Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.70
      1 /*	$NetBSD: uvm_swap.c,v 1.70 2002/09/27 15:38:09 provos Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.70 2002/09/27 15:38:09 provos Exp $");
     36 
     37 #include "fs_nfs.h"
     38 #include "opt_uvmhist.h"
     39 #include "opt_compat_netbsd.h"
     40 #include "opt_ddb.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/buf.h>
     45 #include <sys/conf.h>
     46 #include <sys/proc.h>
     47 #include <sys/namei.h>
     48 #include <sys/disklabel.h>
     49 #include <sys/errno.h>
     50 #include <sys/kernel.h>
     51 #include <sys/malloc.h>
     52 #include <sys/vnode.h>
     53 #include <sys/file.h>
     54 #include <sys/extent.h>
     55 #include <sys/mount.h>
     56 #include <sys/pool.h>
     57 #include <sys/syscallargs.h>
     58 #include <sys/swap.h>
     59 
     60 #include <uvm/uvm.h>
     61 
     62 #include <miscfs/specfs/specdev.h>
     63 
     64 /*
     65  * uvm_swap.c: manage configuration and i/o to swap space.
     66  */
     67 
     68 /*
     69  * swap space is managed in the following way:
     70  *
     71  * each swap partition or file is described by a "swapdev" structure.
     72  * each "swapdev" structure contains a "swapent" structure which contains
     73  * information that is passed up to the user (via system calls).
     74  *
     75  * each swap partition is assigned a "priority" (int) which controls
     76  * swap parition usage.
     77  *
     78  * the system maintains a global data structure describing all swap
     79  * partitions/files.   there is a sorted LIST of "swappri" structures
     80  * which describe "swapdev"'s at that priority.   this LIST is headed
     81  * by the "swap_priority" global var.    each "swappri" contains a
     82  * CIRCLEQ of "swapdev" structures at that priority.
     83  *
     84  * locking:
     85  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
     86  *    system call and prevents the swap priority list from changing
     87  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     88  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
     89  *    structures including the priority list, the swapdev structures,
     90  *    and the swapmap extent.
     91  *
     92  * each swap device has the following info:
     93  *  - swap device in use (could be disabled, preventing future use)
     94  *  - swap enabled (allows new allocations on swap)
     95  *  - map info in /dev/drum
     96  *  - vnode pointer
     97  * for swap files only:
     98  *  - block size
     99  *  - max byte count in buffer
    100  *  - buffer
    101  *
    102  * userland controls and configures swap with the swapctl(2) system call.
    103  * the sys_swapctl performs the following operations:
    104  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    105  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    106  *	(passed in via "arg") of a size passed in via "misc" ... we load
    107  *	the current swap config into the array. The actual work is done
    108  *	in the uvm_swap_stats(9) function.
    109  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    110  *	priority in "misc", start swapping on it.
    111  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    112  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    113  *	"misc")
    114  */
    115 
    116 /*
    117  * swapdev: describes a single swap partition/file
    118  *
    119  * note the following should be true:
    120  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    121  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    122  */
    123 struct swapdev {
    124 	struct oswapent swd_ose;
    125 #define	swd_dev		swd_ose.ose_dev		/* device id */
    126 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    127 #define	swd_priority	swd_ose.ose_priority	/* our priority */
    128 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    129 	char			*swd_path;	/* saved pathname of device */
    130 	int			swd_pathlen;	/* length of pathname */
    131 	int			swd_npages;	/* #pages we can use */
    132 	int			swd_npginuse;	/* #pages in use */
    133 	int			swd_npgbad;	/* #pages bad */
    134 	int			swd_drumoffset;	/* page0 offset in drum */
    135 	int			swd_drumsize;	/* #pages in drum */
    136 	struct extent		*swd_ex;	/* extent for this swapdev */
    137 	char			swd_exname[12];	/* name of extent above */
    138 	struct vnode		*swd_vp;	/* backing vnode */
    139 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    140 
    141 	int			swd_bsize;	/* blocksize (bytes) */
    142 	int			swd_maxactive;	/* max active i/o reqs */
    143 	struct bufq_state	swd_tab;	/* buffer list */
    144 	int			swd_active;	/* number of active buffers */
    145 };
    146 
    147 /*
    148  * swap device priority entry; the list is kept sorted on `spi_priority'.
    149  */
    150 struct swappri {
    151 	int			spi_priority;     /* priority */
    152 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    153 	/* circleq of swapdevs at this priority */
    154 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    155 };
    156 
    157 /*
    158  * The following two structures are used to keep track of data transfers
    159  * on swap devices associated with regular files.
    160  * NOTE: this code is more or less a copy of vnd.c; we use the same
    161  * structure names here to ease porting..
    162  */
    163 struct vndxfer {
    164 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    165 	struct swapdev	*vx_sdp;
    166 	int		vx_error;
    167 	int		vx_pending;	/* # of pending aux buffers */
    168 	int		vx_flags;
    169 #define VX_BUSY		1
    170 #define VX_DEAD		2
    171 };
    172 
    173 struct vndbuf {
    174 	struct buf	vb_buf;
    175 	struct vndxfer	*vb_xfer;
    176 };
    177 
    178 
    179 /*
    180  * We keep a of pool vndbuf's and vndxfer structures.
    181  */
    182 static struct pool vndxfer_pool;
    183 static struct pool vndbuf_pool;
    184 
    185 #define	getvndxfer(vnx)	do {						\
    186 	int s = splbio();						\
    187 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);			\
    188 	splx(s);							\
    189 } while (0)
    190 
    191 #define putvndxfer(vnx) {						\
    192 	pool_put(&vndxfer_pool, (void *)(vnx));				\
    193 }
    194 
    195 #define	getvndbuf(vbp)	do {						\
    196 	int s = splbio();						\
    197 	vbp = pool_get(&vndbuf_pool, PR_WAITOK);			\
    198 	splx(s);							\
    199 } while (0)
    200 
    201 #define putvndbuf(vbp) {						\
    202 	pool_put(&vndbuf_pool, (void *)(vbp));				\
    203 }
    204 
    205 /*
    206  * local variables
    207  */
    208 static struct extent *swapmap;		/* controls the mapping of /dev/drum */
    209 
    210 /* list of all active swap devices [by priority] */
    211 LIST_HEAD(swap_priority, swappri);
    212 static struct swap_priority swap_priority;
    213 
    214 /* locks */
    215 struct lock swap_syscall_lock;
    216 
    217 /*
    218  * prototypes
    219  */
    220 static struct swapdev	*swapdrum_getsdp __P((int));
    221 
    222 static struct swapdev	*swaplist_find __P((struct vnode *, int));
    223 static void		 swaplist_insert __P((struct swapdev *,
    224 					     struct swappri *, int));
    225 static void		 swaplist_trim __P((void));
    226 
    227 static int swap_on __P((struct proc *, struct swapdev *));
    228 static int swap_off __P((struct proc *, struct swapdev *));
    229 
    230 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
    231 static void sw_reg_iodone __P((struct buf *));
    232 static void sw_reg_start __P((struct swapdev *));
    233 
    234 static int uvm_swap_io __P((struct vm_page **, int, int, int));
    235 
    236 dev_type_read(swread);
    237 dev_type_write(swwrite);
    238 dev_type_strategy(swstrategy);
    239 
    240 const struct bdevsw swap_bdevsw = {
    241 	noopen, noclose, swstrategy, noioctl, nodump, nosize,
    242 };
    243 
    244 const struct cdevsw swap_cdevsw = {
    245 	nullopen, nullclose, swread, swwrite, noioctl,
    246 	nostop, notty, nopoll, nommap,
    247 };
    248 
    249 /*
    250  * uvm_swap_init: init the swap system data structures and locks
    251  *
    252  * => called at boot time from init_main.c after the filesystems
    253  *	are brought up (which happens after uvm_init())
    254  */
    255 void
    256 uvm_swap_init()
    257 {
    258 	UVMHIST_FUNC("uvm_swap_init");
    259 
    260 	UVMHIST_CALLED(pdhist);
    261 	/*
    262 	 * first, init the swap list, its counter, and its lock.
    263 	 * then get a handle on the vnode for /dev/drum by using
    264 	 * the its dev_t number ("swapdev", from MD conf.c).
    265 	 */
    266 
    267 	LIST_INIT(&swap_priority);
    268 	uvmexp.nswapdev = 0;
    269 	lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
    270 	simple_lock_init(&uvm.swap_data_lock);
    271 
    272 	if (bdevvp(swapdev, &swapdev_vp))
    273 		panic("uvm_swap_init: can't get vnode for swap device");
    274 
    275 	/*
    276 	 * create swap block resource map to map /dev/drum.   the range
    277 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    278 	 * that block 0 is reserved (used to indicate an allocation
    279 	 * failure, or no allocation).
    280 	 */
    281 	swapmap = extent_create("swapmap", 1, INT_MAX,
    282 				M_VMSWAP, 0, 0, EX_NOWAIT);
    283 	if (swapmap == 0)
    284 		panic("uvm_swap_init: extent_create failed");
    285 
    286 	/*
    287 	 * allocate pools for structures used for swapping to files.
    288 	 */
    289 
    290 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0,
    291 	    "swp vnx", NULL);
    292 
    293 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0,
    294 	    "swp vnd", NULL);
    295 
    296 	/*
    297 	 * done!
    298 	 */
    299 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    300 }
    301 
    302 /*
    303  * swaplist functions: functions that operate on the list of swap
    304  * devices on the system.
    305  */
    306 
    307 /*
    308  * swaplist_insert: insert swap device "sdp" into the global list
    309  *
    310  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    311  * => caller must provide a newly malloc'd swappri structure (we will
    312  *	FREE it if we don't need it... this it to prevent malloc blocking
    313  *	here while adding swap)
    314  */
    315 static void
    316 swaplist_insert(sdp, newspp, priority)
    317 	struct swapdev *sdp;
    318 	struct swappri *newspp;
    319 	int priority;
    320 {
    321 	struct swappri *spp, *pspp;
    322 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    323 
    324 	/*
    325 	 * find entry at or after which to insert the new device.
    326 	 */
    327 	pspp = NULL;
    328 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    329 		if (priority <= spp->spi_priority)
    330 			break;
    331 		pspp = spp;
    332 	}
    333 
    334 	/*
    335 	 * new priority?
    336 	 */
    337 	if (spp == NULL || spp->spi_priority != priority) {
    338 		spp = newspp;  /* use newspp! */
    339 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    340 			    priority, 0, 0, 0);
    341 
    342 		spp->spi_priority = priority;
    343 		CIRCLEQ_INIT(&spp->spi_swapdev);
    344 
    345 		if (pspp)
    346 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    347 		else
    348 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    349 	} else {
    350 	  	/* we don't need a new priority structure, free it */
    351 		FREE(newspp, M_VMSWAP);
    352 	}
    353 
    354 	/*
    355 	 * priority found (or created).   now insert on the priority's
    356 	 * circleq list and bump the total number of swapdevs.
    357 	 */
    358 	sdp->swd_priority = priority;
    359 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    360 	uvmexp.nswapdev++;
    361 }
    362 
    363 /*
    364  * swaplist_find: find and optionally remove a swap device from the
    365  *	global list.
    366  *
    367  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    368  * => we return the swapdev we found (and removed)
    369  */
    370 static struct swapdev *
    371 swaplist_find(vp, remove)
    372 	struct vnode *vp;
    373 	boolean_t remove;
    374 {
    375 	struct swapdev *sdp;
    376 	struct swappri *spp;
    377 
    378 	/*
    379 	 * search the lists for the requested vp
    380 	 */
    381 
    382 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    383 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    384 			if (sdp->swd_vp == vp) {
    385 				if (remove) {
    386 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    387 					    sdp, swd_next);
    388 					uvmexp.nswapdev--;
    389 				}
    390 				return(sdp);
    391 			}
    392 		}
    393 	}
    394 	return (NULL);
    395 }
    396 
    397 
    398 /*
    399  * swaplist_trim: scan priority list for empty priority entries and kill
    400  *	them.
    401  *
    402  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    403  */
    404 static void
    405 swaplist_trim()
    406 {
    407 	struct swappri *spp, *nextspp;
    408 
    409 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    410 		nextspp = LIST_NEXT(spp, spi_swappri);
    411 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    412 		    (void *)&spp->spi_swapdev)
    413 			continue;
    414 		LIST_REMOVE(spp, spi_swappri);
    415 		free(spp, M_VMSWAP);
    416 	}
    417 }
    418 
    419 /*
    420  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    421  *	to the "swapdev" that maps that section of the drum.
    422  *
    423  * => each swapdev takes one big contig chunk of the drum
    424  * => caller must hold uvm.swap_data_lock
    425  */
    426 static struct swapdev *
    427 swapdrum_getsdp(pgno)
    428 	int pgno;
    429 {
    430 	struct swapdev *sdp;
    431 	struct swappri *spp;
    432 
    433 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    434 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    435 			if (sdp->swd_flags & SWF_FAKE)
    436 				continue;
    437 			if (pgno >= sdp->swd_drumoffset &&
    438 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    439 				return sdp;
    440 			}
    441 		}
    442 	}
    443 	return NULL;
    444 }
    445 
    446 
    447 /*
    448  * sys_swapctl: main entry point for swapctl(2) system call
    449  * 	[with two helper functions: swap_on and swap_off]
    450  */
    451 int
    452 sys_swapctl(p, v, retval)
    453 	struct proc *p;
    454 	void *v;
    455 	register_t *retval;
    456 {
    457 	struct sys_swapctl_args /* {
    458 		syscallarg(int) cmd;
    459 		syscallarg(void *) arg;
    460 		syscallarg(int) misc;
    461 	} */ *uap = (struct sys_swapctl_args *)v;
    462 	struct vnode *vp;
    463 	struct nameidata nd;
    464 	struct swappri *spp;
    465 	struct swapdev *sdp;
    466 	struct swapent *sep;
    467 	char	userpath[PATH_MAX + 1];
    468 	size_t	len;
    469 	int	error, misc;
    470 	int	priority;
    471 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    472 
    473 	misc = SCARG(uap, misc);
    474 
    475 	/*
    476 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    477 	 */
    478 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
    479 
    480 	/*
    481 	 * we handle the non-priv NSWAP and STATS request first.
    482 	 *
    483 	 * SWAP_NSWAP: return number of config'd swap devices
    484 	 * [can also be obtained with uvmexp sysctl]
    485 	 */
    486 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    487 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    488 		    0, 0, 0);
    489 		*retval = uvmexp.nswapdev;
    490 		error = 0;
    491 		goto out;
    492 	}
    493 
    494 	/*
    495 	 * SWAP_STATS: get stats on current # of configured swap devs
    496 	 *
    497 	 * note that the swap_priority list can't change as long
    498 	 * as we are holding the swap_syscall_lock.  we don't want
    499 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
    500 	 * copyout() and we don't want to be holding that lock then!
    501 	 */
    502 	if (SCARG(uap, cmd) == SWAP_STATS
    503 #if defined(COMPAT_13)
    504 	    || SCARG(uap, cmd) == SWAP_OSTATS
    505 #endif
    506 	    ) {
    507 		misc = MIN(uvmexp.nswapdev, misc);
    508 #if defined(COMPAT_13)
    509 		if (SCARG(uap, cmd) == SWAP_OSTATS)
    510 			len = sizeof(struct oswapent) * misc;
    511 		else
    512 #endif
    513 			len = sizeof(struct swapent) * misc;
    514 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
    515 
    516 		uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
    517 		error = copyout(sep, (void *)SCARG(uap, arg), len);
    518 
    519 		free(sep, M_TEMP);
    520 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    521 		goto out;
    522 	}
    523 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    524 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    525 
    526 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    527 		goto out;
    528 	}
    529 
    530 	/*
    531 	 * all other requests require superuser privs.   verify.
    532 	 */
    533 	if ((error = suser(p->p_ucred, &p->p_acflag)))
    534 		goto out;
    535 
    536 	/*
    537 	 * at this point we expect a path name in arg.   we will
    538 	 * use namei() to gain a vnode reference (vref), and lock
    539 	 * the vnode (VOP_LOCK).
    540 	 *
    541 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    542 	 * miniroot)
    543 	 */
    544 	if (SCARG(uap, arg) == NULL) {
    545 		vp = rootvp;		/* miniroot */
    546 		if (vget(vp, LK_EXCLUSIVE)) {
    547 			error = EBUSY;
    548 			goto out;
    549 		}
    550 		if (SCARG(uap, cmd) == SWAP_ON &&
    551 		    copystr("miniroot", userpath, sizeof userpath, &len))
    552 			panic("swapctl: miniroot copy failed");
    553 	} else {
    554 		int	space;
    555 		char	*where;
    556 
    557 		if (SCARG(uap, cmd) == SWAP_ON) {
    558 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    559 			    sizeof userpath, &len)))
    560 				goto out;
    561 			space = UIO_SYSSPACE;
    562 			where = userpath;
    563 		} else {
    564 			space = UIO_USERSPACE;
    565 			where = (char *)SCARG(uap, arg);
    566 		}
    567 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
    568 		if ((error = namei(&nd)))
    569 			goto out;
    570 		vp = nd.ni_vp;
    571 	}
    572 	/* note: "vp" is referenced and locked */
    573 
    574 	error = 0;		/* assume no error */
    575 	switch(SCARG(uap, cmd)) {
    576 
    577 	case SWAP_DUMPDEV:
    578 		if (vp->v_type != VBLK) {
    579 			error = ENOTBLK;
    580 			break;
    581 		}
    582 		dumpdev = vp->v_rdev;
    583 		cpu_dumpconf();
    584 		break;
    585 
    586 	case SWAP_CTL:
    587 		/*
    588 		 * get new priority, remove old entry (if any) and then
    589 		 * reinsert it in the correct place.  finally, prune out
    590 		 * any empty priority structures.
    591 		 */
    592 		priority = SCARG(uap, misc);
    593 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    594 		simple_lock(&uvm.swap_data_lock);
    595 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
    596 			error = ENOENT;
    597 		} else {
    598 			swaplist_insert(sdp, spp, priority);
    599 			swaplist_trim();
    600 		}
    601 		simple_unlock(&uvm.swap_data_lock);
    602 		if (error)
    603 			free(spp, M_VMSWAP);
    604 		break;
    605 
    606 	case SWAP_ON:
    607 
    608 		/*
    609 		 * check for duplicates.   if none found, then insert a
    610 		 * dummy entry on the list to prevent someone else from
    611 		 * trying to enable this device while we are working on
    612 		 * it.
    613 		 */
    614 
    615 		priority = SCARG(uap, misc);
    616 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    617 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    618 		memset(sdp, 0, sizeof(*sdp));
    619 		sdp->swd_flags = SWF_FAKE;
    620 		sdp->swd_vp = vp;
    621 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    622 		bufq_alloc(&sdp->swd_tab, BUFQ_DISKSORT|BUFQ_SORT_RAWBLOCK);
    623 		simple_lock(&uvm.swap_data_lock);
    624 		if (swaplist_find(vp, 0) != NULL) {
    625 			error = EBUSY;
    626 			simple_unlock(&uvm.swap_data_lock);
    627 			bufq_free(&sdp->swd_tab);
    628 			free(sdp, M_VMSWAP);
    629 			free(spp, M_VMSWAP);
    630 			break;
    631 		}
    632 		swaplist_insert(sdp, spp, priority);
    633 		simple_unlock(&uvm.swap_data_lock);
    634 
    635 		sdp->swd_pathlen = len;
    636 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    637 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    638 			panic("swapctl: copystr");
    639 
    640 		/*
    641 		 * we've now got a FAKE placeholder in the swap list.
    642 		 * now attempt to enable swap on it.  if we fail, undo
    643 		 * what we've done and kill the fake entry we just inserted.
    644 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    645 		 */
    646 
    647 		if ((error = swap_on(p, sdp)) != 0) {
    648 			simple_lock(&uvm.swap_data_lock);
    649 			(void) swaplist_find(vp, 1);  /* kill fake entry */
    650 			swaplist_trim();
    651 			simple_unlock(&uvm.swap_data_lock);
    652 			bufq_free(&sdp->swd_tab);
    653 			free(sdp->swd_path, M_VMSWAP);
    654 			free(sdp, M_VMSWAP);
    655 			break;
    656 		}
    657 		break;
    658 
    659 	case SWAP_OFF:
    660 		simple_lock(&uvm.swap_data_lock);
    661 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
    662 			simple_unlock(&uvm.swap_data_lock);
    663 			error = ENXIO;
    664 			break;
    665 		}
    666 
    667 		/*
    668 		 * If a device isn't in use or enabled, we
    669 		 * can't stop swapping from it (again).
    670 		 */
    671 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    672 			simple_unlock(&uvm.swap_data_lock);
    673 			error = EBUSY;
    674 			break;
    675 		}
    676 
    677 		/*
    678 		 * do the real work.
    679 		 */
    680 		error = swap_off(p, sdp);
    681 		break;
    682 
    683 	default:
    684 		error = EINVAL;
    685 	}
    686 
    687 	/*
    688 	 * done!  release the ref gained by namei() and unlock.
    689 	 */
    690 	vput(vp);
    691 
    692 out:
    693 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
    694 
    695 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    696 	return (error);
    697 }
    698 
    699 /*
    700  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
    701  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    702  * emulation to use it directly without going through sys_swapctl().
    703  * The problem with using sys_swapctl() there is that it involves
    704  * copying the swapent array to the stackgap, and this array's size
    705  * is not known at build time. Hence it would not be possible to
    706  * ensure it would fit in the stackgap in any case.
    707  */
    708 void
    709 uvm_swap_stats(cmd, sep, sec, retval)
    710 	int cmd;
    711 	struct swapent *sep;
    712 	int sec;
    713 	register_t *retval;
    714 {
    715 	struct swappri *spp;
    716 	struct swapdev *sdp;
    717 	int count = 0;
    718 
    719 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    720 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    721 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
    722 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    723 		  	/*
    724 			 * backwards compatibility for system call.
    725 			 * note that we use 'struct oswapent' as an
    726 			 * overlay into both 'struct swapdev' and
    727 			 * the userland 'struct swapent', as we
    728 			 * want to retain backwards compatibility
    729 			 * with NetBSD 1.3.
    730 			 */
    731 			sdp->swd_ose.ose_inuse =
    732 			    btodb((u_int64_t)sdp->swd_npginuse <<
    733 			    PAGE_SHIFT);
    734 			(void)memcpy(sep, &sdp->swd_ose,
    735 			    sizeof(struct oswapent));
    736 
    737 			/* now copy out the path if necessary */
    738 #if defined(COMPAT_13)
    739 			if (cmd == SWAP_STATS)
    740 #endif
    741 				(void)memcpy(&sep->se_path, sdp->swd_path,
    742 				    sdp->swd_pathlen);
    743 
    744 			count++;
    745 #if defined(COMPAT_13)
    746 			if (cmd == SWAP_OSTATS)
    747 				sep = (struct swapent *)
    748 				    ((struct oswapent *)sep + 1);
    749 			else
    750 #endif
    751 				sep++;
    752 		}
    753 	}
    754 
    755 	*retval = count;
    756 	return;
    757 }
    758 
    759 /*
    760  * swap_on: attempt to enable a swapdev for swapping.   note that the
    761  *	swapdev is already on the global list, but disabled (marked
    762  *	SWF_FAKE).
    763  *
    764  * => we avoid the start of the disk (to protect disk labels)
    765  * => we also avoid the miniroot, if we are swapping to root.
    766  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
    767  *	if needed.
    768  */
    769 static int
    770 swap_on(p, sdp)
    771 	struct proc *p;
    772 	struct swapdev *sdp;
    773 {
    774 	static int count = 0;	/* static */
    775 	struct vnode *vp;
    776 	int error, npages, nblocks, size;
    777 	long addr;
    778 	u_long result;
    779 	struct vattr va;
    780 #ifdef NFS
    781 	extern int (**nfsv2_vnodeop_p) __P((void *));
    782 #endif /* NFS */
    783 	const struct bdevsw *bdev;
    784 	dev_t dev;
    785 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    786 
    787 	/*
    788 	 * we want to enable swapping on sdp.   the swd_vp contains
    789 	 * the vnode we want (locked and ref'd), and the swd_dev
    790 	 * contains the dev_t of the file, if it a block device.
    791 	 */
    792 
    793 	vp = sdp->swd_vp;
    794 	dev = sdp->swd_dev;
    795 
    796 	/*
    797 	 * open the swap file (mostly useful for block device files to
    798 	 * let device driver know what is up).
    799 	 *
    800 	 * we skip the open/close for root on swap because the root
    801 	 * has already been opened when root was mounted (mountroot).
    802 	 */
    803 	if (vp != rootvp) {
    804 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
    805 			return (error);
    806 	}
    807 
    808 	/* XXX this only works for block devices */
    809 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    810 
    811 	/*
    812 	 * we now need to determine the size of the swap area.   for
    813 	 * block specials we can call the d_psize function.
    814 	 * for normal files, we must stat [get attrs].
    815 	 *
    816 	 * we put the result in nblks.
    817 	 * for normal files, we also want the filesystem block size
    818 	 * (which we get with statfs).
    819 	 */
    820 	switch (vp->v_type) {
    821 	case VBLK:
    822 		bdev = bdevsw_lookup(dev);
    823 		if (bdev == NULL || bdev->d_psize == NULL ||
    824 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
    825 			error = ENXIO;
    826 			goto bad;
    827 		}
    828 		break;
    829 
    830 	case VREG:
    831 		if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
    832 			goto bad;
    833 		nblocks = (int)btodb(va.va_size);
    834 		if ((error =
    835 		     VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
    836 			goto bad;
    837 
    838 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    839 		/*
    840 		 * limit the max # of outstanding I/O requests we issue
    841 		 * at any one time.   take it easy on NFS servers.
    842 		 */
    843 #ifdef NFS
    844 		if (vp->v_op == nfsv2_vnodeop_p)
    845 			sdp->swd_maxactive = 2; /* XXX */
    846 		else
    847 #endif /* NFS */
    848 			sdp->swd_maxactive = 8; /* XXX */
    849 		break;
    850 
    851 	default:
    852 		error = ENXIO;
    853 		goto bad;
    854 	}
    855 
    856 	/*
    857 	 * save nblocks in a safe place and convert to pages.
    858 	 */
    859 
    860 	sdp->swd_ose.ose_nblks = nblocks;
    861 	npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
    862 
    863 	/*
    864 	 * for block special files, we want to make sure that leave
    865 	 * the disklabel and bootblocks alone, so we arrange to skip
    866 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    867 	 * note that because of this the "size" can be less than the
    868 	 * actual number of blocks on the device.
    869 	 */
    870 	if (vp->v_type == VBLK) {
    871 		/* we use pages 1 to (size - 1) [inclusive] */
    872 		size = npages - 1;
    873 		addr = 1;
    874 	} else {
    875 		/* we use pages 0 to (size - 1) [inclusive] */
    876 		size = npages;
    877 		addr = 0;
    878 	}
    879 
    880 	/*
    881 	 * make sure we have enough blocks for a reasonable sized swap
    882 	 * area.   we want at least one page.
    883 	 */
    884 
    885 	if (size < 1) {
    886 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    887 		error = EINVAL;
    888 		goto bad;
    889 	}
    890 
    891 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    892 
    893 	/*
    894 	 * now we need to allocate an extent to manage this swap device
    895 	 */
    896 	snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
    897 	    count++);
    898 
    899 	/* note that extent_create's 3rd arg is inclusive, thus "- 1" */
    900 	sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
    901 				    0, 0, EX_WAITOK);
    902 	/* allocate the `saved' region from the extent so it won't be used */
    903 	if (addr) {
    904 		if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
    905 			panic("disklabel region");
    906 	}
    907 
    908 	/*
    909 	 * if the vnode we are swapping to is the root vnode
    910 	 * (i.e. we are swapping to the miniroot) then we want
    911 	 * to make sure we don't overwrite it.   do a statfs to
    912 	 * find its size and skip over it.
    913 	 */
    914 	if (vp == rootvp) {
    915 		struct mount *mp;
    916 		struct statfs *sp;
    917 		int rootblocks, rootpages;
    918 
    919 		mp = rootvnode->v_mount;
    920 		sp = &mp->mnt_stat;
    921 		rootblocks = sp->f_blocks * btodb(sp->f_bsize);
    922 		/*
    923 		 * XXX: sp->f_blocks isn't the total number of
    924 		 * blocks in the filesystem, it's the number of
    925 		 * data blocks.  so, our rootblocks almost
    926 		 * definitely underestimates the total size
    927 		 * of the filesystem - how badly depends on the
    928 		 * details of the filesystem type.  there isn't
    929 		 * an obvious way to deal with this cleanly
    930 		 * and perfectly, so for now we just pad our
    931 		 * rootblocks estimate with an extra 5 percent.
    932 		 */
    933 		rootblocks += (rootblocks >> 5) +
    934 			(rootblocks >> 6) +
    935 			(rootblocks >> 7);
    936 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    937 		if (rootpages > size)
    938 			panic("swap_on: miniroot larger than swap?");
    939 
    940 		if (extent_alloc_region(sdp->swd_ex, addr,
    941 					rootpages, EX_WAITOK))
    942 			panic("swap_on: unable to preserve miniroot");
    943 
    944 		size -= rootpages;
    945 		printf("Preserved %d pages of miniroot ", rootpages);
    946 		printf("leaving %d pages of swap\n", size);
    947 	}
    948 
    949   	/*
    950 	 * try to add anons to reflect the new swap space.
    951 	 */
    952 
    953 	error = uvm_anon_add(size);
    954 	if (error) {
    955 		goto bad;
    956 	}
    957 
    958 	/*
    959 	 * add a ref to vp to reflect usage as a swap device.
    960 	 */
    961 	vref(vp);
    962 
    963 	/*
    964 	 * now add the new swapdev to the drum and enable.
    965 	 */
    966 	if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
    967 	    EX_WAITOK, &result))
    968 		panic("swapdrum_add");
    969 
    970 	sdp->swd_drumoffset = (int)result;
    971 	sdp->swd_drumsize = npages;
    972 	sdp->swd_npages = size;
    973 	simple_lock(&uvm.swap_data_lock);
    974 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    975 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    976 	uvmexp.swpages += size;
    977 	simple_unlock(&uvm.swap_data_lock);
    978 	return (0);
    979 
    980 	/*
    981 	 * failure: clean up and return error.
    982 	 */
    983 
    984 bad:
    985 	if (sdp->swd_ex) {
    986 		extent_destroy(sdp->swd_ex);
    987 	}
    988 	if (vp != rootvp) {
    989 		(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
    990 	}
    991 	return (error);
    992 }
    993 
    994 /*
    995  * swap_off: stop swapping on swapdev
    996  *
    997  * => swap data should be locked, we will unlock.
    998  */
    999 static int
   1000 swap_off(p, sdp)
   1001 	struct proc *p;
   1002 	struct swapdev *sdp;
   1003 {
   1004 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1005 	UVMHIST_LOG(pdhist, "  dev=%x", sdp->swd_dev,0,0,0);
   1006 
   1007 	/* disable the swap area being removed */
   1008 	sdp->swd_flags &= ~SWF_ENABLE;
   1009 	simple_unlock(&uvm.swap_data_lock);
   1010 
   1011 	/*
   1012 	 * the idea is to find all the pages that are paged out to this
   1013 	 * device, and page them all in.  in uvm, swap-backed pageable
   1014 	 * memory can take two forms: aobjs and anons.  call the
   1015 	 * swapoff hook for each subsystem to bring in pages.
   1016 	 */
   1017 
   1018 	if (uao_swap_off(sdp->swd_drumoffset,
   1019 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1020 	    anon_swap_off(sdp->swd_drumoffset,
   1021 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1022 
   1023 		simple_lock(&uvm.swap_data_lock);
   1024 		sdp->swd_flags |= SWF_ENABLE;
   1025 		simple_unlock(&uvm.swap_data_lock);
   1026 		return ENOMEM;
   1027 	}
   1028 	KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
   1029 
   1030 	/*
   1031 	 * done with the vnode.
   1032 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1033 	 * so that spec_close() can tell if this is the last close.
   1034 	 */
   1035 	vrele(sdp->swd_vp);
   1036 	if (sdp->swd_vp != rootvp) {
   1037 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
   1038 	}
   1039 
   1040 	/* remove anons from the system */
   1041 	uvm_anon_remove(sdp->swd_npages);
   1042 
   1043 	simple_lock(&uvm.swap_data_lock);
   1044 	uvmexp.swpages -= sdp->swd_npages;
   1045 
   1046 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
   1047 		panic("swap_off: swapdev not in list");
   1048 	swaplist_trim();
   1049 	simple_unlock(&uvm.swap_data_lock);
   1050 
   1051 	/*
   1052 	 * free all resources!
   1053 	 */
   1054 	extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
   1055 		    EX_WAITOK);
   1056 	extent_destroy(sdp->swd_ex);
   1057 	bufq_free(&sdp->swd_tab);
   1058 	free(sdp, M_VMSWAP);
   1059 	return (0);
   1060 }
   1061 
   1062 /*
   1063  * /dev/drum interface and i/o functions
   1064  */
   1065 
   1066 /*
   1067  * swread: the read function for the drum (just a call to physio)
   1068  */
   1069 /*ARGSUSED*/
   1070 int
   1071 swread(dev, uio, ioflag)
   1072 	dev_t dev;
   1073 	struct uio *uio;
   1074 	int ioflag;
   1075 {
   1076 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1077 
   1078 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1079 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1080 }
   1081 
   1082 /*
   1083  * swwrite: the write function for the drum (just a call to physio)
   1084  */
   1085 /*ARGSUSED*/
   1086 int
   1087 swwrite(dev, uio, ioflag)
   1088 	dev_t dev;
   1089 	struct uio *uio;
   1090 	int ioflag;
   1091 {
   1092 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1093 
   1094 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1095 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1096 }
   1097 
   1098 /*
   1099  * swstrategy: perform I/O on the drum
   1100  *
   1101  * => we must map the i/o request from the drum to the correct swapdev.
   1102  */
   1103 void
   1104 swstrategy(bp)
   1105 	struct buf *bp;
   1106 {
   1107 	struct swapdev *sdp;
   1108 	struct vnode *vp;
   1109 	int s, pageno, bn;
   1110 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1111 
   1112 	/*
   1113 	 * convert block number to swapdev.   note that swapdev can't
   1114 	 * be yanked out from under us because we are holding resources
   1115 	 * in it (i.e. the blocks we are doing I/O on).
   1116 	 */
   1117 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1118 	simple_lock(&uvm.swap_data_lock);
   1119 	sdp = swapdrum_getsdp(pageno);
   1120 	simple_unlock(&uvm.swap_data_lock);
   1121 	if (sdp == NULL) {
   1122 		bp->b_error = EINVAL;
   1123 		bp->b_flags |= B_ERROR;
   1124 		biodone(bp);
   1125 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1126 		return;
   1127 	}
   1128 
   1129 	/*
   1130 	 * convert drum page number to block number on this swapdev.
   1131 	 */
   1132 
   1133 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1134 	bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1135 
   1136 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1137 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1138 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1139 
   1140 	/*
   1141 	 * for block devices we finish up here.
   1142 	 * for regular files we have to do more work which we delegate
   1143 	 * to sw_reg_strategy().
   1144 	 */
   1145 
   1146 	switch (sdp->swd_vp->v_type) {
   1147 	default:
   1148 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
   1149 
   1150 	case VBLK:
   1151 
   1152 		/*
   1153 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1154 		 * on the swapdev (sdp).
   1155 		 */
   1156 		s = splbio();
   1157 		bp->b_blkno = bn;		/* swapdev block number */
   1158 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1159 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1160 
   1161 		/*
   1162 		 * if we are doing a write, we have to redirect the i/o on
   1163 		 * drum's v_numoutput counter to the swapdevs.
   1164 		 */
   1165 		if ((bp->b_flags & B_READ) == 0) {
   1166 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1167 			vp->v_numoutput++;	/* put it on swapdev */
   1168 		}
   1169 
   1170 		/*
   1171 		 * finally plug in swapdev vnode and start I/O
   1172 		 */
   1173 		bp->b_vp = vp;
   1174 		splx(s);
   1175 		VOP_STRATEGY(bp);
   1176 		return;
   1177 
   1178 	case VREG:
   1179 		/*
   1180 		 * delegate to sw_reg_strategy function.
   1181 		 */
   1182 		sw_reg_strategy(sdp, bp, bn);
   1183 		return;
   1184 	}
   1185 	/* NOTREACHED */
   1186 }
   1187 
   1188 /*
   1189  * sw_reg_strategy: handle swap i/o to regular files
   1190  */
   1191 static void
   1192 sw_reg_strategy(sdp, bp, bn)
   1193 	struct swapdev	*sdp;
   1194 	struct buf	*bp;
   1195 	int		bn;
   1196 {
   1197 	struct vnode	*vp;
   1198 	struct vndxfer	*vnx;
   1199 	daddr_t		nbn;
   1200 	caddr_t		addr;
   1201 	off_t		byteoff;
   1202 	int		s, off, nra, error, sz, resid;
   1203 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1204 
   1205 	/*
   1206 	 * allocate a vndxfer head for this transfer and point it to
   1207 	 * our buffer.
   1208 	 */
   1209 	getvndxfer(vnx);
   1210 	vnx->vx_flags = VX_BUSY;
   1211 	vnx->vx_error = 0;
   1212 	vnx->vx_pending = 0;
   1213 	vnx->vx_bp = bp;
   1214 	vnx->vx_sdp = sdp;
   1215 
   1216 	/*
   1217 	 * setup for main loop where we read filesystem blocks into
   1218 	 * our buffer.
   1219 	 */
   1220 	error = 0;
   1221 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1222 	addr = bp->b_data;		/* current position in buffer */
   1223 	byteoff = dbtob((u_int64_t)bn);
   1224 
   1225 	for (resid = bp->b_resid; resid; resid -= sz) {
   1226 		struct vndbuf	*nbp;
   1227 
   1228 		/*
   1229 		 * translate byteoffset into block number.  return values:
   1230 		 *   vp = vnode of underlying device
   1231 		 *  nbn = new block number (on underlying vnode dev)
   1232 		 *  nra = num blocks we can read-ahead (excludes requested
   1233 		 *	block)
   1234 		 */
   1235 		nra = 0;
   1236 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1237 				 	&vp, &nbn, &nra);
   1238 
   1239 		if (error == 0 && nbn == (daddr_t)-1) {
   1240 			/*
   1241 			 * this used to just set error, but that doesn't
   1242 			 * do the right thing.  Instead, it causes random
   1243 			 * memory errors.  The panic() should remain until
   1244 			 * this condition doesn't destabilize the system.
   1245 			 */
   1246 #if 1
   1247 			panic("sw_reg_strategy: swap to sparse file");
   1248 #else
   1249 			error = EIO;	/* failure */
   1250 #endif
   1251 		}
   1252 
   1253 		/*
   1254 		 * punt if there was an error or a hole in the file.
   1255 		 * we must wait for any i/o ops we have already started
   1256 		 * to finish before returning.
   1257 		 *
   1258 		 * XXX we could deal with holes here but it would be
   1259 		 * a hassle (in the write case).
   1260 		 */
   1261 		if (error) {
   1262 			s = splbio();
   1263 			vnx->vx_error = error;	/* pass error up */
   1264 			goto out;
   1265 		}
   1266 
   1267 		/*
   1268 		 * compute the size ("sz") of this transfer (in bytes).
   1269 		 */
   1270 		off = byteoff % sdp->swd_bsize;
   1271 		sz = (1 + nra) * sdp->swd_bsize - off;
   1272 		if (sz > resid)
   1273 			sz = resid;
   1274 
   1275 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1276 			    "vp %p/%p offset 0x%x/0x%x",
   1277 			    sdp->swd_vp, vp, byteoff, nbn);
   1278 
   1279 		/*
   1280 		 * now get a buf structure.   note that the vb_buf is
   1281 		 * at the front of the nbp structure so that you can
   1282 		 * cast pointers between the two structure easily.
   1283 		 */
   1284 		getvndbuf(nbp);
   1285 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
   1286 		nbp->vb_buf.b_bcount   = sz;
   1287 		nbp->vb_buf.b_bufsize  = sz;
   1288 		nbp->vb_buf.b_error    = 0;
   1289 		nbp->vb_buf.b_data     = addr;
   1290 		nbp->vb_buf.b_lblkno   = 0;
   1291 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1292 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1293 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
   1294 		nbp->vb_buf.b_vp       = vp;
   1295 		if (vp->v_type == VBLK) {
   1296 			nbp->vb_buf.b_dev = vp->v_rdev;
   1297 		}
   1298 		LIST_INIT(&nbp->vb_buf.b_dep);
   1299 
   1300 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1301 
   1302 		/*
   1303 		 * Just sort by block number
   1304 		 */
   1305 		s = splbio();
   1306 		if (vnx->vx_error != 0) {
   1307 			putvndbuf(nbp);
   1308 			goto out;
   1309 		}
   1310 		vnx->vx_pending++;
   1311 
   1312 		/* sort it in and start I/O if we are not over our limit */
   1313 		BUFQ_PUT(&sdp->swd_tab, &nbp->vb_buf);
   1314 		sw_reg_start(sdp);
   1315 		splx(s);
   1316 
   1317 		/*
   1318 		 * advance to the next I/O
   1319 		 */
   1320 		byteoff += sz;
   1321 		addr += sz;
   1322 	}
   1323 
   1324 	s = splbio();
   1325 
   1326 out: /* Arrive here at splbio */
   1327 	vnx->vx_flags &= ~VX_BUSY;
   1328 	if (vnx->vx_pending == 0) {
   1329 		if (vnx->vx_error != 0) {
   1330 			bp->b_error = vnx->vx_error;
   1331 			bp->b_flags |= B_ERROR;
   1332 		}
   1333 		putvndxfer(vnx);
   1334 		biodone(bp);
   1335 	}
   1336 	splx(s);
   1337 }
   1338 
   1339 /*
   1340  * sw_reg_start: start an I/O request on the requested swapdev
   1341  *
   1342  * => reqs are sorted by b_rawblkno (above)
   1343  */
   1344 static void
   1345 sw_reg_start(sdp)
   1346 	struct swapdev	*sdp;
   1347 {
   1348 	struct buf	*bp;
   1349 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1350 
   1351 	/* recursion control */
   1352 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1353 		return;
   1354 
   1355 	sdp->swd_flags |= SWF_BUSY;
   1356 
   1357 	while (sdp->swd_active < sdp->swd_maxactive) {
   1358 		bp = BUFQ_GET(&sdp->swd_tab);
   1359 		if (bp == NULL)
   1360 			break;
   1361 		sdp->swd_active++;
   1362 
   1363 		UVMHIST_LOG(pdhist,
   1364 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1365 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1366 		if ((bp->b_flags & B_READ) == 0)
   1367 			bp->b_vp->v_numoutput++;
   1368 
   1369 		VOP_STRATEGY(bp);
   1370 	}
   1371 	sdp->swd_flags &= ~SWF_BUSY;
   1372 }
   1373 
   1374 /*
   1375  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1376  *
   1377  * => note that we can recover the vndbuf struct by casting the buf ptr
   1378  */
   1379 static void
   1380 sw_reg_iodone(bp)
   1381 	struct buf *bp;
   1382 {
   1383 	struct vndbuf *vbp = (struct vndbuf *) bp;
   1384 	struct vndxfer *vnx = vbp->vb_xfer;
   1385 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1386 	struct swapdev	*sdp = vnx->vx_sdp;
   1387 	int		s, resid;
   1388 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1389 
   1390 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1391 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1392 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1393 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1394 
   1395 	/*
   1396 	 * protect vbp at splbio and update.
   1397 	 */
   1398 
   1399 	s = splbio();
   1400 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1401 	pbp->b_resid -= resid;
   1402 	vnx->vx_pending--;
   1403 
   1404 	if (vbp->vb_buf.b_error) {
   1405 		UVMHIST_LOG(pdhist, "  got error=%d !",
   1406 		    vbp->vb_buf.b_error, 0, 0, 0);
   1407 
   1408 		/* pass error upward */
   1409 		vnx->vx_error = vbp->vb_buf.b_error;
   1410 	}
   1411 
   1412 	/*
   1413 	 * kill vbp structure
   1414 	 */
   1415 	putvndbuf(vbp);
   1416 
   1417 	/*
   1418 	 * wrap up this transaction if it has run to completion or, in
   1419 	 * case of an error, when all auxiliary buffers have returned.
   1420 	 */
   1421 	if (vnx->vx_error != 0) {
   1422 		/* pass error upward */
   1423 		pbp->b_flags |= B_ERROR;
   1424 		pbp->b_error = vnx->vx_error;
   1425 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1426 			putvndxfer(vnx);
   1427 			biodone(pbp);
   1428 		}
   1429 	} else if (pbp->b_resid == 0) {
   1430 		KASSERT(vnx->vx_pending == 0);
   1431 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1432 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1433 			    pbp, vnx->vx_error, 0, 0);
   1434 			putvndxfer(vnx);
   1435 			biodone(pbp);
   1436 		}
   1437 	}
   1438 
   1439 	/*
   1440 	 * done!   start next swapdev I/O if one is pending
   1441 	 */
   1442 	sdp->swd_active--;
   1443 	sw_reg_start(sdp);
   1444 	splx(s);
   1445 }
   1446 
   1447 
   1448 /*
   1449  * uvm_swap_alloc: allocate space on swap
   1450  *
   1451  * => allocation is done "round robin" down the priority list, as we
   1452  *	allocate in a priority we "rotate" the circle queue.
   1453  * => space can be freed with uvm_swap_free
   1454  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1455  * => we lock uvm.swap_data_lock
   1456  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1457  */
   1458 int
   1459 uvm_swap_alloc(nslots, lessok)
   1460 	int *nslots;	/* IN/OUT */
   1461 	boolean_t lessok;
   1462 {
   1463 	struct swapdev *sdp;
   1464 	struct swappri *spp;
   1465 	u_long	result;
   1466 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1467 
   1468 	/*
   1469 	 * no swap devices configured yet?   definite failure.
   1470 	 */
   1471 	if (uvmexp.nswapdev < 1)
   1472 		return 0;
   1473 
   1474 	/*
   1475 	 * lock data lock, convert slots into blocks, and enter loop
   1476 	 */
   1477 	simple_lock(&uvm.swap_data_lock);
   1478 
   1479 ReTry:	/* XXXMRG */
   1480 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1481 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1482 			/* if it's not enabled, then we can't swap from it */
   1483 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1484 				continue;
   1485 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1486 				continue;
   1487 			if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
   1488 					 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
   1489 					 &result) != 0) {
   1490 				continue;
   1491 			}
   1492 
   1493 			/*
   1494 			 * successful allocation!  now rotate the circleq.
   1495 			 */
   1496 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1497 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1498 			sdp->swd_npginuse += *nslots;
   1499 			uvmexp.swpginuse += *nslots;
   1500 			simple_unlock(&uvm.swap_data_lock);
   1501 			/* done!  return drum slot number */
   1502 			UVMHIST_LOG(pdhist,
   1503 			    "success!  returning %d slots starting at %d",
   1504 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1505 			return (result + sdp->swd_drumoffset);
   1506 		}
   1507 	}
   1508 
   1509 	/* XXXMRG: BEGIN HACK */
   1510 	if (*nslots > 1 && lessok) {
   1511 		*nslots = 1;
   1512 		goto ReTry;	/* XXXMRG: ugh!  extent should support this for us */
   1513 	}
   1514 	/* XXXMRG: END HACK */
   1515 
   1516 	simple_unlock(&uvm.swap_data_lock);
   1517 	return 0;
   1518 }
   1519 
   1520 /*
   1521  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1522  *
   1523  * => we lock uvm.swap_data_lock
   1524  */
   1525 void
   1526 uvm_swap_markbad(startslot, nslots)
   1527 	int startslot;
   1528 	int nslots;
   1529 {
   1530 	struct swapdev *sdp;
   1531 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1532 
   1533 	simple_lock(&uvm.swap_data_lock);
   1534 	sdp = swapdrum_getsdp(startslot);
   1535 
   1536 	/*
   1537 	 * we just keep track of how many pages have been marked bad
   1538 	 * in this device, to make everything add up in swap_off().
   1539 	 * we assume here that the range of slots will all be within
   1540 	 * one swap device.
   1541 	 */
   1542 
   1543 	sdp->swd_npgbad += nslots;
   1544 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1545 	simple_unlock(&uvm.swap_data_lock);
   1546 }
   1547 
   1548 /*
   1549  * uvm_swap_free: free swap slots
   1550  *
   1551  * => this can be all or part of an allocation made by uvm_swap_alloc
   1552  * => we lock uvm.swap_data_lock
   1553  */
   1554 void
   1555 uvm_swap_free(startslot, nslots)
   1556 	int startslot;
   1557 	int nslots;
   1558 {
   1559 	struct swapdev *sdp;
   1560 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1561 
   1562 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1563 	    startslot, 0, 0);
   1564 
   1565 	/*
   1566 	 * ignore attempts to free the "bad" slot.
   1567 	 */
   1568 
   1569 	if (startslot == SWSLOT_BAD) {
   1570 		return;
   1571 	}
   1572 
   1573 	/*
   1574 	 * convert drum slot offset back to sdp, free the blocks
   1575 	 * in the extent, and return.   must hold pri lock to do
   1576 	 * lookup and access the extent.
   1577 	 */
   1578 
   1579 	simple_lock(&uvm.swap_data_lock);
   1580 	sdp = swapdrum_getsdp(startslot);
   1581 	KASSERT(uvmexp.nswapdev >= 1);
   1582 	KASSERT(sdp != NULL);
   1583 	KASSERT(sdp->swd_npginuse >= nslots);
   1584 	if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
   1585 			EX_MALLOCOK|EX_NOWAIT) != 0) {
   1586 		printf("warning: resource shortage: %d pages of swap lost\n",
   1587 			nslots);
   1588 	}
   1589 	sdp->swd_npginuse -= nslots;
   1590 	uvmexp.swpginuse -= nslots;
   1591 	simple_unlock(&uvm.swap_data_lock);
   1592 }
   1593 
   1594 /*
   1595  * uvm_swap_put: put any number of pages into a contig place on swap
   1596  *
   1597  * => can be sync or async
   1598  */
   1599 
   1600 int
   1601 uvm_swap_put(swslot, ppsp, npages, flags)
   1602 	int swslot;
   1603 	struct vm_page **ppsp;
   1604 	int npages;
   1605 	int flags;
   1606 {
   1607 	int error;
   1608 
   1609 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1610 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1611 	return error;
   1612 }
   1613 
   1614 /*
   1615  * uvm_swap_get: get a single page from swap
   1616  *
   1617  * => usually a sync op (from fault)
   1618  */
   1619 
   1620 int
   1621 uvm_swap_get(page, swslot, flags)
   1622 	struct vm_page *page;
   1623 	int swslot, flags;
   1624 {
   1625 	int error;
   1626 
   1627 	uvmexp.nswget++;
   1628 	KASSERT(flags & PGO_SYNCIO);
   1629 	if (swslot == SWSLOT_BAD) {
   1630 		return EIO;
   1631 	}
   1632 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1633 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1634 	if (error == 0) {
   1635 
   1636 		/*
   1637 		 * this page is no longer only in swap.
   1638 		 */
   1639 
   1640 		simple_lock(&uvm.swap_data_lock);
   1641 		KASSERT(uvmexp.swpgonly > 0);
   1642 		uvmexp.swpgonly--;
   1643 		simple_unlock(&uvm.swap_data_lock);
   1644 	}
   1645 	return error;
   1646 }
   1647 
   1648 /*
   1649  * uvm_swap_io: do an i/o operation to swap
   1650  */
   1651 
   1652 static int
   1653 uvm_swap_io(pps, startslot, npages, flags)
   1654 	struct vm_page **pps;
   1655 	int startslot, npages, flags;
   1656 {
   1657 	daddr_t startblk;
   1658 	struct	buf *bp;
   1659 	vaddr_t kva;
   1660 	int	error, s, mapinflags;
   1661 	boolean_t write, async;
   1662 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1663 
   1664 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1665 	    startslot, npages, flags, 0);
   1666 
   1667 	write = (flags & B_READ) == 0;
   1668 	async = (flags & B_ASYNC) != 0;
   1669 
   1670 	/*
   1671 	 * convert starting drum slot to block number
   1672 	 */
   1673 
   1674 	startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
   1675 
   1676 	/*
   1677 	 * first, map the pages into the kernel.
   1678 	 */
   1679 
   1680 	mapinflags = !write ?
   1681 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1682 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1683 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1684 
   1685 	/*
   1686 	 * now allocate a buf for the i/o.
   1687 	 */
   1688 
   1689 	s = splbio();
   1690 	bp = pool_get(&bufpool, PR_WAITOK);
   1691 	splx(s);
   1692 
   1693 	/*
   1694 	 * fill in the bp/sbp.   we currently route our i/o through
   1695 	 * /dev/drum's vnode [swapdev_vp].
   1696 	 */
   1697 
   1698 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
   1699 	bp->b_proc = &proc0;	/* XXX */
   1700 	bp->b_vnbufs.le_next = NOLIST;
   1701 	bp->b_data = (caddr_t)kva;
   1702 	bp->b_blkno = startblk;
   1703 	bp->b_vp = swapdev_vp;
   1704 	bp->b_dev = swapdev_vp->v_rdev;
   1705 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1706 	LIST_INIT(&bp->b_dep);
   1707 
   1708 	/*
   1709 	 * bump v_numoutput (counter of number of active outputs).
   1710 	 */
   1711 
   1712 	if (write) {
   1713 		s = splbio();
   1714 		swapdev_vp->v_numoutput++;
   1715 		splx(s);
   1716 	}
   1717 
   1718 	/*
   1719 	 * for async ops we must set up the iodone handler.
   1720 	 */
   1721 
   1722 	if (async) {
   1723 		bp->b_flags |= B_CALL;
   1724 		bp->b_iodone = uvm_aio_biodone;
   1725 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1726 	}
   1727 	UVMHIST_LOG(pdhist,
   1728 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1729 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1730 
   1731 	/*
   1732 	 * now we start the I/O, and if async, return.
   1733 	 */
   1734 
   1735 	VOP_STRATEGY(bp);
   1736 	if (async)
   1737 		return 0;
   1738 
   1739 	/*
   1740 	 * must be sync i/o.   wait for it to finish
   1741 	 */
   1742 
   1743 	error = biowait(bp);
   1744 
   1745 	/*
   1746 	 * kill the pager mapping
   1747 	 */
   1748 
   1749 	uvm_pagermapout(kva, npages);
   1750 
   1751 	/*
   1752 	 * now dispose of the buf and we're done.
   1753 	 */
   1754 
   1755 	s = splbio();
   1756 	if (write)
   1757 		vwakeup(bp);
   1758 	pool_put(&bufpool, bp);
   1759 	splx(s);
   1760 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1761 	return (error);
   1762 }
   1763