uvm_swap.c revision 1.68 1 /* $NetBSD: uvm_swap.c,v 1.68 2002/08/31 17:07:59 drochner Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.68 2002/08/31 17:07:59 drochner Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/conf.h>
46 #include <sys/proc.h>
47 #include <sys/namei.h>
48 #include <sys/disklabel.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/vnode.h>
53 #include <sys/file.h>
54 #include <sys/extent.h>
55 #include <sys/mount.h>
56 #include <sys/pool.h>
57 #include <sys/syscallargs.h>
58 #include <sys/swap.h>
59
60 #include <uvm/uvm.h>
61
62 #include <miscfs/specfs/specdev.h>
63
64 /*
65 * uvm_swap.c: manage configuration and i/o to swap space.
66 */
67
68 /*
69 * swap space is managed in the following way:
70 *
71 * each swap partition or file is described by a "swapdev" structure.
72 * each "swapdev" structure contains a "swapent" structure which contains
73 * information that is passed up to the user (via system calls).
74 *
75 * each swap partition is assigned a "priority" (int) which controls
76 * swap parition usage.
77 *
78 * the system maintains a global data structure describing all swap
79 * partitions/files. there is a sorted LIST of "swappri" structures
80 * which describe "swapdev"'s at that priority. this LIST is headed
81 * by the "swap_priority" global var. each "swappri" contains a
82 * CIRCLEQ of "swapdev" structures at that priority.
83 *
84 * locking:
85 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
86 * system call and prevents the swap priority list from changing
87 * while we are in the middle of a system call (e.g. SWAP_STATS).
88 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
89 * structures including the priority list, the swapdev structures,
90 * and the swapmap extent.
91 *
92 * each swap device has the following info:
93 * - swap device in use (could be disabled, preventing future use)
94 * - swap enabled (allows new allocations on swap)
95 * - map info in /dev/drum
96 * - vnode pointer
97 * for swap files only:
98 * - block size
99 * - max byte count in buffer
100 * - buffer
101 *
102 * userland controls and configures swap with the swapctl(2) system call.
103 * the sys_swapctl performs the following operations:
104 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
105 * [2] SWAP_STATS: given a pointer to an array of swapent structures
106 * (passed in via "arg") of a size passed in via "misc" ... we load
107 * the current swap config into the array. The actual work is done
108 * in the uvm_swap_stats(9) function.
109 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
110 * priority in "misc", start swapping on it.
111 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
112 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
113 * "misc")
114 */
115
116 /*
117 * swapdev: describes a single swap partition/file
118 *
119 * note the following should be true:
120 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
121 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
122 */
123 struct swapdev {
124 struct oswapent swd_ose;
125 #define swd_dev swd_ose.ose_dev /* device id */
126 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
127 #define swd_priority swd_ose.ose_priority /* our priority */
128 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
129 char *swd_path; /* saved pathname of device */
130 int swd_pathlen; /* length of pathname */
131 int swd_npages; /* #pages we can use */
132 int swd_npginuse; /* #pages in use */
133 int swd_npgbad; /* #pages bad */
134 int swd_drumoffset; /* page0 offset in drum */
135 int swd_drumsize; /* #pages in drum */
136 struct extent *swd_ex; /* extent for this swapdev */
137 char swd_exname[12]; /* name of extent above */
138 struct vnode *swd_vp; /* backing vnode */
139 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
140
141 int swd_bsize; /* blocksize (bytes) */
142 int swd_maxactive; /* max active i/o reqs */
143 struct bufq_state swd_tab; /* buffer list */
144 int swd_active; /* number of active buffers */
145 };
146
147 /*
148 * swap device priority entry; the list is kept sorted on `spi_priority'.
149 */
150 struct swappri {
151 int spi_priority; /* priority */
152 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
153 /* circleq of swapdevs at this priority */
154 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
155 };
156
157 /*
158 * The following two structures are used to keep track of data transfers
159 * on swap devices associated with regular files.
160 * NOTE: this code is more or less a copy of vnd.c; we use the same
161 * structure names here to ease porting..
162 */
163 struct vndxfer {
164 struct buf *vx_bp; /* Pointer to parent buffer */
165 struct swapdev *vx_sdp;
166 int vx_error;
167 int vx_pending; /* # of pending aux buffers */
168 int vx_flags;
169 #define VX_BUSY 1
170 #define VX_DEAD 2
171 };
172
173 struct vndbuf {
174 struct buf vb_buf;
175 struct vndxfer *vb_xfer;
176 };
177
178
179 /*
180 * We keep a of pool vndbuf's and vndxfer structures.
181 */
182 static struct pool vndxfer_pool;
183 static struct pool vndbuf_pool;
184
185 #define getvndxfer(vnx) do { \
186 int s = splbio(); \
187 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \
188 splx(s); \
189 } while (0)
190
191 #define putvndxfer(vnx) { \
192 pool_put(&vndxfer_pool, (void *)(vnx)); \
193 }
194
195 #define getvndbuf(vbp) do { \
196 int s = splbio(); \
197 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \
198 splx(s); \
199 } while (0)
200
201 #define putvndbuf(vbp) { \
202 pool_put(&vndbuf_pool, (void *)(vbp)); \
203 }
204
205 /* /dev/drum */
206 bdev_decl(sw);
207 cdev_decl(sw);
208
209 /*
210 * local variables
211 */
212 static struct extent *swapmap; /* controls the mapping of /dev/drum */
213
214 /* list of all active swap devices [by priority] */
215 LIST_HEAD(swap_priority, swappri);
216 static struct swap_priority swap_priority;
217
218 /* locks */
219 struct lock swap_syscall_lock;
220
221 /*
222 * prototypes
223 */
224 static struct swapdev *swapdrum_getsdp __P((int));
225
226 static struct swapdev *swaplist_find __P((struct vnode *, int));
227 static void swaplist_insert __P((struct swapdev *,
228 struct swappri *, int));
229 static void swaplist_trim __P((void));
230
231 static int swap_on __P((struct proc *, struct swapdev *));
232 static int swap_off __P((struct proc *, struct swapdev *));
233
234 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
235 static void sw_reg_iodone __P((struct buf *));
236 static void sw_reg_start __P((struct swapdev *));
237
238 static int uvm_swap_io __P((struct vm_page **, int, int, int));
239
240 /*
241 * uvm_swap_init: init the swap system data structures and locks
242 *
243 * => called at boot time from init_main.c after the filesystems
244 * are brought up (which happens after uvm_init())
245 */
246 void
247 uvm_swap_init()
248 {
249 UVMHIST_FUNC("uvm_swap_init");
250
251 UVMHIST_CALLED(pdhist);
252 /*
253 * first, init the swap list, its counter, and its lock.
254 * then get a handle on the vnode for /dev/drum by using
255 * the its dev_t number ("swapdev", from MD conf.c).
256 */
257
258 LIST_INIT(&swap_priority);
259 uvmexp.nswapdev = 0;
260 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
261 simple_lock_init(&uvm.swap_data_lock);
262
263 if (bdevvp(swapdev, &swapdev_vp))
264 panic("uvm_swap_init: can't get vnode for swap device");
265
266 /*
267 * create swap block resource map to map /dev/drum. the range
268 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
269 * that block 0 is reserved (used to indicate an allocation
270 * failure, or no allocation).
271 */
272 swapmap = extent_create("swapmap", 1, INT_MAX,
273 M_VMSWAP, 0, 0, EX_NOWAIT);
274 if (swapmap == 0)
275 panic("uvm_swap_init: extent_create failed");
276
277 /*
278 * allocate pools for structures used for swapping to files.
279 */
280
281 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0,
282 "swp vnx", NULL);
283
284 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0,
285 "swp vnd", NULL);
286
287 /*
288 * done!
289 */
290 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
291 }
292
293 /*
294 * swaplist functions: functions that operate on the list of swap
295 * devices on the system.
296 */
297
298 /*
299 * swaplist_insert: insert swap device "sdp" into the global list
300 *
301 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
302 * => caller must provide a newly malloc'd swappri structure (we will
303 * FREE it if we don't need it... this it to prevent malloc blocking
304 * here while adding swap)
305 */
306 static void
307 swaplist_insert(sdp, newspp, priority)
308 struct swapdev *sdp;
309 struct swappri *newspp;
310 int priority;
311 {
312 struct swappri *spp, *pspp;
313 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
314
315 /*
316 * find entry at or after which to insert the new device.
317 */
318 pspp = NULL;
319 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
320 if (priority <= spp->spi_priority)
321 break;
322 pspp = spp;
323 }
324
325 /*
326 * new priority?
327 */
328 if (spp == NULL || spp->spi_priority != priority) {
329 spp = newspp; /* use newspp! */
330 UVMHIST_LOG(pdhist, "created new swappri = %d",
331 priority, 0, 0, 0);
332
333 spp->spi_priority = priority;
334 CIRCLEQ_INIT(&spp->spi_swapdev);
335
336 if (pspp)
337 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
338 else
339 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
340 } else {
341 /* we don't need a new priority structure, free it */
342 FREE(newspp, M_VMSWAP);
343 }
344
345 /*
346 * priority found (or created). now insert on the priority's
347 * circleq list and bump the total number of swapdevs.
348 */
349 sdp->swd_priority = priority;
350 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
351 uvmexp.nswapdev++;
352 }
353
354 /*
355 * swaplist_find: find and optionally remove a swap device from the
356 * global list.
357 *
358 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
359 * => we return the swapdev we found (and removed)
360 */
361 static struct swapdev *
362 swaplist_find(vp, remove)
363 struct vnode *vp;
364 boolean_t remove;
365 {
366 struct swapdev *sdp;
367 struct swappri *spp;
368
369 /*
370 * search the lists for the requested vp
371 */
372
373 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
374 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
375 if (sdp->swd_vp == vp) {
376 if (remove) {
377 CIRCLEQ_REMOVE(&spp->spi_swapdev,
378 sdp, swd_next);
379 uvmexp.nswapdev--;
380 }
381 return(sdp);
382 }
383 }
384 }
385 return (NULL);
386 }
387
388
389 /*
390 * swaplist_trim: scan priority list for empty priority entries and kill
391 * them.
392 *
393 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
394 */
395 static void
396 swaplist_trim()
397 {
398 struct swappri *spp, *nextspp;
399
400 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
401 nextspp = LIST_NEXT(spp, spi_swappri);
402 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
403 (void *)&spp->spi_swapdev)
404 continue;
405 LIST_REMOVE(spp, spi_swappri);
406 free(spp, M_VMSWAP);
407 }
408 }
409
410 /*
411 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
412 * to the "swapdev" that maps that section of the drum.
413 *
414 * => each swapdev takes one big contig chunk of the drum
415 * => caller must hold uvm.swap_data_lock
416 */
417 static struct swapdev *
418 swapdrum_getsdp(pgno)
419 int pgno;
420 {
421 struct swapdev *sdp;
422 struct swappri *spp;
423
424 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
425 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
426 if (sdp->swd_flags & SWF_FAKE)
427 continue;
428 if (pgno >= sdp->swd_drumoffset &&
429 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
430 return sdp;
431 }
432 }
433 }
434 return NULL;
435 }
436
437
438 /*
439 * sys_swapctl: main entry point for swapctl(2) system call
440 * [with two helper functions: swap_on and swap_off]
441 */
442 int
443 sys_swapctl(p, v, retval)
444 struct proc *p;
445 void *v;
446 register_t *retval;
447 {
448 struct sys_swapctl_args /* {
449 syscallarg(int) cmd;
450 syscallarg(void *) arg;
451 syscallarg(int) misc;
452 } */ *uap = (struct sys_swapctl_args *)v;
453 struct vnode *vp;
454 struct nameidata nd;
455 struct swappri *spp;
456 struct swapdev *sdp;
457 struct swapent *sep;
458 char userpath[PATH_MAX + 1];
459 size_t len;
460 int error, misc;
461 int priority;
462 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
463
464 misc = SCARG(uap, misc);
465
466 /*
467 * ensure serialized syscall access by grabbing the swap_syscall_lock
468 */
469 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
470
471 /*
472 * we handle the non-priv NSWAP and STATS request first.
473 *
474 * SWAP_NSWAP: return number of config'd swap devices
475 * [can also be obtained with uvmexp sysctl]
476 */
477 if (SCARG(uap, cmd) == SWAP_NSWAP) {
478 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
479 0, 0, 0);
480 *retval = uvmexp.nswapdev;
481 error = 0;
482 goto out;
483 }
484
485 /*
486 * SWAP_STATS: get stats on current # of configured swap devs
487 *
488 * note that the swap_priority list can't change as long
489 * as we are holding the swap_syscall_lock. we don't want
490 * to grab the uvm.swap_data_lock because we may fault&sleep during
491 * copyout() and we don't want to be holding that lock then!
492 */
493 if (SCARG(uap, cmd) == SWAP_STATS
494 #if defined(COMPAT_13)
495 || SCARG(uap, cmd) == SWAP_OSTATS
496 #endif
497 ) {
498 misc = MIN(uvmexp.nswapdev, misc);
499 #if defined(COMPAT_13)
500 if (SCARG(uap, cmd) == SWAP_OSTATS)
501 len = sizeof(struct oswapent) * misc;
502 else
503 #endif
504 len = sizeof(struct swapent) * misc;
505 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
506
507 uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
508 error = copyout(sep, (void *)SCARG(uap, arg), len);
509
510 free(sep, M_TEMP);
511 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
512 goto out;
513 }
514 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
515 dev_t *devp = (dev_t *)SCARG(uap, arg);
516
517 error = copyout(&dumpdev, devp, sizeof(dumpdev));
518 goto out;
519 }
520
521 /*
522 * all other requests require superuser privs. verify.
523 */
524 if ((error = suser(p->p_ucred, &p->p_acflag)))
525 goto out;
526
527 /*
528 * at this point we expect a path name in arg. we will
529 * use namei() to gain a vnode reference (vref), and lock
530 * the vnode (VOP_LOCK).
531 *
532 * XXX: a NULL arg means use the root vnode pointer (e.g. for
533 * miniroot)
534 */
535 if (SCARG(uap, arg) == NULL) {
536 vp = rootvp; /* miniroot */
537 if (vget(vp, LK_EXCLUSIVE)) {
538 error = EBUSY;
539 goto out;
540 }
541 if (SCARG(uap, cmd) == SWAP_ON &&
542 copystr("miniroot", userpath, sizeof userpath, &len))
543 panic("swapctl: miniroot copy failed");
544 } else {
545 int space;
546 char *where;
547
548 if (SCARG(uap, cmd) == SWAP_ON) {
549 if ((error = copyinstr(SCARG(uap, arg), userpath,
550 sizeof userpath, &len)))
551 goto out;
552 space = UIO_SYSSPACE;
553 where = userpath;
554 } else {
555 space = UIO_USERSPACE;
556 where = (char *)SCARG(uap, arg);
557 }
558 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
559 if ((error = namei(&nd)))
560 goto out;
561 vp = nd.ni_vp;
562 }
563 /* note: "vp" is referenced and locked */
564
565 error = 0; /* assume no error */
566 switch(SCARG(uap, cmd)) {
567
568 case SWAP_DUMPDEV:
569 if (vp->v_type != VBLK) {
570 error = ENOTBLK;
571 break;
572 }
573 dumpdev = vp->v_rdev;
574 cpu_dumpconf();
575 break;
576
577 case SWAP_CTL:
578 /*
579 * get new priority, remove old entry (if any) and then
580 * reinsert it in the correct place. finally, prune out
581 * any empty priority structures.
582 */
583 priority = SCARG(uap, misc);
584 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
585 simple_lock(&uvm.swap_data_lock);
586 if ((sdp = swaplist_find(vp, 1)) == NULL) {
587 error = ENOENT;
588 } else {
589 swaplist_insert(sdp, spp, priority);
590 swaplist_trim();
591 }
592 simple_unlock(&uvm.swap_data_lock);
593 if (error)
594 free(spp, M_VMSWAP);
595 break;
596
597 case SWAP_ON:
598
599 /*
600 * check for duplicates. if none found, then insert a
601 * dummy entry on the list to prevent someone else from
602 * trying to enable this device while we are working on
603 * it.
604 */
605
606 priority = SCARG(uap, misc);
607 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
608 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
609 memset(sdp, 0, sizeof(*sdp));
610 sdp->swd_flags = SWF_FAKE;
611 sdp->swd_vp = vp;
612 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
613 bufq_alloc(&sdp->swd_tab, BUFQ_DISKSORT|BUFQ_SORT_RAWBLOCK);
614 simple_lock(&uvm.swap_data_lock);
615 if (swaplist_find(vp, 0) != NULL) {
616 error = EBUSY;
617 simple_unlock(&uvm.swap_data_lock);
618 bufq_free(&sdp->swd_tab);
619 free(sdp, M_VMSWAP);
620 free(spp, M_VMSWAP);
621 break;
622 }
623 swaplist_insert(sdp, spp, priority);
624 simple_unlock(&uvm.swap_data_lock);
625
626 sdp->swd_pathlen = len;
627 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
628 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
629 panic("swapctl: copystr");
630
631 /*
632 * we've now got a FAKE placeholder in the swap list.
633 * now attempt to enable swap on it. if we fail, undo
634 * what we've done and kill the fake entry we just inserted.
635 * if swap_on is a success, it will clear the SWF_FAKE flag
636 */
637
638 if ((error = swap_on(p, sdp)) != 0) {
639 simple_lock(&uvm.swap_data_lock);
640 (void) swaplist_find(vp, 1); /* kill fake entry */
641 swaplist_trim();
642 simple_unlock(&uvm.swap_data_lock);
643 bufq_free(&sdp->swd_tab);
644 free(sdp->swd_path, M_VMSWAP);
645 free(sdp, M_VMSWAP);
646 break;
647 }
648 break;
649
650 case SWAP_OFF:
651 simple_lock(&uvm.swap_data_lock);
652 if ((sdp = swaplist_find(vp, 0)) == NULL) {
653 simple_unlock(&uvm.swap_data_lock);
654 error = ENXIO;
655 break;
656 }
657
658 /*
659 * If a device isn't in use or enabled, we
660 * can't stop swapping from it (again).
661 */
662 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
663 simple_unlock(&uvm.swap_data_lock);
664 error = EBUSY;
665 break;
666 }
667
668 /*
669 * do the real work.
670 */
671 error = swap_off(p, sdp);
672 break;
673
674 default:
675 error = EINVAL;
676 }
677
678 /*
679 * done! release the ref gained by namei() and unlock.
680 */
681 vput(vp);
682
683 out:
684 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
685
686 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
687 return (error);
688 }
689
690 /*
691 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
692 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
693 * emulation to use it directly without going through sys_swapctl().
694 * The problem with using sys_swapctl() there is that it involves
695 * copying the swapent array to the stackgap, and this array's size
696 * is not known at build time. Hence it would not be possible to
697 * ensure it would fit in the stackgap in any case.
698 */
699 void
700 uvm_swap_stats(cmd, sep, sec, retval)
701 int cmd;
702 struct swapent *sep;
703 int sec;
704 register_t *retval;
705 {
706 struct swappri *spp;
707 struct swapdev *sdp;
708 int count = 0;
709
710 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
711 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
712 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
713 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
714 /*
715 * backwards compatibility for system call.
716 * note that we use 'struct oswapent' as an
717 * overlay into both 'struct swapdev' and
718 * the userland 'struct swapent', as we
719 * want to retain backwards compatibility
720 * with NetBSD 1.3.
721 */
722 sdp->swd_ose.ose_inuse =
723 btodb((u_int64_t)sdp->swd_npginuse <<
724 PAGE_SHIFT);
725 (void)memcpy(sep, &sdp->swd_ose,
726 sizeof(struct oswapent));
727
728 /* now copy out the path if necessary */
729 #if defined(COMPAT_13)
730 if (cmd == SWAP_STATS)
731 #endif
732 (void)memcpy(&sep->se_path, sdp->swd_path,
733 sdp->swd_pathlen);
734
735 count++;
736 #if defined(COMPAT_13)
737 if (cmd == SWAP_OSTATS)
738 sep = (struct swapent *)
739 ((struct oswapent *)sep + 1);
740 else
741 #endif
742 sep++;
743 }
744 }
745
746 *retval = count;
747 return;
748 }
749
750 /*
751 * swap_on: attempt to enable a swapdev for swapping. note that the
752 * swapdev is already on the global list, but disabled (marked
753 * SWF_FAKE).
754 *
755 * => we avoid the start of the disk (to protect disk labels)
756 * => we also avoid the miniroot, if we are swapping to root.
757 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
758 * if needed.
759 */
760 static int
761 swap_on(p, sdp)
762 struct proc *p;
763 struct swapdev *sdp;
764 {
765 static int count = 0; /* static */
766 struct vnode *vp;
767 int error, npages, nblocks, size;
768 long addr;
769 u_long result;
770 struct vattr va;
771 #ifdef NFS
772 extern int (**nfsv2_vnodeop_p) __P((void *));
773 #endif /* NFS */
774 dev_t dev;
775 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
776
777 /*
778 * we want to enable swapping on sdp. the swd_vp contains
779 * the vnode we want (locked and ref'd), and the swd_dev
780 * contains the dev_t of the file, if it a block device.
781 */
782
783 vp = sdp->swd_vp;
784 dev = sdp->swd_dev;
785
786 /*
787 * open the swap file (mostly useful for block device files to
788 * let device driver know what is up).
789 *
790 * we skip the open/close for root on swap because the root
791 * has already been opened when root was mounted (mountroot).
792 */
793 if (vp != rootvp) {
794 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
795 return (error);
796 }
797
798 /* XXX this only works for block devices */
799 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
800
801 /*
802 * we now need to determine the size of the swap area. for
803 * block specials we can call the d_psize function.
804 * for normal files, we must stat [get attrs].
805 *
806 * we put the result in nblks.
807 * for normal files, we also want the filesystem block size
808 * (which we get with statfs).
809 */
810 switch (vp->v_type) {
811 case VBLK:
812 if (bdevsw[major(dev)].d_psize == 0 ||
813 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
814 error = ENXIO;
815 goto bad;
816 }
817 break;
818
819 case VREG:
820 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
821 goto bad;
822 nblocks = (int)btodb(va.va_size);
823 if ((error =
824 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
825 goto bad;
826
827 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
828 /*
829 * limit the max # of outstanding I/O requests we issue
830 * at any one time. take it easy on NFS servers.
831 */
832 #ifdef NFS
833 if (vp->v_op == nfsv2_vnodeop_p)
834 sdp->swd_maxactive = 2; /* XXX */
835 else
836 #endif /* NFS */
837 sdp->swd_maxactive = 8; /* XXX */
838 break;
839
840 default:
841 error = ENXIO;
842 goto bad;
843 }
844
845 /*
846 * save nblocks in a safe place and convert to pages.
847 */
848
849 sdp->swd_ose.ose_nblks = nblocks;
850 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
851
852 /*
853 * for block special files, we want to make sure that leave
854 * the disklabel and bootblocks alone, so we arrange to skip
855 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
856 * note that because of this the "size" can be less than the
857 * actual number of blocks on the device.
858 */
859 if (vp->v_type == VBLK) {
860 /* we use pages 1 to (size - 1) [inclusive] */
861 size = npages - 1;
862 addr = 1;
863 } else {
864 /* we use pages 0 to (size - 1) [inclusive] */
865 size = npages;
866 addr = 0;
867 }
868
869 /*
870 * make sure we have enough blocks for a reasonable sized swap
871 * area. we want at least one page.
872 */
873
874 if (size < 1) {
875 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
876 error = EINVAL;
877 goto bad;
878 }
879
880 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
881
882 /*
883 * now we need to allocate an extent to manage this swap device
884 */
885 snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
886 count++);
887
888 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
889 sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
890 0, 0, EX_WAITOK);
891 /* allocate the `saved' region from the extent so it won't be used */
892 if (addr) {
893 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
894 panic("disklabel region");
895 }
896
897 /*
898 * if the vnode we are swapping to is the root vnode
899 * (i.e. we are swapping to the miniroot) then we want
900 * to make sure we don't overwrite it. do a statfs to
901 * find its size and skip over it.
902 */
903 if (vp == rootvp) {
904 struct mount *mp;
905 struct statfs *sp;
906 int rootblocks, rootpages;
907
908 mp = rootvnode->v_mount;
909 sp = &mp->mnt_stat;
910 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
911 /*
912 * XXX: sp->f_blocks isn't the total number of
913 * blocks in the filesystem, it's the number of
914 * data blocks. so, our rootblocks almost
915 * definitely underestimates the total size
916 * of the filesystem - how badly depends on the
917 * details of the filesystem type. there isn't
918 * an obvious way to deal with this cleanly
919 * and perfectly, so for now we just pad our
920 * rootblocks estimate with an extra 5 percent.
921 */
922 rootblocks += (rootblocks >> 5) +
923 (rootblocks >> 6) +
924 (rootblocks >> 7);
925 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
926 if (rootpages > size)
927 panic("swap_on: miniroot larger than swap?");
928
929 if (extent_alloc_region(sdp->swd_ex, addr,
930 rootpages, EX_WAITOK))
931 panic("swap_on: unable to preserve miniroot");
932
933 size -= rootpages;
934 printf("Preserved %d pages of miniroot ", rootpages);
935 printf("leaving %d pages of swap\n", size);
936 }
937
938 /*
939 * try to add anons to reflect the new swap space.
940 */
941
942 error = uvm_anon_add(size);
943 if (error) {
944 goto bad;
945 }
946
947 /*
948 * add a ref to vp to reflect usage as a swap device.
949 */
950 vref(vp);
951
952 /*
953 * now add the new swapdev to the drum and enable.
954 */
955 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
956 EX_WAITOK, &result))
957 panic("swapdrum_add");
958
959 sdp->swd_drumoffset = (int)result;
960 sdp->swd_drumsize = npages;
961 sdp->swd_npages = size;
962 simple_lock(&uvm.swap_data_lock);
963 sdp->swd_flags &= ~SWF_FAKE; /* going live */
964 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
965 uvmexp.swpages += size;
966 simple_unlock(&uvm.swap_data_lock);
967 return (0);
968
969 /*
970 * failure: clean up and return error.
971 */
972
973 bad:
974 if (sdp->swd_ex) {
975 extent_destroy(sdp->swd_ex);
976 }
977 if (vp != rootvp) {
978 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
979 }
980 return (error);
981 }
982
983 /*
984 * swap_off: stop swapping on swapdev
985 *
986 * => swap data should be locked, we will unlock.
987 */
988 static int
989 swap_off(p, sdp)
990 struct proc *p;
991 struct swapdev *sdp;
992 {
993 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
994 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev,0,0,0);
995
996 /* disable the swap area being removed */
997 sdp->swd_flags &= ~SWF_ENABLE;
998 simple_unlock(&uvm.swap_data_lock);
999
1000 /*
1001 * the idea is to find all the pages that are paged out to this
1002 * device, and page them all in. in uvm, swap-backed pageable
1003 * memory can take two forms: aobjs and anons. call the
1004 * swapoff hook for each subsystem to bring in pages.
1005 */
1006
1007 if (uao_swap_off(sdp->swd_drumoffset,
1008 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1009 anon_swap_off(sdp->swd_drumoffset,
1010 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1011
1012 simple_lock(&uvm.swap_data_lock);
1013 sdp->swd_flags |= SWF_ENABLE;
1014 simple_unlock(&uvm.swap_data_lock);
1015 return ENOMEM;
1016 }
1017 KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
1018
1019 /*
1020 * done with the vnode.
1021 * drop our ref on the vnode before calling VOP_CLOSE()
1022 * so that spec_close() can tell if this is the last close.
1023 */
1024 vrele(sdp->swd_vp);
1025 if (sdp->swd_vp != rootvp) {
1026 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1027 }
1028
1029 /* remove anons from the system */
1030 uvm_anon_remove(sdp->swd_npages);
1031
1032 simple_lock(&uvm.swap_data_lock);
1033 uvmexp.swpages -= sdp->swd_npages;
1034
1035 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1036 panic("swap_off: swapdev not in list\n");
1037 swaplist_trim();
1038 simple_unlock(&uvm.swap_data_lock);
1039
1040 /*
1041 * free all resources!
1042 */
1043 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1044 EX_WAITOK);
1045 extent_destroy(sdp->swd_ex);
1046 bufq_free(&sdp->swd_tab);
1047 free(sdp, M_VMSWAP);
1048 return (0);
1049 }
1050
1051 /*
1052 * /dev/drum interface and i/o functions
1053 */
1054
1055 /*
1056 * swread: the read function for the drum (just a call to physio)
1057 */
1058 /*ARGSUSED*/
1059 int
1060 swread(dev, uio, ioflag)
1061 dev_t dev;
1062 struct uio *uio;
1063 int ioflag;
1064 {
1065 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1066
1067 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1068 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1069 }
1070
1071 /*
1072 * swwrite: the write function for the drum (just a call to physio)
1073 */
1074 /*ARGSUSED*/
1075 int
1076 swwrite(dev, uio, ioflag)
1077 dev_t dev;
1078 struct uio *uio;
1079 int ioflag;
1080 {
1081 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1082
1083 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1084 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1085 }
1086
1087 /*
1088 * swstrategy: perform I/O on the drum
1089 *
1090 * => we must map the i/o request from the drum to the correct swapdev.
1091 */
1092 void
1093 swstrategy(bp)
1094 struct buf *bp;
1095 {
1096 struct swapdev *sdp;
1097 struct vnode *vp;
1098 int s, pageno, bn;
1099 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1100
1101 /*
1102 * convert block number to swapdev. note that swapdev can't
1103 * be yanked out from under us because we are holding resources
1104 * in it (i.e. the blocks we are doing I/O on).
1105 */
1106 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1107 simple_lock(&uvm.swap_data_lock);
1108 sdp = swapdrum_getsdp(pageno);
1109 simple_unlock(&uvm.swap_data_lock);
1110 if (sdp == NULL) {
1111 bp->b_error = EINVAL;
1112 bp->b_flags |= B_ERROR;
1113 biodone(bp);
1114 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1115 return;
1116 }
1117
1118 /*
1119 * convert drum page number to block number on this swapdev.
1120 */
1121
1122 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1123 bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1124
1125 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1126 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1127 sdp->swd_drumoffset, bn, bp->b_bcount);
1128
1129 /*
1130 * for block devices we finish up here.
1131 * for regular files we have to do more work which we delegate
1132 * to sw_reg_strategy().
1133 */
1134
1135 switch (sdp->swd_vp->v_type) {
1136 default:
1137 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1138
1139 case VBLK:
1140
1141 /*
1142 * must convert "bp" from an I/O on /dev/drum to an I/O
1143 * on the swapdev (sdp).
1144 */
1145 s = splbio();
1146 bp->b_blkno = bn; /* swapdev block number */
1147 vp = sdp->swd_vp; /* swapdev vnode pointer */
1148 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1149
1150 /*
1151 * if we are doing a write, we have to redirect the i/o on
1152 * drum's v_numoutput counter to the swapdevs.
1153 */
1154 if ((bp->b_flags & B_READ) == 0) {
1155 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1156 vp->v_numoutput++; /* put it on swapdev */
1157 }
1158
1159 /*
1160 * finally plug in swapdev vnode and start I/O
1161 */
1162 bp->b_vp = vp;
1163 splx(s);
1164 VOP_STRATEGY(bp);
1165 return;
1166
1167 case VREG:
1168 /*
1169 * delegate to sw_reg_strategy function.
1170 */
1171 sw_reg_strategy(sdp, bp, bn);
1172 return;
1173 }
1174 /* NOTREACHED */
1175 }
1176
1177 /*
1178 * sw_reg_strategy: handle swap i/o to regular files
1179 */
1180 static void
1181 sw_reg_strategy(sdp, bp, bn)
1182 struct swapdev *sdp;
1183 struct buf *bp;
1184 int bn;
1185 {
1186 struct vnode *vp;
1187 struct vndxfer *vnx;
1188 daddr_t nbn;
1189 caddr_t addr;
1190 off_t byteoff;
1191 int s, off, nra, error, sz, resid;
1192 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1193
1194 /*
1195 * allocate a vndxfer head for this transfer and point it to
1196 * our buffer.
1197 */
1198 getvndxfer(vnx);
1199 vnx->vx_flags = VX_BUSY;
1200 vnx->vx_error = 0;
1201 vnx->vx_pending = 0;
1202 vnx->vx_bp = bp;
1203 vnx->vx_sdp = sdp;
1204
1205 /*
1206 * setup for main loop where we read filesystem blocks into
1207 * our buffer.
1208 */
1209 error = 0;
1210 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1211 addr = bp->b_data; /* current position in buffer */
1212 byteoff = dbtob((u_int64_t)bn);
1213
1214 for (resid = bp->b_resid; resid; resid -= sz) {
1215 struct vndbuf *nbp;
1216
1217 /*
1218 * translate byteoffset into block number. return values:
1219 * vp = vnode of underlying device
1220 * nbn = new block number (on underlying vnode dev)
1221 * nra = num blocks we can read-ahead (excludes requested
1222 * block)
1223 */
1224 nra = 0;
1225 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1226 &vp, &nbn, &nra);
1227
1228 if (error == 0 && nbn == (daddr_t)-1) {
1229 /*
1230 * this used to just set error, but that doesn't
1231 * do the right thing. Instead, it causes random
1232 * memory errors. The panic() should remain until
1233 * this condition doesn't destabilize the system.
1234 */
1235 #if 1
1236 panic("sw_reg_strategy: swap to sparse file");
1237 #else
1238 error = EIO; /* failure */
1239 #endif
1240 }
1241
1242 /*
1243 * punt if there was an error or a hole in the file.
1244 * we must wait for any i/o ops we have already started
1245 * to finish before returning.
1246 *
1247 * XXX we could deal with holes here but it would be
1248 * a hassle (in the write case).
1249 */
1250 if (error) {
1251 s = splbio();
1252 vnx->vx_error = error; /* pass error up */
1253 goto out;
1254 }
1255
1256 /*
1257 * compute the size ("sz") of this transfer (in bytes).
1258 */
1259 off = byteoff % sdp->swd_bsize;
1260 sz = (1 + nra) * sdp->swd_bsize - off;
1261 if (sz > resid)
1262 sz = resid;
1263
1264 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1265 "vp %p/%p offset 0x%x/0x%x",
1266 sdp->swd_vp, vp, byteoff, nbn);
1267
1268 /*
1269 * now get a buf structure. note that the vb_buf is
1270 * at the front of the nbp structure so that you can
1271 * cast pointers between the two structure easily.
1272 */
1273 getvndbuf(nbp);
1274 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1275 nbp->vb_buf.b_bcount = sz;
1276 nbp->vb_buf.b_bufsize = sz;
1277 nbp->vb_buf.b_error = 0;
1278 nbp->vb_buf.b_data = addr;
1279 nbp->vb_buf.b_lblkno = 0;
1280 nbp->vb_buf.b_blkno = nbn + btodb(off);
1281 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1282 nbp->vb_buf.b_iodone = sw_reg_iodone;
1283 nbp->vb_buf.b_vp = vp;
1284 if (vp->v_type == VBLK) {
1285 nbp->vb_buf.b_dev = vp->v_rdev;
1286 }
1287 LIST_INIT(&nbp->vb_buf.b_dep);
1288
1289 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1290
1291 /*
1292 * Just sort by block number
1293 */
1294 s = splbio();
1295 if (vnx->vx_error != 0) {
1296 putvndbuf(nbp);
1297 goto out;
1298 }
1299 vnx->vx_pending++;
1300
1301 /* sort it in and start I/O if we are not over our limit */
1302 BUFQ_PUT(&sdp->swd_tab, &nbp->vb_buf);
1303 sw_reg_start(sdp);
1304 splx(s);
1305
1306 /*
1307 * advance to the next I/O
1308 */
1309 byteoff += sz;
1310 addr += sz;
1311 }
1312
1313 s = splbio();
1314
1315 out: /* Arrive here at splbio */
1316 vnx->vx_flags &= ~VX_BUSY;
1317 if (vnx->vx_pending == 0) {
1318 if (vnx->vx_error != 0) {
1319 bp->b_error = vnx->vx_error;
1320 bp->b_flags |= B_ERROR;
1321 }
1322 putvndxfer(vnx);
1323 biodone(bp);
1324 }
1325 splx(s);
1326 }
1327
1328 /*
1329 * sw_reg_start: start an I/O request on the requested swapdev
1330 *
1331 * => reqs are sorted by b_rawblkno (above)
1332 */
1333 static void
1334 sw_reg_start(sdp)
1335 struct swapdev *sdp;
1336 {
1337 struct buf *bp;
1338 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1339
1340 /* recursion control */
1341 if ((sdp->swd_flags & SWF_BUSY) != 0)
1342 return;
1343
1344 sdp->swd_flags |= SWF_BUSY;
1345
1346 while (sdp->swd_active < sdp->swd_maxactive) {
1347 bp = BUFQ_GET(&sdp->swd_tab);
1348 if (bp == NULL)
1349 break;
1350 sdp->swd_active++;
1351
1352 UVMHIST_LOG(pdhist,
1353 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1354 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1355 if ((bp->b_flags & B_READ) == 0)
1356 bp->b_vp->v_numoutput++;
1357
1358 VOP_STRATEGY(bp);
1359 }
1360 sdp->swd_flags &= ~SWF_BUSY;
1361 }
1362
1363 /*
1364 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1365 *
1366 * => note that we can recover the vndbuf struct by casting the buf ptr
1367 */
1368 static void
1369 sw_reg_iodone(bp)
1370 struct buf *bp;
1371 {
1372 struct vndbuf *vbp = (struct vndbuf *) bp;
1373 struct vndxfer *vnx = vbp->vb_xfer;
1374 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1375 struct swapdev *sdp = vnx->vx_sdp;
1376 int s, resid;
1377 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1378
1379 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1380 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1381 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1382 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1383
1384 /*
1385 * protect vbp at splbio and update.
1386 */
1387
1388 s = splbio();
1389 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1390 pbp->b_resid -= resid;
1391 vnx->vx_pending--;
1392
1393 if (vbp->vb_buf.b_error) {
1394 UVMHIST_LOG(pdhist, " got error=%d !",
1395 vbp->vb_buf.b_error, 0, 0, 0);
1396
1397 /* pass error upward */
1398 vnx->vx_error = vbp->vb_buf.b_error;
1399 }
1400
1401 /*
1402 * kill vbp structure
1403 */
1404 putvndbuf(vbp);
1405
1406 /*
1407 * wrap up this transaction if it has run to completion or, in
1408 * case of an error, when all auxiliary buffers have returned.
1409 */
1410 if (vnx->vx_error != 0) {
1411 /* pass error upward */
1412 pbp->b_flags |= B_ERROR;
1413 pbp->b_error = vnx->vx_error;
1414 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1415 putvndxfer(vnx);
1416 biodone(pbp);
1417 }
1418 } else if (pbp->b_resid == 0) {
1419 KASSERT(vnx->vx_pending == 0);
1420 if ((vnx->vx_flags & VX_BUSY) == 0) {
1421 UVMHIST_LOG(pdhist, " iodone error=%d !",
1422 pbp, vnx->vx_error, 0, 0);
1423 putvndxfer(vnx);
1424 biodone(pbp);
1425 }
1426 }
1427
1428 /*
1429 * done! start next swapdev I/O if one is pending
1430 */
1431 sdp->swd_active--;
1432 sw_reg_start(sdp);
1433 splx(s);
1434 }
1435
1436
1437 /*
1438 * uvm_swap_alloc: allocate space on swap
1439 *
1440 * => allocation is done "round robin" down the priority list, as we
1441 * allocate in a priority we "rotate" the circle queue.
1442 * => space can be freed with uvm_swap_free
1443 * => we return the page slot number in /dev/drum (0 == invalid slot)
1444 * => we lock uvm.swap_data_lock
1445 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1446 */
1447 int
1448 uvm_swap_alloc(nslots, lessok)
1449 int *nslots; /* IN/OUT */
1450 boolean_t lessok;
1451 {
1452 struct swapdev *sdp;
1453 struct swappri *spp;
1454 u_long result;
1455 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1456
1457 /*
1458 * no swap devices configured yet? definite failure.
1459 */
1460 if (uvmexp.nswapdev < 1)
1461 return 0;
1462
1463 /*
1464 * lock data lock, convert slots into blocks, and enter loop
1465 */
1466 simple_lock(&uvm.swap_data_lock);
1467
1468 ReTry: /* XXXMRG */
1469 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1470 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1471 /* if it's not enabled, then we can't swap from it */
1472 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1473 continue;
1474 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1475 continue;
1476 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1477 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1478 &result) != 0) {
1479 continue;
1480 }
1481
1482 /*
1483 * successful allocation! now rotate the circleq.
1484 */
1485 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1486 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1487 sdp->swd_npginuse += *nslots;
1488 uvmexp.swpginuse += *nslots;
1489 simple_unlock(&uvm.swap_data_lock);
1490 /* done! return drum slot number */
1491 UVMHIST_LOG(pdhist,
1492 "success! returning %d slots starting at %d",
1493 *nslots, result + sdp->swd_drumoffset, 0, 0);
1494 return (result + sdp->swd_drumoffset);
1495 }
1496 }
1497
1498 /* XXXMRG: BEGIN HACK */
1499 if (*nslots > 1 && lessok) {
1500 *nslots = 1;
1501 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1502 }
1503 /* XXXMRG: END HACK */
1504
1505 simple_unlock(&uvm.swap_data_lock);
1506 return 0;
1507 }
1508
1509 /*
1510 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1511 *
1512 * => we lock uvm.swap_data_lock
1513 */
1514 void
1515 uvm_swap_markbad(startslot, nslots)
1516 int startslot;
1517 int nslots;
1518 {
1519 struct swapdev *sdp;
1520 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1521
1522 simple_lock(&uvm.swap_data_lock);
1523 sdp = swapdrum_getsdp(startslot);
1524
1525 /*
1526 * we just keep track of how many pages have been marked bad
1527 * in this device, to make everything add up in swap_off().
1528 * we assume here that the range of slots will all be within
1529 * one swap device.
1530 */
1531
1532 sdp->swd_npgbad += nslots;
1533 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1534 simple_unlock(&uvm.swap_data_lock);
1535 }
1536
1537 /*
1538 * uvm_swap_free: free swap slots
1539 *
1540 * => this can be all or part of an allocation made by uvm_swap_alloc
1541 * => we lock uvm.swap_data_lock
1542 */
1543 void
1544 uvm_swap_free(startslot, nslots)
1545 int startslot;
1546 int nslots;
1547 {
1548 struct swapdev *sdp;
1549 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1550
1551 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1552 startslot, 0, 0);
1553
1554 /*
1555 * ignore attempts to free the "bad" slot.
1556 */
1557
1558 if (startslot == SWSLOT_BAD) {
1559 return;
1560 }
1561
1562 /*
1563 * convert drum slot offset back to sdp, free the blocks
1564 * in the extent, and return. must hold pri lock to do
1565 * lookup and access the extent.
1566 */
1567
1568 simple_lock(&uvm.swap_data_lock);
1569 sdp = swapdrum_getsdp(startslot);
1570 KASSERT(uvmexp.nswapdev >= 1);
1571 KASSERT(sdp != NULL);
1572 KASSERT(sdp->swd_npginuse >= nslots);
1573 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1574 EX_MALLOCOK|EX_NOWAIT) != 0) {
1575 printf("warning: resource shortage: %d pages of swap lost\n",
1576 nslots);
1577 }
1578 sdp->swd_npginuse -= nslots;
1579 uvmexp.swpginuse -= nslots;
1580 simple_unlock(&uvm.swap_data_lock);
1581 }
1582
1583 /*
1584 * uvm_swap_put: put any number of pages into a contig place on swap
1585 *
1586 * => can be sync or async
1587 */
1588
1589 int
1590 uvm_swap_put(swslot, ppsp, npages, flags)
1591 int swslot;
1592 struct vm_page **ppsp;
1593 int npages;
1594 int flags;
1595 {
1596 int error;
1597
1598 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1599 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1600 return error;
1601 }
1602
1603 /*
1604 * uvm_swap_get: get a single page from swap
1605 *
1606 * => usually a sync op (from fault)
1607 */
1608
1609 int
1610 uvm_swap_get(page, swslot, flags)
1611 struct vm_page *page;
1612 int swslot, flags;
1613 {
1614 int error;
1615
1616 uvmexp.nswget++;
1617 KASSERT(flags & PGO_SYNCIO);
1618 if (swslot == SWSLOT_BAD) {
1619 return EIO;
1620 }
1621 error = uvm_swap_io(&page, swslot, 1, B_READ |
1622 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1623 if (error == 0) {
1624
1625 /*
1626 * this page is no longer only in swap.
1627 */
1628
1629 simple_lock(&uvm.swap_data_lock);
1630 KASSERT(uvmexp.swpgonly > 0);
1631 uvmexp.swpgonly--;
1632 simple_unlock(&uvm.swap_data_lock);
1633 }
1634 return error;
1635 }
1636
1637 /*
1638 * uvm_swap_io: do an i/o operation to swap
1639 */
1640
1641 static int
1642 uvm_swap_io(pps, startslot, npages, flags)
1643 struct vm_page **pps;
1644 int startslot, npages, flags;
1645 {
1646 daddr_t startblk;
1647 struct buf *bp;
1648 vaddr_t kva;
1649 int error, s, mapinflags;
1650 boolean_t write, async;
1651 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1652
1653 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1654 startslot, npages, flags, 0);
1655
1656 write = (flags & B_READ) == 0;
1657 async = (flags & B_ASYNC) != 0;
1658
1659 /*
1660 * convert starting drum slot to block number
1661 */
1662
1663 startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1664
1665 /*
1666 * first, map the pages into the kernel.
1667 */
1668
1669 mapinflags = !write ?
1670 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1671 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1672 kva = uvm_pagermapin(pps, npages, mapinflags);
1673
1674 /*
1675 * now allocate a buf for the i/o.
1676 */
1677
1678 s = splbio();
1679 bp = pool_get(&bufpool, PR_WAITOK);
1680 splx(s);
1681
1682 /*
1683 * fill in the bp/sbp. we currently route our i/o through
1684 * /dev/drum's vnode [swapdev_vp].
1685 */
1686
1687 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1688 bp->b_proc = &proc0; /* XXX */
1689 bp->b_vnbufs.le_next = NOLIST;
1690 bp->b_data = (caddr_t)kva;
1691 bp->b_blkno = startblk;
1692 bp->b_vp = swapdev_vp;
1693 bp->b_dev = swapdev_vp->v_rdev;
1694 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1695 LIST_INIT(&bp->b_dep);
1696
1697 /*
1698 * bump v_numoutput (counter of number of active outputs).
1699 */
1700
1701 if (write) {
1702 s = splbio();
1703 swapdev_vp->v_numoutput++;
1704 splx(s);
1705 }
1706
1707 /*
1708 * for async ops we must set up the iodone handler.
1709 */
1710
1711 if (async) {
1712 bp->b_flags |= B_CALL;
1713 bp->b_iodone = uvm_aio_biodone;
1714 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1715 }
1716 UVMHIST_LOG(pdhist,
1717 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1718 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1719
1720 /*
1721 * now we start the I/O, and if async, return.
1722 */
1723
1724 VOP_STRATEGY(bp);
1725 if (async)
1726 return 0;
1727
1728 /*
1729 * must be sync i/o. wait for it to finish
1730 */
1731
1732 error = biowait(bp);
1733
1734 /*
1735 * kill the pager mapping
1736 */
1737
1738 uvm_pagermapout(kva, npages);
1739
1740 /*
1741 * now dispose of the buf and we're done.
1742 */
1743
1744 s = splbio();
1745 if (write)
1746 vwakeup(bp);
1747 pool_put(&bufpool, bp);
1748 splx(s);
1749 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1750 return (error);
1751 }
1752