uvm_swap.c revision 1.61 1 /* $NetBSD: uvm_swap.c,v 1.61 2002/03/18 11:43:01 manu Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.61 2002/03/18 11:43:01 manu Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/conf.h>
46 #include <sys/proc.h>
47 #include <sys/namei.h>
48 #include <sys/disklabel.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/vnode.h>
53 #include <sys/file.h>
54 #include <sys/extent.h>
55 #include <sys/mount.h>
56 #include <sys/pool.h>
57 #include <sys/syscallargs.h>
58 #include <sys/swap.h>
59
60 #include <uvm/uvm.h>
61
62 #include <miscfs/specfs/specdev.h>
63
64 /*
65 * uvm_swap.c: manage configuration and i/o to swap space.
66 */
67
68 /*
69 * swap space is managed in the following way:
70 *
71 * each swap partition or file is described by a "swapdev" structure.
72 * each "swapdev" structure contains a "swapent" structure which contains
73 * information that is passed up to the user (via system calls).
74 *
75 * each swap partition is assigned a "priority" (int) which controls
76 * swap parition usage.
77 *
78 * the system maintains a global data structure describing all swap
79 * partitions/files. there is a sorted LIST of "swappri" structures
80 * which describe "swapdev"'s at that priority. this LIST is headed
81 * by the "swap_priority" global var. each "swappri" contains a
82 * CIRCLEQ of "swapdev" structures at that priority.
83 *
84 * locking:
85 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
86 * system call and prevents the swap priority list from changing
87 * while we are in the middle of a system call (e.g. SWAP_STATS).
88 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
89 * structures including the priority list, the swapdev structures,
90 * and the swapmap extent.
91 *
92 * each swap device has the following info:
93 * - swap device in use (could be disabled, preventing future use)
94 * - swap enabled (allows new allocations on swap)
95 * - map info in /dev/drum
96 * - vnode pointer
97 * for swap files only:
98 * - block size
99 * - max byte count in buffer
100 * - buffer
101 *
102 * userland controls and configures swap with the swapctl(2) system call.
103 * the sys_swapctl performs the following operations:
104 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
105 * [2] SWAP_STATS: given a pointer to an array of swapent structures
106 * (passed in via "arg") of a size passed in via "misc" ... we load
107 * the current swap config into the array.
108 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
109 * priority in "misc", start swapping on it.
110 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
111 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
112 * "misc")
113 */
114
115 /*
116 * swapdev: describes a single swap partition/file
117 *
118 * note the following should be true:
119 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
120 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
121 */
122 struct swapdev {
123 struct oswapent swd_ose;
124 #define swd_dev swd_ose.ose_dev /* device id */
125 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
126 #define swd_priority swd_ose.ose_priority /* our priority */
127 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
128 char *swd_path; /* saved pathname of device */
129 int swd_pathlen; /* length of pathname */
130 int swd_npages; /* #pages we can use */
131 int swd_npginuse; /* #pages in use */
132 int swd_npgbad; /* #pages bad */
133 int swd_drumoffset; /* page0 offset in drum */
134 int swd_drumsize; /* #pages in drum */
135 struct extent *swd_ex; /* extent for this swapdev */
136 char swd_exname[12]; /* name of extent above */
137 struct vnode *swd_vp; /* backing vnode */
138 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
139
140 int swd_bsize; /* blocksize (bytes) */
141 int swd_maxactive; /* max active i/o reqs */
142 struct buf_queue swd_tab; /* buffer list */
143 int swd_active; /* number of active buffers */
144 };
145
146 /*
147 * swap device priority entry; the list is kept sorted on `spi_priority'.
148 */
149 struct swappri {
150 int spi_priority; /* priority */
151 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
152 /* circleq of swapdevs at this priority */
153 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
154 };
155
156 /*
157 * The following two structures are used to keep track of data transfers
158 * on swap devices associated with regular files.
159 * NOTE: this code is more or less a copy of vnd.c; we use the same
160 * structure names here to ease porting..
161 */
162 struct vndxfer {
163 struct buf *vx_bp; /* Pointer to parent buffer */
164 struct swapdev *vx_sdp;
165 int vx_error;
166 int vx_pending; /* # of pending aux buffers */
167 int vx_flags;
168 #define VX_BUSY 1
169 #define VX_DEAD 2
170 };
171
172 struct vndbuf {
173 struct buf vb_buf;
174 struct vndxfer *vb_xfer;
175 };
176
177
178 /*
179 * We keep a of pool vndbuf's and vndxfer structures.
180 */
181 static struct pool vndxfer_pool;
182 static struct pool vndbuf_pool;
183
184 #define getvndxfer(vnx) do { \
185 int s = splbio(); \
186 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \
187 splx(s); \
188 } while (0)
189
190 #define putvndxfer(vnx) { \
191 pool_put(&vndxfer_pool, (void *)(vnx)); \
192 }
193
194 #define getvndbuf(vbp) do { \
195 int s = splbio(); \
196 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \
197 splx(s); \
198 } while (0)
199
200 #define putvndbuf(vbp) { \
201 pool_put(&vndbuf_pool, (void *)(vbp)); \
202 }
203
204 /* /dev/drum */
205 bdev_decl(sw);
206 cdev_decl(sw);
207
208 /*
209 * local variables
210 */
211 static struct extent *swapmap; /* controls the mapping of /dev/drum */
212
213 /* list of all active swap devices [by priority] */
214 LIST_HEAD(swap_priority, swappri);
215 static struct swap_priority swap_priority;
216
217 /* locks */
218 struct lock swap_syscall_lock;
219
220 /*
221 * prototypes
222 */
223 static struct swapdev *swapdrum_getsdp __P((int));
224
225 static struct swapdev *swaplist_find __P((struct vnode *, int));
226 static void swaplist_insert __P((struct swapdev *,
227 struct swappri *, int));
228 static void swaplist_trim __P((void));
229
230 static int swap_on __P((struct proc *, struct swapdev *));
231 static int swap_off __P((struct proc *, struct swapdev *));
232
233 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
234 static void sw_reg_iodone __P((struct buf *));
235 static void sw_reg_start __P((struct swapdev *));
236
237 static int uvm_swap_io __P((struct vm_page **, int, int, int));
238
239 /*
240 * uvm_swap_init: init the swap system data structures and locks
241 *
242 * => called at boot time from init_main.c after the filesystems
243 * are brought up (which happens after uvm_init())
244 */
245 void
246 uvm_swap_init()
247 {
248 UVMHIST_FUNC("uvm_swap_init");
249
250 UVMHIST_CALLED(pdhist);
251 /*
252 * first, init the swap list, its counter, and its lock.
253 * then get a handle on the vnode for /dev/drum by using
254 * the its dev_t number ("swapdev", from MD conf.c).
255 */
256
257 LIST_INIT(&swap_priority);
258 uvmexp.nswapdev = 0;
259 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
260 simple_lock_init(&uvm.swap_data_lock);
261
262 if (bdevvp(swapdev, &swapdev_vp))
263 panic("uvm_swap_init: can't get vnode for swap device");
264
265 /*
266 * create swap block resource map to map /dev/drum. the range
267 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
268 * that block 0 is reserved (used to indicate an allocation
269 * failure, or no allocation).
270 */
271 swapmap = extent_create("swapmap", 1, INT_MAX,
272 M_VMSWAP, 0, 0, EX_NOWAIT);
273 if (swapmap == 0)
274 panic("uvm_swap_init: extent_create failed");
275
276 /*
277 * allocate pools for structures used for swapping to files.
278 */
279
280 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0,
281 "swp vnx", NULL);
282
283 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0,
284 "swp vnd", NULL);
285
286 /*
287 * done!
288 */
289 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
290 }
291
292 /*
293 * swaplist functions: functions that operate on the list of swap
294 * devices on the system.
295 */
296
297 /*
298 * swaplist_insert: insert swap device "sdp" into the global list
299 *
300 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
301 * => caller must provide a newly malloc'd swappri structure (we will
302 * FREE it if we don't need it... this it to prevent malloc blocking
303 * here while adding swap)
304 */
305 static void
306 swaplist_insert(sdp, newspp, priority)
307 struct swapdev *sdp;
308 struct swappri *newspp;
309 int priority;
310 {
311 struct swappri *spp, *pspp;
312 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
313
314 /*
315 * find entry at or after which to insert the new device.
316 */
317 pspp = NULL;
318 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
319 if (priority <= spp->spi_priority)
320 break;
321 pspp = spp;
322 }
323
324 /*
325 * new priority?
326 */
327 if (spp == NULL || spp->spi_priority != priority) {
328 spp = newspp; /* use newspp! */
329 UVMHIST_LOG(pdhist, "created new swappri = %d",
330 priority, 0, 0, 0);
331
332 spp->spi_priority = priority;
333 CIRCLEQ_INIT(&spp->spi_swapdev);
334
335 if (pspp)
336 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
337 else
338 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
339 } else {
340 /* we don't need a new priority structure, free it */
341 FREE(newspp, M_VMSWAP);
342 }
343
344 /*
345 * priority found (or created). now insert on the priority's
346 * circleq list and bump the total number of swapdevs.
347 */
348 sdp->swd_priority = priority;
349 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
350 uvmexp.nswapdev++;
351 }
352
353 /*
354 * swaplist_find: find and optionally remove a swap device from the
355 * global list.
356 *
357 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
358 * => we return the swapdev we found (and removed)
359 */
360 static struct swapdev *
361 swaplist_find(vp, remove)
362 struct vnode *vp;
363 boolean_t remove;
364 {
365 struct swapdev *sdp;
366 struct swappri *spp;
367
368 /*
369 * search the lists for the requested vp
370 */
371
372 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
373 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
374 if (sdp->swd_vp == vp) {
375 if (remove) {
376 CIRCLEQ_REMOVE(&spp->spi_swapdev,
377 sdp, swd_next);
378 uvmexp.nswapdev--;
379 }
380 return(sdp);
381 }
382 }
383 }
384 return (NULL);
385 }
386
387
388 /*
389 * swaplist_trim: scan priority list for empty priority entries and kill
390 * them.
391 *
392 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
393 */
394 static void
395 swaplist_trim()
396 {
397 struct swappri *spp, *nextspp;
398
399 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
400 nextspp = LIST_NEXT(spp, spi_swappri);
401 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
402 (void *)&spp->spi_swapdev)
403 continue;
404 LIST_REMOVE(spp, spi_swappri);
405 free(spp, M_VMSWAP);
406 }
407 }
408
409 /*
410 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
411 * to the "swapdev" that maps that section of the drum.
412 *
413 * => each swapdev takes one big contig chunk of the drum
414 * => caller must hold uvm.swap_data_lock
415 */
416 static struct swapdev *
417 swapdrum_getsdp(pgno)
418 int pgno;
419 {
420 struct swapdev *sdp;
421 struct swappri *spp;
422
423 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
424 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
425 if (sdp->swd_flags & SWF_FAKE)
426 continue;
427 if (pgno >= sdp->swd_drumoffset &&
428 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
429 return sdp;
430 }
431 }
432 }
433 return NULL;
434 }
435
436
437 /*
438 * sys_swapctl: main entry point for swapctl(2) system call
439 * [with two helper functions: swap_on and swap_off]
440 */
441 int
442 sys_swapctl(p, v, retval)
443 struct proc *p;
444 void *v;
445 register_t *retval;
446 {
447 struct sys_swapctl_args /* {
448 syscallarg(int) cmd;
449 syscallarg(void *) arg;
450 syscallarg(int) misc;
451 } */ *uap = (struct sys_swapctl_args *)v;
452 struct vnode *vp;
453 struct nameidata nd;
454 struct swappri *spp;
455 struct swapdev *sdp;
456 struct swapent *sep;
457 char userpath[PATH_MAX + 1];
458 size_t len;
459 int error, misc;
460 int priority;
461 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
462
463 misc = SCARG(uap, misc);
464
465 /*
466 * ensure serialized syscall access by grabbing the swap_syscall_lock
467 */
468 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
469
470 /*
471 * we handle the non-priv NSWAP and STATS request first.
472 *
473 * SWAP_NSWAP: return number of config'd swap devices
474 * [can also be obtained with uvmexp sysctl]
475 */
476 if (SCARG(uap, cmd) == SWAP_NSWAP) {
477 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
478 0, 0, 0);
479 *retval = uvmexp.nswapdev;
480 error = 0;
481 goto out;
482 }
483
484 /*
485 * SWAP_STATS: get stats on current # of configured swap devs
486 *
487 * note that the swap_priority list can't change as long
488 * as we are holding the swap_syscall_lock. we don't want
489 * to grab the uvm.swap_data_lock because we may fault&sleep during
490 * copyout() and we don't want to be holding that lock then!
491 */
492 if (SCARG(uap, cmd) == SWAP_STATS
493 #if defined(COMPAT_13)
494 || SCARG(uap, cmd) == SWAP_OSTATS
495 #endif
496 ) {
497 misc = MIN(uvmexp.nswapdev, misc);
498 len = sizeof(struct swapent) * misc;
499 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
500
501 uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
502 #if defined(COMPAT_13)
503 if (SCARG(uap, cmd) == SWAP_OSTATS)
504 len = sizeof(struct oswapent) * misc;
505 #endif
506 error = copyout(sep, (void *)SCARG(uap, arg), len);
507
508 free(sep, M_TEMP);
509 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
510 goto out;
511 }
512 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
513 dev_t *devp = (dev_t *)SCARG(uap, arg);
514
515 error = copyout(&dumpdev, devp, sizeof(dumpdev));
516 goto out;
517 }
518
519 /*
520 * all other requests require superuser privs. verify.
521 */
522 if ((error = suser(p->p_ucred, &p->p_acflag)))
523 goto out;
524
525 /*
526 * at this point we expect a path name in arg. we will
527 * use namei() to gain a vnode reference (vref), and lock
528 * the vnode (VOP_LOCK).
529 *
530 * XXX: a NULL arg means use the root vnode pointer (e.g. for
531 * miniroot)
532 */
533 if (SCARG(uap, arg) == NULL) {
534 vp = rootvp; /* miniroot */
535 if (vget(vp, LK_EXCLUSIVE)) {
536 error = EBUSY;
537 goto out;
538 }
539 if (SCARG(uap, cmd) == SWAP_ON &&
540 copystr("miniroot", userpath, sizeof userpath, &len))
541 panic("swapctl: miniroot copy failed");
542 } else {
543 int space;
544 char *where;
545
546 if (SCARG(uap, cmd) == SWAP_ON) {
547 if ((error = copyinstr(SCARG(uap, arg), userpath,
548 sizeof userpath, &len)))
549 goto out;
550 space = UIO_SYSSPACE;
551 where = userpath;
552 } else {
553 space = UIO_USERSPACE;
554 where = (char *)SCARG(uap, arg);
555 }
556 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
557 if ((error = namei(&nd)))
558 goto out;
559 vp = nd.ni_vp;
560 }
561 /* note: "vp" is referenced and locked */
562
563 error = 0; /* assume no error */
564 switch(SCARG(uap, cmd)) {
565
566 case SWAP_DUMPDEV:
567 if (vp->v_type != VBLK) {
568 error = ENOTBLK;
569 break;
570 }
571 dumpdev = vp->v_rdev;
572 break;
573
574 case SWAP_CTL:
575 /*
576 * get new priority, remove old entry (if any) and then
577 * reinsert it in the correct place. finally, prune out
578 * any empty priority structures.
579 */
580 priority = SCARG(uap, misc);
581 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
582 simple_lock(&uvm.swap_data_lock);
583 if ((sdp = swaplist_find(vp, 1)) == NULL) {
584 error = ENOENT;
585 } else {
586 swaplist_insert(sdp, spp, priority);
587 swaplist_trim();
588 }
589 simple_unlock(&uvm.swap_data_lock);
590 if (error)
591 free(spp, M_VMSWAP);
592 break;
593
594 case SWAP_ON:
595
596 /*
597 * check for duplicates. if none found, then insert a
598 * dummy entry on the list to prevent someone else from
599 * trying to enable this device while we are working on
600 * it.
601 */
602
603 priority = SCARG(uap, misc);
604 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
605 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
606 simple_lock(&uvm.swap_data_lock);
607 if (swaplist_find(vp, 0) != NULL) {
608 error = EBUSY;
609 simple_unlock(&uvm.swap_data_lock);
610 free(sdp, M_VMSWAP);
611 free(spp, M_VMSWAP);
612 break;
613 }
614 memset(sdp, 0, sizeof(*sdp));
615 sdp->swd_flags = SWF_FAKE; /* placeholder only */
616 sdp->swd_vp = vp;
617 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
618 BUFQ_INIT(&sdp->swd_tab);
619
620 swaplist_insert(sdp, spp, priority);
621 simple_unlock(&uvm.swap_data_lock);
622
623 sdp->swd_pathlen = len;
624 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
625 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
626 panic("swapctl: copystr");
627
628 /*
629 * we've now got a FAKE placeholder in the swap list.
630 * now attempt to enable swap on it. if we fail, undo
631 * what we've done and kill the fake entry we just inserted.
632 * if swap_on is a success, it will clear the SWF_FAKE flag
633 */
634
635 if ((error = swap_on(p, sdp)) != 0) {
636 simple_lock(&uvm.swap_data_lock);
637 (void) swaplist_find(vp, 1); /* kill fake entry */
638 swaplist_trim();
639 simple_unlock(&uvm.swap_data_lock);
640 free(sdp->swd_path, M_VMSWAP);
641 free(sdp, M_VMSWAP);
642 break;
643 }
644 break;
645
646 case SWAP_OFF:
647 simple_lock(&uvm.swap_data_lock);
648 if ((sdp = swaplist_find(vp, 0)) == NULL) {
649 simple_unlock(&uvm.swap_data_lock);
650 error = ENXIO;
651 break;
652 }
653
654 /*
655 * If a device isn't in use or enabled, we
656 * can't stop swapping from it (again).
657 */
658 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
659 simple_unlock(&uvm.swap_data_lock);
660 error = EBUSY;
661 break;
662 }
663
664 /*
665 * do the real work.
666 */
667 error = swap_off(p, sdp);
668 break;
669
670 default:
671 error = EINVAL;
672 }
673
674 /*
675 * done! release the ref gained by namei() and unlock.
676 */
677 vput(vp);
678
679 out:
680 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
681
682 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
683 return (error);
684 }
685
686 /*
687 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
688 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
689 * emulation to use it directly without going through sys_swapctl().
690 * The problem with using sys_swapctl() there is that it involves
691 * copying the swapent array to the stackgap, and this array's size
692 * is not known at build time. Hence it would not be possible to
693 * ensure it would fit in the stackgap in any case.
694 */
695 void
696 uvm_swap_stats(cmd, sep, sec, retval)
697 int cmd;
698 struct swapent *sep;
699 int sec;
700 register_t *retval;
701 {
702 struct swappri *spp;
703 struct swapdev *sdp;
704 int count = 0;
705
706 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
707 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
708 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
709 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
710 /*
711 * backwards compatibility for system call.
712 * note that we use 'struct oswapent' as an
713 * overlay into both 'struct swapdev' and
714 * the userland 'struct swapent', as we
715 * want to retain backwards compatibility
716 * with NetBSD 1.3.
717 */
718 sdp->swd_ose.ose_inuse =
719 btodb((u_int64_t)sdp->swd_npginuse <<
720 PAGE_SHIFT);
721 (void)memcpy(sep, &sdp->swd_ose,
722 sizeof(struct oswapent));
723
724 /* now copy out the path if necessary */
725 #if defined(COMPAT_13)
726 if (cmd == SWAP_STATS)
727 #endif
728 (void)memcpy(&sep->se_path, sdp->swd_path,
729 sdp->swd_pathlen);
730
731 count++;
732 #if defined(COMPAT_13)
733 if (cmd == SWAP_OSTATS)
734 sep = (struct swapent *)
735 ((struct oswapent *)sep + 1);
736 else
737 #endif
738 sep++;
739 }
740 }
741
742 *retval = count;
743 return;
744 }
745
746 /*
747 * swap_on: attempt to enable a swapdev for swapping. note that the
748 * swapdev is already on the global list, but disabled (marked
749 * SWF_FAKE).
750 *
751 * => we avoid the start of the disk (to protect disk labels)
752 * => we also avoid the miniroot, if we are swapping to root.
753 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
754 * if needed.
755 */
756 static int
757 swap_on(p, sdp)
758 struct proc *p;
759 struct swapdev *sdp;
760 {
761 static int count = 0; /* static */
762 struct vnode *vp;
763 int error, npages, nblocks, size;
764 long addr;
765 u_long result;
766 struct vattr va;
767 #ifdef NFS
768 extern int (**nfsv2_vnodeop_p) __P((void *));
769 #endif /* NFS */
770 dev_t dev;
771 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
772
773 /*
774 * we want to enable swapping on sdp. the swd_vp contains
775 * the vnode we want (locked and ref'd), and the swd_dev
776 * contains the dev_t of the file, if it a block device.
777 */
778
779 vp = sdp->swd_vp;
780 dev = sdp->swd_dev;
781
782 /*
783 * open the swap file (mostly useful for block device files to
784 * let device driver know what is up).
785 *
786 * we skip the open/close for root on swap because the root
787 * has already been opened when root was mounted (mountroot).
788 */
789 if (vp != rootvp) {
790 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
791 return (error);
792 }
793
794 /* XXX this only works for block devices */
795 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
796
797 /*
798 * we now need to determine the size of the swap area. for
799 * block specials we can call the d_psize function.
800 * for normal files, we must stat [get attrs].
801 *
802 * we put the result in nblks.
803 * for normal files, we also want the filesystem block size
804 * (which we get with statfs).
805 */
806 switch (vp->v_type) {
807 case VBLK:
808 if (bdevsw[major(dev)].d_psize == 0 ||
809 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
810 error = ENXIO;
811 goto bad;
812 }
813 break;
814
815 case VREG:
816 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
817 goto bad;
818 nblocks = (int)btodb(va.va_size);
819 if ((error =
820 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
821 goto bad;
822
823 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
824 /*
825 * limit the max # of outstanding I/O requests we issue
826 * at any one time. take it easy on NFS servers.
827 */
828 #ifdef NFS
829 if (vp->v_op == nfsv2_vnodeop_p)
830 sdp->swd_maxactive = 2; /* XXX */
831 else
832 #endif /* NFS */
833 sdp->swd_maxactive = 8; /* XXX */
834 break;
835
836 default:
837 error = ENXIO;
838 goto bad;
839 }
840
841 /*
842 * save nblocks in a safe place and convert to pages.
843 */
844
845 sdp->swd_ose.ose_nblks = nblocks;
846 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
847
848 /*
849 * for block special files, we want to make sure that leave
850 * the disklabel and bootblocks alone, so we arrange to skip
851 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
852 * note that because of this the "size" can be less than the
853 * actual number of blocks on the device.
854 */
855 if (vp->v_type == VBLK) {
856 /* we use pages 1 to (size - 1) [inclusive] */
857 size = npages - 1;
858 addr = 1;
859 } else {
860 /* we use pages 0 to (size - 1) [inclusive] */
861 size = npages;
862 addr = 0;
863 }
864
865 /*
866 * make sure we have enough blocks for a reasonable sized swap
867 * area. we want at least one page.
868 */
869
870 if (size < 1) {
871 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
872 error = EINVAL;
873 goto bad;
874 }
875
876 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
877
878 /*
879 * now we need to allocate an extent to manage this swap device
880 */
881 snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
882 count++);
883
884 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
885 sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
886 0, 0, EX_WAITOK);
887 /* allocate the `saved' region from the extent so it won't be used */
888 if (addr) {
889 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
890 panic("disklabel region");
891 }
892
893 /*
894 * if the vnode we are swapping to is the root vnode
895 * (i.e. we are swapping to the miniroot) then we want
896 * to make sure we don't overwrite it. do a statfs to
897 * find its size and skip over it.
898 */
899 if (vp == rootvp) {
900 struct mount *mp;
901 struct statfs *sp;
902 int rootblocks, rootpages;
903
904 mp = rootvnode->v_mount;
905 sp = &mp->mnt_stat;
906 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
907 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
908 if (rootpages > size)
909 panic("swap_on: miniroot larger than swap?");
910
911 if (extent_alloc_region(sdp->swd_ex, addr,
912 rootpages, EX_WAITOK))
913 panic("swap_on: unable to preserve miniroot");
914
915 size -= rootpages;
916 printf("Preserved %d pages of miniroot ", rootpages);
917 printf("leaving %d pages of swap\n", size);
918 }
919
920 /*
921 * try to add anons to reflect the new swap space.
922 */
923
924 error = uvm_anon_add(size);
925 if (error) {
926 goto bad;
927 }
928
929 /*
930 * add a ref to vp to reflect usage as a swap device.
931 */
932 vref(vp);
933
934 /*
935 * now add the new swapdev to the drum and enable.
936 */
937 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
938 EX_WAITOK, &result))
939 panic("swapdrum_add");
940
941 sdp->swd_drumoffset = (int)result;
942 sdp->swd_drumsize = npages;
943 sdp->swd_npages = size;
944 simple_lock(&uvm.swap_data_lock);
945 sdp->swd_flags &= ~SWF_FAKE; /* going live */
946 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
947 uvmexp.swpages += size;
948 simple_unlock(&uvm.swap_data_lock);
949 return (0);
950
951 /*
952 * failure: clean up and return error.
953 */
954
955 bad:
956 if (sdp->swd_ex) {
957 extent_destroy(sdp->swd_ex);
958 }
959 if (vp != rootvp) {
960 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
961 }
962 return (error);
963 }
964
965 /*
966 * swap_off: stop swapping on swapdev
967 *
968 * => swap data should be locked, we will unlock.
969 */
970 static int
971 swap_off(p, sdp)
972 struct proc *p;
973 struct swapdev *sdp;
974 {
975 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
976 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev,0,0,0);
977
978 /* disable the swap area being removed */
979 sdp->swd_flags &= ~SWF_ENABLE;
980 simple_unlock(&uvm.swap_data_lock);
981
982 /*
983 * the idea is to find all the pages that are paged out to this
984 * device, and page them all in. in uvm, swap-backed pageable
985 * memory can take two forms: aobjs and anons. call the
986 * swapoff hook for each subsystem to bring in pages.
987 */
988
989 if (uao_swap_off(sdp->swd_drumoffset,
990 sdp->swd_drumoffset + sdp->swd_drumsize) ||
991 anon_swap_off(sdp->swd_drumoffset,
992 sdp->swd_drumoffset + sdp->swd_drumsize)) {
993
994 simple_lock(&uvm.swap_data_lock);
995 sdp->swd_flags |= SWF_ENABLE;
996 simple_unlock(&uvm.swap_data_lock);
997 return ENOMEM;
998 }
999 KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
1000
1001 /*
1002 * done with the vnode.
1003 * drop our ref on the vnode before calling VOP_CLOSE()
1004 * so that spec_close() can tell if this is the last close.
1005 */
1006 vrele(sdp->swd_vp);
1007 if (sdp->swd_vp != rootvp) {
1008 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1009 }
1010
1011 /* remove anons from the system */
1012 uvm_anon_remove(sdp->swd_npages);
1013
1014 simple_lock(&uvm.swap_data_lock);
1015 uvmexp.swpages -= sdp->swd_npages;
1016
1017 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1018 panic("swap_off: swapdev not in list\n");
1019 swaplist_trim();
1020 simple_unlock(&uvm.swap_data_lock);
1021
1022 /*
1023 * free all resources!
1024 */
1025 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1026 EX_WAITOK);
1027 extent_destroy(sdp->swd_ex);
1028 free(sdp, M_VMSWAP);
1029 return (0);
1030 }
1031
1032 /*
1033 * /dev/drum interface and i/o functions
1034 */
1035
1036 /*
1037 * swread: the read function for the drum (just a call to physio)
1038 */
1039 /*ARGSUSED*/
1040 int
1041 swread(dev, uio, ioflag)
1042 dev_t dev;
1043 struct uio *uio;
1044 int ioflag;
1045 {
1046 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1047
1048 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1049 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1050 }
1051
1052 /*
1053 * swwrite: the write function for the drum (just a call to physio)
1054 */
1055 /*ARGSUSED*/
1056 int
1057 swwrite(dev, uio, ioflag)
1058 dev_t dev;
1059 struct uio *uio;
1060 int ioflag;
1061 {
1062 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1063
1064 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1065 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1066 }
1067
1068 /*
1069 * swstrategy: perform I/O on the drum
1070 *
1071 * => we must map the i/o request from the drum to the correct swapdev.
1072 */
1073 void
1074 swstrategy(bp)
1075 struct buf *bp;
1076 {
1077 struct swapdev *sdp;
1078 struct vnode *vp;
1079 int s, pageno, bn;
1080 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1081
1082 /*
1083 * convert block number to swapdev. note that swapdev can't
1084 * be yanked out from under us because we are holding resources
1085 * in it (i.e. the blocks we are doing I/O on).
1086 */
1087 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1088 simple_lock(&uvm.swap_data_lock);
1089 sdp = swapdrum_getsdp(pageno);
1090 simple_unlock(&uvm.swap_data_lock);
1091 if (sdp == NULL) {
1092 bp->b_error = EINVAL;
1093 bp->b_flags |= B_ERROR;
1094 biodone(bp);
1095 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1096 return;
1097 }
1098
1099 /*
1100 * convert drum page number to block number on this swapdev.
1101 */
1102
1103 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1104 bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1105
1106 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1107 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1108 sdp->swd_drumoffset, bn, bp->b_bcount);
1109
1110 /*
1111 * for block devices we finish up here.
1112 * for regular files we have to do more work which we delegate
1113 * to sw_reg_strategy().
1114 */
1115
1116 switch (sdp->swd_vp->v_type) {
1117 default:
1118 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1119
1120 case VBLK:
1121
1122 /*
1123 * must convert "bp" from an I/O on /dev/drum to an I/O
1124 * on the swapdev (sdp).
1125 */
1126 s = splbio();
1127 bp->b_blkno = bn; /* swapdev block number */
1128 vp = sdp->swd_vp; /* swapdev vnode pointer */
1129 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1130
1131 /*
1132 * if we are doing a write, we have to redirect the i/o on
1133 * drum's v_numoutput counter to the swapdevs.
1134 */
1135 if ((bp->b_flags & B_READ) == 0) {
1136 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1137 vp->v_numoutput++; /* put it on swapdev */
1138 }
1139
1140 /*
1141 * finally plug in swapdev vnode and start I/O
1142 */
1143 bp->b_vp = vp;
1144 splx(s);
1145 VOP_STRATEGY(bp);
1146 return;
1147
1148 case VREG:
1149 /*
1150 * delegate to sw_reg_strategy function.
1151 */
1152 sw_reg_strategy(sdp, bp, bn);
1153 return;
1154 }
1155 /* NOTREACHED */
1156 }
1157
1158 /*
1159 * sw_reg_strategy: handle swap i/o to regular files
1160 */
1161 static void
1162 sw_reg_strategy(sdp, bp, bn)
1163 struct swapdev *sdp;
1164 struct buf *bp;
1165 int bn;
1166 {
1167 struct vnode *vp;
1168 struct vndxfer *vnx;
1169 daddr_t nbn;
1170 caddr_t addr;
1171 off_t byteoff;
1172 int s, off, nra, error, sz, resid;
1173 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1174
1175 /*
1176 * allocate a vndxfer head for this transfer and point it to
1177 * our buffer.
1178 */
1179 getvndxfer(vnx);
1180 vnx->vx_flags = VX_BUSY;
1181 vnx->vx_error = 0;
1182 vnx->vx_pending = 0;
1183 vnx->vx_bp = bp;
1184 vnx->vx_sdp = sdp;
1185
1186 /*
1187 * setup for main loop where we read filesystem blocks into
1188 * our buffer.
1189 */
1190 error = 0;
1191 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1192 addr = bp->b_data; /* current position in buffer */
1193 byteoff = dbtob((u_int64_t)bn);
1194
1195 for (resid = bp->b_resid; resid; resid -= sz) {
1196 struct vndbuf *nbp;
1197
1198 /*
1199 * translate byteoffset into block number. return values:
1200 * vp = vnode of underlying device
1201 * nbn = new block number (on underlying vnode dev)
1202 * nra = num blocks we can read-ahead (excludes requested
1203 * block)
1204 */
1205 nra = 0;
1206 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1207 &vp, &nbn, &nra);
1208
1209 if (error == 0 && nbn == (daddr_t)-1) {
1210 /*
1211 * this used to just set error, but that doesn't
1212 * do the right thing. Instead, it causes random
1213 * memory errors. The panic() should remain until
1214 * this condition doesn't destabilize the system.
1215 */
1216 #if 1
1217 panic("sw_reg_strategy: swap to sparse file");
1218 #else
1219 error = EIO; /* failure */
1220 #endif
1221 }
1222
1223 /*
1224 * punt if there was an error or a hole in the file.
1225 * we must wait for any i/o ops we have already started
1226 * to finish before returning.
1227 *
1228 * XXX we could deal with holes here but it would be
1229 * a hassle (in the write case).
1230 */
1231 if (error) {
1232 s = splbio();
1233 vnx->vx_error = error; /* pass error up */
1234 goto out;
1235 }
1236
1237 /*
1238 * compute the size ("sz") of this transfer (in bytes).
1239 */
1240 off = byteoff % sdp->swd_bsize;
1241 sz = (1 + nra) * sdp->swd_bsize - off;
1242 if (sz > resid)
1243 sz = resid;
1244
1245 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1246 "vp %p/%p offset 0x%x/0x%x",
1247 sdp->swd_vp, vp, byteoff, nbn);
1248
1249 /*
1250 * now get a buf structure. note that the vb_buf is
1251 * at the front of the nbp structure so that you can
1252 * cast pointers between the two structure easily.
1253 */
1254 getvndbuf(nbp);
1255 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1256 nbp->vb_buf.b_bcount = sz;
1257 nbp->vb_buf.b_bufsize = sz;
1258 nbp->vb_buf.b_error = 0;
1259 nbp->vb_buf.b_data = addr;
1260 nbp->vb_buf.b_lblkno = 0;
1261 nbp->vb_buf.b_blkno = nbn + btodb(off);
1262 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1263 nbp->vb_buf.b_iodone = sw_reg_iodone;
1264 nbp->vb_buf.b_vp = vp;
1265 if (vp->v_type == VBLK) {
1266 nbp->vb_buf.b_dev = vp->v_rdev;
1267 }
1268 LIST_INIT(&nbp->vb_buf.b_dep);
1269
1270 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1271
1272 /*
1273 * Just sort by block number
1274 */
1275 s = splbio();
1276 if (vnx->vx_error != 0) {
1277 putvndbuf(nbp);
1278 goto out;
1279 }
1280 vnx->vx_pending++;
1281
1282 /* sort it in and start I/O if we are not over our limit */
1283 disksort_blkno(&sdp->swd_tab, &nbp->vb_buf);
1284 sw_reg_start(sdp);
1285 splx(s);
1286
1287 /*
1288 * advance to the next I/O
1289 */
1290 byteoff += sz;
1291 addr += sz;
1292 }
1293
1294 s = splbio();
1295
1296 out: /* Arrive here at splbio */
1297 vnx->vx_flags &= ~VX_BUSY;
1298 if (vnx->vx_pending == 0) {
1299 if (vnx->vx_error != 0) {
1300 bp->b_error = vnx->vx_error;
1301 bp->b_flags |= B_ERROR;
1302 }
1303 putvndxfer(vnx);
1304 biodone(bp);
1305 }
1306 splx(s);
1307 }
1308
1309 /*
1310 * sw_reg_start: start an I/O request on the requested swapdev
1311 *
1312 * => reqs are sorted by disksort (above)
1313 */
1314 static void
1315 sw_reg_start(sdp)
1316 struct swapdev *sdp;
1317 {
1318 struct buf *bp;
1319 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1320
1321 /* recursion control */
1322 if ((sdp->swd_flags & SWF_BUSY) != 0)
1323 return;
1324
1325 sdp->swd_flags |= SWF_BUSY;
1326
1327 while (sdp->swd_active < sdp->swd_maxactive) {
1328 bp = BUFQ_FIRST(&sdp->swd_tab);
1329 if (bp == NULL)
1330 break;
1331 BUFQ_REMOVE(&sdp->swd_tab, bp);
1332 sdp->swd_active++;
1333
1334 UVMHIST_LOG(pdhist,
1335 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1336 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1337 if ((bp->b_flags & B_READ) == 0)
1338 bp->b_vp->v_numoutput++;
1339
1340 VOP_STRATEGY(bp);
1341 }
1342 sdp->swd_flags &= ~SWF_BUSY;
1343 }
1344
1345 /*
1346 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1347 *
1348 * => note that we can recover the vndbuf struct by casting the buf ptr
1349 */
1350 static void
1351 sw_reg_iodone(bp)
1352 struct buf *bp;
1353 {
1354 struct vndbuf *vbp = (struct vndbuf *) bp;
1355 struct vndxfer *vnx = vbp->vb_xfer;
1356 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1357 struct swapdev *sdp = vnx->vx_sdp;
1358 int s, resid;
1359 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1360
1361 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1362 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1363 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1364 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1365
1366 /*
1367 * protect vbp at splbio and update.
1368 */
1369
1370 s = splbio();
1371 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1372 pbp->b_resid -= resid;
1373 vnx->vx_pending--;
1374
1375 if (vbp->vb_buf.b_error) {
1376 UVMHIST_LOG(pdhist, " got error=%d !",
1377 vbp->vb_buf.b_error, 0, 0, 0);
1378
1379 /* pass error upward */
1380 vnx->vx_error = vbp->vb_buf.b_error;
1381 }
1382
1383 /*
1384 * kill vbp structure
1385 */
1386 putvndbuf(vbp);
1387
1388 /*
1389 * wrap up this transaction if it has run to completion or, in
1390 * case of an error, when all auxiliary buffers have returned.
1391 */
1392 if (vnx->vx_error != 0) {
1393 /* pass error upward */
1394 pbp->b_flags |= B_ERROR;
1395 pbp->b_error = vnx->vx_error;
1396 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1397 putvndxfer(vnx);
1398 biodone(pbp);
1399 }
1400 } else if (pbp->b_resid == 0) {
1401 KASSERT(vnx->vx_pending == 0);
1402 if ((vnx->vx_flags & VX_BUSY) == 0) {
1403 UVMHIST_LOG(pdhist, " iodone error=%d !",
1404 pbp, vnx->vx_error, 0, 0);
1405 putvndxfer(vnx);
1406 biodone(pbp);
1407 }
1408 }
1409
1410 /*
1411 * done! start next swapdev I/O if one is pending
1412 */
1413 sdp->swd_active--;
1414 sw_reg_start(sdp);
1415 splx(s);
1416 }
1417
1418
1419 /*
1420 * uvm_swap_alloc: allocate space on swap
1421 *
1422 * => allocation is done "round robin" down the priority list, as we
1423 * allocate in a priority we "rotate" the circle queue.
1424 * => space can be freed with uvm_swap_free
1425 * => we return the page slot number in /dev/drum (0 == invalid slot)
1426 * => we lock uvm.swap_data_lock
1427 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1428 */
1429 int
1430 uvm_swap_alloc(nslots, lessok)
1431 int *nslots; /* IN/OUT */
1432 boolean_t lessok;
1433 {
1434 struct swapdev *sdp;
1435 struct swappri *spp;
1436 u_long result;
1437 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1438
1439 /*
1440 * no swap devices configured yet? definite failure.
1441 */
1442 if (uvmexp.nswapdev < 1)
1443 return 0;
1444
1445 /*
1446 * lock data lock, convert slots into blocks, and enter loop
1447 */
1448 simple_lock(&uvm.swap_data_lock);
1449
1450 ReTry: /* XXXMRG */
1451 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1452 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1453 /* if it's not enabled, then we can't swap from it */
1454 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1455 continue;
1456 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1457 continue;
1458 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1459 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1460 &result) != 0) {
1461 continue;
1462 }
1463
1464 /*
1465 * successful allocation! now rotate the circleq.
1466 */
1467 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1468 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1469 sdp->swd_npginuse += *nslots;
1470 uvmexp.swpginuse += *nslots;
1471 simple_unlock(&uvm.swap_data_lock);
1472 /* done! return drum slot number */
1473 UVMHIST_LOG(pdhist,
1474 "success! returning %d slots starting at %d",
1475 *nslots, result + sdp->swd_drumoffset, 0, 0);
1476 return (result + sdp->swd_drumoffset);
1477 }
1478 }
1479
1480 /* XXXMRG: BEGIN HACK */
1481 if (*nslots > 1 && lessok) {
1482 *nslots = 1;
1483 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1484 }
1485 /* XXXMRG: END HACK */
1486
1487 simple_unlock(&uvm.swap_data_lock);
1488 return 0;
1489 }
1490
1491 /*
1492 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1493 *
1494 * => we lock uvm.swap_data_lock
1495 */
1496 void
1497 uvm_swap_markbad(startslot, nslots)
1498 int startslot;
1499 int nslots;
1500 {
1501 struct swapdev *sdp;
1502 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1503
1504 simple_lock(&uvm.swap_data_lock);
1505 sdp = swapdrum_getsdp(startslot);
1506
1507 /*
1508 * we just keep track of how many pages have been marked bad
1509 * in this device, to make everything add up in swap_off().
1510 * we assume here that the range of slots will all be within
1511 * one swap device.
1512 */
1513
1514 sdp->swd_npgbad += nslots;
1515 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1516 simple_unlock(&uvm.swap_data_lock);
1517 }
1518
1519 /*
1520 * uvm_swap_free: free swap slots
1521 *
1522 * => this can be all or part of an allocation made by uvm_swap_alloc
1523 * => we lock uvm.swap_data_lock
1524 */
1525 void
1526 uvm_swap_free(startslot, nslots)
1527 int startslot;
1528 int nslots;
1529 {
1530 struct swapdev *sdp;
1531 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1532
1533 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1534 startslot, 0, 0);
1535
1536 /*
1537 * ignore attempts to free the "bad" slot.
1538 */
1539
1540 if (startslot == SWSLOT_BAD) {
1541 return;
1542 }
1543
1544 /*
1545 * convert drum slot offset back to sdp, free the blocks
1546 * in the extent, and return. must hold pri lock to do
1547 * lookup and access the extent.
1548 */
1549
1550 simple_lock(&uvm.swap_data_lock);
1551 sdp = swapdrum_getsdp(startslot);
1552 KASSERT(uvmexp.nswapdev >= 1);
1553 KASSERT(sdp != NULL);
1554 KASSERT(sdp->swd_npginuse >= nslots);
1555 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1556 EX_MALLOCOK|EX_NOWAIT) != 0) {
1557 printf("warning: resource shortage: %d pages of swap lost\n",
1558 nslots);
1559 }
1560 sdp->swd_npginuse -= nslots;
1561 uvmexp.swpginuse -= nslots;
1562 simple_unlock(&uvm.swap_data_lock);
1563 }
1564
1565 /*
1566 * uvm_swap_put: put any number of pages into a contig place on swap
1567 *
1568 * => can be sync or async
1569 */
1570
1571 int
1572 uvm_swap_put(swslot, ppsp, npages, flags)
1573 int swslot;
1574 struct vm_page **ppsp;
1575 int npages;
1576 int flags;
1577 {
1578 int error;
1579
1580 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1581 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1582 return error;
1583 }
1584
1585 /*
1586 * uvm_swap_get: get a single page from swap
1587 *
1588 * => usually a sync op (from fault)
1589 */
1590
1591 int
1592 uvm_swap_get(page, swslot, flags)
1593 struct vm_page *page;
1594 int swslot, flags;
1595 {
1596 int error;
1597
1598 uvmexp.nswget++;
1599 KASSERT(flags & PGO_SYNCIO);
1600 if (swslot == SWSLOT_BAD) {
1601 return EIO;
1602 }
1603 error = uvm_swap_io(&page, swslot, 1, B_READ |
1604 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1605 if (error == 0) {
1606
1607 /*
1608 * this page is no longer only in swap.
1609 */
1610
1611 simple_lock(&uvm.swap_data_lock);
1612 KASSERT(uvmexp.swpgonly > 0);
1613 uvmexp.swpgonly--;
1614 simple_unlock(&uvm.swap_data_lock);
1615 }
1616 return error;
1617 }
1618
1619 /*
1620 * uvm_swap_io: do an i/o operation to swap
1621 */
1622
1623 static int
1624 uvm_swap_io(pps, startslot, npages, flags)
1625 struct vm_page **pps;
1626 int startslot, npages, flags;
1627 {
1628 daddr_t startblk;
1629 struct buf *bp;
1630 vaddr_t kva;
1631 int error, s, mapinflags;
1632 boolean_t write, async;
1633 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1634
1635 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1636 startslot, npages, flags, 0);
1637
1638 write = (flags & B_READ) == 0;
1639 async = (flags & B_ASYNC) != 0;
1640
1641 /*
1642 * convert starting drum slot to block number
1643 */
1644
1645 startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1646
1647 /*
1648 * first, map the pages into the kernel.
1649 */
1650
1651 mapinflags = !write ?
1652 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1653 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1654 kva = uvm_pagermapin(pps, npages, mapinflags);
1655
1656 /*
1657 * now allocate a buf for the i/o.
1658 */
1659
1660 s = splbio();
1661 bp = pool_get(&bufpool, PR_WAITOK);
1662 splx(s);
1663
1664 /*
1665 * fill in the bp/sbp. we currently route our i/o through
1666 * /dev/drum's vnode [swapdev_vp].
1667 */
1668
1669 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1670 bp->b_proc = &proc0; /* XXX */
1671 bp->b_vnbufs.le_next = NOLIST;
1672 bp->b_data = (caddr_t)kva;
1673 bp->b_blkno = startblk;
1674 bp->b_vp = swapdev_vp;
1675 bp->b_dev = swapdev_vp->v_rdev;
1676 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1677 LIST_INIT(&bp->b_dep);
1678
1679 /*
1680 * bump v_numoutput (counter of number of active outputs).
1681 */
1682
1683 if (write) {
1684 s = splbio();
1685 swapdev_vp->v_numoutput++;
1686 splx(s);
1687 }
1688
1689 /*
1690 * for async ops we must set up the iodone handler.
1691 */
1692
1693 if (async) {
1694 bp->b_flags |= B_CALL;
1695 bp->b_iodone = uvm_aio_biodone;
1696 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1697 }
1698 UVMHIST_LOG(pdhist,
1699 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1700 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1701
1702 /*
1703 * now we start the I/O, and if async, return.
1704 */
1705
1706 VOP_STRATEGY(bp);
1707 if (async)
1708 return 0;
1709
1710 /*
1711 * must be sync i/o. wait for it to finish
1712 */
1713
1714 error = biowait(bp);
1715
1716 /*
1717 * kill the pager mapping
1718 */
1719
1720 uvm_pagermapout(kva, npages);
1721
1722 /*
1723 * now dispose of the buf and we're done.
1724 */
1725
1726 s = splbio();
1727 if (write)
1728 vwakeup(bp);
1729 pool_put(&bufpool, bp);
1730 splx(s);
1731 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1732 return (error);
1733 }
1734