uvm_swap.c revision 1.80.2.2 1 /* $NetBSD: uvm_swap.c,v 1.80.2.2 2004/08/03 10:57:09 skrll Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.80.2.2 2004/08/03 10:57:09 skrll Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/conf.h>
46 #include <sys/proc.h>
47 #include <sys/namei.h>
48 #include <sys/disklabel.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/vnode.h>
53 #include <sys/file.h>
54 #include <sys/extent.h>
55 #include <sys/mount.h>
56 #include <sys/pool.h>
57 #include <sys/sa.h>
58 #include <sys/syscallargs.h>
59 #include <sys/swap.h>
60
61 #include <uvm/uvm.h>
62
63 #include <miscfs/specfs/specdev.h>
64
65 /*
66 * uvm_swap.c: manage configuration and i/o to swap space.
67 */
68
69 /*
70 * swap space is managed in the following way:
71 *
72 * each swap partition or file is described by a "swapdev" structure.
73 * each "swapdev" structure contains a "swapent" structure which contains
74 * information that is passed up to the user (via system calls).
75 *
76 * each swap partition is assigned a "priority" (int) which controls
77 * swap parition usage.
78 *
79 * the system maintains a global data structure describing all swap
80 * partitions/files. there is a sorted LIST of "swappri" structures
81 * which describe "swapdev"'s at that priority. this LIST is headed
82 * by the "swap_priority" global var. each "swappri" contains a
83 * CIRCLEQ of "swapdev" structures at that priority.
84 *
85 * locking:
86 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
87 * system call and prevents the swap priority list from changing
88 * while we are in the middle of a system call (e.g. SWAP_STATS).
89 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
90 * structures including the priority list, the swapdev structures,
91 * and the swapmap extent.
92 *
93 * each swap device has the following info:
94 * - swap device in use (could be disabled, preventing future use)
95 * - swap enabled (allows new allocations on swap)
96 * - map info in /dev/drum
97 * - vnode pointer
98 * for swap files only:
99 * - block size
100 * - max byte count in buffer
101 * - buffer
102 *
103 * userland controls and configures swap with the swapctl(2) system call.
104 * the sys_swapctl performs the following operations:
105 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
106 * [2] SWAP_STATS: given a pointer to an array of swapent structures
107 * (passed in via "arg") of a size passed in via "misc" ... we load
108 * the current swap config into the array. The actual work is done
109 * in the uvm_swap_stats(9) function.
110 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
111 * priority in "misc", start swapping on it.
112 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
113 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
114 * "misc")
115 */
116
117 /*
118 * swapdev: describes a single swap partition/file
119 *
120 * note the following should be true:
121 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
122 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
123 */
124 struct swapdev {
125 struct oswapent swd_ose;
126 #define swd_dev swd_ose.ose_dev /* device id */
127 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
128 #define swd_priority swd_ose.ose_priority /* our priority */
129 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
130 char *swd_path; /* saved pathname of device */
131 int swd_pathlen; /* length of pathname */
132 int swd_npages; /* #pages we can use */
133 int swd_npginuse; /* #pages in use */
134 int swd_npgbad; /* #pages bad */
135 int swd_drumoffset; /* page0 offset in drum */
136 int swd_drumsize; /* #pages in drum */
137 struct extent *swd_ex; /* extent for this swapdev */
138 char swd_exname[12]; /* name of extent above */
139 struct vnode *swd_vp; /* backing vnode */
140 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
141
142 int swd_bsize; /* blocksize (bytes) */
143 int swd_maxactive; /* max active i/o reqs */
144 struct bufq_state swd_tab; /* buffer list */
145 int swd_active; /* number of active buffers */
146 };
147
148 /*
149 * swap device priority entry; the list is kept sorted on `spi_priority'.
150 */
151 struct swappri {
152 int spi_priority; /* priority */
153 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
154 /* circleq of swapdevs at this priority */
155 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
156 };
157
158 /*
159 * The following two structures are used to keep track of data transfers
160 * on swap devices associated with regular files.
161 * NOTE: this code is more or less a copy of vnd.c; we use the same
162 * structure names here to ease porting..
163 */
164 struct vndxfer {
165 struct buf *vx_bp; /* Pointer to parent buffer */
166 struct swapdev *vx_sdp;
167 int vx_error;
168 int vx_pending; /* # of pending aux buffers */
169 int vx_flags;
170 #define VX_BUSY 1
171 #define VX_DEAD 2
172 };
173
174 struct vndbuf {
175 struct buf vb_buf;
176 struct vndxfer *vb_xfer;
177 };
178
179
180 /*
181 * We keep a of pool vndbuf's and vndxfer structures.
182 */
183 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL);
184 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL);
185
186 #define getvndxfer(vnx) do { \
187 int s = splbio(); \
188 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \
189 splx(s); \
190 } while (/*CONSTCOND*/ 0)
191
192 #define putvndxfer(vnx) { \
193 pool_put(&vndxfer_pool, (void *)(vnx)); \
194 }
195
196 #define getvndbuf(vbp) do { \
197 int s = splbio(); \
198 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \
199 splx(s); \
200 } while (/*CONSTCOND*/ 0)
201
202 #define putvndbuf(vbp) { \
203 pool_put(&vndbuf_pool, (void *)(vbp)); \
204 }
205
206 /*
207 * local variables
208 */
209 static struct extent *swapmap; /* controls the mapping of /dev/drum */
210
211 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
212
213 /* list of all active swap devices [by priority] */
214 LIST_HEAD(swap_priority, swappri);
215 static struct swap_priority swap_priority;
216
217 /* locks */
218 struct lock swap_syscall_lock;
219
220 /*
221 * prototypes
222 */
223 static struct swapdev *swapdrum_getsdp(int);
224
225 static struct swapdev *swaplist_find(struct vnode *, int);
226 static void swaplist_insert(struct swapdev *,
227 struct swappri *, int);
228 static void swaplist_trim(void);
229
230 static int swap_on(struct lwp *, struct swapdev *);
231 static int swap_off(struct lwp *, struct swapdev *);
232
233 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
234 static void sw_reg_iodone(struct buf *);
235 static void sw_reg_start(struct swapdev *);
236
237 static int uvm_swap_io(struct vm_page **, int, int, int);
238
239 dev_type_read(swread);
240 dev_type_write(swwrite);
241 dev_type_strategy(swstrategy);
242
243 const struct bdevsw swap_bdevsw = {
244 noopen, noclose, swstrategy, noioctl, nodump, nosize,
245 };
246
247 const struct cdevsw swap_cdevsw = {
248 nullopen, nullclose, swread, swwrite, noioctl,
249 nostop, notty, nopoll, nommap, nokqfilter
250 };
251
252 /*
253 * uvm_swap_init: init the swap system data structures and locks
254 *
255 * => called at boot time from init_main.c after the filesystems
256 * are brought up (which happens after uvm_init())
257 */
258 void
259 uvm_swap_init()
260 {
261 UVMHIST_FUNC("uvm_swap_init");
262
263 UVMHIST_CALLED(pdhist);
264 /*
265 * first, init the swap list, its counter, and its lock.
266 * then get a handle on the vnode for /dev/drum by using
267 * the its dev_t number ("swapdev", from MD conf.c).
268 */
269
270 LIST_INIT(&swap_priority);
271 uvmexp.nswapdev = 0;
272 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
273 simple_lock_init(&uvm.swap_data_lock);
274
275 if (bdevvp(swapdev, &swapdev_vp))
276 panic("uvm_swap_init: can't get vnode for swap device");
277
278 /*
279 * create swap block resource map to map /dev/drum. the range
280 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
281 * that block 0 is reserved (used to indicate an allocation
282 * failure, or no allocation).
283 */
284 swapmap = extent_create("swapmap", 1, INT_MAX,
285 M_VMSWAP, 0, 0, EX_NOWAIT);
286 if (swapmap == 0)
287 panic("uvm_swap_init: extent_create failed");
288
289 /*
290 * done!
291 */
292 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
293 }
294
295 /*
296 * swaplist functions: functions that operate on the list of swap
297 * devices on the system.
298 */
299
300 /*
301 * swaplist_insert: insert swap device "sdp" into the global list
302 *
303 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
304 * => caller must provide a newly malloc'd swappri structure (we will
305 * FREE it if we don't need it... this it to prevent malloc blocking
306 * here while adding swap)
307 */
308 static void
309 swaplist_insert(sdp, newspp, priority)
310 struct swapdev *sdp;
311 struct swappri *newspp;
312 int priority;
313 {
314 struct swappri *spp, *pspp;
315 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
316
317 /*
318 * find entry at or after which to insert the new device.
319 */
320 pspp = NULL;
321 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
322 if (priority <= spp->spi_priority)
323 break;
324 pspp = spp;
325 }
326
327 /*
328 * new priority?
329 */
330 if (spp == NULL || spp->spi_priority != priority) {
331 spp = newspp; /* use newspp! */
332 UVMHIST_LOG(pdhist, "created new swappri = %d",
333 priority, 0, 0, 0);
334
335 spp->spi_priority = priority;
336 CIRCLEQ_INIT(&spp->spi_swapdev);
337
338 if (pspp)
339 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
340 else
341 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
342 } else {
343 /* we don't need a new priority structure, free it */
344 FREE(newspp, M_VMSWAP);
345 }
346
347 /*
348 * priority found (or created). now insert on the priority's
349 * circleq list and bump the total number of swapdevs.
350 */
351 sdp->swd_priority = priority;
352 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
353 uvmexp.nswapdev++;
354 }
355
356 /*
357 * swaplist_find: find and optionally remove a swap device from the
358 * global list.
359 *
360 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
361 * => we return the swapdev we found (and removed)
362 */
363 static struct swapdev *
364 swaplist_find(vp, remove)
365 struct vnode *vp;
366 boolean_t remove;
367 {
368 struct swapdev *sdp;
369 struct swappri *spp;
370
371 /*
372 * search the lists for the requested vp
373 */
374
375 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
376 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
377 if (sdp->swd_vp == vp) {
378 if (remove) {
379 CIRCLEQ_REMOVE(&spp->spi_swapdev,
380 sdp, swd_next);
381 uvmexp.nswapdev--;
382 }
383 return(sdp);
384 }
385 }
386 }
387 return (NULL);
388 }
389
390
391 /*
392 * swaplist_trim: scan priority list for empty priority entries and kill
393 * them.
394 *
395 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
396 */
397 static void
398 swaplist_trim()
399 {
400 struct swappri *spp, *nextspp;
401
402 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
403 nextspp = LIST_NEXT(spp, spi_swappri);
404 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
405 (void *)&spp->spi_swapdev)
406 continue;
407 LIST_REMOVE(spp, spi_swappri);
408 free(spp, M_VMSWAP);
409 }
410 }
411
412 /*
413 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
414 * to the "swapdev" that maps that section of the drum.
415 *
416 * => each swapdev takes one big contig chunk of the drum
417 * => caller must hold uvm.swap_data_lock
418 */
419 static struct swapdev *
420 swapdrum_getsdp(pgno)
421 int pgno;
422 {
423 struct swapdev *sdp;
424 struct swappri *spp;
425
426 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
427 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
428 if (sdp->swd_flags & SWF_FAKE)
429 continue;
430 if (pgno >= sdp->swd_drumoffset &&
431 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
432 return sdp;
433 }
434 }
435 }
436 return NULL;
437 }
438
439
440 /*
441 * sys_swapctl: main entry point for swapctl(2) system call
442 * [with two helper functions: swap_on and swap_off]
443 */
444 int
445 sys_swapctl(l, v, retval)
446 struct lwp *l;
447 void *v;
448 register_t *retval;
449 {
450 struct sys_swapctl_args /* {
451 syscallarg(int) cmd;
452 syscallarg(void *) arg;
453 syscallarg(int) misc;
454 } */ *uap = (struct sys_swapctl_args *)v;
455 struct proc *p = l->l_proc;
456 struct vnode *vp;
457 struct nameidata nd;
458 struct swappri *spp;
459 struct swapdev *sdp;
460 struct swapent *sep;
461 char userpath[PATH_MAX + 1];
462 size_t len;
463 int error, misc;
464 int priority;
465 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
466
467 misc = SCARG(uap, misc);
468
469 /*
470 * ensure serialized syscall access by grabbing the swap_syscall_lock
471 */
472 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
473
474 /*
475 * we handle the non-priv NSWAP and STATS request first.
476 *
477 * SWAP_NSWAP: return number of config'd swap devices
478 * [can also be obtained with uvmexp sysctl]
479 */
480 if (SCARG(uap, cmd) == SWAP_NSWAP) {
481 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
482 0, 0, 0);
483 *retval = uvmexp.nswapdev;
484 error = 0;
485 goto out;
486 }
487
488 /*
489 * SWAP_STATS: get stats on current # of configured swap devs
490 *
491 * note that the swap_priority list can't change as long
492 * as we are holding the swap_syscall_lock. we don't want
493 * to grab the uvm.swap_data_lock because we may fault&sleep during
494 * copyout() and we don't want to be holding that lock then!
495 */
496 if (SCARG(uap, cmd) == SWAP_STATS
497 #if defined(COMPAT_13)
498 || SCARG(uap, cmd) == SWAP_OSTATS
499 #endif
500 ) {
501 if ((size_t)misc > (size_t)uvmexp.nswapdev)
502 misc = uvmexp.nswapdev;
503 #if defined(COMPAT_13)
504 if (SCARG(uap, cmd) == SWAP_OSTATS)
505 len = sizeof(struct oswapent) * misc;
506 else
507 #endif
508 len = sizeof(struct swapent) * misc;
509 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
510
511 uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
512 error = copyout(sep, (void *)SCARG(uap, arg), len);
513
514 free(sep, M_TEMP);
515 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
516 goto out;
517 }
518 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
519 dev_t *devp = (dev_t *)SCARG(uap, arg);
520
521 error = copyout(&dumpdev, devp, sizeof(dumpdev));
522 goto out;
523 }
524
525 /*
526 * all other requests require superuser privs. verify.
527 */
528 if ((error = suser(p->p_ucred, &p->p_acflag)))
529 goto out;
530
531 /*
532 * at this point we expect a path name in arg. we will
533 * use namei() to gain a vnode reference (vref), and lock
534 * the vnode (VOP_LOCK).
535 *
536 * XXX: a NULL arg means use the root vnode pointer (e.g. for
537 * miniroot)
538 */
539 if (SCARG(uap, arg) == NULL) {
540 vp = rootvp; /* miniroot */
541 if (vget(vp, LK_EXCLUSIVE, l)) {
542 error = EBUSY;
543 goto out;
544 }
545 if (SCARG(uap, cmd) == SWAP_ON &&
546 copystr("miniroot", userpath, sizeof userpath, &len))
547 panic("swapctl: miniroot copy failed");
548 } else {
549 int space;
550 char *where;
551
552 if (SCARG(uap, cmd) == SWAP_ON) {
553 if ((error = copyinstr(SCARG(uap, arg), userpath,
554 sizeof userpath, &len)))
555 goto out;
556 space = UIO_SYSSPACE;
557 where = userpath;
558 } else {
559 space = UIO_USERSPACE;
560 where = (char *)SCARG(uap, arg);
561 }
562 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, l);
563 if ((error = namei(&nd)))
564 goto out;
565 vp = nd.ni_vp;
566 }
567 /* note: "vp" is referenced and locked */
568
569 error = 0; /* assume no error */
570 switch(SCARG(uap, cmd)) {
571
572 case SWAP_DUMPDEV:
573 if (vp->v_type != VBLK) {
574 error = ENOTBLK;
575 break;
576 }
577 dumpdev = vp->v_rdev;
578 cpu_dumpconf();
579 break;
580
581 case SWAP_CTL:
582 /*
583 * get new priority, remove old entry (if any) and then
584 * reinsert it in the correct place. finally, prune out
585 * any empty priority structures.
586 */
587 priority = SCARG(uap, misc);
588 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
589 simple_lock(&uvm.swap_data_lock);
590 if ((sdp = swaplist_find(vp, 1)) == NULL) {
591 error = ENOENT;
592 } else {
593 swaplist_insert(sdp, spp, priority);
594 swaplist_trim();
595 }
596 simple_unlock(&uvm.swap_data_lock);
597 if (error)
598 free(spp, M_VMSWAP);
599 break;
600
601 case SWAP_ON:
602
603 /*
604 * check for duplicates. if none found, then insert a
605 * dummy entry on the list to prevent someone else from
606 * trying to enable this device while we are working on
607 * it.
608 */
609
610 priority = SCARG(uap, misc);
611 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
612 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
613 memset(sdp, 0, sizeof(*sdp));
614 sdp->swd_flags = SWF_FAKE;
615 sdp->swd_vp = vp;
616 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
617 bufq_alloc(&sdp->swd_tab, BUFQ_DISKSORT|BUFQ_SORT_RAWBLOCK);
618 simple_lock(&uvm.swap_data_lock);
619 if (swaplist_find(vp, 0) != NULL) {
620 error = EBUSY;
621 simple_unlock(&uvm.swap_data_lock);
622 bufq_free(&sdp->swd_tab);
623 free(sdp, M_VMSWAP);
624 free(spp, M_VMSWAP);
625 break;
626 }
627 swaplist_insert(sdp, spp, priority);
628 simple_unlock(&uvm.swap_data_lock);
629
630 sdp->swd_pathlen = len;
631 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
632 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
633 panic("swapctl: copystr");
634
635 /*
636 * we've now got a FAKE placeholder in the swap list.
637 * now attempt to enable swap on it. if we fail, undo
638 * what we've done and kill the fake entry we just inserted.
639 * if swap_on is a success, it will clear the SWF_FAKE flag
640 */
641
642 if ((error = swap_on(l, sdp)) != 0) {
643 simple_lock(&uvm.swap_data_lock);
644 (void) swaplist_find(vp, 1); /* kill fake entry */
645 swaplist_trim();
646 simple_unlock(&uvm.swap_data_lock);
647 bufq_free(&sdp->swd_tab);
648 free(sdp->swd_path, M_VMSWAP);
649 free(sdp, M_VMSWAP);
650 break;
651 }
652 break;
653
654 case SWAP_OFF:
655 simple_lock(&uvm.swap_data_lock);
656 if ((sdp = swaplist_find(vp, 0)) == NULL) {
657 simple_unlock(&uvm.swap_data_lock);
658 error = ENXIO;
659 break;
660 }
661
662 /*
663 * If a device isn't in use or enabled, we
664 * can't stop swapping from it (again).
665 */
666 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
667 simple_unlock(&uvm.swap_data_lock);
668 error = EBUSY;
669 break;
670 }
671
672 /*
673 * do the real work.
674 */
675 error = swap_off(l, sdp);
676 break;
677
678 default:
679 error = EINVAL;
680 }
681
682 /*
683 * done! release the ref gained by namei() and unlock.
684 */
685 vput(vp);
686
687 out:
688 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
689
690 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
691 return (error);
692 }
693
694 /*
695 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
696 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
697 * emulation to use it directly without going through sys_swapctl().
698 * The problem with using sys_swapctl() there is that it involves
699 * copying the swapent array to the stackgap, and this array's size
700 * is not known at build time. Hence it would not be possible to
701 * ensure it would fit in the stackgap in any case.
702 */
703 void
704 uvm_swap_stats(cmd, sep, sec, retval)
705 int cmd;
706 struct swapent *sep;
707 int sec;
708 register_t *retval;
709 {
710 struct swappri *spp;
711 struct swapdev *sdp;
712 int count = 0;
713
714 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
715 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
716 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
717 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
718 /*
719 * backwards compatibility for system call.
720 * note that we use 'struct oswapent' as an
721 * overlay into both 'struct swapdev' and
722 * the userland 'struct swapent', as we
723 * want to retain backwards compatibility
724 * with NetBSD 1.3.
725 */
726 sdp->swd_ose.ose_inuse =
727 btodb((u_int64_t)sdp->swd_npginuse <<
728 PAGE_SHIFT);
729 (void)memcpy(sep, &sdp->swd_ose,
730 sizeof(struct oswapent));
731
732 /* now copy out the path if necessary */
733 #if defined(COMPAT_13)
734 if (cmd == SWAP_STATS)
735 #endif
736 (void)memcpy(&sep->se_path, sdp->swd_path,
737 sdp->swd_pathlen);
738
739 count++;
740 #if defined(COMPAT_13)
741 if (cmd == SWAP_OSTATS)
742 sep = (struct swapent *)
743 ((struct oswapent *)sep + 1);
744 else
745 #endif
746 sep++;
747 }
748 }
749
750 *retval = count;
751 return;
752 }
753
754 /*
755 * swap_on: attempt to enable a swapdev for swapping. note that the
756 * swapdev is already on the global list, but disabled (marked
757 * SWF_FAKE).
758 *
759 * => we avoid the start of the disk (to protect disk labels)
760 * => we also avoid the miniroot, if we are swapping to root.
761 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
762 * if needed.
763 */
764 static int
765 swap_on(l, sdp)
766 struct lwp *l;
767 struct swapdev *sdp;
768 {
769 static int count = 0; /* static */
770 struct vnode *vp;
771 struct proc *p = l->l_proc;
772 int error, npages, nblocks, size;
773 long addr;
774 u_long result;
775 struct vattr va;
776 #ifdef NFS
777 extern int (**nfsv2_vnodeop_p)(void *);
778 #endif /* NFS */
779 const struct bdevsw *bdev;
780 dev_t dev;
781 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
782
783 /*
784 * we want to enable swapping on sdp. the swd_vp contains
785 * the vnode we want (locked and ref'd), and the swd_dev
786 * contains the dev_t of the file, if it a block device.
787 */
788
789 vp = sdp->swd_vp;
790 dev = sdp->swd_dev;
791
792 /*
793 * open the swap file (mostly useful for block device files to
794 * let device driver know what is up).
795 *
796 * we skip the open/close for root on swap because the root
797 * has already been opened when root was mounted (mountroot).
798 */
799 if (vp != rootvp) {
800 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, l)))
801 return (error);
802 }
803
804 /* XXX this only works for block devices */
805 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
806
807 /*
808 * we now need to determine the size of the swap area. for
809 * block specials we can call the d_psize function.
810 * for normal files, we must stat [get attrs].
811 *
812 * we put the result in nblks.
813 * for normal files, we also want the filesystem block size
814 * (which we get with statfs).
815 */
816 switch (vp->v_type) {
817 case VBLK:
818 bdev = bdevsw_lookup(dev);
819 if (bdev == NULL || bdev->d_psize == NULL ||
820 (nblocks = (*bdev->d_psize)(dev)) == -1) {
821 error = ENXIO;
822 goto bad;
823 }
824 break;
825
826 case VREG:
827 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, l)))
828 goto bad;
829 nblocks = (int)btodb(va.va_size);
830 if ((error =
831 VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, l)) != 0)
832 goto bad;
833
834 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
835 /*
836 * limit the max # of outstanding I/O requests we issue
837 * at any one time. take it easy on NFS servers.
838 */
839 #ifdef NFS
840 if (vp->v_op == nfsv2_vnodeop_p)
841 sdp->swd_maxactive = 2; /* XXX */
842 else
843 #endif /* NFS */
844 sdp->swd_maxactive = 8; /* XXX */
845 break;
846
847 default:
848 error = ENXIO;
849 goto bad;
850 }
851
852 /*
853 * save nblocks in a safe place and convert to pages.
854 */
855
856 sdp->swd_ose.ose_nblks = nblocks;
857 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
858
859 /*
860 * for block special files, we want to make sure that leave
861 * the disklabel and bootblocks alone, so we arrange to skip
862 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
863 * note that because of this the "size" can be less than the
864 * actual number of blocks on the device.
865 */
866 if (vp->v_type == VBLK) {
867 /* we use pages 1 to (size - 1) [inclusive] */
868 size = npages - 1;
869 addr = 1;
870 } else {
871 /* we use pages 0 to (size - 1) [inclusive] */
872 size = npages;
873 addr = 0;
874 }
875
876 /*
877 * make sure we have enough blocks for a reasonable sized swap
878 * area. we want at least one page.
879 */
880
881 if (size < 1) {
882 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
883 error = EINVAL;
884 goto bad;
885 }
886
887 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
888
889 /*
890 * now we need to allocate an extent to manage this swap device
891 */
892 snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
893 count++);
894
895 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
896 sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
897 0, 0, EX_WAITOK);
898 /* allocate the `saved' region from the extent so it won't be used */
899 if (addr) {
900 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
901 panic("disklabel region");
902 }
903
904 /*
905 * if the vnode we are swapping to is the root vnode
906 * (i.e. we are swapping to the miniroot) then we want
907 * to make sure we don't overwrite it. do a statfs to
908 * find its size and skip over it.
909 */
910 if (vp == rootvp) {
911 struct mount *mp;
912 struct statvfs *sp;
913 int rootblocks, rootpages;
914
915 mp = rootvnode->v_mount;
916 sp = &mp->mnt_stat;
917 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
918 /*
919 * XXX: sp->f_blocks isn't the total number of
920 * blocks in the filesystem, it's the number of
921 * data blocks. so, our rootblocks almost
922 * definitely underestimates the total size
923 * of the filesystem - how badly depends on the
924 * details of the filesystem type. there isn't
925 * an obvious way to deal with this cleanly
926 * and perfectly, so for now we just pad our
927 * rootblocks estimate with an extra 5 percent.
928 */
929 rootblocks += (rootblocks >> 5) +
930 (rootblocks >> 6) +
931 (rootblocks >> 7);
932 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
933 if (rootpages > size)
934 panic("swap_on: miniroot larger than swap?");
935
936 if (extent_alloc_region(sdp->swd_ex, addr,
937 rootpages, EX_WAITOK))
938 panic("swap_on: unable to preserve miniroot");
939
940 size -= rootpages;
941 printf("Preserved %d pages of miniroot ", rootpages);
942 printf("leaving %d pages of swap\n", size);
943 }
944
945 /*
946 * try to add anons to reflect the new swap space.
947 */
948
949 error = uvm_anon_add(size);
950 if (error) {
951 goto bad;
952 }
953
954 /*
955 * add a ref to vp to reflect usage as a swap device.
956 */
957 vref(vp);
958
959 /*
960 * now add the new swapdev to the drum and enable.
961 */
962 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
963 EX_WAITOK, &result))
964 panic("swapdrum_add");
965
966 sdp->swd_drumoffset = (int)result;
967 sdp->swd_drumsize = npages;
968 sdp->swd_npages = size;
969 simple_lock(&uvm.swap_data_lock);
970 sdp->swd_flags &= ~SWF_FAKE; /* going live */
971 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
972 uvmexp.swpages += size;
973 uvmexp.swpgavail += size;
974 simple_unlock(&uvm.swap_data_lock);
975 return (0);
976
977 /*
978 * failure: clean up and return error.
979 */
980
981 bad:
982 if (sdp->swd_ex) {
983 extent_destroy(sdp->swd_ex);
984 }
985 if (vp != rootvp) {
986 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, l);
987 }
988 return (error);
989 }
990
991 /*
992 * swap_off: stop swapping on swapdev
993 *
994 * => swap data should be locked, we will unlock.
995 */
996 static int
997 swap_off(l, sdp)
998 struct lwp *l;
999 struct swapdev *sdp;
1000 {
1001 struct proc *p = l->l_proc;
1002 int npages = sdp->swd_npages;
1003
1004 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1005 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1006
1007 /* disable the swap area being removed */
1008 sdp->swd_flags &= ~SWF_ENABLE;
1009 uvmexp.swpgavail -= npages;
1010 simple_unlock(&uvm.swap_data_lock);
1011
1012 /*
1013 * the idea is to find all the pages that are paged out to this
1014 * device, and page them all in. in uvm, swap-backed pageable
1015 * memory can take two forms: aobjs and anons. call the
1016 * swapoff hook for each subsystem to bring in pages.
1017 */
1018
1019 if (uao_swap_off(sdp->swd_drumoffset,
1020 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1021 anon_swap_off(sdp->swd_drumoffset,
1022 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1023
1024 simple_lock(&uvm.swap_data_lock);
1025 sdp->swd_flags |= SWF_ENABLE;
1026 uvmexp.swpgavail += npages;
1027 simple_unlock(&uvm.swap_data_lock);
1028 return ENOMEM;
1029 }
1030 KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
1031
1032 /*
1033 * done with the vnode.
1034 * drop our ref on the vnode before calling VOP_CLOSE()
1035 * so that spec_close() can tell if this is the last close.
1036 */
1037 vrele(sdp->swd_vp);
1038 if (sdp->swd_vp != rootvp) {
1039 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, l);
1040 }
1041
1042 /* remove anons from the system */
1043 uvm_anon_remove(npages);
1044
1045 simple_lock(&uvm.swap_data_lock);
1046 uvmexp.swpages -= npages;
1047 uvmexp.swpginuse -= sdp->swd_npgbad;
1048
1049 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1050 panic("swap_off: swapdev not in list");
1051 swaplist_trim();
1052 simple_unlock(&uvm.swap_data_lock);
1053
1054 /*
1055 * free all resources!
1056 */
1057 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1058 EX_WAITOK);
1059 extent_destroy(sdp->swd_ex);
1060 bufq_free(&sdp->swd_tab);
1061 free(sdp, M_VMSWAP);
1062 return (0);
1063 }
1064
1065 /*
1066 * /dev/drum interface and i/o functions
1067 */
1068
1069 /*
1070 * swread: the read function for the drum (just a call to physio)
1071 */
1072 /*ARGSUSED*/
1073 int
1074 swread(dev, uio, ioflag)
1075 dev_t dev;
1076 struct uio *uio;
1077 int ioflag;
1078 {
1079 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1080
1081 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1082 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1083 }
1084
1085 /*
1086 * swwrite: the write function for the drum (just a call to physio)
1087 */
1088 /*ARGSUSED*/
1089 int
1090 swwrite(dev, uio, ioflag)
1091 dev_t dev;
1092 struct uio *uio;
1093 int ioflag;
1094 {
1095 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1096
1097 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1098 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1099 }
1100
1101 /*
1102 * swstrategy: perform I/O on the drum
1103 *
1104 * => we must map the i/o request from the drum to the correct swapdev.
1105 */
1106 void
1107 swstrategy(bp)
1108 struct buf *bp;
1109 {
1110 struct swapdev *sdp;
1111 struct vnode *vp;
1112 int s, pageno, bn;
1113 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1114
1115 /*
1116 * convert block number to swapdev. note that swapdev can't
1117 * be yanked out from under us because we are holding resources
1118 * in it (i.e. the blocks we are doing I/O on).
1119 */
1120 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1121 simple_lock(&uvm.swap_data_lock);
1122 sdp = swapdrum_getsdp(pageno);
1123 simple_unlock(&uvm.swap_data_lock);
1124 if (sdp == NULL) {
1125 bp->b_error = EINVAL;
1126 bp->b_flags |= B_ERROR;
1127 biodone(bp);
1128 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1129 return;
1130 }
1131
1132 /*
1133 * convert drum page number to block number on this swapdev.
1134 */
1135
1136 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1137 bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1138
1139 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1140 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1141 sdp->swd_drumoffset, bn, bp->b_bcount);
1142
1143 /*
1144 * for block devices we finish up here.
1145 * for regular files we have to do more work which we delegate
1146 * to sw_reg_strategy().
1147 */
1148
1149 switch (sdp->swd_vp->v_type) {
1150 default:
1151 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1152
1153 case VBLK:
1154
1155 /*
1156 * must convert "bp" from an I/O on /dev/drum to an I/O
1157 * on the swapdev (sdp).
1158 */
1159 s = splbio();
1160 bp->b_blkno = bn; /* swapdev block number */
1161 vp = sdp->swd_vp; /* swapdev vnode pointer */
1162 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1163
1164 /*
1165 * if we are doing a write, we have to redirect the i/o on
1166 * drum's v_numoutput counter to the swapdevs.
1167 */
1168 if ((bp->b_flags & B_READ) == 0) {
1169 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1170 V_INCR_NUMOUTPUT(vp); /* put it on swapdev */
1171 }
1172
1173 /*
1174 * finally plug in swapdev vnode and start I/O
1175 */
1176 bp->b_vp = vp;
1177 splx(s);
1178 VOP_STRATEGY(vp, bp);
1179 return;
1180
1181 case VREG:
1182 /*
1183 * delegate to sw_reg_strategy function.
1184 */
1185 sw_reg_strategy(sdp, bp, bn);
1186 return;
1187 }
1188 /* NOTREACHED */
1189 }
1190
1191 /*
1192 * sw_reg_strategy: handle swap i/o to regular files
1193 */
1194 static void
1195 sw_reg_strategy(sdp, bp, bn)
1196 struct swapdev *sdp;
1197 struct buf *bp;
1198 int bn;
1199 {
1200 struct vnode *vp;
1201 struct vndxfer *vnx;
1202 daddr_t nbn;
1203 caddr_t addr;
1204 off_t byteoff;
1205 int s, off, nra, error, sz, resid;
1206 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1207
1208 /*
1209 * allocate a vndxfer head for this transfer and point it to
1210 * our buffer.
1211 */
1212 getvndxfer(vnx);
1213 vnx->vx_flags = VX_BUSY;
1214 vnx->vx_error = 0;
1215 vnx->vx_pending = 0;
1216 vnx->vx_bp = bp;
1217 vnx->vx_sdp = sdp;
1218
1219 /*
1220 * setup for main loop where we read filesystem blocks into
1221 * our buffer.
1222 */
1223 error = 0;
1224 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1225 addr = bp->b_data; /* current position in buffer */
1226 byteoff = dbtob((u_int64_t)bn);
1227
1228 for (resid = bp->b_resid; resid; resid -= sz) {
1229 struct vndbuf *nbp;
1230
1231 /*
1232 * translate byteoffset into block number. return values:
1233 * vp = vnode of underlying device
1234 * nbn = new block number (on underlying vnode dev)
1235 * nra = num blocks we can read-ahead (excludes requested
1236 * block)
1237 */
1238 nra = 0;
1239 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1240 &vp, &nbn, &nra);
1241
1242 if (error == 0 && nbn == (daddr_t)-1) {
1243 /*
1244 * this used to just set error, but that doesn't
1245 * do the right thing. Instead, it causes random
1246 * memory errors. The panic() should remain until
1247 * this condition doesn't destabilize the system.
1248 */
1249 #if 1
1250 panic("sw_reg_strategy: swap to sparse file");
1251 #else
1252 error = EIO; /* failure */
1253 #endif
1254 }
1255
1256 /*
1257 * punt if there was an error or a hole in the file.
1258 * we must wait for any i/o ops we have already started
1259 * to finish before returning.
1260 *
1261 * XXX we could deal with holes here but it would be
1262 * a hassle (in the write case).
1263 */
1264 if (error) {
1265 s = splbio();
1266 vnx->vx_error = error; /* pass error up */
1267 goto out;
1268 }
1269
1270 /*
1271 * compute the size ("sz") of this transfer (in bytes).
1272 */
1273 off = byteoff % sdp->swd_bsize;
1274 sz = (1 + nra) * sdp->swd_bsize - off;
1275 if (sz > resid)
1276 sz = resid;
1277
1278 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1279 "vp %p/%p offset 0x%x/0x%x",
1280 sdp->swd_vp, vp, byteoff, nbn);
1281
1282 /*
1283 * now get a buf structure. note that the vb_buf is
1284 * at the front of the nbp structure so that you can
1285 * cast pointers between the two structure easily.
1286 */
1287 getvndbuf(nbp);
1288 BUF_INIT(&nbp->vb_buf);
1289 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1290 nbp->vb_buf.b_bcount = sz;
1291 nbp->vb_buf.b_bufsize = sz;
1292 nbp->vb_buf.b_error = 0;
1293 nbp->vb_buf.b_data = addr;
1294 nbp->vb_buf.b_lblkno = 0;
1295 nbp->vb_buf.b_blkno = nbn + btodb(off);
1296 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1297 nbp->vb_buf.b_iodone = sw_reg_iodone;
1298 nbp->vb_buf.b_vp = vp;
1299 if (vp->v_type == VBLK) {
1300 nbp->vb_buf.b_dev = vp->v_rdev;
1301 }
1302
1303 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1304
1305 /*
1306 * Just sort by block number
1307 */
1308 s = splbio();
1309 if (vnx->vx_error != 0) {
1310 putvndbuf(nbp);
1311 goto out;
1312 }
1313 vnx->vx_pending++;
1314
1315 /* sort it in and start I/O if we are not over our limit */
1316 BUFQ_PUT(&sdp->swd_tab, &nbp->vb_buf);
1317 sw_reg_start(sdp);
1318 splx(s);
1319
1320 /*
1321 * advance to the next I/O
1322 */
1323 byteoff += sz;
1324 addr += sz;
1325 }
1326
1327 s = splbio();
1328
1329 out: /* Arrive here at splbio */
1330 vnx->vx_flags &= ~VX_BUSY;
1331 if (vnx->vx_pending == 0) {
1332 if (vnx->vx_error != 0) {
1333 bp->b_error = vnx->vx_error;
1334 bp->b_flags |= B_ERROR;
1335 }
1336 putvndxfer(vnx);
1337 biodone(bp);
1338 }
1339 splx(s);
1340 }
1341
1342 /*
1343 * sw_reg_start: start an I/O request on the requested swapdev
1344 *
1345 * => reqs are sorted by b_rawblkno (above)
1346 */
1347 static void
1348 sw_reg_start(sdp)
1349 struct swapdev *sdp;
1350 {
1351 struct buf *bp;
1352 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1353
1354 /* recursion control */
1355 if ((sdp->swd_flags & SWF_BUSY) != 0)
1356 return;
1357
1358 sdp->swd_flags |= SWF_BUSY;
1359
1360 while (sdp->swd_active < sdp->swd_maxactive) {
1361 bp = BUFQ_GET(&sdp->swd_tab);
1362 if (bp == NULL)
1363 break;
1364 sdp->swd_active++;
1365
1366 UVMHIST_LOG(pdhist,
1367 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1368 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1369 if ((bp->b_flags & B_READ) == 0)
1370 V_INCR_NUMOUTPUT(bp->b_vp);
1371
1372 VOP_STRATEGY(bp->b_vp, bp);
1373 }
1374 sdp->swd_flags &= ~SWF_BUSY;
1375 }
1376
1377 /*
1378 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1379 *
1380 * => note that we can recover the vndbuf struct by casting the buf ptr
1381 */
1382 static void
1383 sw_reg_iodone(bp)
1384 struct buf *bp;
1385 {
1386 struct vndbuf *vbp = (struct vndbuf *) bp;
1387 struct vndxfer *vnx = vbp->vb_xfer;
1388 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1389 struct swapdev *sdp = vnx->vx_sdp;
1390 int s, resid, error;
1391 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1392
1393 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1394 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1395 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1396 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1397
1398 /*
1399 * protect vbp at splbio and update.
1400 */
1401
1402 s = splbio();
1403 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1404 pbp->b_resid -= resid;
1405 vnx->vx_pending--;
1406
1407 if (vbp->vb_buf.b_flags & B_ERROR) {
1408 /* pass error upward */
1409 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1410 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1411 vnx->vx_error = error;
1412 }
1413
1414 /*
1415 * kill vbp structure
1416 */
1417 putvndbuf(vbp);
1418
1419 /*
1420 * wrap up this transaction if it has run to completion or, in
1421 * case of an error, when all auxiliary buffers have returned.
1422 */
1423 if (vnx->vx_error != 0) {
1424 /* pass error upward */
1425 pbp->b_flags |= B_ERROR;
1426 pbp->b_error = vnx->vx_error;
1427 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1428 putvndxfer(vnx);
1429 biodone(pbp);
1430 }
1431 } else if (pbp->b_resid == 0) {
1432 KASSERT(vnx->vx_pending == 0);
1433 if ((vnx->vx_flags & VX_BUSY) == 0) {
1434 UVMHIST_LOG(pdhist, " iodone error=%d !",
1435 pbp, vnx->vx_error, 0, 0);
1436 putvndxfer(vnx);
1437 biodone(pbp);
1438 }
1439 }
1440
1441 /*
1442 * done! start next swapdev I/O if one is pending
1443 */
1444 sdp->swd_active--;
1445 sw_reg_start(sdp);
1446 splx(s);
1447 }
1448
1449
1450 /*
1451 * uvm_swap_alloc: allocate space on swap
1452 *
1453 * => allocation is done "round robin" down the priority list, as we
1454 * allocate in a priority we "rotate" the circle queue.
1455 * => space can be freed with uvm_swap_free
1456 * => we return the page slot number in /dev/drum (0 == invalid slot)
1457 * => we lock uvm.swap_data_lock
1458 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1459 */
1460 int
1461 uvm_swap_alloc(nslots, lessok)
1462 int *nslots; /* IN/OUT */
1463 boolean_t lessok;
1464 {
1465 struct swapdev *sdp;
1466 struct swappri *spp;
1467 u_long result;
1468 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1469
1470 /*
1471 * no swap devices configured yet? definite failure.
1472 */
1473 if (uvmexp.nswapdev < 1)
1474 return 0;
1475
1476 /*
1477 * lock data lock, convert slots into blocks, and enter loop
1478 */
1479 simple_lock(&uvm.swap_data_lock);
1480
1481 ReTry: /* XXXMRG */
1482 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1483 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1484 /* if it's not enabled, then we can't swap from it */
1485 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1486 continue;
1487 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1488 continue;
1489 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1490 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1491 &result) != 0) {
1492 continue;
1493 }
1494
1495 /*
1496 * successful allocation! now rotate the circleq.
1497 */
1498 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1499 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1500 sdp->swd_npginuse += *nslots;
1501 uvmexp.swpginuse += *nslots;
1502 simple_unlock(&uvm.swap_data_lock);
1503 /* done! return drum slot number */
1504 UVMHIST_LOG(pdhist,
1505 "success! returning %d slots starting at %d",
1506 *nslots, result + sdp->swd_drumoffset, 0, 0);
1507 return (result + sdp->swd_drumoffset);
1508 }
1509 }
1510
1511 /* XXXMRG: BEGIN HACK */
1512 if (*nslots > 1 && lessok) {
1513 *nslots = 1;
1514 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1515 }
1516 /* XXXMRG: END HACK */
1517
1518 simple_unlock(&uvm.swap_data_lock);
1519 return 0;
1520 }
1521
1522 boolean_t
1523 uvm_swapisfull(void)
1524 {
1525 boolean_t rv;
1526
1527 simple_lock(&uvm.swap_data_lock);
1528 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1529 rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1530 simple_unlock(&uvm.swap_data_lock);
1531
1532 return (rv);
1533 }
1534
1535 /*
1536 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1537 *
1538 * => we lock uvm.swap_data_lock
1539 */
1540 void
1541 uvm_swap_markbad(startslot, nslots)
1542 int startslot;
1543 int nslots;
1544 {
1545 struct swapdev *sdp;
1546 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1547
1548 simple_lock(&uvm.swap_data_lock);
1549 sdp = swapdrum_getsdp(startslot);
1550 KASSERT(sdp != NULL);
1551
1552 /*
1553 * we just keep track of how many pages have been marked bad
1554 * in this device, to make everything add up in swap_off().
1555 * we assume here that the range of slots will all be within
1556 * one swap device.
1557 */
1558
1559 KASSERT(uvmexp.swpgonly >= nslots);
1560 uvmexp.swpgonly -= nslots;
1561 sdp->swd_npgbad += nslots;
1562 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1563 simple_unlock(&uvm.swap_data_lock);
1564 }
1565
1566 /*
1567 * uvm_swap_free: free swap slots
1568 *
1569 * => this can be all or part of an allocation made by uvm_swap_alloc
1570 * => we lock uvm.swap_data_lock
1571 */
1572 void
1573 uvm_swap_free(startslot, nslots)
1574 int startslot;
1575 int nslots;
1576 {
1577 struct swapdev *sdp;
1578 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1579
1580 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1581 startslot, 0, 0);
1582
1583 /*
1584 * ignore attempts to free the "bad" slot.
1585 */
1586
1587 if (startslot == SWSLOT_BAD) {
1588 return;
1589 }
1590
1591 /*
1592 * convert drum slot offset back to sdp, free the blocks
1593 * in the extent, and return. must hold pri lock to do
1594 * lookup and access the extent.
1595 */
1596
1597 simple_lock(&uvm.swap_data_lock);
1598 sdp = swapdrum_getsdp(startslot);
1599 KASSERT(uvmexp.nswapdev >= 1);
1600 KASSERT(sdp != NULL);
1601 KASSERT(sdp->swd_npginuse >= nslots);
1602 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1603 EX_MALLOCOK|EX_NOWAIT) != 0) {
1604 printf("warning: resource shortage: %d pages of swap lost\n",
1605 nslots);
1606 }
1607 sdp->swd_npginuse -= nslots;
1608 uvmexp.swpginuse -= nslots;
1609 simple_unlock(&uvm.swap_data_lock);
1610 }
1611
1612 /*
1613 * uvm_swap_put: put any number of pages into a contig place on swap
1614 *
1615 * => can be sync or async
1616 */
1617
1618 int
1619 uvm_swap_put(swslot, ppsp, npages, flags)
1620 int swslot;
1621 struct vm_page **ppsp;
1622 int npages;
1623 int flags;
1624 {
1625 int error;
1626
1627 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1628 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1629 return error;
1630 }
1631
1632 /*
1633 * uvm_swap_get: get a single page from swap
1634 *
1635 * => usually a sync op (from fault)
1636 */
1637
1638 int
1639 uvm_swap_get(page, swslot, flags)
1640 struct vm_page *page;
1641 int swslot, flags;
1642 {
1643 int error;
1644
1645 uvmexp.nswget++;
1646 KASSERT(flags & PGO_SYNCIO);
1647 if (swslot == SWSLOT_BAD) {
1648 return EIO;
1649 }
1650
1651 error = uvm_swap_io(&page, swslot, 1, B_READ |
1652 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1653 if (error == 0) {
1654
1655 /*
1656 * this page is no longer only in swap.
1657 */
1658
1659 simple_lock(&uvm.swap_data_lock);
1660 KASSERT(uvmexp.swpgonly > 0);
1661 uvmexp.swpgonly--;
1662 simple_unlock(&uvm.swap_data_lock);
1663 }
1664 return error;
1665 }
1666
1667 /*
1668 * uvm_swap_io: do an i/o operation to swap
1669 */
1670
1671 static int
1672 uvm_swap_io(pps, startslot, npages, flags)
1673 struct vm_page **pps;
1674 int startslot, npages, flags;
1675 {
1676 daddr_t startblk;
1677 struct buf *bp;
1678 vaddr_t kva;
1679 int error, s, mapinflags;
1680 boolean_t write, async;
1681 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1682
1683 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1684 startslot, npages, flags, 0);
1685
1686 write = (flags & B_READ) == 0;
1687 async = (flags & B_ASYNC) != 0;
1688
1689 /*
1690 * convert starting drum slot to block number
1691 */
1692
1693 startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1694
1695 /*
1696 * first, map the pages into the kernel.
1697 */
1698
1699 mapinflags = !write ?
1700 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1701 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1702 kva = uvm_pagermapin(pps, npages, mapinflags);
1703
1704 /*
1705 * now allocate a buf for the i/o.
1706 */
1707
1708 s = splbio();
1709 bp = pool_get(&bufpool, PR_WAITOK);
1710 splx(s);
1711
1712 /*
1713 * fill in the bp/sbp. we currently route our i/o through
1714 * /dev/drum's vnode [swapdev_vp].
1715 */
1716
1717 BUF_INIT(bp);
1718 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1719 bp->b_proc = &proc0; /* XXX */
1720 bp->b_vnbufs.le_next = NOLIST;
1721 bp->b_data = (caddr_t)kva;
1722 bp->b_blkno = startblk;
1723 bp->b_vp = swapdev_vp;
1724 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1725
1726 /*
1727 * bump v_numoutput (counter of number of active outputs).
1728 */
1729
1730 if (write) {
1731 s = splbio();
1732 V_INCR_NUMOUTPUT(swapdev_vp);
1733 splx(s);
1734 }
1735
1736 /*
1737 * for async ops we must set up the iodone handler.
1738 */
1739
1740 if (async) {
1741 bp->b_flags |= B_CALL;
1742 bp->b_iodone = uvm_aio_biodone;
1743 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1744 if (curproc == uvm.pagedaemon_proc)
1745 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1746 else
1747 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1748 } else {
1749 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1750 }
1751 UVMHIST_LOG(pdhist,
1752 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1753 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1754
1755 /*
1756 * now we start the I/O, and if async, return.
1757 */
1758
1759 VOP_STRATEGY(swapdev_vp, bp);
1760 if (async)
1761 return 0;
1762
1763 /*
1764 * must be sync i/o. wait for it to finish
1765 */
1766
1767 error = biowait(bp);
1768
1769 /*
1770 * kill the pager mapping
1771 */
1772
1773 uvm_pagermapout(kva, npages);
1774
1775 /*
1776 * now dispose of the buf and we're done.
1777 */
1778
1779 s = splbio();
1780 if (write)
1781 vwakeup(bp);
1782 pool_put(&bufpool, bp);
1783 splx(s);
1784 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1785 return (error);
1786 }
1787