uvm_swap.c revision 1.88 1 /* $NetBSD: uvm_swap.c,v 1.88 2004/05/14 16:56:09 christos Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.88 2004/05/14 16:56:09 christos Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/conf.h>
46 #include <sys/proc.h>
47 #include <sys/namei.h>
48 #include <sys/disklabel.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/vnode.h>
53 #include <sys/file.h>
54 #include <sys/extent.h>
55 #include <sys/mount.h>
56 #include <sys/pool.h>
57 #include <sys/sa.h>
58 #include <sys/syscallargs.h>
59 #include <sys/swap.h>
60
61 #include <uvm/uvm.h>
62
63 #include <miscfs/specfs/specdev.h>
64
65 /*
66 * uvm_swap.c: manage configuration and i/o to swap space.
67 */
68
69 /*
70 * swap space is managed in the following way:
71 *
72 * each swap partition or file is described by a "swapdev" structure.
73 * each "swapdev" structure contains a "swapent" structure which contains
74 * information that is passed up to the user (via system calls).
75 *
76 * each swap partition is assigned a "priority" (int) which controls
77 * swap parition usage.
78 *
79 * the system maintains a global data structure describing all swap
80 * partitions/files. there is a sorted LIST of "swappri" structures
81 * which describe "swapdev"'s at that priority. this LIST is headed
82 * by the "swap_priority" global var. each "swappri" contains a
83 * CIRCLEQ of "swapdev" structures at that priority.
84 *
85 * locking:
86 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
87 * system call and prevents the swap priority list from changing
88 * while we are in the middle of a system call (e.g. SWAP_STATS).
89 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
90 * structures including the priority list, the swapdev structures,
91 * and the swapmap extent.
92 *
93 * each swap device has the following info:
94 * - swap device in use (could be disabled, preventing future use)
95 * - swap enabled (allows new allocations on swap)
96 * - map info in /dev/drum
97 * - vnode pointer
98 * for swap files only:
99 * - block size
100 * - max byte count in buffer
101 * - buffer
102 *
103 * userland controls and configures swap with the swapctl(2) system call.
104 * the sys_swapctl performs the following operations:
105 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
106 * [2] SWAP_STATS: given a pointer to an array of swapent structures
107 * (passed in via "arg") of a size passed in via "misc" ... we load
108 * the current swap config into the array. The actual work is done
109 * in the uvm_swap_stats(9) function.
110 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
111 * priority in "misc", start swapping on it.
112 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
113 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
114 * "misc")
115 */
116
117 /*
118 * swapdev: describes a single swap partition/file
119 *
120 * note the following should be true:
121 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
122 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
123 */
124 struct swapdev {
125 struct oswapent swd_ose;
126 #define swd_dev swd_ose.ose_dev /* device id */
127 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
128 #define swd_priority swd_ose.ose_priority /* our priority */
129 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
130 char *swd_path; /* saved pathname of device */
131 int swd_pathlen; /* length of pathname */
132 int swd_npages; /* #pages we can use */
133 int swd_npginuse; /* #pages in use */
134 int swd_npgbad; /* #pages bad */
135 int swd_drumoffset; /* page0 offset in drum */
136 int swd_drumsize; /* #pages in drum */
137 struct extent *swd_ex; /* extent for this swapdev */
138 char swd_exname[12]; /* name of extent above */
139 struct vnode *swd_vp; /* backing vnode */
140 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
141
142 int swd_bsize; /* blocksize (bytes) */
143 int swd_maxactive; /* max active i/o reqs */
144 struct bufq_state swd_tab; /* buffer list */
145 int swd_active; /* number of active buffers */
146 };
147
148 /*
149 * swap device priority entry; the list is kept sorted on `spi_priority'.
150 */
151 struct swappri {
152 int spi_priority; /* priority */
153 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
154 /* circleq of swapdevs at this priority */
155 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
156 };
157
158 /*
159 * The following two structures are used to keep track of data transfers
160 * on swap devices associated with regular files.
161 * NOTE: this code is more or less a copy of vnd.c; we use the same
162 * structure names here to ease porting..
163 */
164 struct vndxfer {
165 struct buf *vx_bp; /* Pointer to parent buffer */
166 struct swapdev *vx_sdp;
167 int vx_error;
168 int vx_pending; /* # of pending aux buffers */
169 int vx_flags;
170 #define VX_BUSY 1
171 #define VX_DEAD 2
172 };
173
174 struct vndbuf {
175 struct buf vb_buf;
176 struct vndxfer *vb_xfer;
177 };
178
179
180 /*
181 * We keep a of pool vndbuf's and vndxfer structures.
182 */
183 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL);
184 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL);
185
186 #define getvndxfer(vnx) do { \
187 int s = splbio(); \
188 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \
189 splx(s); \
190 } while (/*CONSTCOND*/ 0)
191
192 #define putvndxfer(vnx) { \
193 pool_put(&vndxfer_pool, (void *)(vnx)); \
194 }
195
196 #define getvndbuf(vbp) do { \
197 int s = splbio(); \
198 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \
199 splx(s); \
200 } while (/*CONSTCOND*/ 0)
201
202 #define putvndbuf(vbp) { \
203 pool_put(&vndbuf_pool, (void *)(vbp)); \
204 }
205
206 /*
207 * local variables
208 */
209 static struct extent *swapmap; /* controls the mapping of /dev/drum */
210
211 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
212
213 /* list of all active swap devices [by priority] */
214 LIST_HEAD(swap_priority, swappri);
215 static struct swap_priority swap_priority;
216
217 /* locks */
218 struct lock swap_syscall_lock;
219
220 /*
221 * prototypes
222 */
223 static struct swapdev *swapdrum_getsdp(int);
224
225 static struct swapdev *swaplist_find(struct vnode *, int);
226 static void swaplist_insert(struct swapdev *,
227 struct swappri *, int);
228 static void swaplist_trim(void);
229
230 static int swap_on(struct proc *, struct swapdev *);
231 static int swap_off(struct proc *, struct swapdev *);
232
233 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
234 static void sw_reg_iodone(struct buf *);
235 static void sw_reg_start(struct swapdev *);
236
237 static int uvm_swap_io(struct vm_page **, int, int, int);
238
239 dev_type_read(swread);
240 dev_type_write(swwrite);
241 dev_type_strategy(swstrategy);
242
243 const struct bdevsw swap_bdevsw = {
244 noopen, noclose, swstrategy, noioctl, nodump, nosize,
245 };
246
247 const struct cdevsw swap_cdevsw = {
248 nullopen, nullclose, swread, swwrite, noioctl,
249 nostop, notty, nopoll, nommap, nokqfilter
250 };
251
252 /*
253 * uvm_swap_init: init the swap system data structures and locks
254 *
255 * => called at boot time from init_main.c after the filesystems
256 * are brought up (which happens after uvm_init())
257 */
258 void
259 uvm_swap_init()
260 {
261 UVMHIST_FUNC("uvm_swap_init");
262
263 UVMHIST_CALLED(pdhist);
264 /*
265 * first, init the swap list, its counter, and its lock.
266 * then get a handle on the vnode for /dev/drum by using
267 * the its dev_t number ("swapdev", from MD conf.c).
268 */
269
270 LIST_INIT(&swap_priority);
271 uvmexp.nswapdev = 0;
272 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
273 simple_lock_init(&uvm.swap_data_lock);
274
275 if (bdevvp(swapdev, &swapdev_vp))
276 panic("uvm_swap_init: can't get vnode for swap device");
277
278 /*
279 * create swap block resource map to map /dev/drum. the range
280 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
281 * that block 0 is reserved (used to indicate an allocation
282 * failure, or no allocation).
283 */
284 swapmap = extent_create("swapmap", 1, INT_MAX,
285 M_VMSWAP, 0, 0, EX_NOWAIT);
286 if (swapmap == 0)
287 panic("uvm_swap_init: extent_create failed");
288
289 /*
290 * done!
291 */
292 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
293 }
294
295 /*
296 * swaplist functions: functions that operate on the list of swap
297 * devices on the system.
298 */
299
300 /*
301 * swaplist_insert: insert swap device "sdp" into the global list
302 *
303 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
304 * => caller must provide a newly malloc'd swappri structure (we will
305 * FREE it if we don't need it... this it to prevent malloc blocking
306 * here while adding swap)
307 */
308 static void
309 swaplist_insert(sdp, newspp, priority)
310 struct swapdev *sdp;
311 struct swappri *newspp;
312 int priority;
313 {
314 struct swappri *spp, *pspp;
315 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
316
317 /*
318 * find entry at or after which to insert the new device.
319 */
320 pspp = NULL;
321 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
322 if (priority <= spp->spi_priority)
323 break;
324 pspp = spp;
325 }
326
327 /*
328 * new priority?
329 */
330 if (spp == NULL || spp->spi_priority != priority) {
331 spp = newspp; /* use newspp! */
332 UVMHIST_LOG(pdhist, "created new swappri = %d",
333 priority, 0, 0, 0);
334
335 spp->spi_priority = priority;
336 CIRCLEQ_INIT(&spp->spi_swapdev);
337
338 if (pspp)
339 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
340 else
341 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
342 } else {
343 /* we don't need a new priority structure, free it */
344 FREE(newspp, M_VMSWAP);
345 }
346
347 /*
348 * priority found (or created). now insert on the priority's
349 * circleq list and bump the total number of swapdevs.
350 */
351 sdp->swd_priority = priority;
352 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
353 uvmexp.nswapdev++;
354 }
355
356 /*
357 * swaplist_find: find and optionally remove a swap device from the
358 * global list.
359 *
360 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
361 * => we return the swapdev we found (and removed)
362 */
363 static struct swapdev *
364 swaplist_find(vp, remove)
365 struct vnode *vp;
366 boolean_t remove;
367 {
368 struct swapdev *sdp;
369 struct swappri *spp;
370
371 /*
372 * search the lists for the requested vp
373 */
374
375 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
376 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
377 if (sdp->swd_vp == vp) {
378 if (remove) {
379 CIRCLEQ_REMOVE(&spp->spi_swapdev,
380 sdp, swd_next);
381 uvmexp.nswapdev--;
382 }
383 return(sdp);
384 }
385 }
386 }
387 return (NULL);
388 }
389
390
391 /*
392 * swaplist_trim: scan priority list for empty priority entries and kill
393 * them.
394 *
395 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
396 */
397 static void
398 swaplist_trim()
399 {
400 struct swappri *spp, *nextspp;
401
402 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
403 nextspp = LIST_NEXT(spp, spi_swappri);
404 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
405 (void *)&spp->spi_swapdev)
406 continue;
407 LIST_REMOVE(spp, spi_swappri);
408 free(spp, M_VMSWAP);
409 }
410 }
411
412 /*
413 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
414 * to the "swapdev" that maps that section of the drum.
415 *
416 * => each swapdev takes one big contig chunk of the drum
417 * => caller must hold uvm.swap_data_lock
418 */
419 static struct swapdev *
420 swapdrum_getsdp(pgno)
421 int pgno;
422 {
423 struct swapdev *sdp;
424 struct swappri *spp;
425
426 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
427 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
428 if (sdp->swd_flags & SWF_FAKE)
429 continue;
430 if (pgno >= sdp->swd_drumoffset &&
431 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
432 return sdp;
433 }
434 }
435 }
436 return NULL;
437 }
438
439
440 /*
441 * sys_swapctl: main entry point for swapctl(2) system call
442 * [with two helper functions: swap_on and swap_off]
443 */
444 int
445 sys_swapctl(l, v, retval)
446 struct lwp *l;
447 void *v;
448 register_t *retval;
449 {
450 struct sys_swapctl_args /* {
451 syscallarg(int) cmd;
452 syscallarg(void *) arg;
453 syscallarg(int) misc;
454 } */ *uap = (struct sys_swapctl_args *)v;
455 struct proc *p = l->l_proc;
456 struct vnode *vp;
457 struct nameidata nd;
458 struct swappri *spp;
459 struct swapdev *sdp;
460 struct swapent *sep;
461 char userpath[PATH_MAX + 1];
462 size_t len;
463 int error, misc;
464 int priority;
465 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
466
467 misc = SCARG(uap, misc);
468
469 /*
470 * ensure serialized syscall access by grabbing the swap_syscall_lock
471 */
472 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
473
474 /*
475 * we handle the non-priv NSWAP and STATS request first.
476 *
477 * SWAP_NSWAP: return number of config'd swap devices
478 * [can also be obtained with uvmexp sysctl]
479 */
480 if (SCARG(uap, cmd) == SWAP_NSWAP) {
481 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
482 0, 0, 0);
483 *retval = uvmexp.nswapdev;
484 error = 0;
485 goto out;
486 }
487
488 /*
489 * SWAP_STATS: get stats on current # of configured swap devs
490 *
491 * note that the swap_priority list can't change as long
492 * as we are holding the swap_syscall_lock. we don't want
493 * to grab the uvm.swap_data_lock because we may fault&sleep during
494 * copyout() and we don't want to be holding that lock then!
495 */
496 if (SCARG(uap, cmd) == SWAP_STATS
497 #if defined(COMPAT_13)
498 || SCARG(uap, cmd) == SWAP_OSTATS
499 #endif
500 ) {
501 if ((size_t)misc > (size_t)uvmexp.nswapdev)
502 misc = uvmexp.nswapdev;
503 #if defined(COMPAT_13)
504 if (SCARG(uap, cmd) == SWAP_OSTATS)
505 len = sizeof(struct oswapent) * misc;
506 else
507 #endif
508 len = sizeof(struct swapent) * misc;
509 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
510
511 uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
512 error = copyout(sep, (void *)SCARG(uap, arg), len);
513
514 free(sep, M_TEMP);
515 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
516 goto out;
517 }
518 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
519 dev_t *devp = (dev_t *)SCARG(uap, arg);
520
521 error = copyout(&dumpdev, devp, sizeof(dumpdev));
522 goto out;
523 }
524
525 /*
526 * all other requests require superuser privs. verify.
527 */
528 if ((error = suser(p->p_ucred, &p->p_acflag)))
529 goto out;
530
531 /*
532 * at this point we expect a path name in arg. we will
533 * use namei() to gain a vnode reference (vref), and lock
534 * the vnode (VOP_LOCK).
535 *
536 * XXX: a NULL arg means use the root vnode pointer (e.g. for
537 * miniroot)
538 */
539 if (SCARG(uap, arg) == NULL) {
540 vp = rootvp; /* miniroot */
541 if (vget(vp, LK_EXCLUSIVE)) {
542 error = EBUSY;
543 goto out;
544 }
545 if (SCARG(uap, cmd) == SWAP_ON &&
546 copystr("miniroot", userpath, sizeof userpath, &len))
547 panic("swapctl: miniroot copy failed");
548 } else {
549 int space;
550 char *where;
551
552 if (SCARG(uap, cmd) == SWAP_ON) {
553 if ((error = copyinstr(SCARG(uap, arg), userpath,
554 sizeof userpath, &len)))
555 goto out;
556 space = UIO_SYSSPACE;
557 where = userpath;
558 } else {
559 space = UIO_USERSPACE;
560 where = (char *)SCARG(uap, arg);
561 }
562 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
563 if ((error = namei(&nd)))
564 goto out;
565 vp = nd.ni_vp;
566 }
567 /* note: "vp" is referenced and locked */
568
569 error = 0; /* assume no error */
570 switch(SCARG(uap, cmd)) {
571
572 case SWAP_DUMPDEV:
573 if (vp->v_type != VBLK) {
574 error = ENOTBLK;
575 break;
576 }
577 dumpdev = vp->v_rdev;
578 cpu_dumpconf();
579 break;
580
581 case SWAP_CTL:
582 /*
583 * get new priority, remove old entry (if any) and then
584 * reinsert it in the correct place. finally, prune out
585 * any empty priority structures.
586 */
587 priority = SCARG(uap, misc);
588 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
589 simple_lock(&uvm.swap_data_lock);
590 if ((sdp = swaplist_find(vp, 1)) == NULL) {
591 error = ENOENT;
592 } else {
593 swaplist_insert(sdp, spp, priority);
594 swaplist_trim();
595 }
596 simple_unlock(&uvm.swap_data_lock);
597 if (error)
598 free(spp, M_VMSWAP);
599 break;
600
601 case SWAP_ON:
602
603 /*
604 * check for duplicates. if none found, then insert a
605 * dummy entry on the list to prevent someone else from
606 * trying to enable this device while we are working on
607 * it.
608 */
609
610 priority = SCARG(uap, misc);
611 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
612 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
613 memset(sdp, 0, sizeof(*sdp));
614 sdp->swd_flags = SWF_FAKE;
615 sdp->swd_vp = vp;
616 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
617 bufq_alloc(&sdp->swd_tab, BUFQ_DISKSORT|BUFQ_SORT_RAWBLOCK);
618 simple_lock(&uvm.swap_data_lock);
619 if (swaplist_find(vp, 0) != NULL) {
620 error = EBUSY;
621 simple_unlock(&uvm.swap_data_lock);
622 bufq_free(&sdp->swd_tab);
623 free(sdp, M_VMSWAP);
624 free(spp, M_VMSWAP);
625 break;
626 }
627 swaplist_insert(sdp, spp, priority);
628 simple_unlock(&uvm.swap_data_lock);
629
630 sdp->swd_pathlen = len;
631 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
632 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
633 panic("swapctl: copystr");
634
635 /*
636 * we've now got a FAKE placeholder in the swap list.
637 * now attempt to enable swap on it. if we fail, undo
638 * what we've done and kill the fake entry we just inserted.
639 * if swap_on is a success, it will clear the SWF_FAKE flag
640 */
641
642 if ((error = swap_on(p, sdp)) != 0) {
643 simple_lock(&uvm.swap_data_lock);
644 (void) swaplist_find(vp, 1); /* kill fake entry */
645 swaplist_trim();
646 simple_unlock(&uvm.swap_data_lock);
647 bufq_free(&sdp->swd_tab);
648 free(sdp->swd_path, M_VMSWAP);
649 free(sdp, M_VMSWAP);
650 break;
651 }
652 break;
653
654 case SWAP_OFF:
655 simple_lock(&uvm.swap_data_lock);
656 if ((sdp = swaplist_find(vp, 0)) == NULL) {
657 simple_unlock(&uvm.swap_data_lock);
658 error = ENXIO;
659 break;
660 }
661
662 /*
663 * If a device isn't in use or enabled, we
664 * can't stop swapping from it (again).
665 */
666 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
667 simple_unlock(&uvm.swap_data_lock);
668 error = EBUSY;
669 break;
670 }
671
672 /*
673 * do the real work.
674 */
675 error = swap_off(p, sdp);
676 break;
677
678 default:
679 error = EINVAL;
680 }
681
682 /*
683 * done! release the ref gained by namei() and unlock.
684 */
685 vput(vp);
686
687 out:
688 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
689
690 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
691 return (error);
692 }
693
694 /*
695 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
696 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
697 * emulation to use it directly without going through sys_swapctl().
698 * The problem with using sys_swapctl() there is that it involves
699 * copying the swapent array to the stackgap, and this array's size
700 * is not known at build time. Hence it would not be possible to
701 * ensure it would fit in the stackgap in any case.
702 */
703 void
704 uvm_swap_stats(cmd, sep, sec, retval)
705 int cmd;
706 struct swapent *sep;
707 int sec;
708 register_t *retval;
709 {
710 struct swappri *spp;
711 struct swapdev *sdp;
712 int count = 0;
713
714 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
715 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
716 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
717 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
718 /*
719 * backwards compatibility for system call.
720 * note that we use 'struct oswapent' as an
721 * overlay into both 'struct swapdev' and
722 * the userland 'struct swapent', as we
723 * want to retain backwards compatibility
724 * with NetBSD 1.3.
725 */
726 sdp->swd_ose.ose_inuse =
727 btodb((u_int64_t)sdp->swd_npginuse <<
728 PAGE_SHIFT);
729 (void)memcpy(sep, &sdp->swd_ose,
730 sizeof(struct oswapent));
731
732 /* now copy out the path if necessary */
733 #if defined(COMPAT_13)
734 if (cmd == SWAP_STATS)
735 #endif
736 (void)memcpy(&sep->se_path, sdp->swd_path,
737 sdp->swd_pathlen);
738
739 count++;
740 #if defined(COMPAT_13)
741 if (cmd == SWAP_OSTATS)
742 sep = (struct swapent *)
743 ((struct oswapent *)sep + 1);
744 else
745 #endif
746 sep++;
747 }
748 }
749
750 *retval = count;
751 return;
752 }
753
754 /*
755 * swap_on: attempt to enable a swapdev for swapping. note that the
756 * swapdev is already on the global list, but disabled (marked
757 * SWF_FAKE).
758 *
759 * => we avoid the start of the disk (to protect disk labels)
760 * => we also avoid the miniroot, if we are swapping to root.
761 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
762 * if needed.
763 */
764 static int
765 swap_on(p, sdp)
766 struct proc *p;
767 struct swapdev *sdp;
768 {
769 static int count = 0; /* static */
770 struct vnode *vp;
771 int error, npages, nblocks, size;
772 long addr;
773 u_long result;
774 struct vattr va;
775 #ifdef NFS
776 extern int (**nfsv2_vnodeop_p)(void *);
777 #endif /* NFS */
778 const struct bdevsw *bdev;
779 dev_t dev;
780 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
781
782 /*
783 * we want to enable swapping on sdp. the swd_vp contains
784 * the vnode we want (locked and ref'd), and the swd_dev
785 * contains the dev_t of the file, if it a block device.
786 */
787
788 vp = sdp->swd_vp;
789 dev = sdp->swd_dev;
790
791 /*
792 * open the swap file (mostly useful for block device files to
793 * let device driver know what is up).
794 *
795 * we skip the open/close for root on swap because the root
796 * has already been opened when root was mounted (mountroot).
797 */
798 if (vp != rootvp) {
799 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
800 return (error);
801 }
802
803 /* XXX this only works for block devices */
804 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
805
806 /*
807 * we now need to determine the size of the swap area. for
808 * block specials we can call the d_psize function.
809 * for normal files, we must stat [get attrs].
810 *
811 * we put the result in nblks.
812 * for normal files, we also want the filesystem block size
813 * (which we get with statfs).
814 */
815 switch (vp->v_type) {
816 case VBLK:
817 bdev = bdevsw_lookup(dev);
818 if (bdev == NULL || bdev->d_psize == NULL ||
819 (nblocks = (*bdev->d_psize)(dev)) == -1) {
820 error = ENXIO;
821 goto bad;
822 }
823 break;
824
825 case VREG:
826 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
827 goto bad;
828 nblocks = (int)btodb(va.va_size);
829 if ((error =
830 VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
831 goto bad;
832
833 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
834 /*
835 * limit the max # of outstanding I/O requests we issue
836 * at any one time. take it easy on NFS servers.
837 */
838 #ifdef NFS
839 if (vp->v_op == nfsv2_vnodeop_p)
840 sdp->swd_maxactive = 2; /* XXX */
841 else
842 #endif /* NFS */
843 sdp->swd_maxactive = 8; /* XXX */
844 break;
845
846 default:
847 error = ENXIO;
848 goto bad;
849 }
850
851 /*
852 * save nblocks in a safe place and convert to pages.
853 */
854
855 sdp->swd_ose.ose_nblks = nblocks;
856 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
857
858 /*
859 * for block special files, we want to make sure that leave
860 * the disklabel and bootblocks alone, so we arrange to skip
861 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
862 * note that because of this the "size" can be less than the
863 * actual number of blocks on the device.
864 */
865 if (vp->v_type == VBLK) {
866 /* we use pages 1 to (size - 1) [inclusive] */
867 size = npages - 1;
868 addr = 1;
869 } else {
870 /* we use pages 0 to (size - 1) [inclusive] */
871 size = npages;
872 addr = 0;
873 }
874
875 /*
876 * make sure we have enough blocks for a reasonable sized swap
877 * area. we want at least one page.
878 */
879
880 if (size < 1) {
881 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
882 error = EINVAL;
883 goto bad;
884 }
885
886 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
887
888 /*
889 * now we need to allocate an extent to manage this swap device
890 */
891 snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
892 count++);
893
894 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
895 sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
896 0, 0, EX_WAITOK);
897 /* allocate the `saved' region from the extent so it won't be used */
898 if (addr) {
899 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
900 panic("disklabel region");
901 }
902
903 /*
904 * if the vnode we are swapping to is the root vnode
905 * (i.e. we are swapping to the miniroot) then we want
906 * to make sure we don't overwrite it. do a statfs to
907 * find its size and skip over it.
908 */
909 if (vp == rootvp) {
910 struct mount *mp;
911 struct statvfs *sp;
912 int rootblocks, rootpages;
913
914 mp = rootvnode->v_mount;
915 sp = &mp->mnt_stat;
916 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
917 /*
918 * XXX: sp->f_blocks isn't the total number of
919 * blocks in the filesystem, it's the number of
920 * data blocks. so, our rootblocks almost
921 * definitely underestimates the total size
922 * of the filesystem - how badly depends on the
923 * details of the filesystem type. there isn't
924 * an obvious way to deal with this cleanly
925 * and perfectly, so for now we just pad our
926 * rootblocks estimate with an extra 5 percent.
927 */
928 rootblocks += (rootblocks >> 5) +
929 (rootblocks >> 6) +
930 (rootblocks >> 7);
931 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
932 if (rootpages > size)
933 panic("swap_on: miniroot larger than swap?");
934
935 if (extent_alloc_region(sdp->swd_ex, addr,
936 rootpages, EX_WAITOK))
937 panic("swap_on: unable to preserve miniroot");
938
939 size -= rootpages;
940 printf("Preserved %d pages of miniroot ", rootpages);
941 printf("leaving %d pages of swap\n", size);
942 }
943
944 /*
945 * try to add anons to reflect the new swap space.
946 */
947
948 error = uvm_anon_add(size);
949 if (error) {
950 goto bad;
951 }
952
953 /*
954 * add a ref to vp to reflect usage as a swap device.
955 */
956 vref(vp);
957
958 /*
959 * now add the new swapdev to the drum and enable.
960 */
961 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
962 EX_WAITOK, &result))
963 panic("swapdrum_add");
964
965 sdp->swd_drumoffset = (int)result;
966 sdp->swd_drumsize = npages;
967 sdp->swd_npages = size;
968 simple_lock(&uvm.swap_data_lock);
969 sdp->swd_flags &= ~SWF_FAKE; /* going live */
970 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
971 uvmexp.swpages += size;
972 uvmexp.swpgavail += size;
973 simple_unlock(&uvm.swap_data_lock);
974 return (0);
975
976 /*
977 * failure: clean up and return error.
978 */
979
980 bad:
981 if (sdp->swd_ex) {
982 extent_destroy(sdp->swd_ex);
983 }
984 if (vp != rootvp) {
985 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
986 }
987 return (error);
988 }
989
990 /*
991 * swap_off: stop swapping on swapdev
992 *
993 * => swap data should be locked, we will unlock.
994 */
995 static int
996 swap_off(p, sdp)
997 struct proc *p;
998 struct swapdev *sdp;
999 {
1000 int npages = sdp->swd_npages;
1001
1002 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1003 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1004
1005 /* disable the swap area being removed */
1006 sdp->swd_flags &= ~SWF_ENABLE;
1007 uvmexp.swpgavail -= npages;
1008 simple_unlock(&uvm.swap_data_lock);
1009
1010 /*
1011 * the idea is to find all the pages that are paged out to this
1012 * device, and page them all in. in uvm, swap-backed pageable
1013 * memory can take two forms: aobjs and anons. call the
1014 * swapoff hook for each subsystem to bring in pages.
1015 */
1016
1017 if (uao_swap_off(sdp->swd_drumoffset,
1018 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1019 anon_swap_off(sdp->swd_drumoffset,
1020 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1021
1022 simple_lock(&uvm.swap_data_lock);
1023 sdp->swd_flags |= SWF_ENABLE;
1024 uvmexp.swpgavail += npages;
1025 simple_unlock(&uvm.swap_data_lock);
1026 return ENOMEM;
1027 }
1028 KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
1029
1030 /*
1031 * done with the vnode.
1032 * drop our ref on the vnode before calling VOP_CLOSE()
1033 * so that spec_close() can tell if this is the last close.
1034 */
1035 vrele(sdp->swd_vp);
1036 if (sdp->swd_vp != rootvp) {
1037 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1038 }
1039
1040 /* remove anons from the system */
1041 uvm_anon_remove(npages);
1042
1043 simple_lock(&uvm.swap_data_lock);
1044 uvmexp.swpages -= npages;
1045 uvmexp.swpginuse -= sdp->swd_npgbad;
1046
1047 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1048 panic("swap_off: swapdev not in list");
1049 swaplist_trim();
1050 simple_unlock(&uvm.swap_data_lock);
1051
1052 /*
1053 * free all resources!
1054 */
1055 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1056 EX_WAITOK);
1057 extent_destroy(sdp->swd_ex);
1058 bufq_free(&sdp->swd_tab);
1059 free(sdp, M_VMSWAP);
1060 return (0);
1061 }
1062
1063 /*
1064 * /dev/drum interface and i/o functions
1065 */
1066
1067 /*
1068 * swread: the read function for the drum (just a call to physio)
1069 */
1070 /*ARGSUSED*/
1071 int
1072 swread(dev, uio, ioflag)
1073 dev_t dev;
1074 struct uio *uio;
1075 int ioflag;
1076 {
1077 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1078
1079 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1080 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1081 }
1082
1083 /*
1084 * swwrite: the write function for the drum (just a call to physio)
1085 */
1086 /*ARGSUSED*/
1087 int
1088 swwrite(dev, uio, ioflag)
1089 dev_t dev;
1090 struct uio *uio;
1091 int ioflag;
1092 {
1093 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1094
1095 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1096 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1097 }
1098
1099 /*
1100 * swstrategy: perform I/O on the drum
1101 *
1102 * => we must map the i/o request from the drum to the correct swapdev.
1103 */
1104 void
1105 swstrategy(bp)
1106 struct buf *bp;
1107 {
1108 struct swapdev *sdp;
1109 struct vnode *vp;
1110 int s, pageno, bn;
1111 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1112
1113 /*
1114 * convert block number to swapdev. note that swapdev can't
1115 * be yanked out from under us because we are holding resources
1116 * in it (i.e. the blocks we are doing I/O on).
1117 */
1118 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1119 simple_lock(&uvm.swap_data_lock);
1120 sdp = swapdrum_getsdp(pageno);
1121 simple_unlock(&uvm.swap_data_lock);
1122 if (sdp == NULL) {
1123 bp->b_error = EINVAL;
1124 bp->b_flags |= B_ERROR;
1125 biodone(bp);
1126 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1127 return;
1128 }
1129
1130 /*
1131 * convert drum page number to block number on this swapdev.
1132 */
1133
1134 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1135 bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1136
1137 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1138 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1139 sdp->swd_drumoffset, bn, bp->b_bcount);
1140
1141 /*
1142 * for block devices we finish up here.
1143 * for regular files we have to do more work which we delegate
1144 * to sw_reg_strategy().
1145 */
1146
1147 switch (sdp->swd_vp->v_type) {
1148 default:
1149 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1150
1151 case VBLK:
1152
1153 /*
1154 * must convert "bp" from an I/O on /dev/drum to an I/O
1155 * on the swapdev (sdp).
1156 */
1157 s = splbio();
1158 bp->b_blkno = bn; /* swapdev block number */
1159 vp = sdp->swd_vp; /* swapdev vnode pointer */
1160 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1161
1162 /*
1163 * if we are doing a write, we have to redirect the i/o on
1164 * drum's v_numoutput counter to the swapdevs.
1165 */
1166 if ((bp->b_flags & B_READ) == 0) {
1167 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1168 V_INCR_NUMOUTPUT(vp); /* put it on swapdev */
1169 }
1170
1171 /*
1172 * finally plug in swapdev vnode and start I/O
1173 */
1174 bp->b_vp = vp;
1175 splx(s);
1176 VOP_STRATEGY(vp, bp);
1177 return;
1178
1179 case VREG:
1180 /*
1181 * delegate to sw_reg_strategy function.
1182 */
1183 sw_reg_strategy(sdp, bp, bn);
1184 return;
1185 }
1186 /* NOTREACHED */
1187 }
1188
1189 /*
1190 * sw_reg_strategy: handle swap i/o to regular files
1191 */
1192 static void
1193 sw_reg_strategy(sdp, bp, bn)
1194 struct swapdev *sdp;
1195 struct buf *bp;
1196 int bn;
1197 {
1198 struct vnode *vp;
1199 struct vndxfer *vnx;
1200 daddr_t nbn;
1201 caddr_t addr;
1202 off_t byteoff;
1203 int s, off, nra, error, sz, resid;
1204 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1205
1206 /*
1207 * allocate a vndxfer head for this transfer and point it to
1208 * our buffer.
1209 */
1210 getvndxfer(vnx);
1211 vnx->vx_flags = VX_BUSY;
1212 vnx->vx_error = 0;
1213 vnx->vx_pending = 0;
1214 vnx->vx_bp = bp;
1215 vnx->vx_sdp = sdp;
1216
1217 /*
1218 * setup for main loop where we read filesystem blocks into
1219 * our buffer.
1220 */
1221 error = 0;
1222 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1223 addr = bp->b_data; /* current position in buffer */
1224 byteoff = dbtob((u_int64_t)bn);
1225
1226 for (resid = bp->b_resid; resid; resid -= sz) {
1227 struct vndbuf *nbp;
1228
1229 /*
1230 * translate byteoffset into block number. return values:
1231 * vp = vnode of underlying device
1232 * nbn = new block number (on underlying vnode dev)
1233 * nra = num blocks we can read-ahead (excludes requested
1234 * block)
1235 */
1236 nra = 0;
1237 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1238 &vp, &nbn, &nra);
1239
1240 if (error == 0 && nbn == (daddr_t)-1) {
1241 /*
1242 * this used to just set error, but that doesn't
1243 * do the right thing. Instead, it causes random
1244 * memory errors. The panic() should remain until
1245 * this condition doesn't destabilize the system.
1246 */
1247 #if 1
1248 panic("sw_reg_strategy: swap to sparse file");
1249 #else
1250 error = EIO; /* failure */
1251 #endif
1252 }
1253
1254 /*
1255 * punt if there was an error or a hole in the file.
1256 * we must wait for any i/o ops we have already started
1257 * to finish before returning.
1258 *
1259 * XXX we could deal with holes here but it would be
1260 * a hassle (in the write case).
1261 */
1262 if (error) {
1263 s = splbio();
1264 vnx->vx_error = error; /* pass error up */
1265 goto out;
1266 }
1267
1268 /*
1269 * compute the size ("sz") of this transfer (in bytes).
1270 */
1271 off = byteoff % sdp->swd_bsize;
1272 sz = (1 + nra) * sdp->swd_bsize - off;
1273 if (sz > resid)
1274 sz = resid;
1275
1276 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1277 "vp %p/%p offset 0x%x/0x%x",
1278 sdp->swd_vp, vp, byteoff, nbn);
1279
1280 /*
1281 * now get a buf structure. note that the vb_buf is
1282 * at the front of the nbp structure so that you can
1283 * cast pointers between the two structure easily.
1284 */
1285 getvndbuf(nbp);
1286 BUF_INIT(&nbp->vb_buf);
1287 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1288 nbp->vb_buf.b_bcount = sz;
1289 nbp->vb_buf.b_bufsize = sz;
1290 nbp->vb_buf.b_error = 0;
1291 nbp->vb_buf.b_data = addr;
1292 nbp->vb_buf.b_lblkno = 0;
1293 nbp->vb_buf.b_blkno = nbn + btodb(off);
1294 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1295 nbp->vb_buf.b_iodone = sw_reg_iodone;
1296 nbp->vb_buf.b_vp = vp;
1297 if (vp->v_type == VBLK) {
1298 nbp->vb_buf.b_dev = vp->v_rdev;
1299 }
1300
1301 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1302
1303 /*
1304 * Just sort by block number
1305 */
1306 s = splbio();
1307 if (vnx->vx_error != 0) {
1308 putvndbuf(nbp);
1309 goto out;
1310 }
1311 vnx->vx_pending++;
1312
1313 /* sort it in and start I/O if we are not over our limit */
1314 BUFQ_PUT(&sdp->swd_tab, &nbp->vb_buf);
1315 sw_reg_start(sdp);
1316 splx(s);
1317
1318 /*
1319 * advance to the next I/O
1320 */
1321 byteoff += sz;
1322 addr += sz;
1323 }
1324
1325 s = splbio();
1326
1327 out: /* Arrive here at splbio */
1328 vnx->vx_flags &= ~VX_BUSY;
1329 if (vnx->vx_pending == 0) {
1330 if (vnx->vx_error != 0) {
1331 bp->b_error = vnx->vx_error;
1332 bp->b_flags |= B_ERROR;
1333 }
1334 putvndxfer(vnx);
1335 biodone(bp);
1336 }
1337 splx(s);
1338 }
1339
1340 /*
1341 * sw_reg_start: start an I/O request on the requested swapdev
1342 *
1343 * => reqs are sorted by b_rawblkno (above)
1344 */
1345 static void
1346 sw_reg_start(sdp)
1347 struct swapdev *sdp;
1348 {
1349 struct buf *bp;
1350 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1351
1352 /* recursion control */
1353 if ((sdp->swd_flags & SWF_BUSY) != 0)
1354 return;
1355
1356 sdp->swd_flags |= SWF_BUSY;
1357
1358 while (sdp->swd_active < sdp->swd_maxactive) {
1359 bp = BUFQ_GET(&sdp->swd_tab);
1360 if (bp == NULL)
1361 break;
1362 sdp->swd_active++;
1363
1364 UVMHIST_LOG(pdhist,
1365 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1366 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1367 if ((bp->b_flags & B_READ) == 0)
1368 V_INCR_NUMOUTPUT(bp->b_vp);
1369
1370 VOP_STRATEGY(bp->b_vp, bp);
1371 }
1372 sdp->swd_flags &= ~SWF_BUSY;
1373 }
1374
1375 /*
1376 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1377 *
1378 * => note that we can recover the vndbuf struct by casting the buf ptr
1379 */
1380 static void
1381 sw_reg_iodone(bp)
1382 struct buf *bp;
1383 {
1384 struct vndbuf *vbp = (struct vndbuf *) bp;
1385 struct vndxfer *vnx = vbp->vb_xfer;
1386 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1387 struct swapdev *sdp = vnx->vx_sdp;
1388 int s, resid, error;
1389 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1390
1391 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1392 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1393 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1394 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1395
1396 /*
1397 * protect vbp at splbio and update.
1398 */
1399
1400 s = splbio();
1401 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1402 pbp->b_resid -= resid;
1403 vnx->vx_pending--;
1404
1405 if (vbp->vb_buf.b_flags & B_ERROR) {
1406 /* pass error upward */
1407 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1408 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1409 vnx->vx_error = error;
1410 }
1411
1412 /*
1413 * kill vbp structure
1414 */
1415 putvndbuf(vbp);
1416
1417 /*
1418 * wrap up this transaction if it has run to completion or, in
1419 * case of an error, when all auxiliary buffers have returned.
1420 */
1421 if (vnx->vx_error != 0) {
1422 /* pass error upward */
1423 pbp->b_flags |= B_ERROR;
1424 pbp->b_error = vnx->vx_error;
1425 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1426 putvndxfer(vnx);
1427 biodone(pbp);
1428 }
1429 } else if (pbp->b_resid == 0) {
1430 KASSERT(vnx->vx_pending == 0);
1431 if ((vnx->vx_flags & VX_BUSY) == 0) {
1432 UVMHIST_LOG(pdhist, " iodone error=%d !",
1433 pbp, vnx->vx_error, 0, 0);
1434 putvndxfer(vnx);
1435 biodone(pbp);
1436 }
1437 }
1438
1439 /*
1440 * done! start next swapdev I/O if one is pending
1441 */
1442 sdp->swd_active--;
1443 sw_reg_start(sdp);
1444 splx(s);
1445 }
1446
1447
1448 /*
1449 * uvm_swap_alloc: allocate space on swap
1450 *
1451 * => allocation is done "round robin" down the priority list, as we
1452 * allocate in a priority we "rotate" the circle queue.
1453 * => space can be freed with uvm_swap_free
1454 * => we return the page slot number in /dev/drum (0 == invalid slot)
1455 * => we lock uvm.swap_data_lock
1456 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1457 */
1458 int
1459 uvm_swap_alloc(nslots, lessok)
1460 int *nslots; /* IN/OUT */
1461 boolean_t lessok;
1462 {
1463 struct swapdev *sdp;
1464 struct swappri *spp;
1465 u_long result;
1466 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1467
1468 /*
1469 * no swap devices configured yet? definite failure.
1470 */
1471 if (uvmexp.nswapdev < 1)
1472 return 0;
1473
1474 /*
1475 * lock data lock, convert slots into blocks, and enter loop
1476 */
1477 simple_lock(&uvm.swap_data_lock);
1478
1479 ReTry: /* XXXMRG */
1480 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1481 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1482 /* if it's not enabled, then we can't swap from it */
1483 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1484 continue;
1485 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1486 continue;
1487 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1488 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1489 &result) != 0) {
1490 continue;
1491 }
1492
1493 /*
1494 * successful allocation! now rotate the circleq.
1495 */
1496 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1497 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1498 sdp->swd_npginuse += *nslots;
1499 uvmexp.swpginuse += *nslots;
1500 simple_unlock(&uvm.swap_data_lock);
1501 /* done! return drum slot number */
1502 UVMHIST_LOG(pdhist,
1503 "success! returning %d slots starting at %d",
1504 *nslots, result + sdp->swd_drumoffset, 0, 0);
1505 return (result + sdp->swd_drumoffset);
1506 }
1507 }
1508
1509 /* XXXMRG: BEGIN HACK */
1510 if (*nslots > 1 && lessok) {
1511 *nslots = 1;
1512 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1513 }
1514 /* XXXMRG: END HACK */
1515
1516 simple_unlock(&uvm.swap_data_lock);
1517 return 0;
1518 }
1519
1520 boolean_t
1521 uvm_swapisfull(void)
1522 {
1523 boolean_t rv;
1524
1525 simple_lock(&uvm.swap_data_lock);
1526 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1527 rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1528 simple_unlock(&uvm.swap_data_lock);
1529
1530 return (rv);
1531 }
1532
1533 /*
1534 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1535 *
1536 * => we lock uvm.swap_data_lock
1537 */
1538 void
1539 uvm_swap_markbad(startslot, nslots)
1540 int startslot;
1541 int nslots;
1542 {
1543 struct swapdev *sdp;
1544 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1545
1546 simple_lock(&uvm.swap_data_lock);
1547 sdp = swapdrum_getsdp(startslot);
1548 KASSERT(sdp != NULL);
1549
1550 /*
1551 * we just keep track of how many pages have been marked bad
1552 * in this device, to make everything add up in swap_off().
1553 * we assume here that the range of slots will all be within
1554 * one swap device.
1555 */
1556
1557 KASSERT(uvmexp.swpgonly >= nslots);
1558 uvmexp.swpgonly -= nslots;
1559 sdp->swd_npgbad += nslots;
1560 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1561 simple_unlock(&uvm.swap_data_lock);
1562 }
1563
1564 /*
1565 * uvm_swap_free: free swap slots
1566 *
1567 * => this can be all or part of an allocation made by uvm_swap_alloc
1568 * => we lock uvm.swap_data_lock
1569 */
1570 void
1571 uvm_swap_free(startslot, nslots)
1572 int startslot;
1573 int nslots;
1574 {
1575 struct swapdev *sdp;
1576 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1577
1578 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1579 startslot, 0, 0);
1580
1581 /*
1582 * ignore attempts to free the "bad" slot.
1583 */
1584
1585 if (startslot == SWSLOT_BAD) {
1586 return;
1587 }
1588
1589 /*
1590 * convert drum slot offset back to sdp, free the blocks
1591 * in the extent, and return. must hold pri lock to do
1592 * lookup and access the extent.
1593 */
1594
1595 simple_lock(&uvm.swap_data_lock);
1596 sdp = swapdrum_getsdp(startslot);
1597 KASSERT(uvmexp.nswapdev >= 1);
1598 KASSERT(sdp != NULL);
1599 KASSERT(sdp->swd_npginuse >= nslots);
1600 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1601 EX_MALLOCOK|EX_NOWAIT) != 0) {
1602 printf("warning: resource shortage: %d pages of swap lost\n",
1603 nslots);
1604 }
1605 sdp->swd_npginuse -= nslots;
1606 uvmexp.swpginuse -= nslots;
1607 simple_unlock(&uvm.swap_data_lock);
1608 }
1609
1610 /*
1611 * uvm_swap_put: put any number of pages into a contig place on swap
1612 *
1613 * => can be sync or async
1614 */
1615
1616 int
1617 uvm_swap_put(swslot, ppsp, npages, flags)
1618 int swslot;
1619 struct vm_page **ppsp;
1620 int npages;
1621 int flags;
1622 {
1623 int error;
1624
1625 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1626 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1627 return error;
1628 }
1629
1630 /*
1631 * uvm_swap_get: get a single page from swap
1632 *
1633 * => usually a sync op (from fault)
1634 */
1635
1636 int
1637 uvm_swap_get(page, swslot, flags)
1638 struct vm_page *page;
1639 int swslot, flags;
1640 {
1641 int error;
1642
1643 uvmexp.nswget++;
1644 KASSERT(flags & PGO_SYNCIO);
1645 if (swslot == SWSLOT_BAD) {
1646 return EIO;
1647 }
1648
1649 error = uvm_swap_io(&page, swslot, 1, B_READ |
1650 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1651 if (error == 0) {
1652
1653 /*
1654 * this page is no longer only in swap.
1655 */
1656
1657 simple_lock(&uvm.swap_data_lock);
1658 KASSERT(uvmexp.swpgonly > 0);
1659 uvmexp.swpgonly--;
1660 simple_unlock(&uvm.swap_data_lock);
1661 }
1662 return error;
1663 }
1664
1665 /*
1666 * uvm_swap_io: do an i/o operation to swap
1667 */
1668
1669 static int
1670 uvm_swap_io(pps, startslot, npages, flags)
1671 struct vm_page **pps;
1672 int startslot, npages, flags;
1673 {
1674 daddr_t startblk;
1675 struct buf *bp;
1676 vaddr_t kva;
1677 int error, s, mapinflags;
1678 boolean_t write, async;
1679 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1680
1681 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1682 startslot, npages, flags, 0);
1683
1684 write = (flags & B_READ) == 0;
1685 async = (flags & B_ASYNC) != 0;
1686
1687 /*
1688 * convert starting drum slot to block number
1689 */
1690
1691 startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1692
1693 /*
1694 * first, map the pages into the kernel.
1695 */
1696
1697 mapinflags = !write ?
1698 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1699 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1700 kva = uvm_pagermapin(pps, npages, mapinflags);
1701
1702 /*
1703 * now allocate a buf for the i/o.
1704 */
1705
1706 s = splbio();
1707 bp = pool_get(&bufpool, PR_WAITOK);
1708 splx(s);
1709
1710 /*
1711 * fill in the bp/sbp. we currently route our i/o through
1712 * /dev/drum's vnode [swapdev_vp].
1713 */
1714
1715 BUF_INIT(bp);
1716 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1717 bp->b_proc = &proc0; /* XXX */
1718 bp->b_vnbufs.le_next = NOLIST;
1719 bp->b_data = (caddr_t)kva;
1720 bp->b_blkno = startblk;
1721 bp->b_vp = swapdev_vp;
1722 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1723
1724 /*
1725 * bump v_numoutput (counter of number of active outputs).
1726 */
1727
1728 if (write) {
1729 s = splbio();
1730 V_INCR_NUMOUTPUT(swapdev_vp);
1731 splx(s);
1732 }
1733
1734 /*
1735 * for async ops we must set up the iodone handler.
1736 */
1737
1738 if (async) {
1739 bp->b_flags |= B_CALL;
1740 bp->b_iodone = uvm_aio_biodone;
1741 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1742 if (curproc == uvm.pagedaemon_proc)
1743 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1744 else
1745 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1746 } else {
1747 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1748 }
1749 UVMHIST_LOG(pdhist,
1750 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1751 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1752
1753 /*
1754 * now we start the I/O, and if async, return.
1755 */
1756
1757 VOP_STRATEGY(swapdev_vp, bp);
1758 if (async)
1759 return 0;
1760
1761 /*
1762 * must be sync i/o. wait for it to finish
1763 */
1764
1765 error = biowait(bp);
1766
1767 /*
1768 * kill the pager mapping
1769 */
1770
1771 uvm_pagermapout(kva, npages);
1772
1773 /*
1774 * now dispose of the buf and we're done.
1775 */
1776
1777 s = splbio();
1778 if (write)
1779 vwakeup(bp);
1780 pool_put(&bufpool, bp);
1781 splx(s);
1782 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1783 return (error);
1784 }
1785