Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.86
      1 /*	$NetBSD: uvm_swap.c,v 1.86 2004/04/21 01:05:47 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.86 2004/04/21 01:05:47 christos Exp $");
     36 
     37 #include "fs_nfs.h"
     38 #include "opt_uvmhist.h"
     39 #include "opt_compat_netbsd.h"
     40 #include "opt_ddb.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/buf.h>
     45 #include <sys/conf.h>
     46 #include <sys/proc.h>
     47 #include <sys/namei.h>
     48 #include <sys/disklabel.h>
     49 #include <sys/errno.h>
     50 #include <sys/kernel.h>
     51 #include <sys/malloc.h>
     52 #include <sys/vnode.h>
     53 #include <sys/file.h>
     54 #include <sys/extent.h>
     55 #include <sys/mount.h>
     56 #include <sys/pool.h>
     57 #include <sys/sa.h>
     58 #include <sys/syscallargs.h>
     59 #include <sys/swap.h>
     60 
     61 #include <uvm/uvm.h>
     62 
     63 #include <miscfs/specfs/specdev.h>
     64 
     65 /*
     66  * uvm_swap.c: manage configuration and i/o to swap space.
     67  */
     68 
     69 /*
     70  * swap space is managed in the following way:
     71  *
     72  * each swap partition or file is described by a "swapdev" structure.
     73  * each "swapdev" structure contains a "swapent" structure which contains
     74  * information that is passed up to the user (via system calls).
     75  *
     76  * each swap partition is assigned a "priority" (int) which controls
     77  * swap parition usage.
     78  *
     79  * the system maintains a global data structure describing all swap
     80  * partitions/files.   there is a sorted LIST of "swappri" structures
     81  * which describe "swapdev"'s at that priority.   this LIST is headed
     82  * by the "swap_priority" global var.    each "swappri" contains a
     83  * CIRCLEQ of "swapdev" structures at that priority.
     84  *
     85  * locking:
     86  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
     87  *    system call and prevents the swap priority list from changing
     88  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     89  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
     90  *    structures including the priority list, the swapdev structures,
     91  *    and the swapmap extent.
     92  *
     93  * each swap device has the following info:
     94  *  - swap device in use (could be disabled, preventing future use)
     95  *  - swap enabled (allows new allocations on swap)
     96  *  - map info in /dev/drum
     97  *  - vnode pointer
     98  * for swap files only:
     99  *  - block size
    100  *  - max byte count in buffer
    101  *  - buffer
    102  *
    103  * userland controls and configures swap with the swapctl(2) system call.
    104  * the sys_swapctl performs the following operations:
    105  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    106  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    107  *	(passed in via "arg") of a size passed in via "misc" ... we load
    108  *	the current swap config into the array. The actual work is done
    109  *	in the uvm_swap_stats(9) function.
    110  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    111  *	priority in "misc", start swapping on it.
    112  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    113  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    114  *	"misc")
    115  */
    116 
    117 /*
    118  * swapdev: describes a single swap partition/file
    119  *
    120  * note the following should be true:
    121  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    122  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    123  */
    124 struct swapdev {
    125 	struct oswapent swd_ose;
    126 #define	swd_dev		swd_ose.ose_dev		/* device id */
    127 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    128 #define	swd_priority	swd_ose.ose_priority	/* our priority */
    129 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    130 	char			*swd_path;	/* saved pathname of device */
    131 	int			swd_pathlen;	/* length of pathname */
    132 	int			swd_npages;	/* #pages we can use */
    133 	int			swd_npginuse;	/* #pages in use */
    134 	int			swd_npgbad;	/* #pages bad */
    135 	int			swd_drumoffset;	/* page0 offset in drum */
    136 	int			swd_drumsize;	/* #pages in drum */
    137 	struct extent		*swd_ex;	/* extent for this swapdev */
    138 	char			swd_exname[12];	/* name of extent above */
    139 	struct vnode		*swd_vp;	/* backing vnode */
    140 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    141 
    142 	int			swd_bsize;	/* blocksize (bytes) */
    143 	int			swd_maxactive;	/* max active i/o reqs */
    144 	struct bufq_state	swd_tab;	/* buffer list */
    145 	int			swd_active;	/* number of active buffers */
    146 };
    147 
    148 /*
    149  * swap device priority entry; the list is kept sorted on `spi_priority'.
    150  */
    151 struct swappri {
    152 	int			spi_priority;     /* priority */
    153 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    154 	/* circleq of swapdevs at this priority */
    155 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    156 };
    157 
    158 /*
    159  * The following two structures are used to keep track of data transfers
    160  * on swap devices associated with regular files.
    161  * NOTE: this code is more or less a copy of vnd.c; we use the same
    162  * structure names here to ease porting..
    163  */
    164 struct vndxfer {
    165 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    166 	struct swapdev	*vx_sdp;
    167 	int		vx_error;
    168 	int		vx_pending;	/* # of pending aux buffers */
    169 	int		vx_flags;
    170 #define VX_BUSY		1
    171 #define VX_DEAD		2
    172 };
    173 
    174 struct vndbuf {
    175 	struct buf	vb_buf;
    176 	struct vndxfer	*vb_xfer;
    177 };
    178 
    179 
    180 /*
    181  * We keep a of pool vndbuf's and vndxfer structures.
    182  */
    183 static struct pool vndxfer_pool;
    184 static struct pool vndbuf_pool;
    185 
    186 #define	getvndxfer(vnx)	do {						\
    187 	int s = splbio();						\
    188 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);			\
    189 	splx(s);							\
    190 } while (/*CONSTCOND*/ 0)
    191 
    192 #define putvndxfer(vnx) {						\
    193 	pool_put(&vndxfer_pool, (void *)(vnx));				\
    194 }
    195 
    196 #define	getvndbuf(vbp)	do {						\
    197 	int s = splbio();						\
    198 	vbp = pool_get(&vndbuf_pool, PR_WAITOK);			\
    199 	splx(s);							\
    200 } while (/*CONSTCOND*/ 0)
    201 
    202 #define putvndbuf(vbp) {						\
    203 	pool_put(&vndbuf_pool, (void *)(vbp));				\
    204 }
    205 
    206 /*
    207  * local variables
    208  */
    209 static struct extent *swapmap;		/* controls the mapping of /dev/drum */
    210 
    211 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
    212 
    213 /* list of all active swap devices [by priority] */
    214 LIST_HEAD(swap_priority, swappri);
    215 static struct swap_priority swap_priority;
    216 
    217 /* locks */
    218 struct lock swap_syscall_lock;
    219 
    220 /*
    221  * prototypes
    222  */
    223 static struct swapdev	*swapdrum_getsdp(int);
    224 
    225 static struct swapdev	*swaplist_find(struct vnode *, int);
    226 static void		 swaplist_insert(struct swapdev *,
    227 					 struct swappri *, int);
    228 static void		 swaplist_trim(void);
    229 
    230 static int swap_on(struct proc *, struct swapdev *);
    231 static int swap_off(struct proc *, struct swapdev *);
    232 
    233 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    234 static void sw_reg_iodone(struct buf *);
    235 static void sw_reg_start(struct swapdev *);
    236 
    237 static int uvm_swap_io(struct vm_page **, int, int, int);
    238 
    239 dev_type_read(swread);
    240 dev_type_write(swwrite);
    241 dev_type_strategy(swstrategy);
    242 
    243 const struct bdevsw swap_bdevsw = {
    244 	noopen, noclose, swstrategy, noioctl, nodump, nosize,
    245 };
    246 
    247 const struct cdevsw swap_cdevsw = {
    248 	nullopen, nullclose, swread, swwrite, noioctl,
    249 	nostop, notty, nopoll, nommap, nokqfilter
    250 };
    251 
    252 /*
    253  * uvm_swap_init: init the swap system data structures and locks
    254  *
    255  * => called at boot time from init_main.c after the filesystems
    256  *	are brought up (which happens after uvm_init())
    257  */
    258 void
    259 uvm_swap_init()
    260 {
    261 	UVMHIST_FUNC("uvm_swap_init");
    262 
    263 	UVMHIST_CALLED(pdhist);
    264 	/*
    265 	 * first, init the swap list, its counter, and its lock.
    266 	 * then get a handle on the vnode for /dev/drum by using
    267 	 * the its dev_t number ("swapdev", from MD conf.c).
    268 	 */
    269 
    270 	LIST_INIT(&swap_priority);
    271 	uvmexp.nswapdev = 0;
    272 	lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
    273 	simple_lock_init(&uvm.swap_data_lock);
    274 
    275 	if (bdevvp(swapdev, &swapdev_vp))
    276 		panic("uvm_swap_init: can't get vnode for swap device");
    277 
    278 	/*
    279 	 * create swap block resource map to map /dev/drum.   the range
    280 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    281 	 * that block 0 is reserved (used to indicate an allocation
    282 	 * failure, or no allocation).
    283 	 */
    284 	swapmap = extent_create("swapmap", 1, INT_MAX,
    285 				M_VMSWAP, 0, 0, EX_NOWAIT);
    286 	if (swapmap == 0)
    287 		panic("uvm_swap_init: extent_create failed");
    288 
    289 	/*
    290 	 * allocate pools for structures used for swapping to files.
    291 	 */
    292 
    293 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0,
    294 	    "swp vnx", NULL);
    295 
    296 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0,
    297 	    "swp vnd", NULL);
    298 
    299 	/*
    300 	 * done!
    301 	 */
    302 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    303 }
    304 
    305 /*
    306  * swaplist functions: functions that operate on the list of swap
    307  * devices on the system.
    308  */
    309 
    310 /*
    311  * swaplist_insert: insert swap device "sdp" into the global list
    312  *
    313  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    314  * => caller must provide a newly malloc'd swappri structure (we will
    315  *	FREE it if we don't need it... this it to prevent malloc blocking
    316  *	here while adding swap)
    317  */
    318 static void
    319 swaplist_insert(sdp, newspp, priority)
    320 	struct swapdev *sdp;
    321 	struct swappri *newspp;
    322 	int priority;
    323 {
    324 	struct swappri *spp, *pspp;
    325 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    326 
    327 	/*
    328 	 * find entry at or after which to insert the new device.
    329 	 */
    330 	pspp = NULL;
    331 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    332 		if (priority <= spp->spi_priority)
    333 			break;
    334 		pspp = spp;
    335 	}
    336 
    337 	/*
    338 	 * new priority?
    339 	 */
    340 	if (spp == NULL || spp->spi_priority != priority) {
    341 		spp = newspp;  /* use newspp! */
    342 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    343 			    priority, 0, 0, 0);
    344 
    345 		spp->spi_priority = priority;
    346 		CIRCLEQ_INIT(&spp->spi_swapdev);
    347 
    348 		if (pspp)
    349 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    350 		else
    351 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    352 	} else {
    353 	  	/* we don't need a new priority structure, free it */
    354 		FREE(newspp, M_VMSWAP);
    355 	}
    356 
    357 	/*
    358 	 * priority found (or created).   now insert on the priority's
    359 	 * circleq list and bump the total number of swapdevs.
    360 	 */
    361 	sdp->swd_priority = priority;
    362 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    363 	uvmexp.nswapdev++;
    364 }
    365 
    366 /*
    367  * swaplist_find: find and optionally remove a swap device from the
    368  *	global list.
    369  *
    370  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    371  * => we return the swapdev we found (and removed)
    372  */
    373 static struct swapdev *
    374 swaplist_find(vp, remove)
    375 	struct vnode *vp;
    376 	boolean_t remove;
    377 {
    378 	struct swapdev *sdp;
    379 	struct swappri *spp;
    380 
    381 	/*
    382 	 * search the lists for the requested vp
    383 	 */
    384 
    385 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    386 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    387 			if (sdp->swd_vp == vp) {
    388 				if (remove) {
    389 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    390 					    sdp, swd_next);
    391 					uvmexp.nswapdev--;
    392 				}
    393 				return(sdp);
    394 			}
    395 		}
    396 	}
    397 	return (NULL);
    398 }
    399 
    400 
    401 /*
    402  * swaplist_trim: scan priority list for empty priority entries and kill
    403  *	them.
    404  *
    405  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    406  */
    407 static void
    408 swaplist_trim()
    409 {
    410 	struct swappri *spp, *nextspp;
    411 
    412 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    413 		nextspp = LIST_NEXT(spp, spi_swappri);
    414 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    415 		    (void *)&spp->spi_swapdev)
    416 			continue;
    417 		LIST_REMOVE(spp, spi_swappri);
    418 		free(spp, M_VMSWAP);
    419 	}
    420 }
    421 
    422 /*
    423  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    424  *	to the "swapdev" that maps that section of the drum.
    425  *
    426  * => each swapdev takes one big contig chunk of the drum
    427  * => caller must hold uvm.swap_data_lock
    428  */
    429 static struct swapdev *
    430 swapdrum_getsdp(pgno)
    431 	int pgno;
    432 {
    433 	struct swapdev *sdp;
    434 	struct swappri *spp;
    435 
    436 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    437 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    438 			if (sdp->swd_flags & SWF_FAKE)
    439 				continue;
    440 			if (pgno >= sdp->swd_drumoffset &&
    441 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    442 				return sdp;
    443 			}
    444 		}
    445 	}
    446 	return NULL;
    447 }
    448 
    449 
    450 /*
    451  * sys_swapctl: main entry point for swapctl(2) system call
    452  * 	[with two helper functions: swap_on and swap_off]
    453  */
    454 int
    455 sys_swapctl(l, v, retval)
    456 	struct lwp *l;
    457 	void *v;
    458 	register_t *retval;
    459 {
    460 	struct sys_swapctl_args /* {
    461 		syscallarg(int) cmd;
    462 		syscallarg(void *) arg;
    463 		syscallarg(int) misc;
    464 	} */ *uap = (struct sys_swapctl_args *)v;
    465 	struct proc *p = l->l_proc;
    466 	struct vnode *vp;
    467 	struct nameidata nd;
    468 	struct swappri *spp;
    469 	struct swapdev *sdp;
    470 	struct swapent *sep;
    471 	char	userpath[PATH_MAX + 1];
    472 	size_t	len;
    473 	int	error, misc;
    474 	int	priority;
    475 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    476 
    477 	misc = SCARG(uap, misc);
    478 
    479 	/*
    480 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    481 	 */
    482 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
    483 
    484 	/*
    485 	 * we handle the non-priv NSWAP and STATS request first.
    486 	 *
    487 	 * SWAP_NSWAP: return number of config'd swap devices
    488 	 * [can also be obtained with uvmexp sysctl]
    489 	 */
    490 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    491 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    492 		    0, 0, 0);
    493 		*retval = uvmexp.nswapdev;
    494 		error = 0;
    495 		goto out;
    496 	}
    497 
    498 	/*
    499 	 * SWAP_STATS: get stats on current # of configured swap devs
    500 	 *
    501 	 * note that the swap_priority list can't change as long
    502 	 * as we are holding the swap_syscall_lock.  we don't want
    503 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
    504 	 * copyout() and we don't want to be holding that lock then!
    505 	 */
    506 	if (SCARG(uap, cmd) == SWAP_STATS
    507 #if defined(COMPAT_13)
    508 	    || SCARG(uap, cmd) == SWAP_OSTATS
    509 #endif
    510 	    ) {
    511 		misc = MIN(uvmexp.nswapdev, misc);
    512 #if defined(COMPAT_13)
    513 		if (SCARG(uap, cmd) == SWAP_OSTATS)
    514 			len = sizeof(struct oswapent) * misc;
    515 		else
    516 #endif
    517 			len = sizeof(struct swapent) * misc;
    518 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
    519 
    520 		uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
    521 		error = copyout(sep, (void *)SCARG(uap, arg), len);
    522 
    523 		free(sep, M_TEMP);
    524 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    525 		goto out;
    526 	}
    527 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    528 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    529 
    530 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    531 		goto out;
    532 	}
    533 
    534 	/*
    535 	 * all other requests require superuser privs.   verify.
    536 	 */
    537 	if ((error = suser(p->p_ucred, &p->p_acflag)))
    538 		goto out;
    539 
    540 	/*
    541 	 * at this point we expect a path name in arg.   we will
    542 	 * use namei() to gain a vnode reference (vref), and lock
    543 	 * the vnode (VOP_LOCK).
    544 	 *
    545 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    546 	 * miniroot)
    547 	 */
    548 	if (SCARG(uap, arg) == NULL) {
    549 		vp = rootvp;		/* miniroot */
    550 		if (vget(vp, LK_EXCLUSIVE)) {
    551 			error = EBUSY;
    552 			goto out;
    553 		}
    554 		if (SCARG(uap, cmd) == SWAP_ON &&
    555 		    copystr("miniroot", userpath, sizeof userpath, &len))
    556 			panic("swapctl: miniroot copy failed");
    557 	} else {
    558 		int	space;
    559 		char	*where;
    560 
    561 		if (SCARG(uap, cmd) == SWAP_ON) {
    562 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    563 			    sizeof userpath, &len)))
    564 				goto out;
    565 			space = UIO_SYSSPACE;
    566 			where = userpath;
    567 		} else {
    568 			space = UIO_USERSPACE;
    569 			where = (char *)SCARG(uap, arg);
    570 		}
    571 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
    572 		if ((error = namei(&nd)))
    573 			goto out;
    574 		vp = nd.ni_vp;
    575 	}
    576 	/* note: "vp" is referenced and locked */
    577 
    578 	error = 0;		/* assume no error */
    579 	switch(SCARG(uap, cmd)) {
    580 
    581 	case SWAP_DUMPDEV:
    582 		if (vp->v_type != VBLK) {
    583 			error = ENOTBLK;
    584 			break;
    585 		}
    586 		dumpdev = vp->v_rdev;
    587 		cpu_dumpconf();
    588 		break;
    589 
    590 	case SWAP_CTL:
    591 		/*
    592 		 * get new priority, remove old entry (if any) and then
    593 		 * reinsert it in the correct place.  finally, prune out
    594 		 * any empty priority structures.
    595 		 */
    596 		priority = SCARG(uap, misc);
    597 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    598 		simple_lock(&uvm.swap_data_lock);
    599 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
    600 			error = ENOENT;
    601 		} else {
    602 			swaplist_insert(sdp, spp, priority);
    603 			swaplist_trim();
    604 		}
    605 		simple_unlock(&uvm.swap_data_lock);
    606 		if (error)
    607 			free(spp, M_VMSWAP);
    608 		break;
    609 
    610 	case SWAP_ON:
    611 
    612 		/*
    613 		 * check for duplicates.   if none found, then insert a
    614 		 * dummy entry on the list to prevent someone else from
    615 		 * trying to enable this device while we are working on
    616 		 * it.
    617 		 */
    618 
    619 		priority = SCARG(uap, misc);
    620 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    621 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    622 		memset(sdp, 0, sizeof(*sdp));
    623 		sdp->swd_flags = SWF_FAKE;
    624 		sdp->swd_vp = vp;
    625 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    626 		bufq_alloc(&sdp->swd_tab, BUFQ_DISKSORT|BUFQ_SORT_RAWBLOCK);
    627 		simple_lock(&uvm.swap_data_lock);
    628 		if (swaplist_find(vp, 0) != NULL) {
    629 			error = EBUSY;
    630 			simple_unlock(&uvm.swap_data_lock);
    631 			bufq_free(&sdp->swd_tab);
    632 			free(sdp, M_VMSWAP);
    633 			free(spp, M_VMSWAP);
    634 			break;
    635 		}
    636 		swaplist_insert(sdp, spp, priority);
    637 		simple_unlock(&uvm.swap_data_lock);
    638 
    639 		sdp->swd_pathlen = len;
    640 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    641 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    642 			panic("swapctl: copystr");
    643 
    644 		/*
    645 		 * we've now got a FAKE placeholder in the swap list.
    646 		 * now attempt to enable swap on it.  if we fail, undo
    647 		 * what we've done and kill the fake entry we just inserted.
    648 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    649 		 */
    650 
    651 		if ((error = swap_on(p, sdp)) != 0) {
    652 			simple_lock(&uvm.swap_data_lock);
    653 			(void) swaplist_find(vp, 1);  /* kill fake entry */
    654 			swaplist_trim();
    655 			simple_unlock(&uvm.swap_data_lock);
    656 			bufq_free(&sdp->swd_tab);
    657 			free(sdp->swd_path, M_VMSWAP);
    658 			free(sdp, M_VMSWAP);
    659 			break;
    660 		}
    661 		break;
    662 
    663 	case SWAP_OFF:
    664 		simple_lock(&uvm.swap_data_lock);
    665 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
    666 			simple_unlock(&uvm.swap_data_lock);
    667 			error = ENXIO;
    668 			break;
    669 		}
    670 
    671 		/*
    672 		 * If a device isn't in use or enabled, we
    673 		 * can't stop swapping from it (again).
    674 		 */
    675 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    676 			simple_unlock(&uvm.swap_data_lock);
    677 			error = EBUSY;
    678 			break;
    679 		}
    680 
    681 		/*
    682 		 * do the real work.
    683 		 */
    684 		error = swap_off(p, sdp);
    685 		break;
    686 
    687 	default:
    688 		error = EINVAL;
    689 	}
    690 
    691 	/*
    692 	 * done!  release the ref gained by namei() and unlock.
    693 	 */
    694 	vput(vp);
    695 
    696 out:
    697 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
    698 
    699 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    700 	return (error);
    701 }
    702 
    703 /*
    704  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
    705  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    706  * emulation to use it directly without going through sys_swapctl().
    707  * The problem with using sys_swapctl() there is that it involves
    708  * copying the swapent array to the stackgap, and this array's size
    709  * is not known at build time. Hence it would not be possible to
    710  * ensure it would fit in the stackgap in any case.
    711  */
    712 void
    713 uvm_swap_stats(cmd, sep, sec, retval)
    714 	int cmd;
    715 	struct swapent *sep;
    716 	int sec;
    717 	register_t *retval;
    718 {
    719 	struct swappri *spp;
    720 	struct swapdev *sdp;
    721 	int count = 0;
    722 
    723 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    724 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    725 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
    726 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    727 		  	/*
    728 			 * backwards compatibility for system call.
    729 			 * note that we use 'struct oswapent' as an
    730 			 * overlay into both 'struct swapdev' and
    731 			 * the userland 'struct swapent', as we
    732 			 * want to retain backwards compatibility
    733 			 * with NetBSD 1.3.
    734 			 */
    735 			sdp->swd_ose.ose_inuse =
    736 			    btodb((u_int64_t)sdp->swd_npginuse <<
    737 			    PAGE_SHIFT);
    738 			(void)memcpy(sep, &sdp->swd_ose,
    739 			    sizeof(struct oswapent));
    740 
    741 			/* now copy out the path if necessary */
    742 #if defined(COMPAT_13)
    743 			if (cmd == SWAP_STATS)
    744 #endif
    745 				(void)memcpy(&sep->se_path, sdp->swd_path,
    746 				    sdp->swd_pathlen);
    747 
    748 			count++;
    749 #if defined(COMPAT_13)
    750 			if (cmd == SWAP_OSTATS)
    751 				sep = (struct swapent *)
    752 				    ((struct oswapent *)sep + 1);
    753 			else
    754 #endif
    755 				sep++;
    756 		}
    757 	}
    758 
    759 	*retval = count;
    760 	return;
    761 }
    762 
    763 /*
    764  * swap_on: attempt to enable a swapdev for swapping.   note that the
    765  *	swapdev is already on the global list, but disabled (marked
    766  *	SWF_FAKE).
    767  *
    768  * => we avoid the start of the disk (to protect disk labels)
    769  * => we also avoid the miniroot, if we are swapping to root.
    770  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
    771  *	if needed.
    772  */
    773 static int
    774 swap_on(p, sdp)
    775 	struct proc *p;
    776 	struct swapdev *sdp;
    777 {
    778 	static int count = 0;	/* static */
    779 	struct vnode *vp;
    780 	int error, npages, nblocks, size;
    781 	long addr;
    782 	u_long result;
    783 	struct vattr va;
    784 #ifdef NFS
    785 	extern int (**nfsv2_vnodeop_p)(void *);
    786 #endif /* NFS */
    787 	const struct bdevsw *bdev;
    788 	dev_t dev;
    789 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    790 
    791 	/*
    792 	 * we want to enable swapping on sdp.   the swd_vp contains
    793 	 * the vnode we want (locked and ref'd), and the swd_dev
    794 	 * contains the dev_t of the file, if it a block device.
    795 	 */
    796 
    797 	vp = sdp->swd_vp;
    798 	dev = sdp->swd_dev;
    799 
    800 	/*
    801 	 * open the swap file (mostly useful for block device files to
    802 	 * let device driver know what is up).
    803 	 *
    804 	 * we skip the open/close for root on swap because the root
    805 	 * has already been opened when root was mounted (mountroot).
    806 	 */
    807 	if (vp != rootvp) {
    808 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
    809 			return (error);
    810 	}
    811 
    812 	/* XXX this only works for block devices */
    813 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    814 
    815 	/*
    816 	 * we now need to determine the size of the swap area.   for
    817 	 * block specials we can call the d_psize function.
    818 	 * for normal files, we must stat [get attrs].
    819 	 *
    820 	 * we put the result in nblks.
    821 	 * for normal files, we also want the filesystem block size
    822 	 * (which we get with statfs).
    823 	 */
    824 	switch (vp->v_type) {
    825 	case VBLK:
    826 		bdev = bdevsw_lookup(dev);
    827 		if (bdev == NULL || bdev->d_psize == NULL ||
    828 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
    829 			error = ENXIO;
    830 			goto bad;
    831 		}
    832 		break;
    833 
    834 	case VREG:
    835 		if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
    836 			goto bad;
    837 		nblocks = (int)btodb(va.va_size);
    838 		if ((error =
    839 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
    840 			goto bad;
    841 
    842 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    843 		/*
    844 		 * limit the max # of outstanding I/O requests we issue
    845 		 * at any one time.   take it easy on NFS servers.
    846 		 */
    847 #ifdef NFS
    848 		if (vp->v_op == nfsv2_vnodeop_p)
    849 			sdp->swd_maxactive = 2; /* XXX */
    850 		else
    851 #endif /* NFS */
    852 			sdp->swd_maxactive = 8; /* XXX */
    853 		break;
    854 
    855 	default:
    856 		error = ENXIO;
    857 		goto bad;
    858 	}
    859 
    860 	/*
    861 	 * save nblocks in a safe place and convert to pages.
    862 	 */
    863 
    864 	sdp->swd_ose.ose_nblks = nblocks;
    865 	npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
    866 
    867 	/*
    868 	 * for block special files, we want to make sure that leave
    869 	 * the disklabel and bootblocks alone, so we arrange to skip
    870 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    871 	 * note that because of this the "size" can be less than the
    872 	 * actual number of blocks on the device.
    873 	 */
    874 	if (vp->v_type == VBLK) {
    875 		/* we use pages 1 to (size - 1) [inclusive] */
    876 		size = npages - 1;
    877 		addr = 1;
    878 	} else {
    879 		/* we use pages 0 to (size - 1) [inclusive] */
    880 		size = npages;
    881 		addr = 0;
    882 	}
    883 
    884 	/*
    885 	 * make sure we have enough blocks for a reasonable sized swap
    886 	 * area.   we want at least one page.
    887 	 */
    888 
    889 	if (size < 1) {
    890 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    891 		error = EINVAL;
    892 		goto bad;
    893 	}
    894 
    895 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    896 
    897 	/*
    898 	 * now we need to allocate an extent to manage this swap device
    899 	 */
    900 	snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
    901 	    count++);
    902 
    903 	/* note that extent_create's 3rd arg is inclusive, thus "- 1" */
    904 	sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
    905 				    0, 0, EX_WAITOK);
    906 	/* allocate the `saved' region from the extent so it won't be used */
    907 	if (addr) {
    908 		if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
    909 			panic("disklabel region");
    910 	}
    911 
    912 	/*
    913 	 * if the vnode we are swapping to is the root vnode
    914 	 * (i.e. we are swapping to the miniroot) then we want
    915 	 * to make sure we don't overwrite it.   do a statfs to
    916 	 * find its size and skip over it.
    917 	 */
    918 	if (vp == rootvp) {
    919 		struct mount *mp;
    920 		struct statvfs *sp;
    921 		int rootblocks, rootpages;
    922 
    923 		mp = rootvnode->v_mount;
    924 		sp = &mp->mnt_stat;
    925 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    926 		/*
    927 		 * XXX: sp->f_blocks isn't the total number of
    928 		 * blocks in the filesystem, it's the number of
    929 		 * data blocks.  so, our rootblocks almost
    930 		 * definitely underestimates the total size
    931 		 * of the filesystem - how badly depends on the
    932 		 * details of the filesystem type.  there isn't
    933 		 * an obvious way to deal with this cleanly
    934 		 * and perfectly, so for now we just pad our
    935 		 * rootblocks estimate with an extra 5 percent.
    936 		 */
    937 		rootblocks += (rootblocks >> 5) +
    938 			(rootblocks >> 6) +
    939 			(rootblocks >> 7);
    940 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    941 		if (rootpages > size)
    942 			panic("swap_on: miniroot larger than swap?");
    943 
    944 		if (extent_alloc_region(sdp->swd_ex, addr,
    945 					rootpages, EX_WAITOK))
    946 			panic("swap_on: unable to preserve miniroot");
    947 
    948 		size -= rootpages;
    949 		printf("Preserved %d pages of miniroot ", rootpages);
    950 		printf("leaving %d pages of swap\n", size);
    951 	}
    952 
    953   	/*
    954 	 * try to add anons to reflect the new swap space.
    955 	 */
    956 
    957 	error = uvm_anon_add(size);
    958 	if (error) {
    959 		goto bad;
    960 	}
    961 
    962 	/*
    963 	 * add a ref to vp to reflect usage as a swap device.
    964 	 */
    965 	vref(vp);
    966 
    967 	/*
    968 	 * now add the new swapdev to the drum and enable.
    969 	 */
    970 	if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
    971 	    EX_WAITOK, &result))
    972 		panic("swapdrum_add");
    973 
    974 	sdp->swd_drumoffset = (int)result;
    975 	sdp->swd_drumsize = npages;
    976 	sdp->swd_npages = size;
    977 	simple_lock(&uvm.swap_data_lock);
    978 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    979 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    980 	uvmexp.swpages += size;
    981 	uvmexp.swpgavail += size;
    982 	simple_unlock(&uvm.swap_data_lock);
    983 	return (0);
    984 
    985 	/*
    986 	 * failure: clean up and return error.
    987 	 */
    988 
    989 bad:
    990 	if (sdp->swd_ex) {
    991 		extent_destroy(sdp->swd_ex);
    992 	}
    993 	if (vp != rootvp) {
    994 		(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
    995 	}
    996 	return (error);
    997 }
    998 
    999 /*
   1000  * swap_off: stop swapping on swapdev
   1001  *
   1002  * => swap data should be locked, we will unlock.
   1003  */
   1004 static int
   1005 swap_off(p, sdp)
   1006 	struct proc *p;
   1007 	struct swapdev *sdp;
   1008 {
   1009 	int npages =  sdp->swd_npages;
   1010 
   1011 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1012 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
   1013 
   1014 	/* disable the swap area being removed */
   1015 	sdp->swd_flags &= ~SWF_ENABLE;
   1016 	uvmexp.swpgavail -= npages;
   1017 	simple_unlock(&uvm.swap_data_lock);
   1018 
   1019 	/*
   1020 	 * the idea is to find all the pages that are paged out to this
   1021 	 * device, and page them all in.  in uvm, swap-backed pageable
   1022 	 * memory can take two forms: aobjs and anons.  call the
   1023 	 * swapoff hook for each subsystem to bring in pages.
   1024 	 */
   1025 
   1026 	if (uao_swap_off(sdp->swd_drumoffset,
   1027 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1028 	    anon_swap_off(sdp->swd_drumoffset,
   1029 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1030 
   1031 		simple_lock(&uvm.swap_data_lock);
   1032 		sdp->swd_flags |= SWF_ENABLE;
   1033 		uvmexp.swpgavail += npages;
   1034 		simple_unlock(&uvm.swap_data_lock);
   1035 		return ENOMEM;
   1036 	}
   1037 	KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
   1038 
   1039 	/*
   1040 	 * done with the vnode.
   1041 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1042 	 * so that spec_close() can tell if this is the last close.
   1043 	 */
   1044 	vrele(sdp->swd_vp);
   1045 	if (sdp->swd_vp != rootvp) {
   1046 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
   1047 	}
   1048 
   1049 	/* remove anons from the system */
   1050 	uvm_anon_remove(npages);
   1051 
   1052 	simple_lock(&uvm.swap_data_lock);
   1053 	uvmexp.swpages -= npages;
   1054 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1055 
   1056 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
   1057 		panic("swap_off: swapdev not in list");
   1058 	swaplist_trim();
   1059 	simple_unlock(&uvm.swap_data_lock);
   1060 
   1061 	/*
   1062 	 * free all resources!
   1063 	 */
   1064 	extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
   1065 		    EX_WAITOK);
   1066 	extent_destroy(sdp->swd_ex);
   1067 	bufq_free(&sdp->swd_tab);
   1068 	free(sdp, M_VMSWAP);
   1069 	return (0);
   1070 }
   1071 
   1072 /*
   1073  * /dev/drum interface and i/o functions
   1074  */
   1075 
   1076 /*
   1077  * swread: the read function for the drum (just a call to physio)
   1078  */
   1079 /*ARGSUSED*/
   1080 int
   1081 swread(dev, uio, ioflag)
   1082 	dev_t dev;
   1083 	struct uio *uio;
   1084 	int ioflag;
   1085 {
   1086 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1087 
   1088 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1089 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1090 }
   1091 
   1092 /*
   1093  * swwrite: the write function for the drum (just a call to physio)
   1094  */
   1095 /*ARGSUSED*/
   1096 int
   1097 swwrite(dev, uio, ioflag)
   1098 	dev_t dev;
   1099 	struct uio *uio;
   1100 	int ioflag;
   1101 {
   1102 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1103 
   1104 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1105 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1106 }
   1107 
   1108 /*
   1109  * swstrategy: perform I/O on the drum
   1110  *
   1111  * => we must map the i/o request from the drum to the correct swapdev.
   1112  */
   1113 void
   1114 swstrategy(bp)
   1115 	struct buf *bp;
   1116 {
   1117 	struct swapdev *sdp;
   1118 	struct vnode *vp;
   1119 	int s, pageno, bn;
   1120 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1121 
   1122 	/*
   1123 	 * convert block number to swapdev.   note that swapdev can't
   1124 	 * be yanked out from under us because we are holding resources
   1125 	 * in it (i.e. the blocks we are doing I/O on).
   1126 	 */
   1127 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1128 	simple_lock(&uvm.swap_data_lock);
   1129 	sdp = swapdrum_getsdp(pageno);
   1130 	simple_unlock(&uvm.swap_data_lock);
   1131 	if (sdp == NULL) {
   1132 		bp->b_error = EINVAL;
   1133 		bp->b_flags |= B_ERROR;
   1134 		biodone(bp);
   1135 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1136 		return;
   1137 	}
   1138 
   1139 	/*
   1140 	 * convert drum page number to block number on this swapdev.
   1141 	 */
   1142 
   1143 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1144 	bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1145 
   1146 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1147 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1148 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1149 
   1150 	/*
   1151 	 * for block devices we finish up here.
   1152 	 * for regular files we have to do more work which we delegate
   1153 	 * to sw_reg_strategy().
   1154 	 */
   1155 
   1156 	switch (sdp->swd_vp->v_type) {
   1157 	default:
   1158 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
   1159 
   1160 	case VBLK:
   1161 
   1162 		/*
   1163 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1164 		 * on the swapdev (sdp).
   1165 		 */
   1166 		s = splbio();
   1167 		bp->b_blkno = bn;		/* swapdev block number */
   1168 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1169 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1170 
   1171 		/*
   1172 		 * if we are doing a write, we have to redirect the i/o on
   1173 		 * drum's v_numoutput counter to the swapdevs.
   1174 		 */
   1175 		if ((bp->b_flags & B_READ) == 0) {
   1176 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1177 			V_INCR_NUMOUTPUT(vp);	/* put it on swapdev */
   1178 		}
   1179 
   1180 		/*
   1181 		 * finally plug in swapdev vnode and start I/O
   1182 		 */
   1183 		bp->b_vp = vp;
   1184 		splx(s);
   1185 		VOP_STRATEGY(vp, bp);
   1186 		return;
   1187 
   1188 	case VREG:
   1189 		/*
   1190 		 * delegate to sw_reg_strategy function.
   1191 		 */
   1192 		sw_reg_strategy(sdp, bp, bn);
   1193 		return;
   1194 	}
   1195 	/* NOTREACHED */
   1196 }
   1197 
   1198 /*
   1199  * sw_reg_strategy: handle swap i/o to regular files
   1200  */
   1201 static void
   1202 sw_reg_strategy(sdp, bp, bn)
   1203 	struct swapdev	*sdp;
   1204 	struct buf	*bp;
   1205 	int		bn;
   1206 {
   1207 	struct vnode	*vp;
   1208 	struct vndxfer	*vnx;
   1209 	daddr_t		nbn;
   1210 	caddr_t		addr;
   1211 	off_t		byteoff;
   1212 	int		s, off, nra, error, sz, resid;
   1213 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1214 
   1215 	/*
   1216 	 * allocate a vndxfer head for this transfer and point it to
   1217 	 * our buffer.
   1218 	 */
   1219 	getvndxfer(vnx);
   1220 	vnx->vx_flags = VX_BUSY;
   1221 	vnx->vx_error = 0;
   1222 	vnx->vx_pending = 0;
   1223 	vnx->vx_bp = bp;
   1224 	vnx->vx_sdp = sdp;
   1225 
   1226 	/*
   1227 	 * setup for main loop where we read filesystem blocks into
   1228 	 * our buffer.
   1229 	 */
   1230 	error = 0;
   1231 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1232 	addr = bp->b_data;		/* current position in buffer */
   1233 	byteoff = dbtob((u_int64_t)bn);
   1234 
   1235 	for (resid = bp->b_resid; resid; resid -= sz) {
   1236 		struct vndbuf	*nbp;
   1237 
   1238 		/*
   1239 		 * translate byteoffset into block number.  return values:
   1240 		 *   vp = vnode of underlying device
   1241 		 *  nbn = new block number (on underlying vnode dev)
   1242 		 *  nra = num blocks we can read-ahead (excludes requested
   1243 		 *	block)
   1244 		 */
   1245 		nra = 0;
   1246 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1247 				 	&vp, &nbn, &nra);
   1248 
   1249 		if (error == 0 && nbn == (daddr_t)-1) {
   1250 			/*
   1251 			 * this used to just set error, but that doesn't
   1252 			 * do the right thing.  Instead, it causes random
   1253 			 * memory errors.  The panic() should remain until
   1254 			 * this condition doesn't destabilize the system.
   1255 			 */
   1256 #if 1
   1257 			panic("sw_reg_strategy: swap to sparse file");
   1258 #else
   1259 			error = EIO;	/* failure */
   1260 #endif
   1261 		}
   1262 
   1263 		/*
   1264 		 * punt if there was an error or a hole in the file.
   1265 		 * we must wait for any i/o ops we have already started
   1266 		 * to finish before returning.
   1267 		 *
   1268 		 * XXX we could deal with holes here but it would be
   1269 		 * a hassle (in the write case).
   1270 		 */
   1271 		if (error) {
   1272 			s = splbio();
   1273 			vnx->vx_error = error;	/* pass error up */
   1274 			goto out;
   1275 		}
   1276 
   1277 		/*
   1278 		 * compute the size ("sz") of this transfer (in bytes).
   1279 		 */
   1280 		off = byteoff % sdp->swd_bsize;
   1281 		sz = (1 + nra) * sdp->swd_bsize - off;
   1282 		if (sz > resid)
   1283 			sz = resid;
   1284 
   1285 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1286 			    "vp %p/%p offset 0x%x/0x%x",
   1287 			    sdp->swd_vp, vp, byteoff, nbn);
   1288 
   1289 		/*
   1290 		 * now get a buf structure.   note that the vb_buf is
   1291 		 * at the front of the nbp structure so that you can
   1292 		 * cast pointers between the two structure easily.
   1293 		 */
   1294 		getvndbuf(nbp);
   1295 		BUF_INIT(&nbp->vb_buf);
   1296 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
   1297 		nbp->vb_buf.b_bcount   = sz;
   1298 		nbp->vb_buf.b_bufsize  = sz;
   1299 		nbp->vb_buf.b_error    = 0;
   1300 		nbp->vb_buf.b_data     = addr;
   1301 		nbp->vb_buf.b_lblkno   = 0;
   1302 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1303 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1304 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
   1305 		nbp->vb_buf.b_vp       = vp;
   1306 		if (vp->v_type == VBLK) {
   1307 			nbp->vb_buf.b_dev = vp->v_rdev;
   1308 		}
   1309 
   1310 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1311 
   1312 		/*
   1313 		 * Just sort by block number
   1314 		 */
   1315 		s = splbio();
   1316 		if (vnx->vx_error != 0) {
   1317 			putvndbuf(nbp);
   1318 			goto out;
   1319 		}
   1320 		vnx->vx_pending++;
   1321 
   1322 		/* sort it in and start I/O if we are not over our limit */
   1323 		BUFQ_PUT(&sdp->swd_tab, &nbp->vb_buf);
   1324 		sw_reg_start(sdp);
   1325 		splx(s);
   1326 
   1327 		/*
   1328 		 * advance to the next I/O
   1329 		 */
   1330 		byteoff += sz;
   1331 		addr += sz;
   1332 	}
   1333 
   1334 	s = splbio();
   1335 
   1336 out: /* Arrive here at splbio */
   1337 	vnx->vx_flags &= ~VX_BUSY;
   1338 	if (vnx->vx_pending == 0) {
   1339 		if (vnx->vx_error != 0) {
   1340 			bp->b_error = vnx->vx_error;
   1341 			bp->b_flags |= B_ERROR;
   1342 		}
   1343 		putvndxfer(vnx);
   1344 		biodone(bp);
   1345 	}
   1346 	splx(s);
   1347 }
   1348 
   1349 /*
   1350  * sw_reg_start: start an I/O request on the requested swapdev
   1351  *
   1352  * => reqs are sorted by b_rawblkno (above)
   1353  */
   1354 static void
   1355 sw_reg_start(sdp)
   1356 	struct swapdev	*sdp;
   1357 {
   1358 	struct buf	*bp;
   1359 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1360 
   1361 	/* recursion control */
   1362 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1363 		return;
   1364 
   1365 	sdp->swd_flags |= SWF_BUSY;
   1366 
   1367 	while (sdp->swd_active < sdp->swd_maxactive) {
   1368 		bp = BUFQ_GET(&sdp->swd_tab);
   1369 		if (bp == NULL)
   1370 			break;
   1371 		sdp->swd_active++;
   1372 
   1373 		UVMHIST_LOG(pdhist,
   1374 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1375 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1376 		if ((bp->b_flags & B_READ) == 0)
   1377 			V_INCR_NUMOUTPUT(bp->b_vp);
   1378 
   1379 		VOP_STRATEGY(bp->b_vp, bp);
   1380 	}
   1381 	sdp->swd_flags &= ~SWF_BUSY;
   1382 }
   1383 
   1384 /*
   1385  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1386  *
   1387  * => note that we can recover the vndbuf struct by casting the buf ptr
   1388  */
   1389 static void
   1390 sw_reg_iodone(bp)
   1391 	struct buf *bp;
   1392 {
   1393 	struct vndbuf *vbp = (struct vndbuf *) bp;
   1394 	struct vndxfer *vnx = vbp->vb_xfer;
   1395 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1396 	struct swapdev	*sdp = vnx->vx_sdp;
   1397 	int s, resid, error;
   1398 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1399 
   1400 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1401 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1402 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1403 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1404 
   1405 	/*
   1406 	 * protect vbp at splbio and update.
   1407 	 */
   1408 
   1409 	s = splbio();
   1410 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1411 	pbp->b_resid -= resid;
   1412 	vnx->vx_pending--;
   1413 
   1414 	if (vbp->vb_buf.b_flags & B_ERROR) {
   1415 		/* pass error upward */
   1416 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1417 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1418 		vnx->vx_error = error;
   1419 	}
   1420 
   1421 	/*
   1422 	 * kill vbp structure
   1423 	 */
   1424 	putvndbuf(vbp);
   1425 
   1426 	/*
   1427 	 * wrap up this transaction if it has run to completion or, in
   1428 	 * case of an error, when all auxiliary buffers have returned.
   1429 	 */
   1430 	if (vnx->vx_error != 0) {
   1431 		/* pass error upward */
   1432 		pbp->b_flags |= B_ERROR;
   1433 		pbp->b_error = vnx->vx_error;
   1434 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1435 			putvndxfer(vnx);
   1436 			biodone(pbp);
   1437 		}
   1438 	} else if (pbp->b_resid == 0) {
   1439 		KASSERT(vnx->vx_pending == 0);
   1440 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1441 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1442 			    pbp, vnx->vx_error, 0, 0);
   1443 			putvndxfer(vnx);
   1444 			biodone(pbp);
   1445 		}
   1446 	}
   1447 
   1448 	/*
   1449 	 * done!   start next swapdev I/O if one is pending
   1450 	 */
   1451 	sdp->swd_active--;
   1452 	sw_reg_start(sdp);
   1453 	splx(s);
   1454 }
   1455 
   1456 
   1457 /*
   1458  * uvm_swap_alloc: allocate space on swap
   1459  *
   1460  * => allocation is done "round robin" down the priority list, as we
   1461  *	allocate in a priority we "rotate" the circle queue.
   1462  * => space can be freed with uvm_swap_free
   1463  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1464  * => we lock uvm.swap_data_lock
   1465  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1466  */
   1467 int
   1468 uvm_swap_alloc(nslots, lessok)
   1469 	int *nslots;	/* IN/OUT */
   1470 	boolean_t lessok;
   1471 {
   1472 	struct swapdev *sdp;
   1473 	struct swappri *spp;
   1474 	u_long	result;
   1475 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1476 
   1477 	/*
   1478 	 * no swap devices configured yet?   definite failure.
   1479 	 */
   1480 	if (uvmexp.nswapdev < 1)
   1481 		return 0;
   1482 
   1483 	/*
   1484 	 * lock data lock, convert slots into blocks, and enter loop
   1485 	 */
   1486 	simple_lock(&uvm.swap_data_lock);
   1487 
   1488 ReTry:	/* XXXMRG */
   1489 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1490 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1491 			/* if it's not enabled, then we can't swap from it */
   1492 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1493 				continue;
   1494 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1495 				continue;
   1496 			if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
   1497 					 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
   1498 					 &result) != 0) {
   1499 				continue;
   1500 			}
   1501 
   1502 			/*
   1503 			 * successful allocation!  now rotate the circleq.
   1504 			 */
   1505 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1506 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1507 			sdp->swd_npginuse += *nslots;
   1508 			uvmexp.swpginuse += *nslots;
   1509 			simple_unlock(&uvm.swap_data_lock);
   1510 			/* done!  return drum slot number */
   1511 			UVMHIST_LOG(pdhist,
   1512 			    "success!  returning %d slots starting at %d",
   1513 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1514 			return (result + sdp->swd_drumoffset);
   1515 		}
   1516 	}
   1517 
   1518 	/* XXXMRG: BEGIN HACK */
   1519 	if (*nslots > 1 && lessok) {
   1520 		*nslots = 1;
   1521 		goto ReTry;	/* XXXMRG: ugh!  extent should support this for us */
   1522 	}
   1523 	/* XXXMRG: END HACK */
   1524 
   1525 	simple_unlock(&uvm.swap_data_lock);
   1526 	return 0;
   1527 }
   1528 
   1529 boolean_t
   1530 uvm_swapisfull(void)
   1531 {
   1532 	boolean_t rv;
   1533 
   1534 	simple_lock(&uvm.swap_data_lock);
   1535 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1536 	rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
   1537 	simple_unlock(&uvm.swap_data_lock);
   1538 
   1539 	return (rv);
   1540 }
   1541 
   1542 /*
   1543  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1544  *
   1545  * => we lock uvm.swap_data_lock
   1546  */
   1547 void
   1548 uvm_swap_markbad(startslot, nslots)
   1549 	int startslot;
   1550 	int nslots;
   1551 {
   1552 	struct swapdev *sdp;
   1553 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1554 
   1555 	simple_lock(&uvm.swap_data_lock);
   1556 	sdp = swapdrum_getsdp(startslot);
   1557 	KASSERT(sdp != NULL);
   1558 
   1559 	/*
   1560 	 * we just keep track of how many pages have been marked bad
   1561 	 * in this device, to make everything add up in swap_off().
   1562 	 * we assume here that the range of slots will all be within
   1563 	 * one swap device.
   1564 	 */
   1565 
   1566 	KASSERT(uvmexp.swpgonly >= nslots);
   1567 	uvmexp.swpgonly -= nslots;
   1568 	sdp->swd_npgbad += nslots;
   1569 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1570 	simple_unlock(&uvm.swap_data_lock);
   1571 }
   1572 
   1573 /*
   1574  * uvm_swap_free: free swap slots
   1575  *
   1576  * => this can be all or part of an allocation made by uvm_swap_alloc
   1577  * => we lock uvm.swap_data_lock
   1578  */
   1579 void
   1580 uvm_swap_free(startslot, nslots)
   1581 	int startslot;
   1582 	int nslots;
   1583 {
   1584 	struct swapdev *sdp;
   1585 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1586 
   1587 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1588 	    startslot, 0, 0);
   1589 
   1590 	/*
   1591 	 * ignore attempts to free the "bad" slot.
   1592 	 */
   1593 
   1594 	if (startslot == SWSLOT_BAD) {
   1595 		return;
   1596 	}
   1597 
   1598 	/*
   1599 	 * convert drum slot offset back to sdp, free the blocks
   1600 	 * in the extent, and return.   must hold pri lock to do
   1601 	 * lookup and access the extent.
   1602 	 */
   1603 
   1604 	simple_lock(&uvm.swap_data_lock);
   1605 	sdp = swapdrum_getsdp(startslot);
   1606 	KASSERT(uvmexp.nswapdev >= 1);
   1607 	KASSERT(sdp != NULL);
   1608 	KASSERT(sdp->swd_npginuse >= nslots);
   1609 	if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
   1610 			EX_MALLOCOK|EX_NOWAIT) != 0) {
   1611 		printf("warning: resource shortage: %d pages of swap lost\n",
   1612 			nslots);
   1613 	}
   1614 	sdp->swd_npginuse -= nslots;
   1615 	uvmexp.swpginuse -= nslots;
   1616 	simple_unlock(&uvm.swap_data_lock);
   1617 }
   1618 
   1619 /*
   1620  * uvm_swap_put: put any number of pages into a contig place on swap
   1621  *
   1622  * => can be sync or async
   1623  */
   1624 
   1625 int
   1626 uvm_swap_put(swslot, ppsp, npages, flags)
   1627 	int swslot;
   1628 	struct vm_page **ppsp;
   1629 	int npages;
   1630 	int flags;
   1631 {
   1632 	int error;
   1633 
   1634 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1635 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1636 	return error;
   1637 }
   1638 
   1639 /*
   1640  * uvm_swap_get: get a single page from swap
   1641  *
   1642  * => usually a sync op (from fault)
   1643  */
   1644 
   1645 int
   1646 uvm_swap_get(page, swslot, flags)
   1647 	struct vm_page *page;
   1648 	int swslot, flags;
   1649 {
   1650 	int error;
   1651 
   1652 	uvmexp.nswget++;
   1653 	KASSERT(flags & PGO_SYNCIO);
   1654 	if (swslot == SWSLOT_BAD) {
   1655 		return EIO;
   1656 	}
   1657 
   1658 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1659 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1660 	if (error == 0) {
   1661 
   1662 		/*
   1663 		 * this page is no longer only in swap.
   1664 		 */
   1665 
   1666 		simple_lock(&uvm.swap_data_lock);
   1667 		KASSERT(uvmexp.swpgonly > 0);
   1668 		uvmexp.swpgonly--;
   1669 		simple_unlock(&uvm.swap_data_lock);
   1670 	}
   1671 	return error;
   1672 }
   1673 
   1674 /*
   1675  * uvm_swap_io: do an i/o operation to swap
   1676  */
   1677 
   1678 static int
   1679 uvm_swap_io(pps, startslot, npages, flags)
   1680 	struct vm_page **pps;
   1681 	int startslot, npages, flags;
   1682 {
   1683 	daddr_t startblk;
   1684 	struct	buf *bp;
   1685 	vaddr_t kva;
   1686 	int	error, s, mapinflags;
   1687 	boolean_t write, async;
   1688 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1689 
   1690 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1691 	    startslot, npages, flags, 0);
   1692 
   1693 	write = (flags & B_READ) == 0;
   1694 	async = (flags & B_ASYNC) != 0;
   1695 
   1696 	/*
   1697 	 * convert starting drum slot to block number
   1698 	 */
   1699 
   1700 	startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
   1701 
   1702 	/*
   1703 	 * first, map the pages into the kernel.
   1704 	 */
   1705 
   1706 	mapinflags = !write ?
   1707 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1708 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1709 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1710 
   1711 	/*
   1712 	 * now allocate a buf for the i/o.
   1713 	 */
   1714 
   1715 	s = splbio();
   1716 	bp = pool_get(&bufpool, PR_WAITOK);
   1717 	splx(s);
   1718 
   1719 	/*
   1720 	 * fill in the bp/sbp.   we currently route our i/o through
   1721 	 * /dev/drum's vnode [swapdev_vp].
   1722 	 */
   1723 
   1724 	BUF_INIT(bp);
   1725 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
   1726 	bp->b_proc = &proc0;	/* XXX */
   1727 	bp->b_vnbufs.le_next = NOLIST;
   1728 	bp->b_data = (caddr_t)kva;
   1729 	bp->b_blkno = startblk;
   1730 	bp->b_vp = swapdev_vp;
   1731 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1732 
   1733 	/*
   1734 	 * bump v_numoutput (counter of number of active outputs).
   1735 	 */
   1736 
   1737 	if (write) {
   1738 		s = splbio();
   1739 		V_INCR_NUMOUTPUT(swapdev_vp);
   1740 		splx(s);
   1741 	}
   1742 
   1743 	/*
   1744 	 * for async ops we must set up the iodone handler.
   1745 	 */
   1746 
   1747 	if (async) {
   1748 		bp->b_flags |= B_CALL;
   1749 		bp->b_iodone = uvm_aio_biodone;
   1750 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1751 		if (curproc == uvm.pagedaemon_proc)
   1752 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1753 		else
   1754 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1755 	} else {
   1756 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1757 	}
   1758 	UVMHIST_LOG(pdhist,
   1759 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1760 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1761 
   1762 	/*
   1763 	 * now we start the I/O, and if async, return.
   1764 	 */
   1765 
   1766 	VOP_STRATEGY(swapdev_vp, bp);
   1767 	if (async)
   1768 		return 0;
   1769 
   1770 	/*
   1771 	 * must be sync i/o.   wait for it to finish
   1772 	 */
   1773 
   1774 	error = biowait(bp);
   1775 
   1776 	/*
   1777 	 * kill the pager mapping
   1778 	 */
   1779 
   1780 	uvm_pagermapout(kva, npages);
   1781 
   1782 	/*
   1783 	 * now dispose of the buf and we're done.
   1784 	 */
   1785 
   1786 	s = splbio();
   1787 	if (write)
   1788 		vwakeup(bp);
   1789 	pool_put(&bufpool, bp);
   1790 	splx(s);
   1791 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1792 	return (error);
   1793 }
   1794