number of swapdevs.
347 */
348 sdp->swd_priority = priority;
349 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
350 uvmexp.nswapdev++;
351 }
352
353 /*
354 * swaplist_find: find and optionally remove a swap device from the
355 * global list.
356 *
357 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
358 * => we return the swapdev we found (and removed)
359 */
360 static struct swapdev *
361 swaplist_find(vp, remove)
362 struct vnode *vp;
363 boolean_t remove;
364 {
365 struct swapdev *sdp;
366 struct swappri *spp;
367
368 /*
369 * search the lists for the requested vp
370 */
371
372 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
373 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
374 if (sdp->swd_vp == vp) {
375 if (remove) {
376 CIRCLEQ_REMOVE(&spp->spi_swapdev,
377 sdp, swd_next);
378 uvmexp.nswapdev--;
379 }
380 return(sdp);
381 }
382 }
383 }
384 return (NULL);
385 }
386
387
388 /*
389 * swaplist_trim: scan priority list for empty priority entries and kill
390 * them.
391 *
392 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
393 */
394 static void
395 swaplist_trim()
396 {
397 struct swappri *spp, *nextspp;
398
399 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
400 nextspp = LIST_NEXT(spp, spi_swappri);
401 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
402 (void *)&spp->spi_swapdev)
403 continue;
404 LIST_REMOVE(spp, spi_swappri);
405 free(spp, M_VMSWAP);
406 }
407 }
408
409 /*
410 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
411 * to the "swapdev" that maps that section of the drum.
412 *
413 * => each swapdev takes one big contig chunk of the drum
414 * => caller must hold uvm.swap_data_lock
415 */
416 static struct swapdev *
417 swapdrum_getsdp(pgno)
418 int pgno;
419 {
420 struct swapdev *sdp;
421 struct swappri *spp;
422
423 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
424 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
425 if (sdp->swd_flags & SWF_FAKE)
426 continue;
427 if (pgno >= sdp->swd_drumoffset &&
428 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
429 return sdp;
430 }
431 }
432 }
433 return NULL;
434 }
435
436
437 /*
438 * sys_swapctl: main entry point for swapctl(2) system call
439 * [with two helper functions: swap_on and swap_off]
440 */
441 int
442 sys_swapctl(p, v, retval)
443 struct proc *p;
444 void *v;
445 register_t *retval;
446 {
447 struct sys_swapctl_args /* {
448 syscallarg(int) cmd;
449 syscallarg(void *) arg;
450 syscallarg(int) misc;
451 } */ *uap = (struct sys_swapctl_args *)v;
452 struct vnode *vp;
453 struct nameidata nd;
454 struct swappri *spp;
455 struct swapdev *sdp;
456 struct swapent *sep;
457 char userpath[PATH_MAX + 1];
458 size_t len;
459 int count, error, misc;
460 int priority;
461 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
462
463 misc = SCARG(uap, misc);
464
465 /*
466 * ensure serialized syscall access by grabbing the swap_syscall_lock
467 */
468 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
469
470 /*
471 * we handle the non-priv NSWAP and STATS request first.
472 *
473 * SWAP_NSWAP: return number of config'd swap devices
474 * [can also be obtained with uvmexp sysctl]
475 */
476 if (SCARG(uap, cmd) == SWAP_NSWAP) {
477 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
478 0, 0, 0);
479 *retval = uvmexp.nswapdev;
480 error = 0;
481 goto out;
482 }
483
484 /*
485 * SWAP_STATS: get stats on current # of configured swap devs
486 *
487 * note that the swap_priority list can't change as long
488 * as we are holding the swap_syscall_lock. we don't want
489 * to grab the uvm.swap_data_lock because we may fault&sleep during
490 * copyout() and we don't want to be holding that lock then!
491 */
492 if (SCARG(uap, cmd) == SWAP_STATS
493 #if defined(COMPAT_13)
494 || SCARG(uap, cmd) == SWAP_OSTATS
495 #endif
496 ) {
497 sep = (struct swapent *)SCARG(uap, arg);
498 count = 0;
499
500 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
501 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
502 sdp != (void *)&spp->spi_swapdev && misc-- > 0;
503 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
504 /*
505 * backwards compatibility for system call.
506 * note that we use 'struct oswapent' as an
507 * overlay into both 'struct swapdev' and
508 * the userland 'struct swapent', as we
509 * want to retain backwards compatibility
510 * with NetBSD 1.3.
511 */
512 sdp->swd_ose.ose_inuse =
513 btodb((u_int64_t)sdp->swd_npginuse <<
514 PAGE_SHIFT);
515 error = copyout(&sdp->swd_ose, sep,
516 sizeof(struct oswapent));
517
518 /* now copy out the path if necessary */
519 #if defined(COMPAT_13)
520 if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
521 #else
522 if (error == 0)
523 #endif
524 error = copyout(sdp->swd_path,
525 &sep->se_path, sdp->swd_pathlen);
526
527 if (error)
528 goto out;
529 count++;
530 #if defined(COMPAT_13)
531 if (SCARG(uap, cmd) == SWAP_OSTATS)
532 sep = (struct swapent *)
533 ((struct oswapent *)sep + 1);
534 else
535 #endif
536 sep++;
537 }
538 }
539
540 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
541
542 *retval = count;
543 error = 0;
544 goto out;
545 }
546 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
547 dev_t *devp = (dev_t *)SCARG(uap, arg);
548
549 error = copyout(&dumpdev, devp, sizeof(dumpdev));
550 goto out;
551 }
552
553 /*
554 * all other requests require superuser privs. verify.
555 */
556 if ((error = suser(p->p_ucred, &p->p_acflag)))
557 goto out;
558
559 /*
560 * at this point we expect a path name in arg. we will
561 * use namei() to gain a vnode reference (vref), and lock
562 * the vnode (VOP_LOCK).
563 *
564 * XXX: a NULL arg means use the root vnode pointer (e.g. for
565 * miniroot)
566 */
567 if (SCARG(uap, arg) == NULL) {
568 vp = rootvp; /* miniroot */
569 if (vget(vp, LK_EXCLUSIVE)) {
570 error = EBUSY;
571 goto out;
572 }
573 if (SCARG(uap, cmd) == SWAP_ON &&
574 copystr("miniroot", userpath, sizeof userpath, &len))
575 panic("swapctl: miniroot copy failed");
576 } else {
577 int space;
578 char *where;
579
580 if (SCARG(uap, cmd) == SWAP_ON) {
581 if ((error = copyinstr(SCARG(uap, arg), userpath,
582 sizeof userpath, &len)))
583 goto out;
584 space = UIO_SYSSPACE;
585 where = userpath;
586 } else {
587 space = UIO_USERSPACE;
588 where = (char *)SCARG(uap, arg);
589 }
590 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
591 if ((error = namei(&nd)))
592 goto out;
593 vp = nd.ni_vp;
594 }
595 /* note: "vp" is referenced and locked */
596
597 error = 0; /* assume no error */
598 switch(SCARG(uap, cmd)) {
599
600 case SWAP_DUMPDEV:
601 if (vp->v_type != VBLK) {
602 error = ENOTBLK;
603 break;
604 }
605 dumpdev = vp->v_rdev;
606 break;
607
608 case SWAP_CTL:
609 /*
610 * get new priority, remove old entry (if any) and then
611 * reinsert it in the correct place. finally, prune out
612 * any empty priority structures.
613 */
614 priority = SCARG(uap, misc);
615 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
616 simple_lock(&uvm.swap_data_lock);
617 if ((sdp = swaplist_find(vp, 1)) == NULL) {
618 error = ENOENT;
619 } else {
620 swaplist_insert(sdp, spp, priority);
621 swaplist_trim();
622 }
623 simple_unlock(&uvm.swap_data_lock);
624 if (error)
625 free(spp, M_VMSWAP);
626 break;
627
628 case SWAP_ON:
629
630 /*
631 * check for duplicates. if none found, then insert a
632 * dummy entry on the list to prevent someone else from
633 * trying to enable this device while we are working on
634 * it.
635 */
636
637 priority = SCARG(uap, misc);
638 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
639 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
640 simple_lock(&uvm.swap_data_lock);
641 if (swaplist_find(vp, 0) != NULL) {
642 error = EBUSY;
643 simple_unlock(&uvm.swap_data_lock);
644 free(sdp, M_VMSWAP);
645 free(spp, M_VMSWAP);
646 break;
647 }
648 memset(sdp, 0, sizeof(*sdp));
649 sdp->swd_flags = SWF_FAKE; /* placeholder only */
650 sdp->swd_vp = vp;
651 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
652 BUFQ_INIT(&sdp->swd_tab);
653
654 swaplist_insert(sdp, spp, priority);
655 simple_unlock(&uvm.swap_data_lock);
656
657 sdp->swd_pathlen = len;
658 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
659 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
660 panic("swapctl: copystr");
661
662 /*
663 * we've now got a FAKE placeholder in the swap list.
664 * now attempt to enable swap on it. if we fail, undo
665 * what we've done and kill the fake entry we just inserted.
666 * if swap_on is a success, it will clear the SWF_FAKE flag
667 */
668
669 if ((error = swap_on(p, sdp)) != 0) {
670 simple_lock(&uvm.swap_data_lock);
671 (void) swaplist_find(vp, 1); /* kill fake entry */
672 swaplist_trim();
673 simple_unlock(&uvm.swap_data_lock);
674 free(sdp->swd_path, M_VMSWAP);
675 free(sdp, M_VMSWAP);
676 break;
677 }
678 break;
679
680 case SWAP_OFF:
681 simple_lock(&uvm.swap_data_lock);
682 if ((sdp = swaplist_find(vp, 0)) == NULL) {
683 simple_unlock(&uvm.swap_data_lock);
684 error = ENXIO;
685 break;
686 }
687
688 /*
689 * If a device isn't in use or enabled, we
690 * can't stop swapping from it (again).
691 */
692 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
693 simple_unlock(&uvm.swap_data_lock);
694 error = EBUSY;
695 break;
696 }
697
698 /*
699 * do the real work.
700 */
701 error = swap_off(p, sdp);
702 break;
703
704 default:
705 error = EINVAL;
706 }
707
708 /*
709 * done! release the ref gained by namei() and unlock.
710 */
711 vput(vp);
712
713 out:
714 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
715
716 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
717 return (error);
718 }
719
720 /*
721 * swap_on: attempt to enable a swapdev for swapping. note that the
722 * swapdev is already on the global list, but disabled (marked
723 * SWF_FAKE).
724 *
725 * => we avoid the start of the disk (to protect disk labels)
726 * => we also avoid the miniroot, if we are swapping to root.
727 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
728 * if needed.
729 */
730 static int
731 swap_on(p, sdp)
732 struct proc *p;
733 struct swapdev *sdp;
734 {
735 static int count = 0; /* static */
736 struct vnode *vp;
737 int error, npages, nblocks, size;
738 long addr;
739 u_long result;
740 struct vattr va;
741 #ifdef NFS
742 extern int (**nfsv2_vnodeop_p) __P((void *));
743 #endif /* NFS */
744 dev_t dev;
745 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
746
747 /*
748 * we want to enable swapping on sdp. the swd_vp contains
749 * the vnode we want (locked and ref'd), and the swd_dev
750 * contains the dev_t of the file, if it a block device.
751 */
752
753 vp = sdp->swd_vp;
754 dev = sdp->swd_dev;
755
756 /*
757 * open the swap file (mostly useful for block device files to
758 * let device driver know what is up).
759 *
760 * we skip the open/close for root on swap because the root
761 * has already been opened when root was mounted (mountroot).
762 */
763 if (vp != rootvp) {
764 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
765 return (error);
766 }
767
768 /* XXX this only works for block devices */
769 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
770
771 /*
772 * we now need to determine the size of the swap area. for
773 * block specials we can call the d_psize function.
774 * for normal files, we must stat [get attrs].
775 *
776 * we put the result in nblks.
777 * for normal files, we also want the filesystem block size
778 * (which we get with statfs).
779 */
780 switch (vp->v_type) {
781 case VBLK:
782 if (bdevsw[major(dev)].d_psize == 0 ||
783 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
784 error = ENXIO;
785 goto bad;
786 }
787 break;
788
789 case VREG:
790 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
791 goto bad;
792 nblocks = (int)btodb(va.va_size);
793 if ((error =
794 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
795 goto bad;
796
797 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
798 /*
799 * limit the max # of outstanding I/O requests we issue
800 * at any one time. take it easy on NFS servers.
801 */
802 #ifdef NFS
803 if (vp->v_op == nfsv2_vnodeop_p)
804 sdp->swd_maxactive = 2; /* XXX */
805 else
806 #endif /* NFS */
807 sdp->swd_maxactive = 8; /* XXX */
808 break;
809
810 default:
811 error = ENXIO;
812 goto bad;
813 }
814
815 /*
816 * save nblocks in a safe place and convert to pages.
817 */
818
819 sdp->swd_ose.ose_nblks = nblocks;
820 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
821
822 /*
823 * for block special files, we want to make sure that leave
824 * the disklabel and bootblocks alone, so we arrange to skip
825 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
826 * note that because of this the "size" can be less than the
827 * actual number of blocks on the device.
828 */
829 if (vp->v_type == VBLK) {
830 /* we use pages 1 to (size - 1) [inclusive] */
831 size = npages - 1;
832 addr = 1;
833 } else {
834 /* we use pages 0 to (size - 1) [inclusive] */
835 size = npages;
836 addr = 0;
837 }
838
839 /*
840 * make sure we have enough blocks for a reasonable sized swap
841 * area. we want at least one page.
842 */
843
844 if (size < 1) {
845 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
846 error = EINVAL;
847 goto bad;
848 }
849
850 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
851
852 /*
853 * now we need to allocate an extent to manage this swap device
854 */
855 snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
856 count++);
857
858 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
859 sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
860 0, 0, EX_WAITOK);
861 /* allocate the `saved' region from the extent so it won't be used */
862 if (addr) {
863 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
864 panic("disklabel region");
865 }
866
867 /*
868 * if the vnode we are swapping to is the root vnode
869 * (i.e. we are swapping to the miniroot) then we want
870 * to make sure we don't overwrite it. do a statfs to
871 * find its size and skip over it.
872 */
873 if (vp == rootvp) {
874 struct mount *mp;
875 struct statfs *sp;
876 int rootblocks, rootpages;
877
878 mp = rootvnode->v_mount;
879 sp = &mp->mnt_stat;
880 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
881 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
882 if (rootpages > size)
883 panic("swap_on: miniroot larger than swap?");
884
885 if (extent_alloc_region(sdp->swd_ex, addr,
886 rootpages, EX_WAITOK))
887 panic("swap_on: unable to preserve miniroot");
888
889 size -= rootpages;
890 printf("Preserved %d pages of miniroot ", rootpages);
891 printf("leaving %d pages of swap\n", size);
892 }
893
894 /*
895 * try to add anons to reflect the new swap space.
896 */
897
898 error = uvm_anon_add(size);
899 if (error) {
900 goto bad;
901 }
902
903 /*
904 * add a ref to vp to reflect usage as a swap device.
905 */
906 vref(vp);
907
908 /*
909 * now add the new swapdev to the drum and enable.
910 */
911 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
912 EX_WAITOK, &result))
913 panic("swapdrum_add");
914
915 sdp->swd_drumoffset = (int)result;
916 sdp->swd_drumsize = npages;
917 sdp->swd_npages = size;
918 simple_lock(&uvm.swap_data_lock);
919 sdp->swd_flags &= ~SWF_FAKE; /* going live */
920 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
921 uvmexp.swpages += size;
922 simple_unlock(&uvm.swap_data_lock);
923 return (0);
924
925 /*
926 * failure: clean up and return error.
927 */
928
929 bad:
930 if (sdp->swd_ex) {
931 extent_destroy(sdp->swd_ex);
932 }
933 if (vp != rootvp) {
934 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
935 }
936 return (error);
937 }
938
939 /*
940 * swap_off: stop swapping on swapdev
941 *
942 * => swap data should be locked, we will unlock.
943 */
944 static int
945 swap_off(p, sdp)
946 struct proc *p;
947 struct swapdev *sdp;
948 {
949 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
950 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev,0,0,0);
951
952 /* disable the swap area being removed */
953 sdp->swd_flags &= ~SWF_ENABLE;
954 simple_unlock(&uvm.swap_data_lock);
955
956 /*
957 * the idea is to find all the pages that are paged out to this
958 * device, and page them all in. in uvm, swap-backed pageable
959 * memory can take two forms: aobjs and anons. call the
960 * swapoff hook for each subsystem to bring in pages.
961 */
962
963 if (uao_swap_off(sdp->swd_drumoffset,
964 sdp->swd_drumoffset + sdp->swd_drumsize) ||
965 anon_swap_off(sdp->swd_drumoffset,
966 sdp->swd_drumoffset + sdp->swd_drumsize)) {
967
968 simple_lock(&uvm.swap_data_lock);
969 sdp->swd_flags |= SWF_ENABLE;
970 simple_unlock(&uvm.swap_data_lock);
971 return ENOMEM;
972 }
973 KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
974
975 /*
976 * done with the vnode.
977 * drop our ref on the vnode before calling VOP_CLOSE()
978 * so that spec_close() can tell if this is the last close.
979 */
980 vrele(sdp->swd_vp);
981 if (sdp->swd_vp != rootvp) {
982 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
983 }
984
985 /* remove anons from the system */
986 uvm_anon_remove(sdp->swd_npages);
987
988 simple_lock(&uvm.swap_data_lock);
989 uvmexp.swpages -= sdp->swd_npages;
990
991 if (swaplist_find(sdp->swd_vp, 1) == NULL)
992 panic("swap_off: swapdev not in list\n");
993 swaplist_trim();
994 simple_unlock(&uvm.swap_data_lock);
995
996 /*
997 * free all resources!
998 */
999 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1000 EX_WAITOK);
1001 extent_destroy(sdp->swd_ex);
1002 free(sdp, M_VMSWAP);
1003 return (0);
1004 }
1005
1006 /*
1007 * /dev/drum interface and i/o functions
1008 */
1009
1010 /*
1011 * swread: the read function for the drum (just a call to physio)
1012 */
1013 /*ARGSUSED*/
1014 int
1015 swread(dev, uio, ioflag)
1016 dev_t dev;
1017 struct uio *uio;
1018 int ioflag;
1019 {
1020 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1021
1022 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1023 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1024 }
1025
1026 /*
1027 * swwrite: the write function for the drum (just a call to physio)
1028 */
1029 /*ARGSUSED*/
1030 int
1031 swwrite(dev, uio, ioflag)
1032 dev_t dev;
1033 struct uio *uio;
1034 int ioflag;
1035 {
1036 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1037
1038 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1039 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1040 }
1041
1042 /*
1043 * swstrategy: perform I/O on the drum
1044 *
1045 * => we must map the i/o request from the drum to the correct swapdev.
1046 */
1047 void
1048 swstrategy(bp)
1049 struct buf *bp;
1050 {
1051 struct swapdev *sdp;
1052 struct vnode *vp;
1053 int s, pageno, bn;
1054 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1055
1056 /*
1057 * convert block number to swapdev. note that swapdev can't
1058 * be yanked out from under us because we are holding resources
1059 * in it (i.e. the blocks we are doing I/O on).
1060 */
1061 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1062 simple_lock(&uvm.swap_data_lock);
1063 sdp = swapdrum_getsdp(pageno);
1064 simple_unlock(&uvm.swap_data_lock);
1065 if (sdp == NULL) {
1066 bp->b_error = EINVAL;
1067 bp->b_flags |= B_ERROR;
1068 biodone(bp);
1069 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1070 return;
1071 }
1072
1073 /*
1074 * convert drum page number to block number on this swapdev.
1075 */
1076
1077 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1078 bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1079
1080 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1081 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1082 sdp->swd_drumoffset, bn, bp->b_bcount);
1083
1084 /*
1085 * for block devices we finish up here.
1086 * for regular files we have to do more work which we delegate
1087 * to sw_reg_strategy().
1088 */
1089
1090 switch (sdp->swd_vp->v_type) {
1091 default:
1092 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1093
1094 case VBLK:
1095
1096 /*
1097 * must convert "bp" from an I/O on /dev/drum to an I/O
1098 * on the swapdev (sdp).
1099 */
1100 s = splbio();
1101 bp->b_blkno = bn; /* swapdev block number */
1102 vp = sdp->swd_vp; /* swapdev vnode pointer */
1103 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1104
1105 /*
1106 * if we are doing a write, we have to redirect the i/o on
1107 * drum's v_numoutput counter to the swapdevs.
1108 */
1109 if ((bp->b_flags & B_READ) == 0) {
1110 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1111 vp->v_numoutput++; /* put it on swapdev */
1112 }
1113
1114 /*
1115 * finally plug in swapdev vnode and start I/O
1116 */
1117 bp->b_vp = vp;
1118 splx(s);
1119 VOP_STRATEGY(bp);
1120 return;
1121
1122 case VREG:
1123 /*
1124 * delegate to sw_reg_strategy function.
1125 */
1126 sw_reg_strategy(sdp, bp, bn);
1127 return;
1128 }
1129 /* NOTREACHED */
1130 }
1131
1132 /*
1133 * sw_reg_strategy: handle swap i/o to regular files
1134 */
1135 static void
1136 sw_reg_strategy(sdp, bp, bn)
1137 struct swapdev *sdp;
1138 struct buf *bp;
1139 int bn;
1140 {
1141 struct vnode *vp;
1142 struct vndxfer *vnx;
1143 daddr_t nbn;
1144 caddr_t addr;
1145 off_t byteoff;
1146 int s, off, nra, error, sz, resid;
1147 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1148
1149 /*
1150 * allocate a vndxfer head for this transfer and point it to
1151 * our buffer.
1152 */
1153 getvndxfer(vnx);
1154 vnx->vx_flags = VX_BUSY;
1155 vnx->vx_error = 0;
1156 vnx->vx_pending = 0;
1157 vnx->vx_bp = bp;
1158 vnx->vx_sdp = sdp;
1159
1160 /*
1161 * setup for main loop where we read filesystem blocks into
1162 * our buffer.
1163 */
1164 error = 0;
1165 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1166 addr = bp->b_data; /* current position in buffer */
1167 byteoff = dbtob((u_int64_t)bn);
1168
1169 for (resid = bp->b_resid; resid; resid -= sz) {
1170 struct vndbuf *nbp;
1171
1172 /*
1173 * translate byteoffset into block number. return values:
1174 * vp = vnode of underlying device
1175 * nbn = new block number (on underlying vnode dev)
1176 * nra = num blocks we can read-ahead (excludes requested
1177 * block)
1178 */
1179 nra = 0;
1180 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1181 &vp, &nbn, &nra);
1182
1183 if (error == 0 && nbn == (daddr_t)-1) {
1184 /*
1185 * this used to just set error, but that doesn't
1186 * do the right thing. Instead, it causes random
1187 * memory errors. The panic() should remain until
1188 * this condition doesn't destabilize the system.
1189 */
1190 #if 1
1191 panic("sw_reg_strategy: swap to sparse file");
1192 #else
1193 error = EIO; /* failure */
1194 #endif
1195 }
1196
1197 /*
1198 * punt if there was an error or a hole in the file.
1199 * we must wait for any i/o ops we have already started
1200 * to finish before returning.
1201 *
1202 * XXX we could deal with holes here but it would be
1203 * a hassle (in the write case).
1204 */
1205 if (error) {
1206 s = splbio();
1207 vnx->vx_error = error; /* pass error up */
1208 goto out;
1209 }
1210
1211 /*
1212 * compute the size ("sz") of this transfer (in bytes).
1213 */
1214 off = byteoff % sdp->swd_bsize;
1215 sz = (1 + nra) * sdp->swd_bsize - off;
1216 if (sz > resid)
1217 sz = resid;
1218
1219 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1220 "vp %p/%p offset 0x%x/0x%x",
1221 sdp->swd_vp, vp, byteoff, nbn);
1222
1223 /*
1224 * now get a buf structure. note that the vb_buf is
1225 * at the front of the nbp structure so that you can
1226 * cast pointers between the two structure easily.
1227 */
1228 getvndbuf(nbp);
1229 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1230 nbp->vb_buf.b_bcount = sz;
1231 nbp->vb_buf.b_bufsize = sz;
1232 nbp->vb_buf.b_error = 0;
1233 nbp->vb_buf.b_data = addr;
1234 nbp->vb_buf.b_lblkno = 0;
1235 nbp->vb_buf.b_blkno = nbn + btodb(off);
1236 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1237 nbp->vb_buf.b_iodone = sw_reg_iodone;
1238 nbp->vb_buf.b_vp = vp;
1239 if (vp->v_type == VBLK) {
1240 nbp->vb_buf.b_dev = vp->v_rdev;
1241 }
1242 LIST_INIT(&nbp->vb_buf.b_dep);
1243
1244 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1245
1246 /*
1247 * Just sort by block number
1248 */
1249 s = splbio();
1250 if (vnx->vx_error != 0) {
1251 putvndbuf(nbp);
1252 goto out;
1253 }
1254 vnx->vx_pending++;
1255
1256 /* sort it in and start I/O if we are not over our limit */
1257 disksort_blkno(&sdp->swd_tab, &nbp->vb_buf);
1258 sw_reg_start(sdp);
1259 splx(s);
1260
1261 /*
1262 * advance to the next I/O
1263 */
1264 byteoff += sz;
1265 addr += sz;
1266 }
1267
1268 s = splbio();
1269
1270 out: /* Arrive here at splbio */
1271 vnx->vx_flags &= ~VX_BUSY;
1272 if (vnx->vx_pending == 0) {
1273 if (vnx->vx_error != 0) {
1274 bp->b_error = vnx->vx_error;
1275 bp->b_flags |= B_ERROR;
1276 }
1277 putvndxfer(vnx);
1278 biodone(bp);
1279 }
1280 splx(s);
1281 }
1282
1283 /*
1284 * sw_reg_start: start an I/O request on the requested swapdev
1285 *
1286 * => reqs are sorted by disksort (above)
1287 */
1288 static void
1289 sw_reg_start(sdp)
1290 struct swapdev *sdp;
1291 {
1292 struct buf *bp;
1293 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1294
1295 /* recursion control */
1296 if ((sdp->swd_flags & SWF_BUSY) != 0)
1297 return;
1298
1299 sdp->swd_flags |= SWF_BUSY;
1300
1301 while (sdp->swd_active < sdp->swd_maxactive) {
1302 bp = BUFQ_FIRST(&sdp->swd_tab);
1303 if (bp == NULL)
1304 break;
1305 BUFQ_REMOVE(&sdp->swd_tab, bp);
1306 sdp->swd_active++;
1307
1308 UVMHIST_LOG(pdhist,
1309 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1310 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1311 if ((bp->b_flags & B_READ) == 0)
1312 bp->b_vp->v_numoutput++;
1313
1314 VOP_STRATEGY(bp);
1315 }
1316 sdp->swd_flags &= ~SWF_BUSY;
1317 }
1318
1319 /*
1320 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1321 *
1322 * => note that we can recover the vndbuf struct by casting the buf ptr
1323 */
1324 static void
1325 sw_reg_iodone(bp)
1326 struct buf *bp;
1327 {
1328 struct vndbuf *vbp = (struct vndbuf *) bp;
1329 struct vndxfer *vnx = vbp->vb_xfer;
1330 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1331 struct swapdev *sdp = vnx->vx_sdp;
1332 int s, resid;
1333 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1334
1335 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1336 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1337 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1338 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1339
1340 /*
1341 * protect vbp at splbio and update.
1342 */
1343
1344 s = splbio();
1345 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1346 pbp->b_resid -= resid;
1347 vnx->vx_pending--;
1348
1349 if (vbp->vb_buf.b_error) {
1350 UVMHIST_LOG(pdhist, " got error=%d !",
1351 vbp->vb_buf.b_error, 0, 0, 0);
1352
1353 /* pass error upward */
1354 vnx->vx_error = vbp->vb_buf.b_error;
1355 }
1356
1357 /*
1358 * kill vbp structure
1359 */
1360 putvndbuf(vbp);
1361
1362 /*
1363 * wrap up this transaction if it has run to completion or, in
1364 * case of an error, when all auxiliary buffers have returned.
1365 */
1366 if (vnx->vx_error != 0) {
1367 /* pass error upward */
1368 pbp->b_flags |= B_ERROR;
1369 pbp->b_error = vnx->vx_error;
1370 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1371 putvndxfer(vnx);
1372 biodone(pbp);
1373 }
1374 } else if (pbp->b_resid == 0) {
1375 KASSERT(vnx->vx_pending == 0);
1376 if ((vnx->vx_flags & VX_BUSY) == 0) {
1377 UVMHIST_LOG(pdhist, " iodone error=%d !",
1378 pbp, vnx->vx_error, 0, 0);
1379 putvndxfer(vnx);
1380 biodone(pbp);
1381 }
1382 }
1383
1384 /*
1385 * done! start next swapdev I/O if one is pending
1386 */
1387 sdp->swd_active--;
1388 sw_reg_start(sdp);
1389 splx(s);
1390 }
1391
1392
1393 /*
1394 * uvm_swap_alloc: allocate space on swap
1395 *
1396 * => allocation is done "round robin" down the priority list, as we
1397 * allocate in a priority we "rotate" the circle queue.
1398 * => space can be freed with uvm_swap_free
1399 * => we return the page slot number in /dev/drum (0 == invalid slot)
1400 * => we lock uvm.swap_data_lock
1401 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1402 */
1403 int
1404 uvm_swap_alloc(nslots, lessok)
1405 int *nslots; /* IN/OUT */
1406 boolean_t lessok;
1407 {
1408 struct swapdev *sdp;
1409 struct swappri *spp;
1410 u_long result;
1411 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1412
1413 /*
1414 * no swap devices configured yet? definite failure.
1415 */
1416 if (uvmexp.nswapdev < 1)
1417 return 0;
1418
1419 /*
1420 * lock data lock, convert slots into blocks, and enter loop
1421 */
1422 simple_lock(&uvm.swap_data_lock);
1423
1424 ReTry: /* XXXMRG */
1425 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1426 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1427 /* if it's not enabled, then we can't swap from it */
1428 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1429 continue;
1430 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1431 continue;
1432 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1433 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1434 &result) != 0) {
1435 continue;
1436 }
1437
1438 /*
1439 * successful allocation! now rotate the circleq.
1440 */
1441 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1442 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1443 sdp->swd_npginuse += *nslots;
1444 uvmexp.swpginuse += *nslots;
1445 simple_unlock(&uvm.swap_data_lock);
1446 /* done! return drum slot number */
1447 UVMHIST_LOG(pdhist,
1448 "success! returning %d slots starting at %d",
1449 *nslots, result + sdp->swd_drumoffset, 0, 0);
1450 return (result + sdp->swd_drumoffset);
1451 }
1452 }
1453
1454 /* XXXMRG: BEGIN HACK */
1455 if (*nslots > 1 && lessok) {
1456 *nslots = 1;
1457 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1458 }
1459 /* XXXMRG: END HACK */
1460
1461 simple_unlock(&uvm.swap_data_lock);
1462 return 0;
1463 }
1464
1465 /*
1466 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1467 *
1468 * => we lock uvm.swap_data_lock
1469 */
1470 void
1471 uvm_swap_markbad(startslot, nslots)
1472 int startslot;
1473 int nslots;
1474 {
1475 struct swapdev *sdp;
1476 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1477
1478 simple_lock(&uvm.swap_data_lock);
1479 sdp = swapdrum_getsdp(startslot);
1480
1481 /*
1482 * we just keep track of how many pages have been marked bad
1483 * in this device, to make everything add up in swap_off().
1484 * we assume here that the range of slots will all be within
1485 * one swap device.
1486 */
1487
1488 sdp->swd_npgbad += nslots;
1489 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1490 simple_unlock(&uvm.swap_data_lock);
1491 }
1492
1493 /*
1494 * uvm_swap_free: free swap slots
1495 *
1496 * => this can be all or part of an allocation made by uvm_swap_alloc
1497 * => we lock uvm.swap_data_lock
1498 */
1499 void
1500 uvm_swap_free(startslot, nslots)
1501 int startslot;
1502 int nslots;
1503 {
1504 struct swapdev *sdp;
1505 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1506
1507 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1508 startslot, 0, 0);
1509
1510 /*
1511 * ignore attempts to free the "bad" slot.
1512 */
1513
1514 if (startslot == SWSLOT_BAD) {
1515 return;
1516 }
1517
1518 /*
1519 * convert drum slot offset back to sdp, free the blocks
1520 * in the extent, and return. must hold pri lock to do
1521 * lookup and access the extent.
1522 */
1523
1524 simple_lock(&uvm.swap_data_lock);
1525 sdp = swapdrum_getsdp(startslot);
1526 KASSERT(uvmexp.nswapdev >= 1);
1527 KASSERT(sdp != NULL);
1528 KASSERT(sdp->swd_npginuse >= nslots);
1529 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1530 EX_MALLOCOK|EX_NOWAIT) != 0) {
1531 printf("warning: resource shortage: %d pages of swap lost\n",
1532 nslots);
1533 }
1534 sdp->swd_npginuse -= nslots;
1535 uvmexp.swpginuse -= nslots;
1536 simple_unlock(&uvm.swap_data_lock);
1537 }
1538
1539 /*
1540 * uvm_swap_put: put any number of pages into a contig place on swap
1541 *
1542 * => can be sync or async
1543 */
1544
1545 int
1546 uvm_swap_put(swslot, ppsp, npages, flags)
1547 int swslot;
1548 struct vm_page **ppsp;
1549 int npages;
1550 int flags;
1551 {
1552 int error;
1553
1554 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1555 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1556 return error;
1557 }
1558
1559 /*
1560 * uvm_swap_get: get a single page from swap
1561 *
1562 * => usually a sync op (from fault)
1563 */
1564
1565 int
1566 uvm_swap_get(page, swslot, flags)
1567 struct vm_page *page;
1568 int swslot, flags;
1569 {
1570 int error;
1571
1572 uvmexp.nswget++;
1573 KASSERT(flags & PGO_SYNCIO);
1574 if (swslot == SWSLOT_BAD) {
1575 return EIO;
1576 }
1577 error = uvm_swap_io(&page, swslot, 1, B_READ |
1578 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1579 if (error == 0) {
1580
1581 /*
1582 * this page is no longer only in swap.
1583 */
1584
1585 simple_lock(&uvm.swap_data_lock);
1586 KASSERT(uvmexp.swpgonly > 0);
1587 uvmexp.swpgonly--;
1588 simple_unlock(&uvm.swap_data_lock);
1589 }
1590 return error;
1591 }
1592
1593 /*
1594 * uvm_swap_io: do an i/o operation to swap
1595 */
1596
1597 static int
1598 uvm_swap_io(pps, startslot, npages, flags)
1599 struct vm_page **pps;
1600 int startslot, npages, flags;
1601 {
1602 daddr_t startblk;
1603 struct buf *bp;
1604 vaddr_t kva;
1605 int error, s, mapinflags;
1606 boolean_t write, async;
1607 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1608
1609 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1610 startslot, npages, flags, 0);
1611
1612 write = (flags & B_READ) == 0;
1613 async = (flags & B_ASYNC) != 0;
1614
1615 /*
1616 * convert starting drum slot to block number
1617 */
1618
1619 startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1620
1621 /*
1622 * first, map the pages into the kernel.
1623 */
1624
1625 mapinflags = !write ?
1626 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1627 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1628 kva = uvm_pagermapin(pps, npages, mapinflags);
1629
1630 /*
1631 * now allocate a buf for the i/o.
1632 */
1633
1634 s = splbio();
1635 bp = pool_get(&bufpool, PR_WAITOK);
1636 splx(s);
1637
1638 /*
1639 * fill in the bp/sbp. we currently route our i/o through
1640 * /dev/drum's vnode [swapdev_vp].
1641 */
1642
1643 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1644 bp->b_proc = &proc0; /* XXX */
1645 bp->b_vnbufs.le_next = NOLIST;
1646 bp->b_data = (caddr_t)kva;
1647 bp->b_blkno = startblk;
1648 bp->b_vp = swapdev_vp;
1649 bp->b_dev = swapdev_vp->v_rdev;
1650 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1651 LIST_INIT(&bp->b_dep);
1652
1653 /*
1654 * bump v_numoutput (counter of number of active outputs).
1655 */
1656
1657 if (write) {
1658 s = splbio();
1659 swapdev_vp->v_numoutput++;
1660 splx(s);
1661 }
1662
1663 /*
1664 * for async ops we must set up the iodone handler.
1665 */
1666
1667 if (async) {
1668 bp->b_flags |= B_CALL;
1669 bp->b_iodone = uvm_aio_biodone;
1670 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1671 }
1672 UVMHIST_LOG(pdhist,
1673 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1674 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1675
1676 /*
1677 * now we start the I/O, and if async, return.
1678 */
1679
1680 VOP_STRATEGY(bp);
1681 if (async)
1682 return 0;
1683
1684 /*
1685 * must be sync i/o. wait for it to finish
1686 */
1687
1688 error = biowait(bp);
1689
1690 /*
1691 * kill the pager mapping
1692 */
1693
1694 uvm_pagermapout(kva, npages);
1695
1696 /*
1697 * now dispose of the buf and we're done.
1698 */
1699
1700 s = splbio();
1701 if (write)
1702 vwakeup(bp);
1703 pool_put(&bufpool, bp);
1704 splx(s);
1705 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1706 return (error);
1707 }
1708