Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.74
      1 /*	$NetBSD: uvm_swap.c,v 1.74 2003/01/18 09:43:01 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.74 2003/01/18 09:43:01 thorpej Exp $");
     36 
     37 #include "fs_nfs.h"
     38 #include "opt_uvmhist.h"
     39 #include "opt_compat_netbsd.h"
     40 #include "opt_ddb.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/buf.h>
     45 #include <sys/conf.h>
     46 #include <sys/proc.h>
     47 #include <sys/namei.h>
     48 #include <sys/disklabel.h>
     49 #include <sys/errno.h>
     50 #include <sys/kernel.h>
     51 #include <sys/malloc.h>
     52 #include <sys/vnode.h>
     53 #include <sys/file.h>
     54 #include <sys/extent.h>
     55 #include <sys/mount.h>
     56 #include <sys/pool.h>
     57 #include <sys/sa.h>
     58 #include <sys/syscallargs.h>
     59 #include <sys/swap.h>
     60 
     61 #include <uvm/uvm.h>
     62 
     63 #include <miscfs/specfs/specdev.h>
     64 
     65 /*
     66  * uvm_swap.c: manage configuration and i/o to swap space.
     67  */
     68 
     69 /*
     70  * swap space is managed in the following way:
     71  *
     72  * each swap partition or file is described by a "swapdev" structure.
     73  * each "swapdev" structure contains a "swapent" structure which contains
     74  * information that is passed up to the user (via system calls).
     75  *
     76  * each swap partition is assigned a "priority" (int) which controls
     77  * swap parition usage.
     78  *
     79  * the system maintains a global data structure describing all swap
     80  * partitions/files.   there is a sorted LIST of "swappri" structures
     81  * which describe "swapdev"'s at that priority.   this LIST is headed
     82  * by the "swap_priority" global var.    each "swappri" contains a
     83  * CIRCLEQ of "swapdev" structures at that priority.
     84  *
     85  * locking:
     86  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
     87  *    system call and prevents the swap priority list from changing
     88  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     89  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
     90  *    structures including the priority list, the swapdev structures,
     91  *    and the swapmap extent.
     92  *
     93  * each swap device has the following info:
     94  *  - swap device in use (could be disabled, preventing future use)
     95  *  - swap enabled (allows new allocations on swap)
     96  *  - map info in /dev/drum
     97  *  - vnode pointer
     98  * for swap files only:
     99  *  - block size
    100  *  - max byte count in buffer
    101  *  - buffer
    102  *
    103  * userland controls and configures swap with the swapctl(2) system call.
    104  * the sys_swapctl performs the following operations:
    105  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    106  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    107  *	(passed in via "arg") of a size passed in via "misc" ... we load
    108  *	the current swap config into the array. The actual work is done
    109  *	in the uvm_swap_stats(9) function.
    110  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    111  *	priority in "misc", start swapping on it.
    112  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    113  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    114  *	"misc")
    115  */
    116 
    117 /*
    118  * swapdev: describes a single swap partition/file
    119  *
    120  * note the following should be true:
    121  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    122  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    123  */
    124 struct swapdev {
    125 	struct oswapent swd_ose;
    126 #define	swd_dev		swd_ose.ose_dev		/* device id */
    127 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    128 #define	swd_priority	swd_ose.ose_priority	/* our priority */
    129 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    130 	char			*swd_path;	/* saved pathname of device */
    131 	int			swd_pathlen;	/* length of pathname */
    132 	int			swd_npages;	/* #pages we can use */
    133 	int			swd_npginuse;	/* #pages in use */
    134 	int			swd_npgbad;	/* #pages bad */
    135 	int			swd_drumoffset;	/* page0 offset in drum */
    136 	int			swd_drumsize;	/* #pages in drum */
    137 	struct extent		*swd_ex;	/* extent for this swapdev */
    138 	char			swd_exname[12];	/* name of extent above */
    139 	struct vnode		*swd_vp;	/* backing vnode */
    140 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    141 
    142 	int			swd_bsize;	/* blocksize (bytes) */
    143 	int			swd_maxactive;	/* max active i/o reqs */
    144 	struct bufq_state	swd_tab;	/* buffer list */
    145 	int			swd_active;	/* number of active buffers */
    146 };
    147 
    148 /*
    149  * swap device priority entry; the list is kept sorted on `spi_priority'.
    150  */
    151 struct swappri {
    152 	int			spi_priority;     /* priority */
    153 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    154 	/* circleq of swapdevs at this priority */
    155 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    156 };
    157 
    158 /*
    159  * The following two structures are used to keep track of data transfers
    160  * on swap devices associated with regular files.
    161  * NOTE: this code is more or less a copy of vnd.c; we use the same
    162  * structure names here to ease porting..
    163  */
    164 struct vndxfer {
    165 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    166 	struct swapdev	*vx_sdp;
    167 	int		vx_error;
    168 	int		vx_pending;	/* # of pending aux buffers */
    169 	int		vx_flags;
    170 #define VX_BUSY		1
    171 #define VX_DEAD		2
    172 };
    173 
    174 struct vndbuf {
    175 	struct buf	vb_buf;
    176 	struct vndxfer	*vb_xfer;
    177 };
    178 
    179 
    180 /*
    181  * We keep a of pool vndbuf's and vndxfer structures.
    182  */
    183 static struct pool vndxfer_pool;
    184 static struct pool vndbuf_pool;
    185 
    186 #define	getvndxfer(vnx)	do {						\
    187 	int s = splbio();						\
    188 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);			\
    189 	splx(s);							\
    190 } while (/*CONSTCOND*/ 0)
    191 
    192 #define putvndxfer(vnx) {						\
    193 	pool_put(&vndxfer_pool, (void *)(vnx));				\
    194 }
    195 
    196 #define	getvndbuf(vbp)	do {						\
    197 	int s = splbio();						\
    198 	vbp = pool_get(&vndbuf_pool, PR_WAITOK);			\
    199 	splx(s);							\
    200 } while (/*CONSTCOND*/ 0)
    201 
    202 #define putvndbuf(vbp) {						\
    203 	pool_put(&vndbuf_pool, (void *)(vbp));				\
    204 }
    205 
    206 /*
    207  * local variables
    208  */
    209 static struct extent *swapmap;		/* controls the mapping of /dev/drum */
    210 
    211 /* list of all active swap devices [by priority] */
    212 LIST_HEAD(swap_priority, swappri);
    213 static struct swap_priority swap_priority;
    214 
    215 /* locks */
    216 struct lock swap_syscall_lock;
    217 
    218 /*
    219  * prototypes
    220  */
    221 static struct swapdev	*swapdrum_getsdp __P((int));
    222 
    223 static struct swapdev	*swaplist_find __P((struct vnode *, int));
    224 static void		 swaplist_insert __P((struct swapdev *,
    225 					     struct swappri *, int));
    226 static void		 swaplist_trim __P((void));
    227 
    228 static int swap_on __P((struct proc *, struct swapdev *));
    229 static int swap_off __P((struct proc *, struct swapdev *));
    230 
    231 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
    232 static void sw_reg_iodone __P((struct buf *));
    233 static void sw_reg_start __P((struct swapdev *));
    234 
    235 static int uvm_swap_io __P((struct vm_page **, int, int, int));
    236 
    237 dev_type_read(swread);
    238 dev_type_write(swwrite);
    239 dev_type_strategy(swstrategy);
    240 
    241 const struct bdevsw swap_bdevsw = {
    242 	noopen, noclose, swstrategy, noioctl, nodump, nosize,
    243 };
    244 
    245 const struct cdevsw swap_cdevsw = {
    246 	nullopen, nullclose, swread, swwrite, noioctl,
    247 	nostop, notty, nopoll, nommap, nokqfilter
    248 };
    249 
    250 /*
    251  * uvm_swap_init: init the swap system data structures and locks
    252  *
    253  * => called at boot time from init_main.c after the filesystems
    254  *	are brought up (which happens after uvm_init())
    255  */
    256 void
    257 uvm_swap_init()
    258 {
    259 	UVMHIST_FUNC("uvm_swap_init");
    260 
    261 	UVMHIST_CALLED(pdhist);
    262 	/*
    263 	 * first, init the swap list, its counter, and its lock.
    264 	 * then get a handle on the vnode for /dev/drum by using
    265 	 * the its dev_t number ("swapdev", from MD conf.c).
    266 	 */
    267 
    268 	LIST_INIT(&swap_priority);
    269 	uvmexp.nswapdev = 0;
    270 	lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
    271 	simple_lock_init(&uvm.swap_data_lock);
    272 
    273 	if (bdevvp(swapdev, &swapdev_vp))
    274 		panic("uvm_swap_init: can't get vnode for swap device");
    275 
    276 	/*
    277 	 * create swap block resource map to map /dev/drum.   the range
    278 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    279 	 * that block 0 is reserved (used to indicate an allocation
    280 	 * failure, or no allocation).
    281 	 */
    282 	swapmap = extent_create("swapmap", 1, INT_MAX,
    283 				M_VMSWAP, 0, 0, EX_NOWAIT);
    284 	if (swapmap == 0)
    285 		panic("uvm_swap_init: extent_create failed");
    286 
    287 	/*
    288 	 * allocate pools for structures used for swapping to files.
    289 	 */
    290 
    291 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0,
    292 	    "swp vnx", NULL);
    293 
    294 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0,
    295 	    "swp vnd", NULL);
    296 
    297 	/*
    298 	 * done!
    299 	 */
    300 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    301 }
    302 
    303 /*
    304  * swaplist functions: functions that operate on the list of swap
    305  * devices on the system.
    306  */
    307 
    308 /*
    309  * swaplist_insert: insert swap device "sdp" into the global list
    310  *
    311  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    312  * => caller must provide a newly malloc'd swappri structure (we will
    313  *	FREE it if we don't need it... this it to prevent malloc blocking
    314  *	here while adding swap)
    315  */
    316 static void
    317 swaplist_insert(sdp, newspp, priority)
    318 	struct swapdev *sdp;
    319 	struct swappri *newspp;
    320 	int priority;
    321 {
    322 	struct swappri *spp, *pspp;
    323 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    324 
    325 	/*
    326 	 * find entry at or after which to insert the new device.
    327 	 */
    328 	pspp = NULL;
    329 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    330 		if (priority <= spp->spi_priority)
    331 			break;
    332 		pspp = spp;
    333 	}
    334 
    335 	/*
    336 	 * new priority?
    337 	 */
    338 	if (spp == NULL || spp->spi_priority != priority) {
    339 		spp = newspp;  /* use newspp! */
    340 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    341 			    priority, 0, 0, 0);
    342 
    343 		spp->spi_priority = priority;
    344 		CIRCLEQ_INIT(&spp->spi_swapdev);
    345 
    346 		if (pspp)
    347 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    348 		else
    349 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    350 	} else {
    351 	  	/* we don't need a new priority structure, free it */
    352 		FREE(newspp, M_VMSWAP);
    353 	}
    354 
    355 	/*
    356 	 * priority found (or created).   now insert on the priority's
    357 	 * circleq list and bump the total number of swapdevs.
    358 	 */
    359 	sdp->swd_priority = priority;
    360 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    361 	uvmexp.nswapdev++;
    362 }
    363 
    364 /*
    365  * swaplist_find: find and optionally remove a swap device from the
    366  *	global list.
    367  *
    368  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    369  * => we return the swapdev we found (and removed)
    370  */
    371 static struct swapdev *
    372 swaplist_find(vp, remove)
    373 	struct vnode *vp;
    374 	boolean_t remove;
    375 {
    376 	struct swapdev *sdp;
    377 	struct swappri *spp;
    378 
    379 	/*
    380 	 * search the lists for the requested vp
    381 	 */
    382 
    383 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    384 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    385 			if (sdp->swd_vp == vp) {
    386 				if (remove) {
    387 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    388 					    sdp, swd_next);
    389 					uvmexp.nswapdev--;
    390 				}
    391 				return(sdp);
    392 			}
    393 		}
    394 	}
    395 	return (NULL);
    396 }
    397 
    398 
    399 /*
    400  * swaplist_trim: scan priority list for empty priority entries and kill
    401  *	them.
    402  *
    403  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    404  */
    405 static void
    406 swaplist_trim()
    407 {
    408 	struct swappri *spp, *nextspp;
    409 
    410 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    411 		nextspp = LIST_NEXT(spp, spi_swappri);
    412 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    413 		    (void *)&spp->spi_swapdev)
    414 			continue;
    415 		LIST_REMOVE(spp, spi_swappri);
    416 		free(spp, M_VMSWAP);
    417 	}
    418 }
    419 
    420 /*
    421  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    422  *	to the "swapdev" that maps that section of the drum.
    423  *
    424  * => each swapdev takes one big contig chunk of the drum
    425  * => caller must hold uvm.swap_data_lock
    426  */
    427 static struct swapdev *
    428 swapdrum_getsdp(pgno)
    429 	int pgno;
    430 {
    431 	struct swapdev *sdp;
    432 	struct swappri *spp;
    433 
    434 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    435 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    436 			if (sdp->swd_flags & SWF_FAKE)
    437 				continue;
    438 			if (pgno >= sdp->swd_drumoffset &&
    439 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    440 				return sdp;
    441 			}
    442 		}
    443 	}
    444 	return NULL;
    445 }
    446 
    447 
    448 /*
    449  * sys_swapctl: main entry point for swapctl(2) system call
    450  * 	[with two helper functions: swap_on and swap_off]
    451  */
    452 int
    453 sys_swapctl(l, v, retval)
    454 	struct lwp *l;
    455 	void *v;
    456 	register_t *retval;
    457 {
    458 	struct sys_swapctl_args /* {
    459 		syscallarg(int) cmd;
    460 		syscallarg(void *) arg;
    461 		syscallarg(int) misc;
    462 	} */ *uap = (struct sys_swapctl_args *)v;
    463 	struct proc *p = l->l_proc;
    464 	struct vnode *vp;
    465 	struct nameidata nd;
    466 	struct swappri *spp;
    467 	struct swapdev *sdp;
    468 	struct swapent *sep;
    469 	char	userpath[PATH_MAX + 1];
    470 	size_t	len;
    471 	int	error, misc;
    472 	int	priority;
    473 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    474 
    475 	misc = SCARG(uap, misc);
    476 
    477 	/*
    478 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    479 	 */
    480 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
    481 
    482 	/*
    483 	 * we handle the non-priv NSWAP and STATS request first.
    484 	 *
    485 	 * SWAP_NSWAP: return number of config'd swap devices
    486 	 * [can also be obtained with uvmexp sysctl]
    487 	 */
    488 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    489 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    490 		    0, 0, 0);
    491 		*retval = uvmexp.nswapdev;
    492 		error = 0;
    493 		goto out;
    494 	}
    495 
    496 	/*
    497 	 * SWAP_STATS: get stats on current # of configured swap devs
    498 	 *
    499 	 * note that the swap_priority list can't change as long
    500 	 * as we are holding the swap_syscall_lock.  we don't want
    501 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
    502 	 * copyout() and we don't want to be holding that lock then!
    503 	 */
    504 	if (SCARG(uap, cmd) == SWAP_STATS
    505 #if defined(COMPAT_13)
    506 	    || SCARG(uap, cmd) == SWAP_OSTATS
    507 #endif
    508 	    ) {
    509 		misc = MIN(uvmexp.nswapdev, misc);
    510 #if defined(COMPAT_13)
    511 		if (SCARG(uap, cmd) == SWAP_OSTATS)
    512 			len = sizeof(struct oswapent) * misc;
    513 		else
    514 #endif
    515 			len = sizeof(struct swapent) * misc;
    516 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
    517 
    518 		uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
    519 		error = copyout(sep, (void *)SCARG(uap, arg), len);
    520 
    521 		free(sep, M_TEMP);
    522 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    523 		goto out;
    524 	}
    525 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    526 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    527 
    528 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    529 		goto out;
    530 	}
    531 
    532 	/*
    533 	 * all other requests require superuser privs.   verify.
    534 	 */
    535 	if ((error = suser(p->p_ucred, &p->p_acflag)))
    536 		goto out;
    537 
    538 	/*
    539 	 * at this point we expect a path name in arg.   we will
    540 	 * use namei() to gain a vnode reference (vref), and lock
    541 	 * the vnode (VOP_LOCK).
    542 	 *
    543 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    544 	 * miniroot)
    545 	 */
    546 	if (SCARG(uap, arg) == NULL) {
    547 		vp = rootvp;		/* miniroot */
    548 		if (vget(vp, LK_EXCLUSIVE)) {
    549 			error = EBUSY;
    550 			goto out;
    551 		}
    552 		if (SCARG(uap, cmd) == SWAP_ON &&
    553 		    copystr("miniroot", userpath, sizeof userpath, &len))
    554 			panic("swapctl: miniroot copy failed");
    555 	} else {
    556 		int	space;
    557 		char	*where;
    558 
    559 		if (SCARG(uap, cmd) == SWAP_ON) {
    560 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    561 			    sizeof userpath, &len)))
    562 				goto out;
    563 			space = UIO_SYSSPACE;
    564 			where = userpath;
    565 		} else {
    566 			space = UIO_USERSPACE;
    567 			where = (char *)SCARG(uap, arg);
    568 		}
    569 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
    570 		if ((error = namei(&nd)))
    571 			goto out;
    572 		vp = nd.ni_vp;
    573 	}
    574 	/* note: "vp" is referenced and locked */
    575 
    576 	error = 0;		/* assume no error */
    577 	switch(SCARG(uap, cmd)) {
    578 
    579 	case SWAP_DUMPDEV:
    580 		if (vp->v_type != VBLK) {
    581 			error = ENOTBLK;
    582 			break;
    583 		}
    584 		dumpdev = vp->v_rdev;
    585 		cpu_dumpconf();
    586 		break;
    587 
    588 	case SWAP_CTL:
    589 		/*
    590 		 * get new priority, remove old entry (if any) and then
    591 		 * reinsert it in the correct place.  finally, prune out
    592 		 * any empty priority structures.
    593 		 */
    594 		priority = SCARG(uap, misc);
    595 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    596 		simple_lock(&uvm.swap_data_lock);
    597 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
    598 			error = ENOENT;
    599 		} else {
    600 			swaplist_insert(sdp, spp, priority);
    601 			swaplist_trim();
    602 		}
    603 		simple_unlock(&uvm.swap_data_lock);
    604 		if (error)
    605 			free(spp, M_VMSWAP);
    606 		break;
    607 
    608 	case SWAP_ON:
    609 
    610 		/*
    611 		 * check for duplicates.   if none found, then insert a
    612 		 * dummy entry on the list to prevent someone else from
    613 		 * trying to enable this device while we are working on
    614 		 * it.
    615 		 */
    616 
    617 		priority = SCARG(uap, misc);
    618 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    619 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    620 		memset(sdp, 0, sizeof(*sdp));
    621 		sdp->swd_flags = SWF_FAKE;
    622 		sdp->swd_vp = vp;
    623 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    624 		bufq_alloc(&sdp->swd_tab, BUFQ_DISKSORT|BUFQ_SORT_RAWBLOCK);
    625 		simple_lock(&uvm.swap_data_lock);
    626 		if (swaplist_find(vp, 0) != NULL) {
    627 			error = EBUSY;
    628 			simple_unlock(&uvm.swap_data_lock);
    629 			bufq_free(&sdp->swd_tab);
    630 			free(sdp, M_VMSWAP);
    631 			free(spp, M_VMSWAP);
    632 			break;
    633 		}
    634 		swaplist_insert(sdp, spp, priority);
    635 		simple_unlock(&uvm.swap_data_lock);
    636 
    637 		sdp->swd_pathlen = len;
    638 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    639 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    640 			panic("swapctl: copystr");
    641 
    642 		/*
    643 		 * we've now got a FAKE placeholder in the swap list.
    644 		 * now attempt to enable swap on it.  if we fail, undo
    645 		 * what we've done and kill the fake entry we just inserted.
    646 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    647 		 */
    648 
    649 		if ((error = swap_on(p, sdp)) != 0) {
    650 			simple_lock(&uvm.swap_data_lock);
    651 			(void) swaplist_find(vp, 1);  /* kill fake entry */
    652 			swaplist_trim();
    653 			simple_unlock(&uvm.swap_data_lock);
    654 			bufq_free(&sdp->swd_tab);
    655 			free(sdp->swd_path, M_VMSWAP);
    656 			free(sdp, M_VMSWAP);
    657 			break;
    658 		}
    659 		break;
    660 
    661 	case SWAP_OFF:
    662 		simple_lock(&uvm.swap_data_lock);
    663 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
    664 			simple_unlock(&uvm.swap_data_lock);
    665 			error = ENXIO;
    666 			break;
    667 		}
    668 
    669 		/*
    670 		 * If a device isn't in use or enabled, we
    671 		 * can't stop swapping from it (again).
    672 		 */
    673 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    674 			simple_unlock(&uvm.swap_data_lock);
    675 			error = EBUSY;
    676 			break;
    677 		}
    678 
    679 		/*
    680 		 * do the real work.
    681 		 */
    682 		error = swap_off(p, sdp);
    683 		break;
    684 
    685 	default:
    686 		error = EINVAL;
    687 	}
    688 
    689 	/*
    690 	 * done!  release the ref gained by namei() and unlock.
    691 	 */
    692 	vput(vp);
    693 
    694 out:
    695 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
    696 
    697 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    698 	return (error);
    699 }
    700 
    701 /*
    702  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
    703  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    704  * emulation to use it directly without going through sys_swapctl().
    705  * The problem with using sys_swapctl() there is that it involves
    706  * copying the swapent array to the stackgap, and this array's size
    707  * is not known at build time. Hence it would not be possible to
    708  * ensure it would fit in the stackgap in any case.
    709  */
    710 void
    711 uvm_swap_stats(cmd, sep, sec, retval)
    712 	int cmd;
    713 	struct swapent *sep;
    714 	int sec;
    715 	register_t *retval;
    716 {
    717 	struct swappri *spp;
    718 	struct swapdev *sdp;
    719 	int count = 0;
    720 
    721 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    722 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    723 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
    724 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    725 		  	/*
    726 			 * backwards compatibility for system call.
    727 			 * note that we use 'struct oswapent' as an
    728 			 * overlay into both 'struct swapdev' and
    729 			 * the userland 'struct swapent', as we
    730 			 * want to retain backwards compatibility
    731 			 * with NetBSD 1.3.
    732 			 */
    733 			sdp->swd_ose.ose_inuse =
    734 			    btodb((u_int64_t)sdp->swd_npginuse <<
    735 			    PAGE_SHIFT);
    736 			(void)memcpy(sep, &sdp->swd_ose,
    737 			    sizeof(struct oswapent));
    738 
    739 			/* now copy out the path if necessary */
    740 #if defined(COMPAT_13)
    741 			if (cmd == SWAP_STATS)
    742 #endif
    743 				(void)memcpy(&sep->se_path, sdp->swd_path,
    744 				    sdp->swd_pathlen);
    745 
    746 			count++;
    747 #if defined(COMPAT_13)
    748 			if (cmd == SWAP_OSTATS)
    749 				sep = (struct swapent *)
    750 				    ((struct oswapent *)sep + 1);
    751 			else
    752 #endif
    753 				sep++;
    754 		}
    755 	}
    756 
    757 	*retval = count;
    758 	return;
    759 }
    760 
    761 /*
    762  * swap_on: attempt to enable a swapdev for swapping.   note that the
    763  *	swapdev is already on the global list, but disabled (marked
    764  *	SWF_FAKE).
    765  *
    766  * => we avoid the start of the disk (to protect disk labels)
    767  * => we also avoid the miniroot, if we are swapping to root.
    768  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
    769  *	if needed.
    770  */
    771 static int
    772 swap_on(p, sdp)
    773 	struct proc *p;
    774 	struct swapdev *sdp;
    775 {
    776 	static int count = 0;	/* static */
    777 	struct vnode *vp;
    778 	int error, npages, nblocks, size;
    779 	long addr;
    780 	u_long result;
    781 	struct vattr va;
    782 #ifdef NFS
    783 	extern int (**nfsv2_vnodeop_p) __P((void *));
    784 #endif /* NFS */
    785 	const struct bdevsw *bdev;
    786 	dev_t dev;
    787 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    788 
    789 	/*
    790 	 * we want to enable swapping on sdp.   the swd_vp contains
    791 	 * the vnode we want (locked and ref'd), and the swd_dev
    792 	 * contains the dev_t of the file, if it a block device.
    793 	 */
    794 
    795 	vp = sdp->swd_vp;
    796 	dev = sdp->swd_dev;
    797 
    798 	/*
    799 	 * open the swap file (mostly useful for block device files to
    800 	 * let device driver know what is up).
    801 	 *
    802 	 * we skip the open/close for root on swap because the root
    803 	 * has already been opened when root was mounted (mountroot).
    804 	 */
    805 	if (vp != rootvp) {
    806 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
    807 			return (error);
    808 	}
    809 
    810 	/* XXX this only works for block devices */
    811 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    812 
    813 	/*
    814 	 * we now need to determine the size of the swap area.   for
    815 	 * block specials we can call the d_psize function.
    816 	 * for normal files, we must stat [get attrs].
    817 	 *
    818 	 * we put the result in nblks.
    819 	 * for normal files, we also want the filesystem block size
    820 	 * (which we get with statfs).
    821 	 */
    822 	switch (vp->v_type) {
    823 	case VBLK:
    824 		bdev = bdevsw_lookup(dev);
    825 		if (bdev == NULL || bdev->d_psize == NULL ||
    826 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
    827 			error = ENXIO;
    828 			goto bad;
    829 		}
    830 		break;
    831 
    832 	case VREG:
    833 		if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
    834 			goto bad;
    835 		nblocks = (int)btodb(va.va_size);
    836 		if ((error =
    837 		     VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
    838 			goto bad;
    839 
    840 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    841 		/*
    842 		 * limit the max # of outstanding I/O requests we issue
    843 		 * at any one time.   take it easy on NFS servers.
    844 		 */
    845 #ifdef NFS
    846 		if (vp->v_op == nfsv2_vnodeop_p)
    847 			sdp->swd_maxactive = 2; /* XXX */
    848 		else
    849 #endif /* NFS */
    850 			sdp->swd_maxactive = 8; /* XXX */
    851 		break;
    852 
    853 	default:
    854 		error = ENXIO;
    855 		goto bad;
    856 	}
    857 
    858 	/*
    859 	 * save nblocks in a safe place and convert to pages.
    860 	 */
    861 
    862 	sdp->swd_ose.ose_nblks = nblocks;
    863 	npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
    864 
    865 	/*
    866 	 * for block special files, we want to make sure that leave
    867 	 * the disklabel and bootblocks alone, so we arrange to skip
    868 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    869 	 * note that because of this the "size" can be less than the
    870 	 * actual number of blocks on the device.
    871 	 */
    872 	if (vp->v_type == VBLK) {
    873 		/* we use pages 1 to (size - 1) [inclusive] */
    874 		size = npages - 1;
    875 		addr = 1;
    876 	} else {
    877 		/* we use pages 0 to (size - 1) [inclusive] */
    878 		size = npages;
    879 		addr = 0;
    880 	}
    881 
    882 	/*
    883 	 * make sure we have enough blocks for a reasonable sized swap
    884 	 * area.   we want at least one page.
    885 	 */
    886 
    887 	if (size < 1) {
    888 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    889 		error = EINVAL;
    890 		goto bad;
    891 	}
    892 
    893 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    894 
    895 	/*
    896 	 * now we need to allocate an extent to manage this swap device
    897 	 */
    898 	snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
    899 	    count++);
    900 
    901 	/* note that extent_create's 3rd arg is inclusive, thus "- 1" */
    902 	sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
    903 				    0, 0, EX_WAITOK);
    904 	/* allocate the `saved' region from the extent so it won't be used */
    905 	if (addr) {
    906 		if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
    907 			panic("disklabel region");
    908 	}
    909 
    910 	/*
    911 	 * if the vnode we are swapping to is the root vnode
    912 	 * (i.e. we are swapping to the miniroot) then we want
    913 	 * to make sure we don't overwrite it.   do a statfs to
    914 	 * find its size and skip over it.
    915 	 */
    916 	if (vp == rootvp) {
    917 		struct mount *mp;
    918 		struct statfs *sp;
    919 		int rootblocks, rootpages;
    920 
    921 		mp = rootvnode->v_mount;
    922 		sp = &mp->mnt_stat;
    923 		rootblocks = sp->f_blocks * btodb(sp->f_bsize);
    924 		/*
    925 		 * XXX: sp->f_blocks isn't the total number of
    926 		 * blocks in the filesystem, it's the number of
    927 		 * data blocks.  so, our rootblocks almost
    928 		 * definitely underestimates the total size
    929 		 * of the filesystem - how badly depends on the
    930 		 * details of the filesystem type.  there isn't
    931 		 * an obvious way to deal with this cleanly
    932 		 * and perfectly, so for now we just pad our
    933 		 * rootblocks estimate with an extra 5 percent.
    934 		 */
    935 		rootblocks += (rootblocks >> 5) +
    936 			(rootblocks >> 6) +
    937 			(rootblocks >> 7);
    938 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    939 		if (rootpages > size)
    940 			panic("swap_on: miniroot larger than swap?");
    941 
    942 		if (extent_alloc_region(sdp->swd_ex, addr,
    943 					rootpages, EX_WAITOK))
    944 			panic("swap_on: unable to preserve miniroot");
    945 
    946 		size -= rootpages;
    947 		printf("Preserved %d pages of miniroot ", rootpages);
    948 		printf("leaving %d pages of swap\n", size);
    949 	}
    950 
    951   	/*
    952 	 * try to add anons to reflect the new swap space.
    953 	 */
    954 
    955 	error = uvm_anon_add(size);
    956 	if (error) {
    957 		goto bad;
    958 	}
    959 
    960 	/*
    961 	 * add a ref to vp to reflect usage as a swap device.
    962 	 */
    963 	vref(vp);
    964 
    965 	/*
    966 	 * now add the new swapdev to the drum and enable.
    967 	 */
    968 	if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
    969 	    EX_WAITOK, &result))
    970 		panic("swapdrum_add");
    971 
    972 	sdp->swd_drumoffset = (int)result;
    973 	sdp->swd_drumsize = npages;
    974 	sdp->swd_npages = size;
    975 	simple_lock(&uvm.swap_data_lock);
    976 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    977 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    978 	uvmexp.swpages += size;
    979 	simple_unlock(&uvm.swap_data_lock);
    980 	return (0);
    981 
    982 	/*
    983 	 * failure: clean up and return error.
    984 	 */
    985 
    986 bad:
    987 	if (sdp->swd_ex) {
    988 		extent_destroy(sdp->swd_ex);
    989 	}
    990 	if (vp != rootvp) {
    991 		(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
    992 	}
    993 	return (error);
    994 }
    995 
    996 /*
    997  * swap_off: stop swapping on swapdev
    998  *
    999  * => swap data should be locked, we will unlock.
   1000  */
   1001 static int
   1002 swap_off(p, sdp)
   1003 	struct proc *p;
   1004 	struct swapdev *sdp;
   1005 {
   1006 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1007 	UVMHIST_LOG(pdhist, "  dev=%x", sdp->swd_dev,0,0,0);
   1008 
   1009 	/* disable the swap area being removed */
   1010 	sdp->swd_flags &= ~SWF_ENABLE;
   1011 	simple_unlock(&uvm.swap_data_lock);
   1012 
   1013 	/*
   1014 	 * the idea is to find all the pages that are paged out to this
   1015 	 * device, and page them all in.  in uvm, swap-backed pageable
   1016 	 * memory can take two forms: aobjs and anons.  call the
   1017 	 * swapoff hook for each subsystem to bring in pages.
   1018 	 */
   1019 
   1020 	if (uao_swap_off(sdp->swd_drumoffset,
   1021 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1022 	    anon_swap_off(sdp->swd_drumoffset,
   1023 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1024 
   1025 		simple_lock(&uvm.swap_data_lock);
   1026 		sdp->swd_flags |= SWF_ENABLE;
   1027 		simple_unlock(&uvm.swap_data_lock);
   1028 		return ENOMEM;
   1029 	}
   1030 	KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
   1031 
   1032 	/*
   1033 	 * done with the vnode.
   1034 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1035 	 * so that spec_close() can tell if this is the last close.
   1036 	 */
   1037 	vrele(sdp->swd_vp);
   1038 	if (sdp->swd_vp != rootvp) {
   1039 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
   1040 	}
   1041 
   1042 	/* remove anons from the system */
   1043 	uvm_anon_remove(sdp->swd_npages);
   1044 
   1045 	simple_lock(&uvm.swap_data_lock);
   1046 	uvmexp.swpages -= sdp->swd_npages;
   1047 
   1048 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
   1049 		panic("swap_off: swapdev not in list");
   1050 	swaplist_trim();
   1051 	simple_unlock(&uvm.swap_data_lock);
   1052 
   1053 	/*
   1054 	 * free all resources!
   1055 	 */
   1056 	extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
   1057 		    EX_WAITOK);
   1058 	extent_destroy(sdp->swd_ex);
   1059 	bufq_free(&sdp->swd_tab);
   1060 	free(sdp, M_VMSWAP);
   1061 	return (0);
   1062 }
   1063 
   1064 /*
   1065  * /dev/drum interface and i/o functions
   1066  */
   1067 
   1068 /*
   1069  * swread: the read function for the drum (just a call to physio)
   1070  */
   1071 /*ARGSUSED*/
   1072 int
   1073 swread(dev, uio, ioflag)
   1074 	dev_t dev;
   1075 	struct uio *uio;
   1076 	int ioflag;
   1077 {
   1078 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1079 
   1080 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1081 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1082 }
   1083 
   1084 /*
   1085  * swwrite: the write function for the drum (just a call to physio)
   1086  */
   1087 /*ARGSUSED*/
   1088 int
   1089 swwrite(dev, uio, ioflag)
   1090 	dev_t dev;
   1091 	struct uio *uio;
   1092 	int ioflag;
   1093 {
   1094 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1095 
   1096 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1097 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1098 }
   1099 
   1100 /*
   1101  * swstrategy: perform I/O on the drum
   1102  *
   1103  * => we must map the i/o request from the drum to the correct swapdev.
   1104  */
   1105 void
   1106 swstrategy(bp)
   1107 	struct buf *bp;
   1108 {
   1109 	struct swapdev *sdp;
   1110 	struct vnode *vp;
   1111 	int s, pageno, bn;
   1112 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1113 
   1114 	/*
   1115 	 * convert block number to swapdev.   note that swapdev can't
   1116 	 * be yanked out from under us because we are holding resources
   1117 	 * in it (i.e. the blocks we are doing I/O on).
   1118 	 */
   1119 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1120 	simple_lock(&uvm.swap_data_lock);
   1121 	sdp = swapdrum_getsdp(pageno);
   1122 	simple_unlock(&uvm.swap_data_lock);
   1123 	if (sdp == NULL) {
   1124 		bp->b_error = EINVAL;
   1125 		bp->b_flags |= B_ERROR;
   1126 		biodone(bp);
   1127 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1128 		return;
   1129 	}
   1130 
   1131 	/*
   1132 	 * convert drum page number to block number on this swapdev.
   1133 	 */
   1134 
   1135 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1136 	bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1137 
   1138 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1139 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1140 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1141 
   1142 	/*
   1143 	 * for block devices we finish up here.
   1144 	 * for regular files we have to do more work which we delegate
   1145 	 * to sw_reg_strategy().
   1146 	 */
   1147 
   1148 	switch (sdp->swd_vp->v_type) {
   1149 	default:
   1150 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
   1151 
   1152 	case VBLK:
   1153 
   1154 		/*
   1155 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1156 		 * on the swapdev (sdp).
   1157 		 */
   1158 		s = splbio();
   1159 		bp->b_blkno = bn;		/* swapdev block number */
   1160 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1161 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1162 
   1163 		/*
   1164 		 * if we are doing a write, we have to redirect the i/o on
   1165 		 * drum's v_numoutput counter to the swapdevs.
   1166 		 */
   1167 		if ((bp->b_flags & B_READ) == 0) {
   1168 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1169 			vp->v_numoutput++;	/* put it on swapdev */
   1170 		}
   1171 
   1172 		/*
   1173 		 * finally plug in swapdev vnode and start I/O
   1174 		 */
   1175 		bp->b_vp = vp;
   1176 		splx(s);
   1177 		VOP_STRATEGY(bp);
   1178 		return;
   1179 
   1180 	case VREG:
   1181 		/*
   1182 		 * delegate to sw_reg_strategy function.
   1183 		 */
   1184 		sw_reg_strategy(sdp, bp, bn);
   1185 		return;
   1186 	}
   1187 	/* NOTREACHED */
   1188 }
   1189 
   1190 /*
   1191  * sw_reg_strategy: handle swap i/o to regular files
   1192  */
   1193 static void
   1194 sw_reg_strategy(sdp, bp, bn)
   1195 	struct swapdev	*sdp;
   1196 	struct buf	*bp;
   1197 	int		bn;
   1198 {
   1199 	struct vnode	*vp;
   1200 	struct vndxfer	*vnx;
   1201 	daddr_t		nbn;
   1202 	caddr_t		addr;
   1203 	off_t		byteoff;
   1204 	int		s, off, nra, error, sz, resid;
   1205 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1206 
   1207 	/*
   1208 	 * allocate a vndxfer head for this transfer and point it to
   1209 	 * our buffer.
   1210 	 */
   1211 	getvndxfer(vnx);
   1212 	vnx->vx_flags = VX_BUSY;
   1213 	vnx->vx_error = 0;
   1214 	vnx->vx_pending = 0;
   1215 	vnx->vx_bp = bp;
   1216 	vnx->vx_sdp = sdp;
   1217 
   1218 	/*
   1219 	 * setup for main loop where we read filesystem blocks into
   1220 	 * our buffer.
   1221 	 */
   1222 	error = 0;
   1223 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1224 	addr = bp->b_data;		/* current position in buffer */
   1225 	byteoff = dbtob((u_int64_t)bn);
   1226 
   1227 	for (resid = bp->b_resid; resid; resid -= sz) {
   1228 		struct vndbuf	*nbp;
   1229 
   1230 		/*
   1231 		 * translate byteoffset into block number.  return values:
   1232 		 *   vp = vnode of underlying device
   1233 		 *  nbn = new block number (on underlying vnode dev)
   1234 		 *  nra = num blocks we can read-ahead (excludes requested
   1235 		 *	block)
   1236 		 */
   1237 		nra = 0;
   1238 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1239 				 	&vp, &nbn, &nra);
   1240 
   1241 		if (error == 0 && nbn == (daddr_t)-1) {
   1242 			/*
   1243 			 * this used to just set error, but that doesn't
   1244 			 * do the right thing.  Instead, it causes random
   1245 			 * memory errors.  The panic() should remain until
   1246 			 * this condition doesn't destabilize the system.
   1247 			 */
   1248 #if 1
   1249 			panic("sw_reg_strategy: swap to sparse file");
   1250 #else
   1251 			error = EIO;	/* failure */
   1252 #endif
   1253 		}
   1254 
   1255 		/*
   1256 		 * punt if there was an error or a hole in the file.
   1257 		 * we must wait for any i/o ops we have already started
   1258 		 * to finish before returning.
   1259 		 *
   1260 		 * XXX we could deal with holes here but it would be
   1261 		 * a hassle (in the write case).
   1262 		 */
   1263 		if (error) {
   1264 			s = splbio();
   1265 			vnx->vx_error = error;	/* pass error up */
   1266 			goto out;
   1267 		}
   1268 
   1269 		/*
   1270 		 * compute the size ("sz") of this transfer (in bytes).
   1271 		 */
   1272 		off = byteoff % sdp->swd_bsize;
   1273 		sz = (1 + nra) * sdp->swd_bsize - off;
   1274 		if (sz > resid)
   1275 			sz = resid;
   1276 
   1277 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1278 			    "vp %p/%p offset 0x%x/0x%x",
   1279 			    sdp->swd_vp, vp, byteoff, nbn);
   1280 
   1281 		/*
   1282 		 * now get a buf structure.   note that the vb_buf is
   1283 		 * at the front of the nbp structure so that you can
   1284 		 * cast pointers between the two structure easily.
   1285 		 */
   1286 		getvndbuf(nbp);
   1287 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
   1288 		nbp->vb_buf.b_bcount   = sz;
   1289 		nbp->vb_buf.b_bufsize  = sz;
   1290 		nbp->vb_buf.b_error    = 0;
   1291 		nbp->vb_buf.b_data     = addr;
   1292 		nbp->vb_buf.b_lblkno   = 0;
   1293 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1294 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1295 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
   1296 		nbp->vb_buf.b_vp       = vp;
   1297 		if (vp->v_type == VBLK) {
   1298 			nbp->vb_buf.b_dev = vp->v_rdev;
   1299 		}
   1300 		LIST_INIT(&nbp->vb_buf.b_dep);
   1301 
   1302 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1303 
   1304 		/*
   1305 		 * Just sort by block number
   1306 		 */
   1307 		s = splbio();
   1308 		if (vnx->vx_error != 0) {
   1309 			putvndbuf(nbp);
   1310 			goto out;
   1311 		}
   1312 		vnx->vx_pending++;
   1313 
   1314 		/* sort it in and start I/O if we are not over our limit */
   1315 		BUFQ_PUT(&sdp->swd_tab, &nbp->vb_buf);
   1316 		sw_reg_start(sdp);
   1317 		splx(s);
   1318 
   1319 		/*
   1320 		 * advance to the next I/O
   1321 		 */
   1322 		byteoff += sz;
   1323 		addr += sz;
   1324 	}
   1325 
   1326 	s = splbio();
   1327 
   1328 out: /* Arrive here at splbio */
   1329 	vnx->vx_flags &= ~VX_BUSY;
   1330 	if (vnx->vx_pending == 0) {
   1331 		if (vnx->vx_error != 0) {
   1332 			bp->b_error = vnx->vx_error;
   1333 			bp->b_flags |= B_ERROR;
   1334 		}
   1335 		putvndxfer(vnx);
   1336 		biodone(bp);
   1337 	}
   1338 	splx(s);
   1339 }
   1340 
   1341 /*
   1342  * sw_reg_start: start an I/O request on the requested swapdev
   1343  *
   1344  * => reqs are sorted by b_rawblkno (above)
   1345  */
   1346 static void
   1347 sw_reg_start(sdp)
   1348 	struct swapdev	*sdp;
   1349 {
   1350 	struct buf	*bp;
   1351 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1352 
   1353 	/* recursion control */
   1354 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1355 		return;
   1356 
   1357 	sdp->swd_flags |= SWF_BUSY;
   1358 
   1359 	while (sdp->swd_active < sdp->swd_maxactive) {
   1360 		bp = BUFQ_GET(&sdp->swd_tab);
   1361 		if (bp == NULL)
   1362 			break;
   1363 		sdp->swd_active++;
   1364 
   1365 		UVMHIST_LOG(pdhist,
   1366 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1367 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1368 		if ((bp->b_flags & B_READ) == 0)
   1369 			bp->b_vp->v_numoutput++;
   1370 
   1371 		VOP_STRATEGY(bp);
   1372 	}
   1373 	sdp->swd_flags &= ~SWF_BUSY;
   1374 }
   1375 
   1376 /*
   1377  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1378  *
   1379  * => note that we can recover the vndbuf struct by casting the buf ptr
   1380  */
   1381 static void
   1382 sw_reg_iodone(bp)
   1383 	struct buf *bp;
   1384 {
   1385 	struct vndbuf *vbp = (struct vndbuf *) bp;
   1386 	struct vndxfer *vnx = vbp->vb_xfer;
   1387 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1388 	struct swapdev	*sdp = vnx->vx_sdp;
   1389 	int s, resid, error;
   1390 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1391 
   1392 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1393 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1394 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1395 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1396 
   1397 	/*
   1398 	 * protect vbp at splbio and update.
   1399 	 */
   1400 
   1401 	s = splbio();
   1402 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1403 	pbp->b_resid -= resid;
   1404 	vnx->vx_pending--;
   1405 
   1406 	if (vbp->vb_buf.b_flags & B_ERROR) {
   1407 		/* pass error upward */
   1408 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1409 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1410 		vnx->vx_error = error;
   1411 	}
   1412 
   1413 	/*
   1414 	 * kill vbp structure
   1415 	 */
   1416 	putvndbuf(vbp);
   1417 
   1418 	/*
   1419 	 * wrap up this transaction if it has run to completion or, in
   1420 	 * case of an error, when all auxiliary buffers have returned.
   1421 	 */
   1422 	if (vnx->vx_error != 0) {
   1423 		/* pass error upward */
   1424 		pbp->b_flags |= B_ERROR;
   1425 		pbp->b_error = vnx->vx_error;
   1426 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1427 			putvndxfer(vnx);
   1428 			biodone(pbp);
   1429 		}
   1430 	} else if (pbp->b_resid == 0) {
   1431 		KASSERT(vnx->vx_pending == 0);
   1432 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1433 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1434 			    pbp, vnx->vx_error, 0, 0);
   1435 			putvndxfer(vnx);
   1436 			biodone(pbp);
   1437 		}
   1438 	}
   1439 
   1440 	/*
   1441 	 * done!   start next swapdev I/O if one is pending
   1442 	 */
   1443 	sdp->swd_active--;
   1444 	sw_reg_start(sdp);
   1445 	splx(s);
   1446 }
   1447 
   1448 
   1449 /*
   1450  * uvm_swap_alloc: allocate space on swap
   1451  *
   1452  * => allocation is done "round robin" down the priority list, as we
   1453  *	allocate in a priority we "rotate" the circle queue.
   1454  * => space can be freed with uvm_swap_free
   1455  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1456  * => we lock uvm.swap_data_lock
   1457  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1458  */
   1459 int
   1460 uvm_swap_alloc(nslots, lessok)
   1461 	int *nslots;	/* IN/OUT */
   1462 	boolean_t lessok;
   1463 {
   1464 	struct swapdev *sdp;
   1465 	struct swappri *spp;
   1466 	u_long	result;
   1467 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1468 
   1469 	/*
   1470 	 * no swap devices configured yet?   definite failure.
   1471 	 */
   1472 	if (uvmexp.nswapdev < 1)
   1473 		return 0;
   1474 
   1475 	/*
   1476 	 * lock data lock, convert slots into blocks, and enter loop
   1477 	 */
   1478 	simple_lock(&uvm.swap_data_lock);
   1479 
   1480 ReTry:	/* XXXMRG */
   1481 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1482 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1483 			/* if it's not enabled, then we can't swap from it */
   1484 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1485 				continue;
   1486 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1487 				continue;
   1488 			if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
   1489 					 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
   1490 					 &result) != 0) {
   1491 				continue;
   1492 			}
   1493 
   1494 			/*
   1495 			 * successful allocation!  now rotate the circleq.
   1496 			 */
   1497 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1498 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1499 			sdp->swd_npginuse += *nslots;
   1500 			uvmexp.swpginuse += *nslots;
   1501 			simple_unlock(&uvm.swap_data_lock);
   1502 			/* done!  return drum slot number */
   1503 			UVMHIST_LOG(pdhist,
   1504 			    "success!  returning %d slots starting at %d",
   1505 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1506 			return (result + sdp->swd_drumoffset);
   1507 		}
   1508 	}
   1509 
   1510 	/* XXXMRG: BEGIN HACK */
   1511 	if (*nslots > 1 && lessok) {
   1512 		*nslots = 1;
   1513 		goto ReTry;	/* XXXMRG: ugh!  extent should support this for us */
   1514 	}
   1515 	/* XXXMRG: END HACK */
   1516 
   1517 	simple_unlock(&uvm.swap_data_lock);
   1518 	return 0;
   1519 }
   1520 
   1521 /*
   1522  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1523  *
   1524  * => we lock uvm.swap_data_lock
   1525  */
   1526 void
   1527 uvm_swap_markbad(startslot, nslots)
   1528 	int startslot;
   1529 	int nslots;
   1530 {
   1531 	struct swapdev *sdp;
   1532 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1533 
   1534 	simple_lock(&uvm.swap_data_lock);
   1535 	sdp = swapdrum_getsdp(startslot);
   1536 
   1537 	/*
   1538 	 * we just keep track of how many pages have been marked bad
   1539 	 * in this device, to make everything add up in swap_off().
   1540 	 * we assume here that the range of slots will all be within
   1541 	 * one swap device.
   1542 	 */
   1543 
   1544 	sdp->swd_npgbad += nslots;
   1545 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1546 	simple_unlock(&uvm.swap_data_lock);
   1547 }
   1548 
   1549 /*
   1550  * uvm_swap_free: free swap slots
   1551  *
   1552  * => this can be all or part of an allocation made by uvm_swap_alloc
   1553  * => we lock uvm.swap_data_lock
   1554  */
   1555 void
   1556 uvm_swap_free(startslot, nslots)
   1557 	int startslot;
   1558 	int nslots;
   1559 {
   1560 	struct swapdev *sdp;
   1561 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1562 
   1563 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1564 	    startslot, 0, 0);
   1565 
   1566 	/*
   1567 	 * ignore attempts to free the "bad" slot.
   1568 	 */
   1569 
   1570 	if (startslot == SWSLOT_BAD) {
   1571 		return;
   1572 	}
   1573 
   1574 	/*
   1575 	 * convert drum slot offset back to sdp, free the blocks
   1576 	 * in the extent, and return.   must hold pri lock to do
   1577 	 * lookup and access the extent.
   1578 	 */
   1579 
   1580 	simple_lock(&uvm.swap_data_lock);
   1581 	sdp = swapdrum_getsdp(startslot);
   1582 	KASSERT(uvmexp.nswapdev >= 1);
   1583 	KASSERT(sdp != NULL);
   1584 	KASSERT(sdp->swd_npginuse >= nslots);
   1585 	if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
   1586 			EX_MALLOCOK|EX_NOWAIT) != 0) {
   1587 		printf("warning: resource shortage: %d pages of swap lost\n",
   1588 			nslots);
   1589 	}
   1590 	sdp->swd_npginuse -= nslots;
   1591 	uvmexp.swpginuse -= nslots;
   1592 	simple_unlock(&uvm.swap_data_lock);
   1593 }
   1594 
   1595 /*
   1596  * uvm_swap_put: put any number of pages into a contig place on swap
   1597  *
   1598  * => can be sync or async
   1599  */
   1600 
   1601 int
   1602 uvm_swap_put(swslot, ppsp, npages, flags)
   1603 	int swslot;
   1604 	struct vm_page **ppsp;
   1605 	int npages;
   1606 	int flags;
   1607 {
   1608 	int error;
   1609 
   1610 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1611 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1612 	return error;
   1613 }
   1614 
   1615 /*
   1616  * uvm_swap_get: get a single page from swap
   1617  *
   1618  * => usually a sync op (from fault)
   1619  */
   1620 
   1621 int
   1622 uvm_swap_get(page, swslot, flags)
   1623 	struct vm_page *page;
   1624 	int swslot, flags;
   1625 {
   1626 	int error;
   1627 
   1628 	uvmexp.nswget++;
   1629 	KASSERT(flags & PGO_SYNCIO);
   1630 	if (swslot == SWSLOT_BAD) {
   1631 		return EIO;
   1632 	}
   1633 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1634 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1635 	if (error == 0) {
   1636 
   1637 		/*
   1638 		 * this page is no longer only in swap.
   1639 		 */
   1640 
   1641 		simple_lock(&uvm.swap_data_lock);
   1642 		KASSERT(uvmexp.swpgonly > 0);
   1643 		uvmexp.swpgonly--;
   1644 		simple_unlock(&uvm.swap_data_lock);
   1645 	}
   1646 	return error;
   1647 }
   1648 
   1649 /*
   1650  * uvm_swap_io: do an i/o operation to swap
   1651  */
   1652 
   1653 static int
   1654 uvm_swap_io(pps, startslot, npages, flags)
   1655 	struct vm_page **pps;
   1656 	int startslot, npages, flags;
   1657 {
   1658 	daddr_t startblk;
   1659 	struct	buf *bp;
   1660 	vaddr_t kva;
   1661 	int	error, s, mapinflags;
   1662 	boolean_t write, async;
   1663 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1664 
   1665 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1666 	    startslot, npages, flags, 0);
   1667 
   1668 	write = (flags & B_READ) == 0;
   1669 	async = (flags & B_ASYNC) != 0;
   1670 
   1671 	/*
   1672 	 * convert starting drum slot to block number
   1673 	 */
   1674 
   1675 	startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
   1676 
   1677 	/*
   1678 	 * first, map the pages into the kernel.
   1679 	 */
   1680 
   1681 	mapinflags = !write ?
   1682 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1683 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1684 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1685 
   1686 	/*
   1687 	 * now allocate a buf for the i/o.
   1688 	 */
   1689 
   1690 	s = splbio();
   1691 	bp = pool_get(&bufpool, PR_WAITOK);
   1692 	splx(s);
   1693 
   1694 	/*
   1695 	 * fill in the bp/sbp.   we currently route our i/o through
   1696 	 * /dev/drum's vnode [swapdev_vp].
   1697 	 */
   1698 
   1699 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
   1700 	bp->b_proc = &proc0;	/* XXX */
   1701 	bp->b_vnbufs.le_next = NOLIST;
   1702 	bp->b_data = (caddr_t)kva;
   1703 	bp->b_blkno = startblk;
   1704 	bp->b_vp = swapdev_vp;
   1705 	bp->b_dev = swapdev_vp->v_rdev;
   1706 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1707 	LIST_INIT(&bp->b_dep);
   1708 
   1709 	/*
   1710 	 * bump v_numoutput (counter of number of active outputs).
   1711 	 */
   1712 
   1713 	if (write) {
   1714 		s = splbio();
   1715 		swapdev_vp->v_numoutput++;
   1716 		splx(s);
   1717 	}
   1718 
   1719 	/*
   1720 	 * for async ops we must set up the iodone handler.
   1721 	 */
   1722 
   1723 	if (async) {
   1724 		bp->b_flags |= B_CALL;
   1725 		bp->b_iodone = uvm_aio_biodone;
   1726 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1727 	}
   1728 	UVMHIST_LOG(pdhist,
   1729 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1730 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1731 
   1732 	/*
   1733 	 * now we start the I/O, and if async, return.
   1734 	 */
   1735 
   1736 	VOP_STRATEGY(bp);
   1737 	if (async)
   1738 		return 0;
   1739 
   1740 	/*
   1741 	 * must be sync i/o.   wait for it to finish
   1742 	 */
   1743 
   1744 	error = biowait(bp);
   1745 
   1746 	/*
   1747 	 * kill the pager mapping
   1748 	 */
   1749 
   1750 	uvm_pagermapout(kva, npages);
   1751 
   1752 	/*
   1753 	 * now dispose of the buf and we're done.
   1754 	 */
   1755 
   1756 	s = splbio();
   1757 	if (write)
   1758 		vwakeup(bp);
   1759 	pool_put(&bufpool, bp);
   1760 	splx(s);
   1761 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1762 	return (error);
   1763 }
   1764