uvm_swap.c revision 1.86 1 /* $NetBSD: uvm_swap.c,v 1.86 2004/04/21 01:05:47 christos Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.86 2004/04/21 01:05:47 christos Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/conf.h>
46 #include <sys/proc.h>
47 #include <sys/namei.h>
48 #include <sys/disklabel.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/vnode.h>
53 #include <sys/file.h>
54 #include <sys/extent.h>
55 #include <sys/mount.h>
56 #include <sys/pool.h>
57 #include <sys/sa.h>
58 #include <sys/syscallargs.h>
59 #include <sys/swap.h>
60
61 #include <uvm/uvm.h>
62
63 #include <miscfs/specfs/specdev.h>
64
65 /*
66 * uvm_swap.c: manage configuration and i/o to swap space.
67 */
68
69 /*
70 * swap space is managed in the following way:
71 *
72 * each swap partition or file is described by a "swapdev" structure.
73 * each "swapdev" structure contains a "swapent" structure which contains
74 * information that is passed up to the user (via system calls).
75 *
76 * each swap partition is assigned a "priority" (int) which controls
77 * swap parition usage.
78 *
79 * the system maintains a global data structure describing all swap
80 * partitions/files. there is a sorted LIST of "swappri" structures
81 * which describe "swapdev"'s at that priority. this LIST is headed
82 * by the "swap_priority" global var. each "swappri" contains a
83 * CIRCLEQ of "swapdev" structures at that priority.
84 *
85 * locking:
86 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
87 * system call and prevents the swap priority list from changing
88 * while we are in the middle of a system call (e.g. SWAP_STATS).
89 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
90 * structures including the priority list, the swapdev structures,
91 * and the swapmap extent.
92 *
93 * each swap device has the following info:
94 * - swap device in use (could be disabled, preventing future use)
95 * - swap enabled (allows new allocations on swap)
96 * - map info in /dev/drum
97 * - vnode pointer
98 * for swap files only:
99 * - block size
100 * - max byte count in buffer
101 * - buffer
102 *
103 * userland controls and configures swap with the swapctl(2) system call.
104 * the sys_swapctl performs the following operations:
105 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
106 * [2] SWAP_STATS: given a pointer to an array of swapent structures
107 * (passed in via "arg") of a size passed in via "misc" ... we load
108 * the current swap config into the array. The actual work is done
109 * in the uvm_swap_stats(9) function.
110 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
111 * priority in "misc", start swapping on it.
112 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
113 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
114 * "misc")
115 */
116
117 /*
118 * swapdev: describes a single swap partition/file
119 *
120 * note the following should be true:
121 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
122 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
123 */
124 struct swapdev {
125 struct oswapent swd_ose;
126 #define swd_dev swd_ose.ose_dev /* device id */
127 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
128 #define swd_priority swd_ose.ose_priority /* our priority */
129 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
130 char *swd_path; /* saved pathname of device */
131 int swd_pathlen; /* length of pathname */
132 int swd_npages; /* #pages we can use */
133 int swd_npginuse; /* #pages in use */
134 int swd_npgbad; /* #pages bad */
135 int swd_drumoffset; /* page0 offset in drum */
136 int swd_drumsize; /* #pages in drum */
137 struct extent *swd_ex; /* extent for this swapdev */
138 char swd_exname[12]; /* name of extent above */
139 struct vnode *swd_vp; /* backing vnode */
140 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
141
142 int swd_bsize; /* blocksize (bytes) */
143 int swd_maxactive; /* max active i/o reqs */
144 struct bufq_state swd_tab; /* buffer list */
145 int swd_active; /* number of active buffers */
146 };
147
148 /*
149 * swap device priority entry; the list is kept sorted on `spi_priority'.
150 */
151 struct swappri {
152 int spi_priority; /* priority */
153 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
154 /* circleq of swapdevs at this priority */
155 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
156 };
157
158 /*
159 * The following two structures are used to keep track of data transfers
160 * on swap devices associated with regular files.
161 * NOTE: this code is more or less a copy of vnd.c; we use the same
162 * structure names here to ease porting..
163 */
164 struct vndxfer {
165 struct buf *vx_bp; /* Pointer to parent buffer */
166 struct swapdev *vx_sdp;
167 int vx_error;
168 int vx_pending; /* # of pending aux buffers */
169 int vx_flags;
170 #define VX_BUSY 1
171 #define VX_DEAD 2
172 };
173
174 struct vndbuf {
175 struct buf vb_buf;
176 struct vndxfer *vb_xfer;
177 };
178
179
180 /*
181 * We keep a of pool vndbuf's and vndxfer structures.
182 */
183 static struct pool vndxfer_pool;
184 static struct pool vndbuf_pool;
185
186 #define getvndxfer(vnx) do { \
187 int s = splbio(); \
188 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \
189 splx(s); \
190 } while (/*CONSTCOND*/ 0)
191
192 #define putvndxfer(vnx) { \
193 pool_put(&vndxfer_pool, (void *)(vnx)); \
194 }
195
196 #define getvndbuf(vbp) do { \
197 int s = splbio(); \
198 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \
199 splx(s); \
200 } while (/*CONSTCOND*/ 0)
201
202 #define putvndbuf(vbp) { \
203 pool_put(&vndbuf_pool, (void *)(vbp)); \
204 }
205
206 /*
207 * local variables
208 */
209 static struct extent *swapmap; /* controls the mapping of /dev/drum */
210
211 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
212
213 /* list of all active swap devices [by priority] */
214 LIST_HEAD(swap_priority, swappri);
215 static struct swap_priority swap_priority;
216
217 /* locks */
218 struct lock swap_syscall_lock;
219
220 /*
221 * prototypes
222 */
223 static struct swapdev *swapdrum_getsdp(int);
224
225 static struct swapdev *swaplist_find(struct vnode *, int);
226 static void swaplist_insert(struct swapdev *,
227 struct swappri *, int);
228 static void swaplist_trim(void);
229
230 static int swap_on(struct proc *, struct swapdev *);
231 static int swap_off(struct proc *, struct swapdev *);
232
233 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
234 static void sw_reg_iodone(struct buf *);
235 static void sw_reg_start(struct swapdev *);
236
237 static int uvm_swap_io(struct vm_page **, int, int, int);
238
239 dev_type_read(swread);
240 dev_type_write(swwrite);
241 dev_type_strategy(swstrategy);
242
243 const struct bdevsw swap_bdevsw = {
244 noopen, noclose, swstrategy, noioctl, nodump, nosize,
245 };
246
247 const struct cdevsw swap_cdevsw = {
248 nullopen, nullclose, swread, swwrite, noioctl,
249 nostop, notty, nopoll, nommap, nokqfilter
250 };
251
252 /*
253 * uvm_swap_init: init the swap system data structures and locks
254 *
255 * => called at boot time from init_main.c after the filesystems
256 * are brought up (which happens after uvm_init())
257 */
258 void
259 uvm_swap_init()
260 {
261 UVMHIST_FUNC("uvm_swap_init");
262
263 UVMHIST_CALLED(pdhist);
264 /*
265 * first, init the swap list, its counter, and its lock.
266 * then get a handle on the vnode for /dev/drum by using
267 * the its dev_t number ("swapdev", from MD conf.c).
268 */
269
270 LIST_INIT(&swap_priority);
271 uvmexp.nswapdev = 0;
272 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
273 simple_lock_init(&uvm.swap_data_lock);
274
275 if (bdevvp(swapdev, &swapdev_vp))
276 panic("uvm_swap_init: can't get vnode for swap device");
277
278 /*
279 * create swap block resource map to map /dev/drum. the range
280 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
281 * that block 0 is reserved (used to indicate an allocation
282 * failure, or no allocation).
283 */
284 swapmap = extent_create("swapmap", 1, INT_MAX,
285 M_VMSWAP, 0, 0, EX_NOWAIT);
286 if (swapmap == 0)
287 panic("uvm_swap_init: extent_create failed");
288
289 /*
290 * allocate pools for structures used for swapping to files.
291 */
292
293 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0,
294 "swp vnx", NULL);
295
296 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0,
297 "swp vnd", NULL);
298
299 /*
300 * done!
301 */
302 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
303 }
304
305 /*
306 * swaplist functions: functions that operate on the list of swap
307 * devices on the system.
308 */
309
310 /*
311 * swaplist_insert: insert swap device "sdp" into the global list
312 *
313 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
314 * => caller must provide a newly malloc'd swappri structure (we will
315 * FREE it if we don't need it... this it to prevent malloc blocking
316 * here while adding swap)
317 */
318 static void
319 swaplist_insert(sdp, newspp, priority)
320 struct swapdev *sdp;
321 struct swappri *newspp;
322 int priority;
323 {
324 struct swappri *spp, *pspp;
325 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
326
327 /*
328 * find entry at or after which to insert the new device.
329 */
330 pspp = NULL;
331 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
332 if (priority <= spp->spi_priority)
333 break;
334 pspp = spp;
335 }
336
337 /*
338 * new priority?
339 */
340 if (spp == NULL || spp->spi_priority != priority) {
341 spp = newspp; /* use newspp! */
342 UVMHIST_LOG(pdhist, "created new swappri = %d",
343 priority, 0, 0, 0);
344
345 spp->spi_priority = priority;
346 CIRCLEQ_INIT(&spp->spi_swapdev);
347
348 if (pspp)
349 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
350 else
351 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
352 } else {
353 /* we don't need a new priority structure, free it */
354 FREE(newspp, M_VMSWAP);
355 }
356
357 /*
358 * priority found (or created). now insert on the priority's
359 * circleq list and bump the total number of swapdevs.
360 */
361 sdp->swd_priority = priority;
362 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
363 uvmexp.nswapdev++;
364 }
365
366 /*
367 * swaplist_find: find and optionally remove a swap device from the
368 * global list.
369 *
370 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
371 * => we return the swapdev we found (and removed)
372 */
373 static struct swapdev *
374 swaplist_find(vp, remove)
375 struct vnode *vp;
376 boolean_t remove;
377 {
378 struct swapdev *sdp;
379 struct swappri *spp;
380
381 /*
382 * search the lists for the requested vp
383 */
384
385 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
386 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
387 if (sdp->swd_vp == vp) {
388 if (remove) {
389 CIRCLEQ_REMOVE(&spp->spi_swapdev,
390 sdp, swd_next);
391 uvmexp.nswapdev--;
392 }
393 return(sdp);
394 }
395 }
396 }
397 return (NULL);
398 }
399
400
401 /*
402 * swaplist_trim: scan priority list for empty priority entries and kill
403 * them.
404 *
405 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
406 */
407 static void
408 swaplist_trim()
409 {
410 struct swappri *spp, *nextspp;
411
412 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
413 nextspp = LIST_NEXT(spp, spi_swappri);
414 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
415 (void *)&spp->spi_swapdev)
416 continue;
417 LIST_REMOVE(spp, spi_swappri);
418 free(spp, M_VMSWAP);
419 }
420 }
421
422 /*
423 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
424 * to the "swapdev" that maps that section of the drum.
425 *
426 * => each swapdev takes one big contig chunk of the drum
427 * => caller must hold uvm.swap_data_lock
428 */
429 static struct swapdev *
430 swapdrum_getsdp(pgno)
431 int pgno;
432 {
433 struct swapdev *sdp;
434 struct swappri *spp;
435
436 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
437 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
438 if (sdp->swd_flags & SWF_FAKE)
439 continue;
440 if (pgno >= sdp->swd_drumoffset &&
441 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
442 return sdp;
443 }
444 }
445 }
446 return NULL;
447 }
448
449
450 /*
451 * sys_swapctl: main entry point for swapctl(2) system call
452 * [with two helper functions: swap_on and swap_off]
453 */
454 int
455 sys_swapctl(l, v, retval)
456 struct lwp *l;
457 void *v;
458 register_t *retval;
459 {
460 struct sys_swapctl_args /* {
461 syscallarg(int) cmd;
462 syscallarg(void *) arg;
463 syscallarg(int) misc;
464 } */ *uap = (struct sys_swapctl_args *)v;
465 struct proc *p = l->l_proc;
466 struct vnode *vp;
467 struct nameidata nd;
468 struct swappri *spp;
469 struct swapdev *sdp;
470 struct swapent *sep;
471 char userpath[PATH_MAX + 1];
472 size_t len;
473 int error, misc;
474 int priority;
475 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
476
477 misc = SCARG(uap, misc);
478
479 /*
480 * ensure serialized syscall access by grabbing the swap_syscall_lock
481 */
482 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
483
484 /*
485 * we handle the non-priv NSWAP and STATS request first.
486 *
487 * SWAP_NSWAP: return number of config'd swap devices
488 * [can also be obtained with uvmexp sysctl]
489 */
490 if (SCARG(uap, cmd) == SWAP_NSWAP) {
491 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
492 0, 0, 0);
493 *retval = uvmexp.nswapdev;
494 error = 0;
495 goto out;
496 }
497
498 /*
499 * SWAP_STATS: get stats on current # of configured swap devs
500 *
501 * note that the swap_priority list can't change as long
502 * as we are holding the swap_syscall_lock. we don't want
503 * to grab the uvm.swap_data_lock because we may fault&sleep during
504 * copyout() and we don't want to be holding that lock then!
505 */
506 if (SCARG(uap, cmd) == SWAP_STATS
507 #if defined(COMPAT_13)
508 || SCARG(uap, cmd) == SWAP_OSTATS
509 #endif
510 ) {
511 misc = MIN(uvmexp.nswapdev, misc);
512 #if defined(COMPAT_13)
513 if (SCARG(uap, cmd) == SWAP_OSTATS)
514 len = sizeof(struct oswapent) * misc;
515 else
516 #endif
517 len = sizeof(struct swapent) * misc;
518 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
519
520 uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
521 error = copyout(sep, (void *)SCARG(uap, arg), len);
522
523 free(sep, M_TEMP);
524 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
525 goto out;
526 }
527 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
528 dev_t *devp = (dev_t *)SCARG(uap, arg);
529
530 error = copyout(&dumpdev, devp, sizeof(dumpdev));
531 goto out;
532 }
533
534 /*
535 * all other requests require superuser privs. verify.
536 */
537 if ((error = suser(p->p_ucred, &p->p_acflag)))
538 goto out;
539
540 /*
541 * at this point we expect a path name in arg. we will
542 * use namei() to gain a vnode reference (vref), and lock
543 * the vnode (VOP_LOCK).
544 *
545 * XXX: a NULL arg means use the root vnode pointer (e.g. for
546 * miniroot)
547 */
548 if (SCARG(uap, arg) == NULL) {
549 vp = rootvp; /* miniroot */
550 if (vget(vp, LK_EXCLUSIVE)) {
551 error = EBUSY;
552 goto out;
553 }
554 if (SCARG(uap, cmd) == SWAP_ON &&
555 copystr("miniroot", userpath, sizeof userpath, &len))
556 panic("swapctl: miniroot copy failed");
557 } else {
558 int space;
559 char *where;
560
561 if (SCARG(uap, cmd) == SWAP_ON) {
562 if ((error = copyinstr(SCARG(uap, arg), userpath,
563 sizeof userpath, &len)))
564 goto out;
565 space = UIO_SYSSPACE;
566 where = userpath;
567 } else {
568 space = UIO_USERSPACE;
569 where = (char *)SCARG(uap, arg);
570 }
571 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
572 if ((error = namei(&nd)))
573 goto out;
574 vp = nd.ni_vp;
575 }
576 /* note: "vp" is referenced and locked */
577
578 error = 0; /* assume no error */
579 switch(SCARG(uap, cmd)) {
580
581 case SWAP_DUMPDEV:
582 if (vp->v_type != VBLK) {
583 error = ENOTBLK;
584 break;
585 }
586 dumpdev = vp->v_rdev;
587 cpu_dumpconf();
588 break;
589
590 case SWAP_CTL:
591 /*
592 * get new priority, remove old entry (if any) and then
593 * reinsert it in the correct place. finally, prune out
594 * any empty priority structures.
595 */
596 priority = SCARG(uap, misc);
597 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
598 simple_lock(&uvm.swap_data_lock);
599 if ((sdp = swaplist_find(vp, 1)) == NULL) {
600 error = ENOENT;
601 } else {
602 swaplist_insert(sdp, spp, priority);
603 swaplist_trim();
604 }
605 simple_unlock(&uvm.swap_data_lock);
606 if (error)
607 free(spp, M_VMSWAP);
608 break;
609
610 case SWAP_ON:
611
612 /*
613 * check for duplicates. if none found, then insert a
614 * dummy entry on the list to prevent someone else from
615 * trying to enable this device while we are working on
616 * it.
617 */
618
619 priority = SCARG(uap, misc);
620 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
621 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
622 memset(sdp, 0, sizeof(*sdp));
623 sdp->swd_flags = SWF_FAKE;
624 sdp->swd_vp = vp;
625 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
626 bufq_alloc(&sdp->swd_tab, BUFQ_DISKSORT|BUFQ_SORT_RAWBLOCK);
627 simple_lock(&uvm.swap_data_lock);
628 if (swaplist_find(vp, 0) != NULL) {
629 error = EBUSY;
630 simple_unlock(&uvm.swap_data_lock);
631 bufq_free(&sdp->swd_tab);
632 free(sdp, M_VMSWAP);
633 free(spp, M_VMSWAP);
634 break;
635 }
636 swaplist_insert(sdp, spp, priority);
637 simple_unlock(&uvm.swap_data_lock);
638
639 sdp->swd_pathlen = len;
640 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
641 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
642 panic("swapctl: copystr");
643
644 /*
645 * we've now got a FAKE placeholder in the swap list.
646 * now attempt to enable swap on it. if we fail, undo
647 * what we've done and kill the fake entry we just inserted.
648 * if swap_on is a success, it will clear the SWF_FAKE flag
649 */
650
651 if ((error = swap_on(p, sdp)) != 0) {
652 simple_lock(&uvm.swap_data_lock);
653 (void) swaplist_find(vp, 1); /* kill fake entry */
654 swaplist_trim();
655 simple_unlock(&uvm.swap_data_lock);
656 bufq_free(&sdp->swd_tab);
657 free(sdp->swd_path, M_VMSWAP);
658 free(sdp, M_VMSWAP);
659 break;
660 }
661 break;
662
663 case SWAP_OFF:
664 simple_lock(&uvm.swap_data_lock);
665 if ((sdp = swaplist_find(vp, 0)) == NULL) {
666 simple_unlock(&uvm.swap_data_lock);
667 error = ENXIO;
668 break;
669 }
670
671 /*
672 * If a device isn't in use or enabled, we
673 * can't stop swapping from it (again).
674 */
675 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
676 simple_unlock(&uvm.swap_data_lock);
677 error = EBUSY;
678 break;
679 }
680
681 /*
682 * do the real work.
683 */
684 error = swap_off(p, sdp);
685 break;
686
687 default:
688 error = EINVAL;
689 }
690
691 /*
692 * done! release the ref gained by namei() and unlock.
693 */
694 vput(vp);
695
696 out:
697 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
698
699 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
700 return (error);
701 }
702
703 /*
704 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
705 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
706 * emulation to use it directly without going through sys_swapctl().
707 * The problem with using sys_swapctl() there is that it involves
708 * copying the swapent array to the stackgap, and this array's size
709 * is not known at build time. Hence it would not be possible to
710 * ensure it would fit in the stackgap in any case.
711 */
712 void
713 uvm_swap_stats(cmd, sep, sec, retval)
714 int cmd;
715 struct swapent *sep;
716 int sec;
717 register_t *retval;
718 {
719 struct swappri *spp;
720 struct swapdev *sdp;
721 int count = 0;
722
723 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
724 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
725 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
726 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
727 /*
728 * backwards compatibility for system call.
729 * note that we use 'struct oswapent' as an
730 * overlay into both 'struct swapdev' and
731 * the userland 'struct swapent', as we
732 * want to retain backwards compatibility
733 * with NetBSD 1.3.
734 */
735 sdp->swd_ose.ose_inuse =
736 btodb((u_int64_t)sdp->swd_npginuse <<
737 PAGE_SHIFT);
738 (void)memcpy(sep, &sdp->swd_ose,
739 sizeof(struct oswapent));
740
741 /* now copy out the path if necessary */
742 #if defined(COMPAT_13)
743 if (cmd == SWAP_STATS)
744 #endif
745 (void)memcpy(&sep->se_path, sdp->swd_path,
746 sdp->swd_pathlen);
747
748 count++;
749 #if defined(COMPAT_13)
750 if (cmd == SWAP_OSTATS)
751 sep = (struct swapent *)
752 ((struct oswapent *)sep + 1);
753 else
754 #endif
755 sep++;
756 }
757 }
758
759 *retval = count;
760 return;
761 }
762
763 /*
764 * swap_on: attempt to enable a swapdev for swapping. note that the
765 * swapdev is already on the global list, but disabled (marked
766 * SWF_FAKE).
767 *
768 * => we avoid the start of the disk (to protect disk labels)
769 * => we also avoid the miniroot, if we are swapping to root.
770 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
771 * if needed.
772 */
773 static int
774 swap_on(p, sdp)
775 struct proc *p;
776 struct swapdev *sdp;
777 {
778 static int count = 0; /* static */
779 struct vnode *vp;
780 int error, npages, nblocks, size;
781 long addr;
782 u_long result;
783 struct vattr va;
784 #ifdef NFS
785 extern int (**nfsv2_vnodeop_p)(void *);
786 #endif /* NFS */
787 const struct bdevsw *bdev;
788 dev_t dev;
789 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
790
791 /*
792 * we want to enable swapping on sdp. the swd_vp contains
793 * the vnode we want (locked and ref'd), and the swd_dev
794 * contains the dev_t of the file, if it a block device.
795 */
796
797 vp = sdp->swd_vp;
798 dev = sdp->swd_dev;
799
800 /*
801 * open the swap file (mostly useful for block device files to
802 * let device driver know what is up).
803 *
804 * we skip the open/close for root on swap because the root
805 * has already been opened when root was mounted (mountroot).
806 */
807 if (vp != rootvp) {
808 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
809 return (error);
810 }
811
812 /* XXX this only works for block devices */
813 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
814
815 /*
816 * we now need to determine the size of the swap area. for
817 * block specials we can call the d_psize function.
818 * for normal files, we must stat [get attrs].
819 *
820 * we put the result in nblks.
821 * for normal files, we also want the filesystem block size
822 * (which we get with statfs).
823 */
824 switch (vp->v_type) {
825 case VBLK:
826 bdev = bdevsw_lookup(dev);
827 if (bdev == NULL || bdev->d_psize == NULL ||
828 (nblocks = (*bdev->d_psize)(dev)) == -1) {
829 error = ENXIO;
830 goto bad;
831 }
832 break;
833
834 case VREG:
835 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
836 goto bad;
837 nblocks = (int)btodb(va.va_size);
838 if ((error =
839 VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
840 goto bad;
841
842 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
843 /*
844 * limit the max # of outstanding I/O requests we issue
845 * at any one time. take it easy on NFS servers.
846 */
847 #ifdef NFS
848 if (vp->v_op == nfsv2_vnodeop_p)
849 sdp->swd_maxactive = 2; /* XXX */
850 else
851 #endif /* NFS */
852 sdp->swd_maxactive = 8; /* XXX */
853 break;
854
855 default:
856 error = ENXIO;
857 goto bad;
858 }
859
860 /*
861 * save nblocks in a safe place and convert to pages.
862 */
863
864 sdp->swd_ose.ose_nblks = nblocks;
865 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
866
867 /*
868 * for block special files, we want to make sure that leave
869 * the disklabel and bootblocks alone, so we arrange to skip
870 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
871 * note that because of this the "size" can be less than the
872 * actual number of blocks on the device.
873 */
874 if (vp->v_type == VBLK) {
875 /* we use pages 1 to (size - 1) [inclusive] */
876 size = npages - 1;
877 addr = 1;
878 } else {
879 /* we use pages 0 to (size - 1) [inclusive] */
880 size = npages;
881 addr = 0;
882 }
883
884 /*
885 * make sure we have enough blocks for a reasonable sized swap
886 * area. we want at least one page.
887 */
888
889 if (size < 1) {
890 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
891 error = EINVAL;
892 goto bad;
893 }
894
895 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
896
897 /*
898 * now we need to allocate an extent to manage this swap device
899 */
900 snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
901 count++);
902
903 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
904 sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
905 0, 0, EX_WAITOK);
906 /* allocate the `saved' region from the extent so it won't be used */
907 if (addr) {
908 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
909 panic("disklabel region");
910 }
911
912 /*
913 * if the vnode we are swapping to is the root vnode
914 * (i.e. we are swapping to the miniroot) then we want
915 * to make sure we don't overwrite it. do a statfs to
916 * find its size and skip over it.
917 */
918 if (vp == rootvp) {
919 struct mount *mp;
920 struct statvfs *sp;
921 int rootblocks, rootpages;
922
923 mp = rootvnode->v_mount;
924 sp = &mp->mnt_stat;
925 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
926 /*
927 * XXX: sp->f_blocks isn't the total number of
928 * blocks in the filesystem, it's the number of
929 * data blocks. so, our rootblocks almost
930 * definitely underestimates the total size
931 * of the filesystem - how badly depends on the
932 * details of the filesystem type. there isn't
933 * an obvious way to deal with this cleanly
934 * and perfectly, so for now we just pad our
935 * rootblocks estimate with an extra 5 percent.
936 */
937 rootblocks += (rootblocks >> 5) +
938 (rootblocks >> 6) +
939 (rootblocks >> 7);
940 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
941 if (rootpages > size)
942 panic("swap_on: miniroot larger than swap?");
943
944 if (extent_alloc_region(sdp->swd_ex, addr,
945 rootpages, EX_WAITOK))
946 panic("swap_on: unable to preserve miniroot");
947
948 size -= rootpages;
949 printf("Preserved %d pages of miniroot ", rootpages);
950 printf("leaving %d pages of swap\n", size);
951 }
952
953 /*
954 * try to add anons to reflect the new swap space.
955 */
956
957 error = uvm_anon_add(size);
958 if (error) {
959 goto bad;
960 }
961
962 /*
963 * add a ref to vp to reflect usage as a swap device.
964 */
965 vref(vp);
966
967 /*
968 * now add the new swapdev to the drum and enable.
969 */
970 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
971 EX_WAITOK, &result))
972 panic("swapdrum_add");
973
974 sdp->swd_drumoffset = (int)result;
975 sdp->swd_drumsize = npages;
976 sdp->swd_npages = size;
977 simple_lock(&uvm.swap_data_lock);
978 sdp->swd_flags &= ~SWF_FAKE; /* going live */
979 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
980 uvmexp.swpages += size;
981 uvmexp.swpgavail += size;
982 simple_unlock(&uvm.swap_data_lock);
983 return (0);
984
985 /*
986 * failure: clean up and return error.
987 */
988
989 bad:
990 if (sdp->swd_ex) {
991 extent_destroy(sdp->swd_ex);
992 }
993 if (vp != rootvp) {
994 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
995 }
996 return (error);
997 }
998
999 /*
1000 * swap_off: stop swapping on swapdev
1001 *
1002 * => swap data should be locked, we will unlock.
1003 */
1004 static int
1005 swap_off(p, sdp)
1006 struct proc *p;
1007 struct swapdev *sdp;
1008 {
1009 int npages = sdp->swd_npages;
1010
1011 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1012 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1013
1014 /* disable the swap area being removed */
1015 sdp->swd_flags &= ~SWF_ENABLE;
1016 uvmexp.swpgavail -= npages;
1017 simple_unlock(&uvm.swap_data_lock);
1018
1019 /*
1020 * the idea is to find all the pages that are paged out to this
1021 * device, and page them all in. in uvm, swap-backed pageable
1022 * memory can take two forms: aobjs and anons. call the
1023 * swapoff hook for each subsystem to bring in pages.
1024 */
1025
1026 if (uao_swap_off(sdp->swd_drumoffset,
1027 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1028 anon_swap_off(sdp->swd_drumoffset,
1029 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1030
1031 simple_lock(&uvm.swap_data_lock);
1032 sdp->swd_flags |= SWF_ENABLE;
1033 uvmexp.swpgavail += npages;
1034 simple_unlock(&uvm.swap_data_lock);
1035 return ENOMEM;
1036 }
1037 KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
1038
1039 /*
1040 * done with the vnode.
1041 * drop our ref on the vnode before calling VOP_CLOSE()
1042 * so that spec_close() can tell if this is the last close.
1043 */
1044 vrele(sdp->swd_vp);
1045 if (sdp->swd_vp != rootvp) {
1046 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1047 }
1048
1049 /* remove anons from the system */
1050 uvm_anon_remove(npages);
1051
1052 simple_lock(&uvm.swap_data_lock);
1053 uvmexp.swpages -= npages;
1054 uvmexp.swpginuse -= sdp->swd_npgbad;
1055
1056 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1057 panic("swap_off: swapdev not in list");
1058 swaplist_trim();
1059 simple_unlock(&uvm.swap_data_lock);
1060
1061 /*
1062 * free all resources!
1063 */
1064 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1065 EX_WAITOK);
1066 extent_destroy(sdp->swd_ex);
1067 bufq_free(&sdp->swd_tab);
1068 free(sdp, M_VMSWAP);
1069 return (0);
1070 }
1071
1072 /*
1073 * /dev/drum interface and i/o functions
1074 */
1075
1076 /*
1077 * swread: the read function for the drum (just a call to physio)
1078 */
1079 /*ARGSUSED*/
1080 int
1081 swread(dev, uio, ioflag)
1082 dev_t dev;
1083 struct uio *uio;
1084 int ioflag;
1085 {
1086 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1087
1088 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1089 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1090 }
1091
1092 /*
1093 * swwrite: the write function for the drum (just a call to physio)
1094 */
1095 /*ARGSUSED*/
1096 int
1097 swwrite(dev, uio, ioflag)
1098 dev_t dev;
1099 struct uio *uio;
1100 int ioflag;
1101 {
1102 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1103
1104 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1105 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1106 }
1107
1108 /*
1109 * swstrategy: perform I/O on the drum
1110 *
1111 * => we must map the i/o request from the drum to the correct swapdev.
1112 */
1113 void
1114 swstrategy(bp)
1115 struct buf *bp;
1116 {
1117 struct swapdev *sdp;
1118 struct vnode *vp;
1119 int s, pageno, bn;
1120 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1121
1122 /*
1123 * convert block number to swapdev. note that swapdev can't
1124 * be yanked out from under us because we are holding resources
1125 * in it (i.e. the blocks we are doing I/O on).
1126 */
1127 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1128 simple_lock(&uvm.swap_data_lock);
1129 sdp = swapdrum_getsdp(pageno);
1130 simple_unlock(&uvm.swap_data_lock);
1131 if (sdp == NULL) {
1132 bp->b_error = EINVAL;
1133 bp->b_flags |= B_ERROR;
1134 biodone(bp);
1135 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1136 return;
1137 }
1138
1139 /*
1140 * convert drum page number to block number on this swapdev.
1141 */
1142
1143 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1144 bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1145
1146 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1147 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1148 sdp->swd_drumoffset, bn, bp->b_bcount);
1149
1150 /*
1151 * for block devices we finish up here.
1152 * for regular files we have to do more work which we delegate
1153 * to sw_reg_strategy().
1154 */
1155
1156 switch (sdp->swd_vp->v_type) {
1157 default:
1158 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1159
1160 case VBLK:
1161
1162 /*
1163 * must convert "bp" from an I/O on /dev/drum to an I/O
1164 * on the swapdev (sdp).
1165 */
1166 s = splbio();
1167 bp->b_blkno = bn; /* swapdev block number */
1168 vp = sdp->swd_vp; /* swapdev vnode pointer */
1169 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1170
1171 /*
1172 * if we are doing a write, we have to redirect the i/o on
1173 * drum's v_numoutput counter to the swapdevs.
1174 */
1175 if ((bp->b_flags & B_READ) == 0) {
1176 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1177 V_INCR_NUMOUTPUT(vp); /* put it on swapdev */
1178 }
1179
1180 /*
1181 * finally plug in swapdev vnode and start I/O
1182 */
1183 bp->b_vp = vp;
1184 splx(s);
1185 VOP_STRATEGY(vp, bp);
1186 return;
1187
1188 case VREG:
1189 /*
1190 * delegate to sw_reg_strategy function.
1191 */
1192 sw_reg_strategy(sdp, bp, bn);
1193 return;
1194 }
1195 /* NOTREACHED */
1196 }
1197
1198 /*
1199 * sw_reg_strategy: handle swap i/o to regular files
1200 */
1201 static void
1202 sw_reg_strategy(sdp, bp, bn)
1203 struct swapdev *sdp;
1204 struct buf *bp;
1205 int bn;
1206 {
1207 struct vnode *vp;
1208 struct vndxfer *vnx;
1209 daddr_t nbn;
1210 caddr_t addr;
1211 off_t byteoff;
1212 int s, off, nra, error, sz, resid;
1213 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1214
1215 /*
1216 * allocate a vndxfer head for this transfer and point it to
1217 * our buffer.
1218 */
1219 getvndxfer(vnx);
1220 vnx->vx_flags = VX_BUSY;
1221 vnx->vx_error = 0;
1222 vnx->vx_pending = 0;
1223 vnx->vx_bp = bp;
1224 vnx->vx_sdp = sdp;
1225
1226 /*
1227 * setup for main loop where we read filesystem blocks into
1228 * our buffer.
1229 */
1230 error = 0;
1231 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1232 addr = bp->b_data; /* current position in buffer */
1233 byteoff = dbtob((u_int64_t)bn);
1234
1235 for (resid = bp->b_resid; resid; resid -= sz) {
1236 struct vndbuf *nbp;
1237
1238 /*
1239 * translate byteoffset into block number. return values:
1240 * vp = vnode of underlying device
1241 * nbn = new block number (on underlying vnode dev)
1242 * nra = num blocks we can read-ahead (excludes requested
1243 * block)
1244 */
1245 nra = 0;
1246 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1247 &vp, &nbn, &nra);
1248
1249 if (error == 0 && nbn == (daddr_t)-1) {
1250 /*
1251 * this used to just set error, but that doesn't
1252 * do the right thing. Instead, it causes random
1253 * memory errors. The panic() should remain until
1254 * this condition doesn't destabilize the system.
1255 */
1256 #if 1
1257 panic("sw_reg_strategy: swap to sparse file");
1258 #else
1259 error = EIO; /* failure */
1260 #endif
1261 }
1262
1263 /*
1264 * punt if there was an error or a hole in the file.
1265 * we must wait for any i/o ops we have already started
1266 * to finish before returning.
1267 *
1268 * XXX we could deal with holes here but it would be
1269 * a hassle (in the write case).
1270 */
1271 if (error) {
1272 s = splbio();
1273 vnx->vx_error = error; /* pass error up */
1274 goto out;
1275 }
1276
1277 /*
1278 * compute the size ("sz") of this transfer (in bytes).
1279 */
1280 off = byteoff % sdp->swd_bsize;
1281 sz = (1 + nra) * sdp->swd_bsize - off;
1282 if (sz > resid)
1283 sz = resid;
1284
1285 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1286 "vp %p/%p offset 0x%x/0x%x",
1287 sdp->swd_vp, vp, byteoff, nbn);
1288
1289 /*
1290 * now get a buf structure. note that the vb_buf is
1291 * at the front of the nbp structure so that you can
1292 * cast pointers between the two structure easily.
1293 */
1294 getvndbuf(nbp);
1295 BUF_INIT(&nbp->vb_buf);
1296 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1297 nbp->vb_buf.b_bcount = sz;
1298 nbp->vb_buf.b_bufsize = sz;
1299 nbp->vb_buf.b_error = 0;
1300 nbp->vb_buf.b_data = addr;
1301 nbp->vb_buf.b_lblkno = 0;
1302 nbp->vb_buf.b_blkno = nbn + btodb(off);
1303 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1304 nbp->vb_buf.b_iodone = sw_reg_iodone;
1305 nbp->vb_buf.b_vp = vp;
1306 if (vp->v_type == VBLK) {
1307 nbp->vb_buf.b_dev = vp->v_rdev;
1308 }
1309
1310 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1311
1312 /*
1313 * Just sort by block number
1314 */
1315 s = splbio();
1316 if (vnx->vx_error != 0) {
1317 putvndbuf(nbp);
1318 goto out;
1319 }
1320 vnx->vx_pending++;
1321
1322 /* sort it in and start I/O if we are not over our limit */
1323 BUFQ_PUT(&sdp->swd_tab, &nbp->vb_buf);
1324 sw_reg_start(sdp);
1325 splx(s);
1326
1327 /*
1328 * advance to the next I/O
1329 */
1330 byteoff += sz;
1331 addr += sz;
1332 }
1333
1334 s = splbio();
1335
1336 out: /* Arrive here at splbio */
1337 vnx->vx_flags &= ~VX_BUSY;
1338 if (vnx->vx_pending == 0) {
1339 if (vnx->vx_error != 0) {
1340 bp->b_error = vnx->vx_error;
1341 bp->b_flags |= B_ERROR;
1342 }
1343 putvndxfer(vnx);
1344 biodone(bp);
1345 }
1346 splx(s);
1347 }
1348
1349 /*
1350 * sw_reg_start: start an I/O request on the requested swapdev
1351 *
1352 * => reqs are sorted by b_rawblkno (above)
1353 */
1354 static void
1355 sw_reg_start(sdp)
1356 struct swapdev *sdp;
1357 {
1358 struct buf *bp;
1359 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1360
1361 /* recursion control */
1362 if ((sdp->swd_flags & SWF_BUSY) != 0)
1363 return;
1364
1365 sdp->swd_flags |= SWF_BUSY;
1366
1367 while (sdp->swd_active < sdp->swd_maxactive) {
1368 bp = BUFQ_GET(&sdp->swd_tab);
1369 if (bp == NULL)
1370 break;
1371 sdp->swd_active++;
1372
1373 UVMHIST_LOG(pdhist,
1374 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1375 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1376 if ((bp->b_flags & B_READ) == 0)
1377 V_INCR_NUMOUTPUT(bp->b_vp);
1378
1379 VOP_STRATEGY(bp->b_vp, bp);
1380 }
1381 sdp->swd_flags &= ~SWF_BUSY;
1382 }
1383
1384 /*
1385 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1386 *
1387 * => note that we can recover the vndbuf struct by casting the buf ptr
1388 */
1389 static void
1390 sw_reg_iodone(bp)
1391 struct buf *bp;
1392 {
1393 struct vndbuf *vbp = (struct vndbuf *) bp;
1394 struct vndxfer *vnx = vbp->vb_xfer;
1395 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1396 struct swapdev *sdp = vnx->vx_sdp;
1397 int s, resid, error;
1398 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1399
1400 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1401 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1402 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1403 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1404
1405 /*
1406 * protect vbp at splbio and update.
1407 */
1408
1409 s = splbio();
1410 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1411 pbp->b_resid -= resid;
1412 vnx->vx_pending--;
1413
1414 if (vbp->vb_buf.b_flags & B_ERROR) {
1415 /* pass error upward */
1416 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1417 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1418 vnx->vx_error = error;
1419 }
1420
1421 /*
1422 * kill vbp structure
1423 */
1424 putvndbuf(vbp);
1425
1426 /*
1427 * wrap up this transaction if it has run to completion or, in
1428 * case of an error, when all auxiliary buffers have returned.
1429 */
1430 if (vnx->vx_error != 0) {
1431 /* pass error upward */
1432 pbp->b_flags |= B_ERROR;
1433 pbp->b_error = vnx->vx_error;
1434 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1435 putvndxfer(vnx);
1436 biodone(pbp);
1437 }
1438 } else if (pbp->b_resid == 0) {
1439 KASSERT(vnx->vx_pending == 0);
1440 if ((vnx->vx_flags & VX_BUSY) == 0) {
1441 UVMHIST_LOG(pdhist, " iodone error=%d !",
1442 pbp, vnx->vx_error, 0, 0);
1443 putvndxfer(vnx);
1444 biodone(pbp);
1445 }
1446 }
1447
1448 /*
1449 * done! start next swapdev I/O if one is pending
1450 */
1451 sdp->swd_active--;
1452 sw_reg_start(sdp);
1453 splx(s);
1454 }
1455
1456
1457 /*
1458 * uvm_swap_alloc: allocate space on swap
1459 *
1460 * => allocation is done "round robin" down the priority list, as we
1461 * allocate in a priority we "rotate" the circle queue.
1462 * => space can be freed with uvm_swap_free
1463 * => we return the page slot number in /dev/drum (0 == invalid slot)
1464 * => we lock uvm.swap_data_lock
1465 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1466 */
1467 int
1468 uvm_swap_alloc(nslots, lessok)
1469 int *nslots; /* IN/OUT */
1470 boolean_t lessok;
1471 {
1472 struct swapdev *sdp;
1473 struct swappri *spp;
1474 u_long result;
1475 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1476
1477 /*
1478 * no swap devices configured yet? definite failure.
1479 */
1480 if (uvmexp.nswapdev < 1)
1481 return 0;
1482
1483 /*
1484 * lock data lock, convert slots into blocks, and enter loop
1485 */
1486 simple_lock(&uvm.swap_data_lock);
1487
1488 ReTry: /* XXXMRG */
1489 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1490 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1491 /* if it's not enabled, then we can't swap from it */
1492 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1493 continue;
1494 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1495 continue;
1496 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1497 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1498 &result) != 0) {
1499 continue;
1500 }
1501
1502 /*
1503 * successful allocation! now rotate the circleq.
1504 */
1505 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1506 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1507 sdp->swd_npginuse += *nslots;
1508 uvmexp.swpginuse += *nslots;
1509 simple_unlock(&uvm.swap_data_lock);
1510 /* done! return drum slot number */
1511 UVMHIST_LOG(pdhist,
1512 "success! returning %d slots starting at %d",
1513 *nslots, result + sdp->swd_drumoffset, 0, 0);
1514 return (result + sdp->swd_drumoffset);
1515 }
1516 }
1517
1518 /* XXXMRG: BEGIN HACK */
1519 if (*nslots > 1 && lessok) {
1520 *nslots = 1;
1521 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1522 }
1523 /* XXXMRG: END HACK */
1524
1525 simple_unlock(&uvm.swap_data_lock);
1526 return 0;
1527 }
1528
1529 boolean_t
1530 uvm_swapisfull(void)
1531 {
1532 boolean_t rv;
1533
1534 simple_lock(&uvm.swap_data_lock);
1535 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1536 rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1537 simple_unlock(&uvm.swap_data_lock);
1538
1539 return (rv);
1540 }
1541
1542 /*
1543 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1544 *
1545 * => we lock uvm.swap_data_lock
1546 */
1547 void
1548 uvm_swap_markbad(startslot, nslots)
1549 int startslot;
1550 int nslots;
1551 {
1552 struct swapdev *sdp;
1553 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1554
1555 simple_lock(&uvm.swap_data_lock);
1556 sdp = swapdrum_getsdp(startslot);
1557 KASSERT(sdp != NULL);
1558
1559 /*
1560 * we just keep track of how many pages have been marked bad
1561 * in this device, to make everything add up in swap_off().
1562 * we assume here that the range of slots will all be within
1563 * one swap device.
1564 */
1565
1566 KASSERT(uvmexp.swpgonly >= nslots);
1567 uvmexp.swpgonly -= nslots;
1568 sdp->swd_npgbad += nslots;
1569 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1570 simple_unlock(&uvm.swap_data_lock);
1571 }
1572
1573 /*
1574 * uvm_swap_free: free swap slots
1575 *
1576 * => this can be all or part of an allocation made by uvm_swap_alloc
1577 * => we lock uvm.swap_data_lock
1578 */
1579 void
1580 uvm_swap_free(startslot, nslots)
1581 int startslot;
1582 int nslots;
1583 {
1584 struct swapdev *sdp;
1585 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1586
1587 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1588 startslot, 0, 0);
1589
1590 /*
1591 * ignore attempts to free the "bad" slot.
1592 */
1593
1594 if (startslot == SWSLOT_BAD) {
1595 return;
1596 }
1597
1598 /*
1599 * convert drum slot offset back to sdp, free the blocks
1600 * in the extent, and return. must hold pri lock to do
1601 * lookup and access the extent.
1602 */
1603
1604 simple_lock(&uvm.swap_data_lock);
1605 sdp = swapdrum_getsdp(startslot);
1606 KASSERT(uvmexp.nswapdev >= 1);
1607 KASSERT(sdp != NULL);
1608 KASSERT(sdp->swd_npginuse >= nslots);
1609 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1610 EX_MALLOCOK|EX_NOWAIT) != 0) {
1611 printf("warning: resource shortage: %d pages of swap lost\n",
1612 nslots);
1613 }
1614 sdp->swd_npginuse -= nslots;
1615 uvmexp.swpginuse -= nslots;
1616 simple_unlock(&uvm.swap_data_lock);
1617 }
1618
1619 /*
1620 * uvm_swap_put: put any number of pages into a contig place on swap
1621 *
1622 * => can be sync or async
1623 */
1624
1625 int
1626 uvm_swap_put(swslot, ppsp, npages, flags)
1627 int swslot;
1628 struct vm_page **ppsp;
1629 int npages;
1630 int flags;
1631 {
1632 int error;
1633
1634 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1635 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1636 return error;
1637 }
1638
1639 /*
1640 * uvm_swap_get: get a single page from swap
1641 *
1642 * => usually a sync op (from fault)
1643 */
1644
1645 int
1646 uvm_swap_get(page, swslot, flags)
1647 struct vm_page *page;
1648 int swslot, flags;
1649 {
1650 int error;
1651
1652 uvmexp.nswget++;
1653 KASSERT(flags & PGO_SYNCIO);
1654 if (swslot == SWSLOT_BAD) {
1655 return EIO;
1656 }
1657
1658 error = uvm_swap_io(&page, swslot, 1, B_READ |
1659 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1660 if (error == 0) {
1661
1662 /*
1663 * this page is no longer only in swap.
1664 */
1665
1666 simple_lock(&uvm.swap_data_lock);
1667 KASSERT(uvmexp.swpgonly > 0);
1668 uvmexp.swpgonly--;
1669 simple_unlock(&uvm.swap_data_lock);
1670 }
1671 return error;
1672 }
1673
1674 /*
1675 * uvm_swap_io: do an i/o operation to swap
1676 */
1677
1678 static int
1679 uvm_swap_io(pps, startslot, npages, flags)
1680 struct vm_page **pps;
1681 int startslot, npages, flags;
1682 {
1683 daddr_t startblk;
1684 struct buf *bp;
1685 vaddr_t kva;
1686 int error, s, mapinflags;
1687 boolean_t write, async;
1688 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1689
1690 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1691 startslot, npages, flags, 0);
1692
1693 write = (flags & B_READ) == 0;
1694 async = (flags & B_ASYNC) != 0;
1695
1696 /*
1697 * convert starting drum slot to block number
1698 */
1699
1700 startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1701
1702 /*
1703 * first, map the pages into the kernel.
1704 */
1705
1706 mapinflags = !write ?
1707 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1708 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1709 kva = uvm_pagermapin(pps, npages, mapinflags);
1710
1711 /*
1712 * now allocate a buf for the i/o.
1713 */
1714
1715 s = splbio();
1716 bp = pool_get(&bufpool, PR_WAITOK);
1717 splx(s);
1718
1719 /*
1720 * fill in the bp/sbp. we currently route our i/o through
1721 * /dev/drum's vnode [swapdev_vp].
1722 */
1723
1724 BUF_INIT(bp);
1725 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1726 bp->b_proc = &proc0; /* XXX */
1727 bp->b_vnbufs.le_next = NOLIST;
1728 bp->b_data = (caddr_t)kva;
1729 bp->b_blkno = startblk;
1730 bp->b_vp = swapdev_vp;
1731 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1732
1733 /*
1734 * bump v_numoutput (counter of number of active outputs).
1735 */
1736
1737 if (write) {
1738 s = splbio();
1739 V_INCR_NUMOUTPUT(swapdev_vp);
1740 splx(s);
1741 }
1742
1743 /*
1744 * for async ops we must set up the iodone handler.
1745 */
1746
1747 if (async) {
1748 bp->b_flags |= B_CALL;
1749 bp->b_iodone = uvm_aio_biodone;
1750 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1751 if (curproc == uvm.pagedaemon_proc)
1752 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1753 else
1754 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1755 } else {
1756 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1757 }
1758 UVMHIST_LOG(pdhist,
1759 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1760 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1761
1762 /*
1763 * now we start the I/O, and if async, return.
1764 */
1765
1766 VOP_STRATEGY(swapdev_vp, bp);
1767 if (async)
1768 return 0;
1769
1770 /*
1771 * must be sync i/o. wait for it to finish
1772 */
1773
1774 error = biowait(bp);
1775
1776 /*
1777 * kill the pager mapping
1778 */
1779
1780 uvm_pagermapout(kva, npages);
1781
1782 /*
1783 * now dispose of the buf and we're done.
1784 */
1785
1786 s = splbio();
1787 if (write)
1788 vwakeup(bp);
1789 pool_put(&bufpool, bp);
1790 splx(s);
1791 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1792 return (error);
1793 }
1794