uvm_swap.c revision 1.70 1 /* $NetBSD: uvm_swap.c,v 1.70 2002/09/27 15:38:09 provos Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.70 2002/09/27 15:38:09 provos Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/conf.h>
46 #include <sys/proc.h>
47 #include <sys/namei.h>
48 #include <sys/disklabel.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/vnode.h>
53 #include <sys/file.h>
54 #include <sys/extent.h>
55 #include <sys/mount.h>
56 #include <sys/pool.h>
57 #include <sys/syscallargs.h>
58 #include <sys/swap.h>
59
60 #include <uvm/uvm.h>
61
62 #include <miscfs/specfs/specdev.h>
63
64 /*
65 * uvm_swap.c: manage configuration and i/o to swap space.
66 */
67
68 /*
69 * swap space is managed in the following way:
70 *
71 * each swap partition or file is described by a "swapdev" structure.
72 * each "swapdev" structure contains a "swapent" structure which contains
73 * information that is passed up to the user (via system calls).
74 *
75 * each swap partition is assigned a "priority" (int) which controls
76 * swap parition usage.
77 *
78 * the system maintains a global data structure describing all swap
79 * partitions/files. there is a sorted LIST of "swappri" structures
80 * which describe "swapdev"'s at that priority. this LIST is headed
81 * by the "swap_priority" global var. each "swappri" contains a
82 * CIRCLEQ of "swapdev" structures at that priority.
83 *
84 * locking:
85 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
86 * system call and prevents the swap priority list from changing
87 * while we are in the middle of a system call (e.g. SWAP_STATS).
88 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
89 * structures including the priority list, the swapdev structures,
90 * and the swapmap extent.
91 *
92 * each swap device has the following info:
93 * - swap device in use (could be disabled, preventing future use)
94 * - swap enabled (allows new allocations on swap)
95 * - map info in /dev/drum
96 * - vnode pointer
97 * for swap files only:
98 * - block size
99 * - max byte count in buffer
100 * - buffer
101 *
102 * userland controls and configures swap with the swapctl(2) system call.
103 * the sys_swapctl performs the following operations:
104 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
105 * [2] SWAP_STATS: given a pointer to an array of swapent structures
106 * (passed in via "arg") of a size passed in via "misc" ... we load
107 * the current swap config into the array. The actual work is done
108 * in the uvm_swap_stats(9) function.
109 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
110 * priority in "misc", start swapping on it.
111 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
112 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
113 * "misc")
114 */
115
116 /*
117 * swapdev: describes a single swap partition/file
118 *
119 * note the following should be true:
120 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
121 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
122 */
123 struct swapdev {
124 struct oswapent swd_ose;
125 #define swd_dev swd_ose.ose_dev /* device id */
126 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
127 #define swd_priority swd_ose.ose_priority /* our priority */
128 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
129 char *swd_path; /* saved pathname of device */
130 int swd_pathlen; /* length of pathname */
131 int swd_npages; /* #pages we can use */
132 int swd_npginuse; /* #pages in use */
133 int swd_npgbad; /* #pages bad */
134 int swd_drumoffset; /* page0 offset in drum */
135 int swd_drumsize; /* #pages in drum */
136 struct extent *swd_ex; /* extent for this swapdev */
137 char swd_exname[12]; /* name of extent above */
138 struct vnode *swd_vp; /* backing vnode */
139 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
140
141 int swd_bsize; /* blocksize (bytes) */
142 int swd_maxactive; /* max active i/o reqs */
143 struct bufq_state swd_tab; /* buffer list */
144 int swd_active; /* number of active buffers */
145 };
146
147 /*
148 * swap device priority entry; the list is kept sorted on `spi_priority'.
149 */
150 struct swappri {
151 int spi_priority; /* priority */
152 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
153 /* circleq of swapdevs at this priority */
154 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
155 };
156
157 /*
158 * The following two structures are used to keep track of data transfers
159 * on swap devices associated with regular files.
160 * NOTE: this code is more or less a copy of vnd.c; we use the same
161 * structure names here to ease porting..
162 */
163 struct vndxfer {
164 struct buf *vx_bp; /* Pointer to parent buffer */
165 struct swapdev *vx_sdp;
166 int vx_error;
167 int vx_pending; /* # of pending aux buffers */
168 int vx_flags;
169 #define VX_BUSY 1
170 #define VX_DEAD 2
171 };
172
173 struct vndbuf {
174 struct buf vb_buf;
175 struct vndxfer *vb_xfer;
176 };
177
178
179 /*
180 * We keep a of pool vndbuf's and vndxfer structures.
181 */
182 static struct pool vndxfer_pool;
183 static struct pool vndbuf_pool;
184
185 #define getvndxfer(vnx) do { \
186 int s = splbio(); \
187 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \
188 splx(s); \
189 } while (0)
190
191 #define putvndxfer(vnx) { \
192 pool_put(&vndxfer_pool, (void *)(vnx)); \
193 }
194
195 #define getvndbuf(vbp) do { \
196 int s = splbio(); \
197 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \
198 splx(s); \
199 } while (0)
200
201 #define putvndbuf(vbp) { \
202 pool_put(&vndbuf_pool, (void *)(vbp)); \
203 }
204
205 /*
206 * local variables
207 */
208 static struct extent *swapmap; /* controls the mapping of /dev/drum */
209
210 /* list of all active swap devices [by priority] */
211 LIST_HEAD(swap_priority, swappri);
212 static struct swap_priority swap_priority;
213
214 /* locks */
215 struct lock swap_syscall_lock;
216
217 /*
218 * prototypes
219 */
220 static struct swapdev *swapdrum_getsdp __P((int));
221
222 static struct swapdev *swaplist_find __P((struct vnode *, int));
223 static void swaplist_insert __P((struct swapdev *,
224 struct swappri *, int));
225 static void swaplist_trim __P((void));
226
227 static int swap_on __P((struct proc *, struct swapdev *));
228 static int swap_off __P((struct proc *, struct swapdev *));
229
230 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
231 static void sw_reg_iodone __P((struct buf *));
232 static void sw_reg_start __P((struct swapdev *));
233
234 static int uvm_swap_io __P((struct vm_page **, int, int, int));
235
236 dev_type_read(swread);
237 dev_type_write(swwrite);
238 dev_type_strategy(swstrategy);
239
240 const struct bdevsw swap_bdevsw = {
241 noopen, noclose, swstrategy, noioctl, nodump, nosize,
242 };
243
244 const struct cdevsw swap_cdevsw = {
245 nullopen, nullclose, swread, swwrite, noioctl,
246 nostop, notty, nopoll, nommap,
247 };
248
249 /*
250 * uvm_swap_init: init the swap system data structures and locks
251 *
252 * => called at boot time from init_main.c after the filesystems
253 * are brought up (which happens after uvm_init())
254 */
255 void
256 uvm_swap_init()
257 {
258 UVMHIST_FUNC("uvm_swap_init");
259
260 UVMHIST_CALLED(pdhist);
261 /*
262 * first, init the swap list, its counter, and its lock.
263 * then get a handle on the vnode for /dev/drum by using
264 * the its dev_t number ("swapdev", from MD conf.c).
265 */
266
267 LIST_INIT(&swap_priority);
268 uvmexp.nswapdev = 0;
269 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
270 simple_lock_init(&uvm.swap_data_lock);
271
272 if (bdevvp(swapdev, &swapdev_vp))
273 panic("uvm_swap_init: can't get vnode for swap device");
274
275 /*
276 * create swap block resource map to map /dev/drum. the range
277 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
278 * that block 0 is reserved (used to indicate an allocation
279 * failure, or no allocation).
280 */
281 swapmap = extent_create("swapmap", 1, INT_MAX,
282 M_VMSWAP, 0, 0, EX_NOWAIT);
283 if (swapmap == 0)
284 panic("uvm_swap_init: extent_create failed");
285
286 /*
287 * allocate pools for structures used for swapping to files.
288 */
289
290 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0,
291 "swp vnx", NULL);
292
293 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0,
294 "swp vnd", NULL);
295
296 /*
297 * done!
298 */
299 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
300 }
301
302 /*
303 * swaplist functions: functions that operate on the list of swap
304 * devices on the system.
305 */
306
307 /*
308 * swaplist_insert: insert swap device "sdp" into the global list
309 *
310 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
311 * => caller must provide a newly malloc'd swappri structure (we will
312 * FREE it if we don't need it... this it to prevent malloc blocking
313 * here while adding swap)
314 */
315 static void
316 swaplist_insert(sdp, newspp, priority)
317 struct swapdev *sdp;
318 struct swappri *newspp;
319 int priority;
320 {
321 struct swappri *spp, *pspp;
322 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
323
324 /*
325 * find entry at or after which to insert the new device.
326 */
327 pspp = NULL;
328 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
329 if (priority <= spp->spi_priority)
330 break;
331 pspp = spp;
332 }
333
334 /*
335 * new priority?
336 */
337 if (spp == NULL || spp->spi_priority != priority) {
338 spp = newspp; /* use newspp! */
339 UVMHIST_LOG(pdhist, "created new swappri = %d",
340 priority, 0, 0, 0);
341
342 spp->spi_priority = priority;
343 CIRCLEQ_INIT(&spp->spi_swapdev);
344
345 if (pspp)
346 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
347 else
348 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
349 } else {
350 /* we don't need a new priority structure, free it */
351 FREE(newspp, M_VMSWAP);
352 }
353
354 /*
355 * priority found (or created). now insert on the priority's
356 * circleq list and bump the total number of swapdevs.
357 */
358 sdp->swd_priority = priority;
359 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
360 uvmexp.nswapdev++;
361 }
362
363 /*
364 * swaplist_find: find and optionally remove a swap device from the
365 * global list.
366 *
367 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
368 * => we return the swapdev we found (and removed)
369 */
370 static struct swapdev *
371 swaplist_find(vp, remove)
372 struct vnode *vp;
373 boolean_t remove;
374 {
375 struct swapdev *sdp;
376 struct swappri *spp;
377
378 /*
379 * search the lists for the requested vp
380 */
381
382 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
383 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
384 if (sdp->swd_vp == vp) {
385 if (remove) {
386 CIRCLEQ_REMOVE(&spp->spi_swapdev,
387 sdp, swd_next);
388 uvmexp.nswapdev--;
389 }
390 return(sdp);
391 }
392 }
393 }
394 return (NULL);
395 }
396
397
398 /*
399 * swaplist_trim: scan priority list for empty priority entries and kill
400 * them.
401 *
402 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
403 */
404 static void
405 swaplist_trim()
406 {
407 struct swappri *spp, *nextspp;
408
409 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
410 nextspp = LIST_NEXT(spp, spi_swappri);
411 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
412 (void *)&spp->spi_swapdev)
413 continue;
414 LIST_REMOVE(spp, spi_swappri);
415 free(spp, M_VMSWAP);
416 }
417 }
418
419 /*
420 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
421 * to the "swapdev" that maps that section of the drum.
422 *
423 * => each swapdev takes one big contig chunk of the drum
424 * => caller must hold uvm.swap_data_lock
425 */
426 static struct swapdev *
427 swapdrum_getsdp(pgno)
428 int pgno;
429 {
430 struct swapdev *sdp;
431 struct swappri *spp;
432
433 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
434 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
435 if (sdp->swd_flags & SWF_FAKE)
436 continue;
437 if (pgno >= sdp->swd_drumoffset &&
438 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
439 return sdp;
440 }
441 }
442 }
443 return NULL;
444 }
445
446
447 /*
448 * sys_swapctl: main entry point for swapctl(2) system call
449 * [with two helper functions: swap_on and swap_off]
450 */
451 int
452 sys_swapctl(p, v, retval)
453 struct proc *p;
454 void *v;
455 register_t *retval;
456 {
457 struct sys_swapctl_args /* {
458 syscallarg(int) cmd;
459 syscallarg(void *) arg;
460 syscallarg(int) misc;
461 } */ *uap = (struct sys_swapctl_args *)v;
462 struct vnode *vp;
463 struct nameidata nd;
464 struct swappri *spp;
465 struct swapdev *sdp;
466 struct swapent *sep;
467 char userpath[PATH_MAX + 1];
468 size_t len;
469 int error, misc;
470 int priority;
471 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
472
473 misc = SCARG(uap, misc);
474
475 /*
476 * ensure serialized syscall access by grabbing the swap_syscall_lock
477 */
478 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
479
480 /*
481 * we handle the non-priv NSWAP and STATS request first.
482 *
483 * SWAP_NSWAP: return number of config'd swap devices
484 * [can also be obtained with uvmexp sysctl]
485 */
486 if (SCARG(uap, cmd) == SWAP_NSWAP) {
487 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
488 0, 0, 0);
489 *retval = uvmexp.nswapdev;
490 error = 0;
491 goto out;
492 }
493
494 /*
495 * SWAP_STATS: get stats on current # of configured swap devs
496 *
497 * note that the swap_priority list can't change as long
498 * as we are holding the swap_syscall_lock. we don't want
499 * to grab the uvm.swap_data_lock because we may fault&sleep during
500 * copyout() and we don't want to be holding that lock then!
501 */
502 if (SCARG(uap, cmd) == SWAP_STATS
503 #if defined(COMPAT_13)
504 || SCARG(uap, cmd) == SWAP_OSTATS
505 #endif
506 ) {
507 misc = MIN(uvmexp.nswapdev, misc);
508 #if defined(COMPAT_13)
509 if (SCARG(uap, cmd) == SWAP_OSTATS)
510 len = sizeof(struct oswapent) * misc;
511 else
512 #endif
513 len = sizeof(struct swapent) * misc;
514 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
515
516 uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
517 error = copyout(sep, (void *)SCARG(uap, arg), len);
518
519 free(sep, M_TEMP);
520 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
521 goto out;
522 }
523 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
524 dev_t *devp = (dev_t *)SCARG(uap, arg);
525
526 error = copyout(&dumpdev, devp, sizeof(dumpdev));
527 goto out;
528 }
529
530 /*
531 * all other requests require superuser privs. verify.
532 */
533 if ((error = suser(p->p_ucred, &p->p_acflag)))
534 goto out;
535
536 /*
537 * at this point we expect a path name in arg. we will
538 * use namei() to gain a vnode reference (vref), and lock
539 * the vnode (VOP_LOCK).
540 *
541 * XXX: a NULL arg means use the root vnode pointer (e.g. for
542 * miniroot)
543 */
544 if (SCARG(uap, arg) == NULL) {
545 vp = rootvp; /* miniroot */
546 if (vget(vp, LK_EXCLUSIVE)) {
547 error = EBUSY;
548 goto out;
549 }
550 if (SCARG(uap, cmd) == SWAP_ON &&
551 copystr("miniroot", userpath, sizeof userpath, &len))
552 panic("swapctl: miniroot copy failed");
553 } else {
554 int space;
555 char *where;
556
557 if (SCARG(uap, cmd) == SWAP_ON) {
558 if ((error = copyinstr(SCARG(uap, arg), userpath,
559 sizeof userpath, &len)))
560 goto out;
561 space = UIO_SYSSPACE;
562 where = userpath;
563 } else {
564 space = UIO_USERSPACE;
565 where = (char *)SCARG(uap, arg);
566 }
567 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
568 if ((error = namei(&nd)))
569 goto out;
570 vp = nd.ni_vp;
571 }
572 /* note: "vp" is referenced and locked */
573
574 error = 0; /* assume no error */
575 switch(SCARG(uap, cmd)) {
576
577 case SWAP_DUMPDEV:
578 if (vp->v_type != VBLK) {
579 error = ENOTBLK;
580 break;
581 }
582 dumpdev = vp->v_rdev;
583 cpu_dumpconf();
584 break;
585
586 case SWAP_CTL:
587 /*
588 * get new priority, remove old entry (if any) and then
589 * reinsert it in the correct place. finally, prune out
590 * any empty priority structures.
591 */
592 priority = SCARG(uap, misc);
593 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
594 simple_lock(&uvm.swap_data_lock);
595 if ((sdp = swaplist_find(vp, 1)) == NULL) {
596 error = ENOENT;
597 } else {
598 swaplist_insert(sdp, spp, priority);
599 swaplist_trim();
600 }
601 simple_unlock(&uvm.swap_data_lock);
602 if (error)
603 free(spp, M_VMSWAP);
604 break;
605
606 case SWAP_ON:
607
608 /*
609 * check for duplicates. if none found, then insert a
610 * dummy entry on the list to prevent someone else from
611 * trying to enable this device while we are working on
612 * it.
613 */
614
615 priority = SCARG(uap, misc);
616 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
617 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
618 memset(sdp, 0, sizeof(*sdp));
619 sdp->swd_flags = SWF_FAKE;
620 sdp->swd_vp = vp;
621 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
622 bufq_alloc(&sdp->swd_tab, BUFQ_DISKSORT|BUFQ_SORT_RAWBLOCK);
623 simple_lock(&uvm.swap_data_lock);
624 if (swaplist_find(vp, 0) != NULL) {
625 error = EBUSY;
626 simple_unlock(&uvm.swap_data_lock);
627 bufq_free(&sdp->swd_tab);
628 free(sdp, M_VMSWAP);
629 free(spp, M_VMSWAP);
630 break;
631 }
632 swaplist_insert(sdp, spp, priority);
633 simple_unlock(&uvm.swap_data_lock);
634
635 sdp->swd_pathlen = len;
636 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
637 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
638 panic("swapctl: copystr");
639
640 /*
641 * we've now got a FAKE placeholder in the swap list.
642 * now attempt to enable swap on it. if we fail, undo
643 * what we've done and kill the fake entry we just inserted.
644 * if swap_on is a success, it will clear the SWF_FAKE flag
645 */
646
647 if ((error = swap_on(p, sdp)) != 0) {
648 simple_lock(&uvm.swap_data_lock);
649 (void) swaplist_find(vp, 1); /* kill fake entry */
650 swaplist_trim();
651 simple_unlock(&uvm.swap_data_lock);
652 bufq_free(&sdp->swd_tab);
653 free(sdp->swd_path, M_VMSWAP);
654 free(sdp, M_VMSWAP);
655 break;
656 }
657 break;
658
659 case SWAP_OFF:
660 simple_lock(&uvm.swap_data_lock);
661 if ((sdp = swaplist_find(vp, 0)) == NULL) {
662 simple_unlock(&uvm.swap_data_lock);
663 error = ENXIO;
664 break;
665 }
666
667 /*
668 * If a device isn't in use or enabled, we
669 * can't stop swapping from it (again).
670 */
671 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
672 simple_unlock(&uvm.swap_data_lock);
673 error = EBUSY;
674 break;
675 }
676
677 /*
678 * do the real work.
679 */
680 error = swap_off(p, sdp);
681 break;
682
683 default:
684 error = EINVAL;
685 }
686
687 /*
688 * done! release the ref gained by namei() and unlock.
689 */
690 vput(vp);
691
692 out:
693 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
694
695 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
696 return (error);
697 }
698
699 /*
700 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
701 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
702 * emulation to use it directly without going through sys_swapctl().
703 * The problem with using sys_swapctl() there is that it involves
704 * copying the swapent array to the stackgap, and this array's size
705 * is not known at build time. Hence it would not be possible to
706 * ensure it would fit in the stackgap in any case.
707 */
708 void
709 uvm_swap_stats(cmd, sep, sec, retval)
710 int cmd;
711 struct swapent *sep;
712 int sec;
713 register_t *retval;
714 {
715 struct swappri *spp;
716 struct swapdev *sdp;
717 int count = 0;
718
719 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
720 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
721 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
722 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
723 /*
724 * backwards compatibility for system call.
725 * note that we use 'struct oswapent' as an
726 * overlay into both 'struct swapdev' and
727 * the userland 'struct swapent', as we
728 * want to retain backwards compatibility
729 * with NetBSD 1.3.
730 */
731 sdp->swd_ose.ose_inuse =
732 btodb((u_int64_t)sdp->swd_npginuse <<
733 PAGE_SHIFT);
734 (void)memcpy(sep, &sdp->swd_ose,
735 sizeof(struct oswapent));
736
737 /* now copy out the path if necessary */
738 #if defined(COMPAT_13)
739 if (cmd == SWAP_STATS)
740 #endif
741 (void)memcpy(&sep->se_path, sdp->swd_path,
742 sdp->swd_pathlen);
743
744 count++;
745 #if defined(COMPAT_13)
746 if (cmd == SWAP_OSTATS)
747 sep = (struct swapent *)
748 ((struct oswapent *)sep + 1);
749 else
750 #endif
751 sep++;
752 }
753 }
754
755 *retval = count;
756 return;
757 }
758
759 /*
760 * swap_on: attempt to enable a swapdev for swapping. note that the
761 * swapdev is already on the global list, but disabled (marked
762 * SWF_FAKE).
763 *
764 * => we avoid the start of the disk (to protect disk labels)
765 * => we also avoid the miniroot, if we are swapping to root.
766 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
767 * if needed.
768 */
769 static int
770 swap_on(p, sdp)
771 struct proc *p;
772 struct swapdev *sdp;
773 {
774 static int count = 0; /* static */
775 struct vnode *vp;
776 int error, npages, nblocks, size;
777 long addr;
778 u_long result;
779 struct vattr va;
780 #ifdef NFS
781 extern int (**nfsv2_vnodeop_p) __P((void *));
782 #endif /* NFS */
783 const struct bdevsw *bdev;
784 dev_t dev;
785 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
786
787 /*
788 * we want to enable swapping on sdp. the swd_vp contains
789 * the vnode we want (locked and ref'd), and the swd_dev
790 * contains the dev_t of the file, if it a block device.
791 */
792
793 vp = sdp->swd_vp;
794 dev = sdp->swd_dev;
795
796 /*
797 * open the swap file (mostly useful for block device files to
798 * let device driver know what is up).
799 *
800 * we skip the open/close for root on swap because the root
801 * has already been opened when root was mounted (mountroot).
802 */
803 if (vp != rootvp) {
804 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
805 return (error);
806 }
807
808 /* XXX this only works for block devices */
809 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
810
811 /*
812 * we now need to determine the size of the swap area. for
813 * block specials we can call the d_psize function.
814 * for normal files, we must stat [get attrs].
815 *
816 * we put the result in nblks.
817 * for normal files, we also want the filesystem block size
818 * (which we get with statfs).
819 */
820 switch (vp->v_type) {
821 case VBLK:
822 bdev = bdevsw_lookup(dev);
823 if (bdev == NULL || bdev->d_psize == NULL ||
824 (nblocks = (*bdev->d_psize)(dev)) == -1) {
825 error = ENXIO;
826 goto bad;
827 }
828 break;
829
830 case VREG:
831 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
832 goto bad;
833 nblocks = (int)btodb(va.va_size);
834 if ((error =
835 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
836 goto bad;
837
838 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
839 /*
840 * limit the max # of outstanding I/O requests we issue
841 * at any one time. take it easy on NFS servers.
842 */
843 #ifdef NFS
844 if (vp->v_op == nfsv2_vnodeop_p)
845 sdp->swd_maxactive = 2; /* XXX */
846 else
847 #endif /* NFS */
848 sdp->swd_maxactive = 8; /* XXX */
849 break;
850
851 default:
852 error = ENXIO;
853 goto bad;
854 }
855
856 /*
857 * save nblocks in a safe place and convert to pages.
858 */
859
860 sdp->swd_ose.ose_nblks = nblocks;
861 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
862
863 /*
864 * for block special files, we want to make sure that leave
865 * the disklabel and bootblocks alone, so we arrange to skip
866 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
867 * note that because of this the "size" can be less than the
868 * actual number of blocks on the device.
869 */
870 if (vp->v_type == VBLK) {
871 /* we use pages 1 to (size - 1) [inclusive] */
872 size = npages - 1;
873 addr = 1;
874 } else {
875 /* we use pages 0 to (size - 1) [inclusive] */
876 size = npages;
877 addr = 0;
878 }
879
880 /*
881 * make sure we have enough blocks for a reasonable sized swap
882 * area. we want at least one page.
883 */
884
885 if (size < 1) {
886 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
887 error = EINVAL;
888 goto bad;
889 }
890
891 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
892
893 /*
894 * now we need to allocate an extent to manage this swap device
895 */
896 snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
897 count++);
898
899 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
900 sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
901 0, 0, EX_WAITOK);
902 /* allocate the `saved' region from the extent so it won't be used */
903 if (addr) {
904 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
905 panic("disklabel region");
906 }
907
908 /*
909 * if the vnode we are swapping to is the root vnode
910 * (i.e. we are swapping to the miniroot) then we want
911 * to make sure we don't overwrite it. do a statfs to
912 * find its size and skip over it.
913 */
914 if (vp == rootvp) {
915 struct mount *mp;
916 struct statfs *sp;
917 int rootblocks, rootpages;
918
919 mp = rootvnode->v_mount;
920 sp = &mp->mnt_stat;
921 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
922 /*
923 * XXX: sp->f_blocks isn't the total number of
924 * blocks in the filesystem, it's the number of
925 * data blocks. so, our rootblocks almost
926 * definitely underestimates the total size
927 * of the filesystem - how badly depends on the
928 * details of the filesystem type. there isn't
929 * an obvious way to deal with this cleanly
930 * and perfectly, so for now we just pad our
931 * rootblocks estimate with an extra 5 percent.
932 */
933 rootblocks += (rootblocks >> 5) +
934 (rootblocks >> 6) +
935 (rootblocks >> 7);
936 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
937 if (rootpages > size)
938 panic("swap_on: miniroot larger than swap?");
939
940 if (extent_alloc_region(sdp->swd_ex, addr,
941 rootpages, EX_WAITOK))
942 panic("swap_on: unable to preserve miniroot");
943
944 size -= rootpages;
945 printf("Preserved %d pages of miniroot ", rootpages);
946 printf("leaving %d pages of swap\n", size);
947 }
948
949 /*
950 * try to add anons to reflect the new swap space.
951 */
952
953 error = uvm_anon_add(size);
954 if (error) {
955 goto bad;
956 }
957
958 /*
959 * add a ref to vp to reflect usage as a swap device.
960 */
961 vref(vp);
962
963 /*
964 * now add the new swapdev to the drum and enable.
965 */
966 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
967 EX_WAITOK, &result))
968 panic("swapdrum_add");
969
970 sdp->swd_drumoffset = (int)result;
971 sdp->swd_drumsize = npages;
972 sdp->swd_npages = size;
973 simple_lock(&uvm.swap_data_lock);
974 sdp->swd_flags &= ~SWF_FAKE; /* going live */
975 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
976 uvmexp.swpages += size;
977 simple_unlock(&uvm.swap_data_lock);
978 return (0);
979
980 /*
981 * failure: clean up and return error.
982 */
983
984 bad:
985 if (sdp->swd_ex) {
986 extent_destroy(sdp->swd_ex);
987 }
988 if (vp != rootvp) {
989 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
990 }
991 return (error);
992 }
993
994 /*
995 * swap_off: stop swapping on swapdev
996 *
997 * => swap data should be locked, we will unlock.
998 */
999 static int
1000 swap_off(p, sdp)
1001 struct proc *p;
1002 struct swapdev *sdp;
1003 {
1004 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1005 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev,0,0,0);
1006
1007 /* disable the swap area being removed */
1008 sdp->swd_flags &= ~SWF_ENABLE;
1009 simple_unlock(&uvm.swap_data_lock);
1010
1011 /*
1012 * the idea is to find all the pages that are paged out to this
1013 * device, and page them all in. in uvm, swap-backed pageable
1014 * memory can take two forms: aobjs and anons. call the
1015 * swapoff hook for each subsystem to bring in pages.
1016 */
1017
1018 if (uao_swap_off(sdp->swd_drumoffset,
1019 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1020 anon_swap_off(sdp->swd_drumoffset,
1021 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1022
1023 simple_lock(&uvm.swap_data_lock);
1024 sdp->swd_flags |= SWF_ENABLE;
1025 simple_unlock(&uvm.swap_data_lock);
1026 return ENOMEM;
1027 }
1028 KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
1029
1030 /*
1031 * done with the vnode.
1032 * drop our ref on the vnode before calling VOP_CLOSE()
1033 * so that spec_close() can tell if this is the last close.
1034 */
1035 vrele(sdp->swd_vp);
1036 if (sdp->swd_vp != rootvp) {
1037 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1038 }
1039
1040 /* remove anons from the system */
1041 uvm_anon_remove(sdp->swd_npages);
1042
1043 simple_lock(&uvm.swap_data_lock);
1044 uvmexp.swpages -= sdp->swd_npages;
1045
1046 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1047 panic("swap_off: swapdev not in list");
1048 swaplist_trim();
1049 simple_unlock(&uvm.swap_data_lock);
1050
1051 /*
1052 * free all resources!
1053 */
1054 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1055 EX_WAITOK);
1056 extent_destroy(sdp->swd_ex);
1057 bufq_free(&sdp->swd_tab);
1058 free(sdp, M_VMSWAP);
1059 return (0);
1060 }
1061
1062 /*
1063 * /dev/drum interface and i/o functions
1064 */
1065
1066 /*
1067 * swread: the read function for the drum (just a call to physio)
1068 */
1069 /*ARGSUSED*/
1070 int
1071 swread(dev, uio, ioflag)
1072 dev_t dev;
1073 struct uio *uio;
1074 int ioflag;
1075 {
1076 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1077
1078 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1079 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1080 }
1081
1082 /*
1083 * swwrite: the write function for the drum (just a call to physio)
1084 */
1085 /*ARGSUSED*/
1086 int
1087 swwrite(dev, uio, ioflag)
1088 dev_t dev;
1089 struct uio *uio;
1090 int ioflag;
1091 {
1092 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1093
1094 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1095 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1096 }
1097
1098 /*
1099 * swstrategy: perform I/O on the drum
1100 *
1101 * => we must map the i/o request from the drum to the correct swapdev.
1102 */
1103 void
1104 swstrategy(bp)
1105 struct buf *bp;
1106 {
1107 struct swapdev *sdp;
1108 struct vnode *vp;
1109 int s, pageno, bn;
1110 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1111
1112 /*
1113 * convert block number to swapdev. note that swapdev can't
1114 * be yanked out from under us because we are holding resources
1115 * in it (i.e. the blocks we are doing I/O on).
1116 */
1117 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1118 simple_lock(&uvm.swap_data_lock);
1119 sdp = swapdrum_getsdp(pageno);
1120 simple_unlock(&uvm.swap_data_lock);
1121 if (sdp == NULL) {
1122 bp->b_error = EINVAL;
1123 bp->b_flags |= B_ERROR;
1124 biodone(bp);
1125 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1126 return;
1127 }
1128
1129 /*
1130 * convert drum page number to block number on this swapdev.
1131 */
1132
1133 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1134 bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1135
1136 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1137 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1138 sdp->swd_drumoffset, bn, bp->b_bcount);
1139
1140 /*
1141 * for block devices we finish up here.
1142 * for regular files we have to do more work which we delegate
1143 * to sw_reg_strategy().
1144 */
1145
1146 switch (sdp->swd_vp->v_type) {
1147 default:
1148 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1149
1150 case VBLK:
1151
1152 /*
1153 * must convert "bp" from an I/O on /dev/drum to an I/O
1154 * on the swapdev (sdp).
1155 */
1156 s = splbio();
1157 bp->b_blkno = bn; /* swapdev block number */
1158 vp = sdp->swd_vp; /* swapdev vnode pointer */
1159 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1160
1161 /*
1162 * if we are doing a write, we have to redirect the i/o on
1163 * drum's v_numoutput counter to the swapdevs.
1164 */
1165 if ((bp->b_flags & B_READ) == 0) {
1166 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1167 vp->v_numoutput++; /* put it on swapdev */
1168 }
1169
1170 /*
1171 * finally plug in swapdev vnode and start I/O
1172 */
1173 bp->b_vp = vp;
1174 splx(s);
1175 VOP_STRATEGY(bp);
1176 return;
1177
1178 case VREG:
1179 /*
1180 * delegate to sw_reg_strategy function.
1181 */
1182 sw_reg_strategy(sdp, bp, bn);
1183 return;
1184 }
1185 /* NOTREACHED */
1186 }
1187
1188 /*
1189 * sw_reg_strategy: handle swap i/o to regular files
1190 */
1191 static void
1192 sw_reg_strategy(sdp, bp, bn)
1193 struct swapdev *sdp;
1194 struct buf *bp;
1195 int bn;
1196 {
1197 struct vnode *vp;
1198 struct vndxfer *vnx;
1199 daddr_t nbn;
1200 caddr_t addr;
1201 off_t byteoff;
1202 int s, off, nra, error, sz, resid;
1203 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1204
1205 /*
1206 * allocate a vndxfer head for this transfer and point it to
1207 * our buffer.
1208 */
1209 getvndxfer(vnx);
1210 vnx->vx_flags = VX_BUSY;
1211 vnx->vx_error = 0;
1212 vnx->vx_pending = 0;
1213 vnx->vx_bp = bp;
1214 vnx->vx_sdp = sdp;
1215
1216 /*
1217 * setup for main loop where we read filesystem blocks into
1218 * our buffer.
1219 */
1220 error = 0;
1221 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1222 addr = bp->b_data; /* current position in buffer */
1223 byteoff = dbtob((u_int64_t)bn);
1224
1225 for (resid = bp->b_resid; resid; resid -= sz) {
1226 struct vndbuf *nbp;
1227
1228 /*
1229 * translate byteoffset into block number. return values:
1230 * vp = vnode of underlying device
1231 * nbn = new block number (on underlying vnode dev)
1232 * nra = num blocks we can read-ahead (excludes requested
1233 * block)
1234 */
1235 nra = 0;
1236 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1237 &vp, &nbn, &nra);
1238
1239 if (error == 0 && nbn == (daddr_t)-1) {
1240 /*
1241 * this used to just set error, but that doesn't
1242 * do the right thing. Instead, it causes random
1243 * memory errors. The panic() should remain until
1244 * this condition doesn't destabilize the system.
1245 */
1246 #if 1
1247 panic("sw_reg_strategy: swap to sparse file");
1248 #else
1249 error = EIO; /* failure */
1250 #endif
1251 }
1252
1253 /*
1254 * punt if there was an error or a hole in the file.
1255 * we must wait for any i/o ops we have already started
1256 * to finish before returning.
1257 *
1258 * XXX we could deal with holes here but it would be
1259 * a hassle (in the write case).
1260 */
1261 if (error) {
1262 s = splbio();
1263 vnx->vx_error = error; /* pass error up */
1264 goto out;
1265 }
1266
1267 /*
1268 * compute the size ("sz") of this transfer (in bytes).
1269 */
1270 off = byteoff % sdp->swd_bsize;
1271 sz = (1 + nra) * sdp->swd_bsize - off;
1272 if (sz > resid)
1273 sz = resid;
1274
1275 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1276 "vp %p/%p offset 0x%x/0x%x",
1277 sdp->swd_vp, vp, byteoff, nbn);
1278
1279 /*
1280 * now get a buf structure. note that the vb_buf is
1281 * at the front of the nbp structure so that you can
1282 * cast pointers between the two structure easily.
1283 */
1284 getvndbuf(nbp);
1285 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1286 nbp->vb_buf.b_bcount = sz;
1287 nbp->vb_buf.b_bufsize = sz;
1288 nbp->vb_buf.b_error = 0;
1289 nbp->vb_buf.b_data = addr;
1290 nbp->vb_buf.b_lblkno = 0;
1291 nbp->vb_buf.b_blkno = nbn + btodb(off);
1292 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1293 nbp->vb_buf.b_iodone = sw_reg_iodone;
1294 nbp->vb_buf.b_vp = vp;
1295 if (vp->v_type == VBLK) {
1296 nbp->vb_buf.b_dev = vp->v_rdev;
1297 }
1298 LIST_INIT(&nbp->vb_buf.b_dep);
1299
1300 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1301
1302 /*
1303 * Just sort by block number
1304 */
1305 s = splbio();
1306 if (vnx->vx_error != 0) {
1307 putvndbuf(nbp);
1308 goto out;
1309 }
1310 vnx->vx_pending++;
1311
1312 /* sort it in and start I/O if we are not over our limit */
1313 BUFQ_PUT(&sdp->swd_tab, &nbp->vb_buf);
1314 sw_reg_start(sdp);
1315 splx(s);
1316
1317 /*
1318 * advance to the next I/O
1319 */
1320 byteoff += sz;
1321 addr += sz;
1322 }
1323
1324 s = splbio();
1325
1326 out: /* Arrive here at splbio */
1327 vnx->vx_flags &= ~VX_BUSY;
1328 if (vnx->vx_pending == 0) {
1329 if (vnx->vx_error != 0) {
1330 bp->b_error = vnx->vx_error;
1331 bp->b_flags |= B_ERROR;
1332 }
1333 putvndxfer(vnx);
1334 biodone(bp);
1335 }
1336 splx(s);
1337 }
1338
1339 /*
1340 * sw_reg_start: start an I/O request on the requested swapdev
1341 *
1342 * => reqs are sorted by b_rawblkno (above)
1343 */
1344 static void
1345 sw_reg_start(sdp)
1346 struct swapdev *sdp;
1347 {
1348 struct buf *bp;
1349 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1350
1351 /* recursion control */
1352 if ((sdp->swd_flags & SWF_BUSY) != 0)
1353 return;
1354
1355 sdp->swd_flags |= SWF_BUSY;
1356
1357 while (sdp->swd_active < sdp->swd_maxactive) {
1358 bp = BUFQ_GET(&sdp->swd_tab);
1359 if (bp == NULL)
1360 break;
1361 sdp->swd_active++;
1362
1363 UVMHIST_LOG(pdhist,
1364 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1365 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1366 if ((bp->b_flags & B_READ) == 0)
1367 bp->b_vp->v_numoutput++;
1368
1369 VOP_STRATEGY(bp);
1370 }
1371 sdp->swd_flags &= ~SWF_BUSY;
1372 }
1373
1374 /*
1375 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1376 *
1377 * => note that we can recover the vndbuf struct by casting the buf ptr
1378 */
1379 static void
1380 sw_reg_iodone(bp)
1381 struct buf *bp;
1382 {
1383 struct vndbuf *vbp = (struct vndbuf *) bp;
1384 struct vndxfer *vnx = vbp->vb_xfer;
1385 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1386 struct swapdev *sdp = vnx->vx_sdp;
1387 int s, resid;
1388 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1389
1390 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1391 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1392 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1393 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1394
1395 /*
1396 * protect vbp at splbio and update.
1397 */
1398
1399 s = splbio();
1400 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1401 pbp->b_resid -= resid;
1402 vnx->vx_pending--;
1403
1404 if (vbp->vb_buf.b_error) {
1405 UVMHIST_LOG(pdhist, " got error=%d !",
1406 vbp->vb_buf.b_error, 0, 0, 0);
1407
1408 /* pass error upward */
1409 vnx->vx_error = vbp->vb_buf.b_error;
1410 }
1411
1412 /*
1413 * kill vbp structure
1414 */
1415 putvndbuf(vbp);
1416
1417 /*
1418 * wrap up this transaction if it has run to completion or, in
1419 * case of an error, when all auxiliary buffers have returned.
1420 */
1421 if (vnx->vx_error != 0) {
1422 /* pass error upward */
1423 pbp->b_flags |= B_ERROR;
1424 pbp->b_error = vnx->vx_error;
1425 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1426 putvndxfer(vnx);
1427 biodone(pbp);
1428 }
1429 } else if (pbp->b_resid == 0) {
1430 KASSERT(vnx->vx_pending == 0);
1431 if ((vnx->vx_flags & VX_BUSY) == 0) {
1432 UVMHIST_LOG(pdhist, " iodone error=%d !",
1433 pbp, vnx->vx_error, 0, 0);
1434 putvndxfer(vnx);
1435 biodone(pbp);
1436 }
1437 }
1438
1439 /*
1440 * done! start next swapdev I/O if one is pending
1441 */
1442 sdp->swd_active--;
1443 sw_reg_start(sdp);
1444 splx(s);
1445 }
1446
1447
1448 /*
1449 * uvm_swap_alloc: allocate space on swap
1450 *
1451 * => allocation is done "round robin" down the priority list, as we
1452 * allocate in a priority we "rotate" the circle queue.
1453 * => space can be freed with uvm_swap_free
1454 * => we return the page slot number in /dev/drum (0 == invalid slot)
1455 * => we lock uvm.swap_data_lock
1456 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1457 */
1458 int
1459 uvm_swap_alloc(nslots, lessok)
1460 int *nslots; /* IN/OUT */
1461 boolean_t lessok;
1462 {
1463 struct swapdev *sdp;
1464 struct swappri *spp;
1465 u_long result;
1466 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1467
1468 /*
1469 * no swap devices configured yet? definite failure.
1470 */
1471 if (uvmexp.nswapdev < 1)
1472 return 0;
1473
1474 /*
1475 * lock data lock, convert slots into blocks, and enter loop
1476 */
1477 simple_lock(&uvm.swap_data_lock);
1478
1479 ReTry: /* XXXMRG */
1480 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1481 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1482 /* if it's not enabled, then we can't swap from it */
1483 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1484 continue;
1485 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1486 continue;
1487 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1488 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1489 &result) != 0) {
1490 continue;
1491 }
1492
1493 /*
1494 * successful allocation! now rotate the circleq.
1495 */
1496 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1497 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1498 sdp->swd_npginuse += *nslots;
1499 uvmexp.swpginuse += *nslots;
1500 simple_unlock(&uvm.swap_data_lock);
1501 /* done! return drum slot number */
1502 UVMHIST_LOG(pdhist,
1503 "success! returning %d slots starting at %d",
1504 *nslots, result + sdp->swd_drumoffset, 0, 0);
1505 return (result + sdp->swd_drumoffset);
1506 }
1507 }
1508
1509 /* XXXMRG: BEGIN HACK */
1510 if (*nslots > 1 && lessok) {
1511 *nslots = 1;
1512 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1513 }
1514 /* XXXMRG: END HACK */
1515
1516 simple_unlock(&uvm.swap_data_lock);
1517 return 0;
1518 }
1519
1520 /*
1521 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1522 *
1523 * => we lock uvm.swap_data_lock
1524 */
1525 void
1526 uvm_swap_markbad(startslot, nslots)
1527 int startslot;
1528 int nslots;
1529 {
1530 struct swapdev *sdp;
1531 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1532
1533 simple_lock(&uvm.swap_data_lock);
1534 sdp = swapdrum_getsdp(startslot);
1535
1536 /*
1537 * we just keep track of how many pages have been marked bad
1538 * in this device, to make everything add up in swap_off().
1539 * we assume here that the range of slots will all be within
1540 * one swap device.
1541 */
1542
1543 sdp->swd_npgbad += nslots;
1544 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1545 simple_unlock(&uvm.swap_data_lock);
1546 }
1547
1548 /*
1549 * uvm_swap_free: free swap slots
1550 *
1551 * => this can be all or part of an allocation made by uvm_swap_alloc
1552 * => we lock uvm.swap_data_lock
1553 */
1554 void
1555 uvm_swap_free(startslot, nslots)
1556 int startslot;
1557 int nslots;
1558 {
1559 struct swapdev *sdp;
1560 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1561
1562 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1563 startslot, 0, 0);
1564
1565 /*
1566 * ignore attempts to free the "bad" slot.
1567 */
1568
1569 if (startslot == SWSLOT_BAD) {
1570 return;
1571 }
1572
1573 /*
1574 * convert drum slot offset back to sdp, free the blocks
1575 * in the extent, and return. must hold pri lock to do
1576 * lookup and access the extent.
1577 */
1578
1579 simple_lock(&uvm.swap_data_lock);
1580 sdp = swapdrum_getsdp(startslot);
1581 KASSERT(uvmexp.nswapdev >= 1);
1582 KASSERT(sdp != NULL);
1583 KASSERT(sdp->swd_npginuse >= nslots);
1584 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1585 EX_MALLOCOK|EX_NOWAIT) != 0) {
1586 printf("warning: resource shortage: %d pages of swap lost\n",
1587 nslots);
1588 }
1589 sdp->swd_npginuse -= nslots;
1590 uvmexp.swpginuse -= nslots;
1591 simple_unlock(&uvm.swap_data_lock);
1592 }
1593
1594 /*
1595 * uvm_swap_put: put any number of pages into a contig place on swap
1596 *
1597 * => can be sync or async
1598 */
1599
1600 int
1601 uvm_swap_put(swslot, ppsp, npages, flags)
1602 int swslot;
1603 struct vm_page **ppsp;
1604 int npages;
1605 int flags;
1606 {
1607 int error;
1608
1609 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1610 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1611 return error;
1612 }
1613
1614 /*
1615 * uvm_swap_get: get a single page from swap
1616 *
1617 * => usually a sync op (from fault)
1618 */
1619
1620 int
1621 uvm_swap_get(page, swslot, flags)
1622 struct vm_page *page;
1623 int swslot, flags;
1624 {
1625 int error;
1626
1627 uvmexp.nswget++;
1628 KASSERT(flags & PGO_SYNCIO);
1629 if (swslot == SWSLOT_BAD) {
1630 return EIO;
1631 }
1632 error = uvm_swap_io(&page, swslot, 1, B_READ |
1633 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1634 if (error == 0) {
1635
1636 /*
1637 * this page is no longer only in swap.
1638 */
1639
1640 simple_lock(&uvm.swap_data_lock);
1641 KASSERT(uvmexp.swpgonly > 0);
1642 uvmexp.swpgonly--;
1643 simple_unlock(&uvm.swap_data_lock);
1644 }
1645 return error;
1646 }
1647
1648 /*
1649 * uvm_swap_io: do an i/o operation to swap
1650 */
1651
1652 static int
1653 uvm_swap_io(pps, startslot, npages, flags)
1654 struct vm_page **pps;
1655 int startslot, npages, flags;
1656 {
1657 daddr_t startblk;
1658 struct buf *bp;
1659 vaddr_t kva;
1660 int error, s, mapinflags;
1661 boolean_t write, async;
1662 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1663
1664 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1665 startslot, npages, flags, 0);
1666
1667 write = (flags & B_READ) == 0;
1668 async = (flags & B_ASYNC) != 0;
1669
1670 /*
1671 * convert starting drum slot to block number
1672 */
1673
1674 startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1675
1676 /*
1677 * first, map the pages into the kernel.
1678 */
1679
1680 mapinflags = !write ?
1681 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1682 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1683 kva = uvm_pagermapin(pps, npages, mapinflags);
1684
1685 /*
1686 * now allocate a buf for the i/o.
1687 */
1688
1689 s = splbio();
1690 bp = pool_get(&bufpool, PR_WAITOK);
1691 splx(s);
1692
1693 /*
1694 * fill in the bp/sbp. we currently route our i/o through
1695 * /dev/drum's vnode [swapdev_vp].
1696 */
1697
1698 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1699 bp->b_proc = &proc0; /* XXX */
1700 bp->b_vnbufs.le_next = NOLIST;
1701 bp->b_data = (caddr_t)kva;
1702 bp->b_blkno = startblk;
1703 bp->b_vp = swapdev_vp;
1704 bp->b_dev = swapdev_vp->v_rdev;
1705 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1706 LIST_INIT(&bp->b_dep);
1707
1708 /*
1709 * bump v_numoutput (counter of number of active outputs).
1710 */
1711
1712 if (write) {
1713 s = splbio();
1714 swapdev_vp->v_numoutput++;
1715 splx(s);
1716 }
1717
1718 /*
1719 * for async ops we must set up the iodone handler.
1720 */
1721
1722 if (async) {
1723 bp->b_flags |= B_CALL;
1724 bp->b_iodone = uvm_aio_biodone;
1725 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1726 }
1727 UVMHIST_LOG(pdhist,
1728 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1729 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1730
1731 /*
1732 * now we start the I/O, and if async, return.
1733 */
1734
1735 VOP_STRATEGY(bp);
1736 if (async)
1737 return 0;
1738
1739 /*
1740 * must be sync i/o. wait for it to finish
1741 */
1742
1743 error = biowait(bp);
1744
1745 /*
1746 * kill the pager mapping
1747 */
1748
1749 uvm_pagermapout(kva, npages);
1750
1751 /*
1752 * now dispose of the buf and we're done.
1753 */
1754
1755 s = splbio();
1756 if (write)
1757 vwakeup(bp);
1758 pool_put(&bufpool, bp);
1759 splx(s);
1760 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1761 return (error);
1762 }
1763