uvm_swap.c revision 1.80.2.6 1 /* $NetBSD: uvm_swap.c,v 1.80.2.6 2004/11/02 07:53:37 skrll Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.80.2.6 2004/11/02 07:53:37 skrll Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/bufq.h>
46 #include <sys/conf.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/extent.h>
56 #include <sys/mount.h>
57 #include <sys/pool.h>
58 #include <sys/sa.h>
59 #include <sys/syscallargs.h>
60 #include <sys/swap.h>
61
62 #include <uvm/uvm.h>
63
64 #include <miscfs/specfs/specdev.h>
65
66 /*
67 * uvm_swap.c: manage configuration and i/o to swap space.
68 */
69
70 /*
71 * swap space is managed in the following way:
72 *
73 * each swap partition or file is described by a "swapdev" structure.
74 * each "swapdev" structure contains a "swapent" structure which contains
75 * information that is passed up to the user (via system calls).
76 *
77 * each swap partition is assigned a "priority" (int) which controls
78 * swap parition usage.
79 *
80 * the system maintains a global data structure describing all swap
81 * partitions/files. there is a sorted LIST of "swappri" structures
82 * which describe "swapdev"'s at that priority. this LIST is headed
83 * by the "swap_priority" global var. each "swappri" contains a
84 * CIRCLEQ of "swapdev" structures at that priority.
85 *
86 * locking:
87 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
88 * system call and prevents the swap priority list from changing
89 * while we are in the middle of a system call (e.g. SWAP_STATS).
90 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
91 * structures including the priority list, the swapdev structures,
92 * and the swapmap extent.
93 *
94 * each swap device has the following info:
95 * - swap device in use (could be disabled, preventing future use)
96 * - swap enabled (allows new allocations on swap)
97 * - map info in /dev/drum
98 * - vnode pointer
99 * for swap files only:
100 * - block size
101 * - max byte count in buffer
102 * - buffer
103 *
104 * userland controls and configures swap with the swapctl(2) system call.
105 * the sys_swapctl performs the following operations:
106 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
107 * [2] SWAP_STATS: given a pointer to an array of swapent structures
108 * (passed in via "arg") of a size passed in via "misc" ... we load
109 * the current swap config into the array. The actual work is done
110 * in the uvm_swap_stats(9) function.
111 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
112 * priority in "misc", start swapping on it.
113 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
114 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
115 * "misc")
116 */
117
118 /*
119 * swapdev: describes a single swap partition/file
120 *
121 * note the following should be true:
122 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
123 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
124 */
125 struct swapdev {
126 struct oswapent swd_ose;
127 #define swd_dev swd_ose.ose_dev /* device id */
128 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
129 #define swd_priority swd_ose.ose_priority /* our priority */
130 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
131 char *swd_path; /* saved pathname of device */
132 int swd_pathlen; /* length of pathname */
133 int swd_npages; /* #pages we can use */
134 int swd_npginuse; /* #pages in use */
135 int swd_npgbad; /* #pages bad */
136 int swd_drumoffset; /* page0 offset in drum */
137 int swd_drumsize; /* #pages in drum */
138 struct extent *swd_ex; /* extent for this swapdev */
139 char swd_exname[12]; /* name of extent above */
140 struct vnode *swd_vp; /* backing vnode */
141 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
142
143 int swd_bsize; /* blocksize (bytes) */
144 int swd_maxactive; /* max active i/o reqs */
145 struct bufq_state swd_tab; /* buffer list */
146 int swd_active; /* number of active buffers */
147 };
148
149 /*
150 * swap device priority entry; the list is kept sorted on `spi_priority'.
151 */
152 struct swappri {
153 int spi_priority; /* priority */
154 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
155 /* circleq of swapdevs at this priority */
156 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
157 };
158
159 /*
160 * The following two structures are used to keep track of data transfers
161 * on swap devices associated with regular files.
162 * NOTE: this code is more or less a copy of vnd.c; we use the same
163 * structure names here to ease porting..
164 */
165 struct vndxfer {
166 struct buf *vx_bp; /* Pointer to parent buffer */
167 struct swapdev *vx_sdp;
168 int vx_error;
169 int vx_pending; /* # of pending aux buffers */
170 int vx_flags;
171 #define VX_BUSY 1
172 #define VX_DEAD 2
173 };
174
175 struct vndbuf {
176 struct buf vb_buf;
177 struct vndxfer *vb_xfer;
178 };
179
180
181 /*
182 * We keep a of pool vndbuf's and vndxfer structures.
183 */
184 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL);
185 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL);
186
187 #define getvndxfer(vnx) do { \
188 int s = splbio(); \
189 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \
190 splx(s); \
191 } while (/*CONSTCOND*/ 0)
192
193 #define putvndxfer(vnx) { \
194 pool_put(&vndxfer_pool, (void *)(vnx)); \
195 }
196
197 #define getvndbuf(vbp) do { \
198 int s = splbio(); \
199 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \
200 splx(s); \
201 } while (/*CONSTCOND*/ 0)
202
203 #define putvndbuf(vbp) { \
204 pool_put(&vndbuf_pool, (void *)(vbp)); \
205 }
206
207 /*
208 * local variables
209 */
210 static struct extent *swapmap; /* controls the mapping of /dev/drum */
211
212 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
213
214 /* list of all active swap devices [by priority] */
215 LIST_HEAD(swap_priority, swappri);
216 static struct swap_priority swap_priority;
217
218 /* locks */
219 struct lock swap_syscall_lock;
220
221 /*
222 * prototypes
223 */
224 static struct swapdev *swapdrum_getsdp(int);
225
226 static struct swapdev *swaplist_find(struct vnode *, int);
227 static void swaplist_insert(struct swapdev *,
228 struct swappri *, int);
229 static void swaplist_trim(void);
230
231 static int swap_on(struct lwp *, struct swapdev *);
232 static int swap_off(struct lwp *, struct swapdev *);
233
234 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
235 static void sw_reg_iodone(struct buf *);
236 static void sw_reg_start(struct swapdev *);
237
238 static int uvm_swap_io(struct vm_page **, int, int, int);
239
240 dev_type_read(swread);
241 dev_type_write(swwrite);
242 dev_type_strategy(swstrategy);
243
244 const struct bdevsw swap_bdevsw = {
245 noopen, noclose, swstrategy, noioctl, nodump, nosize,
246 };
247
248 const struct cdevsw swap_cdevsw = {
249 nullopen, nullclose, swread, swwrite, noioctl,
250 nostop, notty, nopoll, nommap, nokqfilter
251 };
252
253 /*
254 * uvm_swap_init: init the swap system data structures and locks
255 *
256 * => called at boot time from init_main.c after the filesystems
257 * are brought up (which happens after uvm_init())
258 */
259 void
260 uvm_swap_init()
261 {
262 UVMHIST_FUNC("uvm_swap_init");
263
264 UVMHIST_CALLED(pdhist);
265 /*
266 * first, init the swap list, its counter, and its lock.
267 * then get a handle on the vnode for /dev/drum by using
268 * the its dev_t number ("swapdev", from MD conf.c).
269 */
270
271 LIST_INIT(&swap_priority);
272 uvmexp.nswapdev = 0;
273 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
274 simple_lock_init(&uvm.swap_data_lock);
275
276 if (bdevvp(swapdev, &swapdev_vp))
277 panic("uvm_swap_init: can't get vnode for swap device");
278
279 /*
280 * create swap block resource map to map /dev/drum. the range
281 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
282 * that block 0 is reserved (used to indicate an allocation
283 * failure, or no allocation).
284 */
285 swapmap = extent_create("swapmap", 1, INT_MAX,
286 M_VMSWAP, 0, 0, EX_NOWAIT);
287 if (swapmap == 0)
288 panic("uvm_swap_init: extent_create failed");
289
290 /*
291 * done!
292 */
293 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
294 }
295
296 /*
297 * swaplist functions: functions that operate on the list of swap
298 * devices on the system.
299 */
300
301 /*
302 * swaplist_insert: insert swap device "sdp" into the global list
303 *
304 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
305 * => caller must provide a newly malloc'd swappri structure (we will
306 * FREE it if we don't need it... this it to prevent malloc blocking
307 * here while adding swap)
308 */
309 static void
310 swaplist_insert(sdp, newspp, priority)
311 struct swapdev *sdp;
312 struct swappri *newspp;
313 int priority;
314 {
315 struct swappri *spp, *pspp;
316 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
317
318 /*
319 * find entry at or after which to insert the new device.
320 */
321 pspp = NULL;
322 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
323 if (priority <= spp->spi_priority)
324 break;
325 pspp = spp;
326 }
327
328 /*
329 * new priority?
330 */
331 if (spp == NULL || spp->spi_priority != priority) {
332 spp = newspp; /* use newspp! */
333 UVMHIST_LOG(pdhist, "created new swappri = %d",
334 priority, 0, 0, 0);
335
336 spp->spi_priority = priority;
337 CIRCLEQ_INIT(&spp->spi_swapdev);
338
339 if (pspp)
340 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
341 else
342 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
343 } else {
344 /* we don't need a new priority structure, free it */
345 FREE(newspp, M_VMSWAP);
346 }
347
348 /*
349 * priority found (or created). now insert on the priority's
350 * circleq list and bump the total number of swapdevs.
351 */
352 sdp->swd_priority = priority;
353 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
354 uvmexp.nswapdev++;
355 }
356
357 /*
358 * swaplist_find: find and optionally remove a swap device from the
359 * global list.
360 *
361 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
362 * => we return the swapdev we found (and removed)
363 */
364 static struct swapdev *
365 swaplist_find(vp, remove)
366 struct vnode *vp;
367 boolean_t remove;
368 {
369 struct swapdev *sdp;
370 struct swappri *spp;
371
372 /*
373 * search the lists for the requested vp
374 */
375
376 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
377 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
378 if (sdp->swd_vp == vp) {
379 if (remove) {
380 CIRCLEQ_REMOVE(&spp->spi_swapdev,
381 sdp, swd_next);
382 uvmexp.nswapdev--;
383 }
384 return(sdp);
385 }
386 }
387 }
388 return (NULL);
389 }
390
391
392 /*
393 * swaplist_trim: scan priority list for empty priority entries and kill
394 * them.
395 *
396 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
397 */
398 static void
399 swaplist_trim()
400 {
401 struct swappri *spp, *nextspp;
402
403 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
404 nextspp = LIST_NEXT(spp, spi_swappri);
405 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
406 (void *)&spp->spi_swapdev)
407 continue;
408 LIST_REMOVE(spp, spi_swappri);
409 free(spp, M_VMSWAP);
410 }
411 }
412
413 /*
414 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
415 * to the "swapdev" that maps that section of the drum.
416 *
417 * => each swapdev takes one big contig chunk of the drum
418 * => caller must hold uvm.swap_data_lock
419 */
420 static struct swapdev *
421 swapdrum_getsdp(pgno)
422 int pgno;
423 {
424 struct swapdev *sdp;
425 struct swappri *spp;
426
427 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
428 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
429 if (sdp->swd_flags & SWF_FAKE)
430 continue;
431 if (pgno >= sdp->swd_drumoffset &&
432 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
433 return sdp;
434 }
435 }
436 }
437 return NULL;
438 }
439
440
441 /*
442 * sys_swapctl: main entry point for swapctl(2) system call
443 * [with two helper functions: swap_on and swap_off]
444 */
445 int
446 sys_swapctl(l, v, retval)
447 struct lwp *l;
448 void *v;
449 register_t *retval;
450 {
451 struct sys_swapctl_args /* {
452 syscallarg(int) cmd;
453 syscallarg(void *) arg;
454 syscallarg(int) misc;
455 } */ *uap = (struct sys_swapctl_args *)v;
456 struct proc *p = l->l_proc;
457 struct vnode *vp;
458 struct nameidata nd;
459 struct swappri *spp;
460 struct swapdev *sdp;
461 struct swapent *sep;
462 char userpath[PATH_MAX + 1];
463 size_t len;
464 int error, misc;
465 int priority;
466 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
467
468 misc = SCARG(uap, misc);
469
470 /*
471 * ensure serialized syscall access by grabbing the swap_syscall_lock
472 */
473 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
474
475 /*
476 * we handle the non-priv NSWAP and STATS request first.
477 *
478 * SWAP_NSWAP: return number of config'd swap devices
479 * [can also be obtained with uvmexp sysctl]
480 */
481 if (SCARG(uap, cmd) == SWAP_NSWAP) {
482 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
483 0, 0, 0);
484 *retval = uvmexp.nswapdev;
485 error = 0;
486 goto out;
487 }
488
489 /*
490 * SWAP_STATS: get stats on current # of configured swap devs
491 *
492 * note that the swap_priority list can't change as long
493 * as we are holding the swap_syscall_lock. we don't want
494 * to grab the uvm.swap_data_lock because we may fault&sleep during
495 * copyout() and we don't want to be holding that lock then!
496 */
497 if (SCARG(uap, cmd) == SWAP_STATS
498 #if defined(COMPAT_13)
499 || SCARG(uap, cmd) == SWAP_OSTATS
500 #endif
501 ) {
502 if ((size_t)misc > (size_t)uvmexp.nswapdev)
503 misc = uvmexp.nswapdev;
504 #if defined(COMPAT_13)
505 if (SCARG(uap, cmd) == SWAP_OSTATS)
506 len = sizeof(struct oswapent) * misc;
507 else
508 #endif
509 len = sizeof(struct swapent) * misc;
510 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
511
512 uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
513 error = copyout(sep, (void *)SCARG(uap, arg), len);
514
515 free(sep, M_TEMP);
516 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
517 goto out;
518 }
519 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
520 dev_t *devp = (dev_t *)SCARG(uap, arg);
521
522 error = copyout(&dumpdev, devp, sizeof(dumpdev));
523 goto out;
524 }
525
526 /*
527 * all other requests require superuser privs. verify.
528 */
529 if ((error = suser(p->p_ucred, &p->p_acflag)))
530 goto out;
531
532 /*
533 * at this point we expect a path name in arg. we will
534 * use namei() to gain a vnode reference (vref), and lock
535 * the vnode (VOP_LOCK).
536 *
537 * XXX: a NULL arg means use the root vnode pointer (e.g. for
538 * miniroot)
539 */
540 if (SCARG(uap, arg) == NULL) {
541 vp = rootvp; /* miniroot */
542 if (vget(vp, LK_EXCLUSIVE)) {
543 error = EBUSY;
544 goto out;
545 }
546 if (SCARG(uap, cmd) == SWAP_ON &&
547 copystr("miniroot", userpath, sizeof userpath, &len))
548 panic("swapctl: miniroot copy failed");
549 } else {
550 int space;
551 char *where;
552
553 if (SCARG(uap, cmd) == SWAP_ON) {
554 if ((error = copyinstr(SCARG(uap, arg), userpath,
555 sizeof userpath, &len)))
556 goto out;
557 space = UIO_SYSSPACE;
558 where = userpath;
559 } else {
560 space = UIO_USERSPACE;
561 where = (char *)SCARG(uap, arg);
562 }
563 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, l);
564 if ((error = namei(&nd)))
565 goto out;
566 vp = nd.ni_vp;
567 }
568 /* note: "vp" is referenced and locked */
569
570 error = 0; /* assume no error */
571 switch(SCARG(uap, cmd)) {
572
573 case SWAP_DUMPDEV:
574 if (vp->v_type != VBLK) {
575 error = ENOTBLK;
576 break;
577 }
578 dumpdev = vp->v_rdev;
579 cpu_dumpconf();
580 break;
581
582 case SWAP_CTL:
583 /*
584 * get new priority, remove old entry (if any) and then
585 * reinsert it in the correct place. finally, prune out
586 * any empty priority structures.
587 */
588 priority = SCARG(uap, misc);
589 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
590 simple_lock(&uvm.swap_data_lock);
591 if ((sdp = swaplist_find(vp, 1)) == NULL) {
592 error = ENOENT;
593 } else {
594 swaplist_insert(sdp, spp, priority);
595 swaplist_trim();
596 }
597 simple_unlock(&uvm.swap_data_lock);
598 if (error)
599 free(spp, M_VMSWAP);
600 break;
601
602 case SWAP_ON:
603
604 /*
605 * check for duplicates. if none found, then insert a
606 * dummy entry on the list to prevent someone else from
607 * trying to enable this device while we are working on
608 * it.
609 */
610
611 priority = SCARG(uap, misc);
612 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
613 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
614 memset(sdp, 0, sizeof(*sdp));
615 sdp->swd_flags = SWF_FAKE;
616 sdp->swd_vp = vp;
617 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
618 bufq_alloc(&sdp->swd_tab, BUFQ_DISKSORT|BUFQ_SORT_RAWBLOCK);
619 simple_lock(&uvm.swap_data_lock);
620 if (swaplist_find(vp, 0) != NULL) {
621 error = EBUSY;
622 simple_unlock(&uvm.swap_data_lock);
623 bufq_free(&sdp->swd_tab);
624 free(sdp, M_VMSWAP);
625 free(spp, M_VMSWAP);
626 break;
627 }
628 swaplist_insert(sdp, spp, priority);
629 simple_unlock(&uvm.swap_data_lock);
630
631 sdp->swd_pathlen = len;
632 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
633 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
634 panic("swapctl: copystr");
635
636 /*
637 * we've now got a FAKE placeholder in the swap list.
638 * now attempt to enable swap on it. if we fail, undo
639 * what we've done and kill the fake entry we just inserted.
640 * if swap_on is a success, it will clear the SWF_FAKE flag
641 */
642
643 if ((error = swap_on(l, sdp)) != 0) {
644 simple_lock(&uvm.swap_data_lock);
645 (void) swaplist_find(vp, 1); /* kill fake entry */
646 swaplist_trim();
647 simple_unlock(&uvm.swap_data_lock);
648 bufq_free(&sdp->swd_tab);
649 free(sdp->swd_path, M_VMSWAP);
650 free(sdp, M_VMSWAP);
651 break;
652 }
653 break;
654
655 case SWAP_OFF:
656 simple_lock(&uvm.swap_data_lock);
657 if ((sdp = swaplist_find(vp, 0)) == NULL) {
658 simple_unlock(&uvm.swap_data_lock);
659 error = ENXIO;
660 break;
661 }
662
663 /*
664 * If a device isn't in use or enabled, we
665 * can't stop swapping from it (again).
666 */
667 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
668 simple_unlock(&uvm.swap_data_lock);
669 error = EBUSY;
670 break;
671 }
672
673 /*
674 * do the real work.
675 */
676 error = swap_off(l, sdp);
677 break;
678
679 default:
680 error = EINVAL;
681 }
682
683 /*
684 * done! release the ref gained by namei() and unlock.
685 */
686 vput(vp);
687
688 out:
689 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
690
691 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
692 return (error);
693 }
694
695 /*
696 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
697 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
698 * emulation to use it directly without going through sys_swapctl().
699 * The problem with using sys_swapctl() there is that it involves
700 * copying the swapent array to the stackgap, and this array's size
701 * is not known at build time. Hence it would not be possible to
702 * ensure it would fit in the stackgap in any case.
703 */
704 void
705 uvm_swap_stats(cmd, sep, sec, retval)
706 int cmd;
707 struct swapent *sep;
708 int sec;
709 register_t *retval;
710 {
711 struct swappri *spp;
712 struct swapdev *sdp;
713 int count = 0;
714
715 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
716 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
717 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
718 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
719 /*
720 * backwards compatibility for system call.
721 * note that we use 'struct oswapent' as an
722 * overlay into both 'struct swapdev' and
723 * the userland 'struct swapent', as we
724 * want to retain backwards compatibility
725 * with NetBSD 1.3.
726 */
727 sdp->swd_ose.ose_inuse =
728 btodb((u_int64_t)sdp->swd_npginuse <<
729 PAGE_SHIFT);
730 (void)memcpy(sep, &sdp->swd_ose,
731 sizeof(struct oswapent));
732
733 /* now copy out the path if necessary */
734 #if defined(COMPAT_13)
735 if (cmd == SWAP_STATS)
736 #endif
737 (void)memcpy(&sep->se_path, sdp->swd_path,
738 sdp->swd_pathlen);
739
740 count++;
741 #if defined(COMPAT_13)
742 if (cmd == SWAP_OSTATS)
743 sep = (struct swapent *)
744 ((struct oswapent *)sep + 1);
745 else
746 #endif
747 sep++;
748 }
749 }
750
751 *retval = count;
752 return;
753 }
754
755 /*
756 * swap_on: attempt to enable a swapdev for swapping. note that the
757 * swapdev is already on the global list, but disabled (marked
758 * SWF_FAKE).
759 *
760 * => we avoid the start of the disk (to protect disk labels)
761 * => we also avoid the miniroot, if we are swapping to root.
762 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
763 * if needed.
764 */
765 static int
766 swap_on(l, sdp)
767 struct lwp *l;
768 struct swapdev *sdp;
769 {
770 static int count = 0; /* static */
771 struct vnode *vp;
772 struct proc *p = l->l_proc;
773 int error, npages, nblocks, size;
774 long addr;
775 u_long result;
776 struct vattr va;
777 #ifdef NFS
778 extern int (**nfsv2_vnodeop_p)(void *);
779 #endif /* NFS */
780 const struct bdevsw *bdev;
781 dev_t dev;
782 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
783
784 /*
785 * we want to enable swapping on sdp. the swd_vp contains
786 * the vnode we want (locked and ref'd), and the swd_dev
787 * contains the dev_t of the file, if it a block device.
788 */
789
790 vp = sdp->swd_vp;
791 dev = sdp->swd_dev;
792
793 /*
794 * open the swap file (mostly useful for block device files to
795 * let device driver know what is up).
796 *
797 * we skip the open/close for root on swap because the root
798 * has already been opened when root was mounted (mountroot).
799 */
800 if (vp != rootvp) {
801 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, l)))
802 return (error);
803 }
804
805 /* XXX this only works for block devices */
806 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
807
808 /*
809 * we now need to determine the size of the swap area. for
810 * block specials we can call the d_psize function.
811 * for normal files, we must stat [get attrs].
812 *
813 * we put the result in nblks.
814 * for normal files, we also want the filesystem block size
815 * (which we get with statfs).
816 */
817 switch (vp->v_type) {
818 case VBLK:
819 bdev = bdevsw_lookup(dev);
820 if (bdev == NULL || bdev->d_psize == NULL ||
821 (nblocks = (*bdev->d_psize)(dev)) == -1) {
822 error = ENXIO;
823 goto bad;
824 }
825 break;
826
827 case VREG:
828 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, l)))
829 goto bad;
830 nblocks = (int)btodb(va.va_size);
831 if ((error =
832 VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, l)) != 0)
833 goto bad;
834
835 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
836 /*
837 * limit the max # of outstanding I/O requests we issue
838 * at any one time. take it easy on NFS servers.
839 */
840 #ifdef NFS
841 if (vp->v_op == nfsv2_vnodeop_p)
842 sdp->swd_maxactive = 2; /* XXX */
843 else
844 #endif /* NFS */
845 sdp->swd_maxactive = 8; /* XXX */
846 break;
847
848 default:
849 error = ENXIO;
850 goto bad;
851 }
852
853 /*
854 * save nblocks in a safe place and convert to pages.
855 */
856
857 sdp->swd_ose.ose_nblks = nblocks;
858 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
859
860 /*
861 * for block special files, we want to make sure that leave
862 * the disklabel and bootblocks alone, so we arrange to skip
863 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
864 * note that because of this the "size" can be less than the
865 * actual number of blocks on the device.
866 */
867 if (vp->v_type == VBLK) {
868 /* we use pages 1 to (size - 1) [inclusive] */
869 size = npages - 1;
870 addr = 1;
871 } else {
872 /* we use pages 0 to (size - 1) [inclusive] */
873 size = npages;
874 addr = 0;
875 }
876
877 /*
878 * make sure we have enough blocks for a reasonable sized swap
879 * area. we want at least one page.
880 */
881
882 if (size < 1) {
883 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
884 error = EINVAL;
885 goto bad;
886 }
887
888 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
889
890 /*
891 * now we need to allocate an extent to manage this swap device
892 */
893 snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
894 count++);
895
896 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
897 sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
898 0, 0, EX_WAITOK);
899 /* allocate the `saved' region from the extent so it won't be used */
900 if (addr) {
901 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
902 panic("disklabel region");
903 }
904
905 /*
906 * if the vnode we are swapping to is the root vnode
907 * (i.e. we are swapping to the miniroot) then we want
908 * to make sure we don't overwrite it. do a statfs to
909 * find its size and skip over it.
910 */
911 if (vp == rootvp) {
912 struct mount *mp;
913 struct statvfs *sp;
914 int rootblocks, rootpages;
915
916 mp = rootvnode->v_mount;
917 sp = &mp->mnt_stat;
918 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
919 /*
920 * XXX: sp->f_blocks isn't the total number of
921 * blocks in the filesystem, it's the number of
922 * data blocks. so, our rootblocks almost
923 * definitely underestimates the total size
924 * of the filesystem - how badly depends on the
925 * details of the filesystem type. there isn't
926 * an obvious way to deal with this cleanly
927 * and perfectly, so for now we just pad our
928 * rootblocks estimate with an extra 5 percent.
929 */
930 rootblocks += (rootblocks >> 5) +
931 (rootblocks >> 6) +
932 (rootblocks >> 7);
933 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
934 if (rootpages > size)
935 panic("swap_on: miniroot larger than swap?");
936
937 if (extent_alloc_region(sdp->swd_ex, addr,
938 rootpages, EX_WAITOK))
939 panic("swap_on: unable to preserve miniroot");
940
941 size -= rootpages;
942 printf("Preserved %d pages of miniroot ", rootpages);
943 printf("leaving %d pages of swap\n", size);
944 }
945
946 /*
947 * try to add anons to reflect the new swap space.
948 */
949
950 error = uvm_anon_add(size);
951 if (error) {
952 goto bad;
953 }
954
955 /*
956 * add a ref to vp to reflect usage as a swap device.
957 */
958 vref(vp);
959
960 /*
961 * now add the new swapdev to the drum and enable.
962 */
963 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
964 EX_WAITOK, &result))
965 panic("swapdrum_add");
966
967 sdp->swd_drumoffset = (int)result;
968 sdp->swd_drumsize = npages;
969 sdp->swd_npages = size;
970 simple_lock(&uvm.swap_data_lock);
971 sdp->swd_flags &= ~SWF_FAKE; /* going live */
972 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
973 uvmexp.swpages += size;
974 uvmexp.swpgavail += size;
975 simple_unlock(&uvm.swap_data_lock);
976 return (0);
977
978 /*
979 * failure: clean up and return error.
980 */
981
982 bad:
983 if (sdp->swd_ex) {
984 extent_destroy(sdp->swd_ex);
985 }
986 if (vp != rootvp) {
987 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, l);
988 }
989 return (error);
990 }
991
992 /*
993 * swap_off: stop swapping on swapdev
994 *
995 * => swap data should be locked, we will unlock.
996 */
997 static int
998 swap_off(l, sdp)
999 struct lwp *l;
1000 struct swapdev *sdp;
1001 {
1002 struct proc *p = l->l_proc;
1003 int npages = sdp->swd_npages;
1004
1005 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1006 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1007
1008 /* disable the swap area being removed */
1009 sdp->swd_flags &= ~SWF_ENABLE;
1010 uvmexp.swpgavail -= npages;
1011 simple_unlock(&uvm.swap_data_lock);
1012
1013 /*
1014 * the idea is to find all the pages that are paged out to this
1015 * device, and page them all in. in uvm, swap-backed pageable
1016 * memory can take two forms: aobjs and anons. call the
1017 * swapoff hook for each subsystem to bring in pages.
1018 */
1019
1020 if (uao_swap_off(sdp->swd_drumoffset,
1021 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1022 anon_swap_off(sdp->swd_drumoffset,
1023 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1024
1025 simple_lock(&uvm.swap_data_lock);
1026 sdp->swd_flags |= SWF_ENABLE;
1027 uvmexp.swpgavail += npages;
1028 simple_unlock(&uvm.swap_data_lock);
1029 return ENOMEM;
1030 }
1031 KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
1032
1033 /*
1034 * done with the vnode.
1035 * drop our ref on the vnode before calling VOP_CLOSE()
1036 * so that spec_close() can tell if this is the last close.
1037 */
1038 vrele(sdp->swd_vp);
1039 if (sdp->swd_vp != rootvp) {
1040 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, l);
1041 }
1042
1043 /* remove anons from the system */
1044 uvm_anon_remove(npages);
1045
1046 simple_lock(&uvm.swap_data_lock);
1047 uvmexp.swpages -= npages;
1048 uvmexp.swpginuse -= sdp->swd_npgbad;
1049
1050 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1051 panic("swap_off: swapdev not in list");
1052 swaplist_trim();
1053 simple_unlock(&uvm.swap_data_lock);
1054
1055 /*
1056 * free all resources!
1057 */
1058 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1059 EX_WAITOK);
1060 extent_destroy(sdp->swd_ex);
1061 bufq_free(&sdp->swd_tab);
1062 free(sdp, M_VMSWAP);
1063 return (0);
1064 }
1065
1066 /*
1067 * /dev/drum interface and i/o functions
1068 */
1069
1070 /*
1071 * swread: the read function for the drum (just a call to physio)
1072 */
1073 /*ARGSUSED*/
1074 int
1075 swread(dev, uio, ioflag)
1076 dev_t dev;
1077 struct uio *uio;
1078 int ioflag;
1079 {
1080 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1081
1082 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1083 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1084 }
1085
1086 /*
1087 * swwrite: the write function for the drum (just a call to physio)
1088 */
1089 /*ARGSUSED*/
1090 int
1091 swwrite(dev, uio, ioflag)
1092 dev_t dev;
1093 struct uio *uio;
1094 int ioflag;
1095 {
1096 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1097
1098 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1099 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1100 }
1101
1102 /*
1103 * swstrategy: perform I/O on the drum
1104 *
1105 * => we must map the i/o request from the drum to the correct swapdev.
1106 */
1107 void
1108 swstrategy(bp)
1109 struct buf *bp;
1110 {
1111 struct swapdev *sdp;
1112 struct vnode *vp;
1113 int s, pageno, bn;
1114 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1115
1116 /*
1117 * convert block number to swapdev. note that swapdev can't
1118 * be yanked out from under us because we are holding resources
1119 * in it (i.e. the blocks we are doing I/O on).
1120 */
1121 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1122 simple_lock(&uvm.swap_data_lock);
1123 sdp = swapdrum_getsdp(pageno);
1124 simple_unlock(&uvm.swap_data_lock);
1125 if (sdp == NULL) {
1126 bp->b_error = EINVAL;
1127 bp->b_flags |= B_ERROR;
1128 biodone(bp);
1129 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1130 return;
1131 }
1132
1133 /*
1134 * convert drum page number to block number on this swapdev.
1135 */
1136
1137 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1138 bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1139
1140 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1141 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1142 sdp->swd_drumoffset, bn, bp->b_bcount);
1143
1144 /*
1145 * for block devices we finish up here.
1146 * for regular files we have to do more work which we delegate
1147 * to sw_reg_strategy().
1148 */
1149
1150 switch (sdp->swd_vp->v_type) {
1151 default:
1152 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1153
1154 case VBLK:
1155
1156 /*
1157 * must convert "bp" from an I/O on /dev/drum to an I/O
1158 * on the swapdev (sdp).
1159 */
1160 s = splbio();
1161 bp->b_blkno = bn; /* swapdev block number */
1162 vp = sdp->swd_vp; /* swapdev vnode pointer */
1163 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1164
1165 /*
1166 * if we are doing a write, we have to redirect the i/o on
1167 * drum's v_numoutput counter to the swapdevs.
1168 */
1169 if ((bp->b_flags & B_READ) == 0) {
1170 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1171 V_INCR_NUMOUTPUT(vp); /* put it on swapdev */
1172 }
1173
1174 /*
1175 * finally plug in swapdev vnode and start I/O
1176 */
1177 bp->b_vp = vp;
1178 splx(s);
1179 VOP_STRATEGY(vp, bp);
1180 return;
1181
1182 case VREG:
1183 /*
1184 * delegate to sw_reg_strategy function.
1185 */
1186 sw_reg_strategy(sdp, bp, bn);
1187 return;
1188 }
1189 /* NOTREACHED */
1190 }
1191
1192 /*
1193 * sw_reg_strategy: handle swap i/o to regular files
1194 */
1195 static void
1196 sw_reg_strategy(sdp, bp, bn)
1197 struct swapdev *sdp;
1198 struct buf *bp;
1199 int bn;
1200 {
1201 struct vnode *vp;
1202 struct vndxfer *vnx;
1203 daddr_t nbn;
1204 caddr_t addr;
1205 off_t byteoff;
1206 int s, off, nra, error, sz, resid;
1207 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1208
1209 /*
1210 * allocate a vndxfer head for this transfer and point it to
1211 * our buffer.
1212 */
1213 getvndxfer(vnx);
1214 vnx->vx_flags = VX_BUSY;
1215 vnx->vx_error = 0;
1216 vnx->vx_pending = 0;
1217 vnx->vx_bp = bp;
1218 vnx->vx_sdp = sdp;
1219
1220 /*
1221 * setup for main loop where we read filesystem blocks into
1222 * our buffer.
1223 */
1224 error = 0;
1225 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1226 addr = bp->b_data; /* current position in buffer */
1227 byteoff = dbtob((u_int64_t)bn);
1228
1229 for (resid = bp->b_resid; resid; resid -= sz) {
1230 struct vndbuf *nbp;
1231
1232 /*
1233 * translate byteoffset into block number. return values:
1234 * vp = vnode of underlying device
1235 * nbn = new block number (on underlying vnode dev)
1236 * nra = num blocks we can read-ahead (excludes requested
1237 * block)
1238 */
1239 nra = 0;
1240 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1241 &vp, &nbn, &nra);
1242
1243 if (error == 0 && nbn == (daddr_t)-1) {
1244 /*
1245 * this used to just set error, but that doesn't
1246 * do the right thing. Instead, it causes random
1247 * memory errors. The panic() should remain until
1248 * this condition doesn't destabilize the system.
1249 */
1250 #if 1
1251 panic("sw_reg_strategy: swap to sparse file");
1252 #else
1253 error = EIO; /* failure */
1254 #endif
1255 }
1256
1257 /*
1258 * punt if there was an error or a hole in the file.
1259 * we must wait for any i/o ops we have already started
1260 * to finish before returning.
1261 *
1262 * XXX we could deal with holes here but it would be
1263 * a hassle (in the write case).
1264 */
1265 if (error) {
1266 s = splbio();
1267 vnx->vx_error = error; /* pass error up */
1268 goto out;
1269 }
1270
1271 /*
1272 * compute the size ("sz") of this transfer (in bytes).
1273 */
1274 off = byteoff % sdp->swd_bsize;
1275 sz = (1 + nra) * sdp->swd_bsize - off;
1276 if (sz > resid)
1277 sz = resid;
1278
1279 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1280 "vp %p/%p offset 0x%x/0x%x",
1281 sdp->swd_vp, vp, byteoff, nbn);
1282
1283 /*
1284 * now get a buf structure. note that the vb_buf is
1285 * at the front of the nbp structure so that you can
1286 * cast pointers between the two structure easily.
1287 */
1288 getvndbuf(nbp);
1289 BUF_INIT(&nbp->vb_buf);
1290 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1291 nbp->vb_buf.b_bcount = sz;
1292 nbp->vb_buf.b_bufsize = sz;
1293 nbp->vb_buf.b_error = 0;
1294 nbp->vb_buf.b_data = addr;
1295 nbp->vb_buf.b_lblkno = 0;
1296 nbp->vb_buf.b_blkno = nbn + btodb(off);
1297 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1298 nbp->vb_buf.b_iodone = sw_reg_iodone;
1299 nbp->vb_buf.b_vp = vp;
1300 if (vp->v_type == VBLK) {
1301 nbp->vb_buf.b_dev = vp->v_rdev;
1302 }
1303
1304 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1305
1306 /*
1307 * Just sort by block number
1308 */
1309 s = splbio();
1310 if (vnx->vx_error != 0) {
1311 putvndbuf(nbp);
1312 goto out;
1313 }
1314 vnx->vx_pending++;
1315
1316 /* sort it in and start I/O if we are not over our limit */
1317 BUFQ_PUT(&sdp->swd_tab, &nbp->vb_buf);
1318 sw_reg_start(sdp);
1319 splx(s);
1320
1321 /*
1322 * advance to the next I/O
1323 */
1324 byteoff += sz;
1325 addr += sz;
1326 }
1327
1328 s = splbio();
1329
1330 out: /* Arrive here at splbio */
1331 vnx->vx_flags &= ~VX_BUSY;
1332 if (vnx->vx_pending == 0) {
1333 if (vnx->vx_error != 0) {
1334 bp->b_error = vnx->vx_error;
1335 bp->b_flags |= B_ERROR;
1336 }
1337 putvndxfer(vnx);
1338 biodone(bp);
1339 }
1340 splx(s);
1341 }
1342
1343 /*
1344 * sw_reg_start: start an I/O request on the requested swapdev
1345 *
1346 * => reqs are sorted by b_rawblkno (above)
1347 */
1348 static void
1349 sw_reg_start(sdp)
1350 struct swapdev *sdp;
1351 {
1352 struct buf *bp;
1353 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1354
1355 /* recursion control */
1356 if ((sdp->swd_flags & SWF_BUSY) != 0)
1357 return;
1358
1359 sdp->swd_flags |= SWF_BUSY;
1360
1361 while (sdp->swd_active < sdp->swd_maxactive) {
1362 bp = BUFQ_GET(&sdp->swd_tab);
1363 if (bp == NULL)
1364 break;
1365 sdp->swd_active++;
1366
1367 UVMHIST_LOG(pdhist,
1368 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1369 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1370 if ((bp->b_flags & B_READ) == 0)
1371 V_INCR_NUMOUTPUT(bp->b_vp);
1372
1373 VOP_STRATEGY(bp->b_vp, bp);
1374 }
1375 sdp->swd_flags &= ~SWF_BUSY;
1376 }
1377
1378 /*
1379 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1380 *
1381 * => note that we can recover the vndbuf struct by casting the buf ptr
1382 */
1383 static void
1384 sw_reg_iodone(bp)
1385 struct buf *bp;
1386 {
1387 struct vndbuf *vbp = (struct vndbuf *) bp;
1388 struct vndxfer *vnx = vbp->vb_xfer;
1389 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1390 struct swapdev *sdp = vnx->vx_sdp;
1391 int s, resid, error;
1392 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1393
1394 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1395 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1396 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1397 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1398
1399 /*
1400 * protect vbp at splbio and update.
1401 */
1402
1403 s = splbio();
1404 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1405 pbp->b_resid -= resid;
1406 vnx->vx_pending--;
1407
1408 if (vbp->vb_buf.b_flags & B_ERROR) {
1409 /* pass error upward */
1410 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1411 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1412 vnx->vx_error = error;
1413 }
1414
1415 /*
1416 * kill vbp structure
1417 */
1418 putvndbuf(vbp);
1419
1420 /*
1421 * wrap up this transaction if it has run to completion or, in
1422 * case of an error, when all auxiliary buffers have returned.
1423 */
1424 if (vnx->vx_error != 0) {
1425 /* pass error upward */
1426 pbp->b_flags |= B_ERROR;
1427 pbp->b_error = vnx->vx_error;
1428 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1429 putvndxfer(vnx);
1430 biodone(pbp);
1431 }
1432 } else if (pbp->b_resid == 0) {
1433 KASSERT(vnx->vx_pending == 0);
1434 if ((vnx->vx_flags & VX_BUSY) == 0) {
1435 UVMHIST_LOG(pdhist, " iodone error=%d !",
1436 pbp, vnx->vx_error, 0, 0);
1437 putvndxfer(vnx);
1438 biodone(pbp);
1439 }
1440 }
1441
1442 /*
1443 * done! start next swapdev I/O if one is pending
1444 */
1445 sdp->swd_active--;
1446 sw_reg_start(sdp);
1447 splx(s);
1448 }
1449
1450
1451 /*
1452 * uvm_swap_alloc: allocate space on swap
1453 *
1454 * => allocation is done "round robin" down the priority list, as we
1455 * allocate in a priority we "rotate" the circle queue.
1456 * => space can be freed with uvm_swap_free
1457 * => we return the page slot number in /dev/drum (0 == invalid slot)
1458 * => we lock uvm.swap_data_lock
1459 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1460 */
1461 int
1462 uvm_swap_alloc(nslots, lessok)
1463 int *nslots; /* IN/OUT */
1464 boolean_t lessok;
1465 {
1466 struct swapdev *sdp;
1467 struct swappri *spp;
1468 u_long result;
1469 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1470
1471 /*
1472 * no swap devices configured yet? definite failure.
1473 */
1474 if (uvmexp.nswapdev < 1)
1475 return 0;
1476
1477 /*
1478 * lock data lock, convert slots into blocks, and enter loop
1479 */
1480 simple_lock(&uvm.swap_data_lock);
1481
1482 ReTry: /* XXXMRG */
1483 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1484 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1485 /* if it's not enabled, then we can't swap from it */
1486 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1487 continue;
1488 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1489 continue;
1490 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1491 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1492 &result) != 0) {
1493 continue;
1494 }
1495
1496 /*
1497 * successful allocation! now rotate the circleq.
1498 */
1499 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1500 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1501 sdp->swd_npginuse += *nslots;
1502 uvmexp.swpginuse += *nslots;
1503 simple_unlock(&uvm.swap_data_lock);
1504 /* done! return drum slot number */
1505 UVMHIST_LOG(pdhist,
1506 "success! returning %d slots starting at %d",
1507 *nslots, result + sdp->swd_drumoffset, 0, 0);
1508 return (result + sdp->swd_drumoffset);
1509 }
1510 }
1511
1512 /* XXXMRG: BEGIN HACK */
1513 if (*nslots > 1 && lessok) {
1514 *nslots = 1;
1515 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1516 }
1517 /* XXXMRG: END HACK */
1518
1519 simple_unlock(&uvm.swap_data_lock);
1520 return 0;
1521 }
1522
1523 boolean_t
1524 uvm_swapisfull(void)
1525 {
1526 boolean_t rv;
1527
1528 simple_lock(&uvm.swap_data_lock);
1529 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1530 rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1531 simple_unlock(&uvm.swap_data_lock);
1532
1533 return (rv);
1534 }
1535
1536 /*
1537 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1538 *
1539 * => we lock uvm.swap_data_lock
1540 */
1541 void
1542 uvm_swap_markbad(startslot, nslots)
1543 int startslot;
1544 int nslots;
1545 {
1546 struct swapdev *sdp;
1547 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1548
1549 simple_lock(&uvm.swap_data_lock);
1550 sdp = swapdrum_getsdp(startslot);
1551 KASSERT(sdp != NULL);
1552
1553 /*
1554 * we just keep track of how many pages have been marked bad
1555 * in this device, to make everything add up in swap_off().
1556 * we assume here that the range of slots will all be within
1557 * one swap device.
1558 */
1559
1560 KASSERT(uvmexp.swpgonly >= nslots);
1561 uvmexp.swpgonly -= nslots;
1562 sdp->swd_npgbad += nslots;
1563 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1564 simple_unlock(&uvm.swap_data_lock);
1565 }
1566
1567 /*
1568 * uvm_swap_free: free swap slots
1569 *
1570 * => this can be all or part of an allocation made by uvm_swap_alloc
1571 * => we lock uvm.swap_data_lock
1572 */
1573 void
1574 uvm_swap_free(startslot, nslots)
1575 int startslot;
1576 int nslots;
1577 {
1578 struct swapdev *sdp;
1579 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1580
1581 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1582 startslot, 0, 0);
1583
1584 /*
1585 * ignore attempts to free the "bad" slot.
1586 */
1587
1588 if (startslot == SWSLOT_BAD) {
1589 return;
1590 }
1591
1592 /*
1593 * convert drum slot offset back to sdp, free the blocks
1594 * in the extent, and return. must hold pri lock to do
1595 * lookup and access the extent.
1596 */
1597
1598 simple_lock(&uvm.swap_data_lock);
1599 sdp = swapdrum_getsdp(startslot);
1600 KASSERT(uvmexp.nswapdev >= 1);
1601 KASSERT(sdp != NULL);
1602 KASSERT(sdp->swd_npginuse >= nslots);
1603 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1604 EX_MALLOCOK|EX_NOWAIT) != 0) {
1605 printf("warning: resource shortage: %d pages of swap lost\n",
1606 nslots);
1607 }
1608 sdp->swd_npginuse -= nslots;
1609 uvmexp.swpginuse -= nslots;
1610 simple_unlock(&uvm.swap_data_lock);
1611 }
1612
1613 /*
1614 * uvm_swap_put: put any number of pages into a contig place on swap
1615 *
1616 * => can be sync or async
1617 */
1618
1619 int
1620 uvm_swap_put(swslot, ppsp, npages, flags)
1621 int swslot;
1622 struct vm_page **ppsp;
1623 int npages;
1624 int flags;
1625 {
1626 int error;
1627
1628 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1629 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1630 return error;
1631 }
1632
1633 /*
1634 * uvm_swap_get: get a single page from swap
1635 *
1636 * => usually a sync op (from fault)
1637 */
1638
1639 int
1640 uvm_swap_get(page, swslot, flags)
1641 struct vm_page *page;
1642 int swslot, flags;
1643 {
1644 int error;
1645
1646 uvmexp.nswget++;
1647 KASSERT(flags & PGO_SYNCIO);
1648 if (swslot == SWSLOT_BAD) {
1649 return EIO;
1650 }
1651
1652 error = uvm_swap_io(&page, swslot, 1, B_READ |
1653 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1654 if (error == 0) {
1655
1656 /*
1657 * this page is no longer only in swap.
1658 */
1659
1660 simple_lock(&uvm.swap_data_lock);
1661 KASSERT(uvmexp.swpgonly > 0);
1662 uvmexp.swpgonly--;
1663 simple_unlock(&uvm.swap_data_lock);
1664 }
1665 return error;
1666 }
1667
1668 /*
1669 * uvm_swap_io: do an i/o operation to swap
1670 */
1671
1672 static int
1673 uvm_swap_io(pps, startslot, npages, flags)
1674 struct vm_page **pps;
1675 int startslot, npages, flags;
1676 {
1677 daddr_t startblk;
1678 struct buf *bp;
1679 vaddr_t kva;
1680 int error, s, mapinflags;
1681 boolean_t write, async;
1682 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1683
1684 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1685 startslot, npages, flags, 0);
1686
1687 write = (flags & B_READ) == 0;
1688 async = (flags & B_ASYNC) != 0;
1689
1690 /*
1691 * convert starting drum slot to block number
1692 */
1693
1694 startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1695
1696 /*
1697 * first, map the pages into the kernel.
1698 */
1699
1700 mapinflags = !write ?
1701 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1702 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1703 kva = uvm_pagermapin(pps, npages, mapinflags);
1704
1705 /*
1706 * now allocate a buf for the i/o.
1707 */
1708
1709 s = splbio();
1710 bp = pool_get(&bufpool, PR_WAITOK);
1711 splx(s);
1712
1713 /*
1714 * fill in the bp/sbp. we currently route our i/o through
1715 * /dev/drum's vnode [swapdev_vp].
1716 */
1717
1718 BUF_INIT(bp);
1719 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1720 bp->b_proc = &proc0; /* XXX */
1721 bp->b_vnbufs.le_next = NOLIST;
1722 bp->b_data = (caddr_t)kva;
1723 bp->b_blkno = startblk;
1724 bp->b_vp = swapdev_vp;
1725 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1726
1727 /*
1728 * bump v_numoutput (counter of number of active outputs).
1729 */
1730
1731 if (write) {
1732 s = splbio();
1733 V_INCR_NUMOUTPUT(swapdev_vp);
1734 splx(s);
1735 }
1736
1737 /*
1738 * for async ops we must set up the iodone handler.
1739 */
1740
1741 if (async) {
1742 bp->b_flags |= B_CALL;
1743 bp->b_iodone = uvm_aio_biodone;
1744 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1745 if (curproc == uvm.pagedaemon_proc)
1746 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1747 else
1748 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1749 } else {
1750 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1751 }
1752 UVMHIST_LOG(pdhist,
1753 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1754 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1755
1756 /*
1757 * now we start the I/O, and if async, return.
1758 */
1759
1760 VOP_STRATEGY(swapdev_vp, bp);
1761 if (async)
1762 return 0;
1763
1764 /*
1765 * must be sync i/o. wait for it to finish
1766 */
1767
1768 error = biowait(bp);
1769
1770 /*
1771 * kill the pager mapping
1772 */
1773
1774 uvm_pagermapout(kva, npages);
1775
1776 /*
1777 * now dispose of the buf and we're done.
1778 */
1779
1780 s = splbio();
1781 if (write)
1782 vwakeup(bp);
1783 pool_put(&bufpool, bp);
1784 splx(s);
1785 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1786 return (error);
1787 }
1788