uvm_swap.c revision 1.89.4.1 1 /* $NetBSD: uvm_swap.c,v 1.89.4.1 2005/04/29 11:29:45 kent Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.89.4.1 2005/04/29 11:29:45 kent Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/bufq.h>
46 #include <sys/conf.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/extent.h>
56 #include <sys/blist.h>
57 #include <sys/mount.h>
58 #include <sys/pool.h>
59 #include <sys/sa.h>
60 #include <sys/syscallargs.h>
61 #include <sys/swap.h>
62
63 #include <uvm/uvm.h>
64
65 #include <miscfs/specfs/specdev.h>
66
67 /*
68 * uvm_swap.c: manage configuration and i/o to swap space.
69 */
70
71 /*
72 * swap space is managed in the following way:
73 *
74 * each swap partition or file is described by a "swapdev" structure.
75 * each "swapdev" structure contains a "swapent" structure which contains
76 * information that is passed up to the user (via system calls).
77 *
78 * each swap partition is assigned a "priority" (int) which controls
79 * swap parition usage.
80 *
81 * the system maintains a global data structure describing all swap
82 * partitions/files. there is a sorted LIST of "swappri" structures
83 * which describe "swapdev"'s at that priority. this LIST is headed
84 * by the "swap_priority" global var. each "swappri" contains a
85 * CIRCLEQ of "swapdev" structures at that priority.
86 *
87 * locking:
88 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
89 * system call and prevents the swap priority list from changing
90 * while we are in the middle of a system call (e.g. SWAP_STATS).
91 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
92 * structures including the priority list, the swapdev structures,
93 * and the swapmap extent.
94 *
95 * each swap device has the following info:
96 * - swap device in use (could be disabled, preventing future use)
97 * - swap enabled (allows new allocations on swap)
98 * - map info in /dev/drum
99 * - vnode pointer
100 * for swap files only:
101 * - block size
102 * - max byte count in buffer
103 * - buffer
104 *
105 * userland controls and configures swap with the swapctl(2) system call.
106 * the sys_swapctl performs the following operations:
107 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
108 * [2] SWAP_STATS: given a pointer to an array of swapent structures
109 * (passed in via "arg") of a size passed in via "misc" ... we load
110 * the current swap config into the array. The actual work is done
111 * in the uvm_swap_stats(9) function.
112 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
113 * priority in "misc", start swapping on it.
114 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
115 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
116 * "misc")
117 */
118
119 /*
120 * swapdev: describes a single swap partition/file
121 *
122 * note the following should be true:
123 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
124 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
125 */
126 struct swapdev {
127 struct oswapent swd_ose;
128 #define swd_dev swd_ose.ose_dev /* device id */
129 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
130 #define swd_priority swd_ose.ose_priority /* our priority */
131 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
132 char *swd_path; /* saved pathname of device */
133 int swd_pathlen; /* length of pathname */
134 int swd_npages; /* #pages we can use */
135 int swd_npginuse; /* #pages in use */
136 int swd_npgbad; /* #pages bad */
137 int swd_drumoffset; /* page0 offset in drum */
138 int swd_drumsize; /* #pages in drum */
139 blist_t swd_blist; /* blist for this swapdev */
140 struct vnode *swd_vp; /* backing vnode */
141 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
142
143 int swd_bsize; /* blocksize (bytes) */
144 int swd_maxactive; /* max active i/o reqs */
145 struct bufq_state swd_tab; /* buffer list */
146 int swd_active; /* number of active buffers */
147 };
148
149 /*
150 * swap device priority entry; the list is kept sorted on `spi_priority'.
151 */
152 struct swappri {
153 int spi_priority; /* priority */
154 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
155 /* circleq of swapdevs at this priority */
156 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
157 };
158
159 /*
160 * The following two structures are used to keep track of data transfers
161 * on swap devices associated with regular files.
162 * NOTE: this code is more or less a copy of vnd.c; we use the same
163 * structure names here to ease porting..
164 */
165 struct vndxfer {
166 struct buf *vx_bp; /* Pointer to parent buffer */
167 struct swapdev *vx_sdp;
168 int vx_error;
169 int vx_pending; /* # of pending aux buffers */
170 int vx_flags;
171 #define VX_BUSY 1
172 #define VX_DEAD 2
173 };
174
175 struct vndbuf {
176 struct buf vb_buf;
177 struct vndxfer *vb_xfer;
178 };
179
180
181 /*
182 * We keep a of pool vndbuf's and vndxfer structures.
183 */
184 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL);
185 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL);
186
187 #define getvndxfer(vnx) do { \
188 int s = splbio(); \
189 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \
190 splx(s); \
191 } while (/*CONSTCOND*/ 0)
192
193 #define putvndxfer(vnx) { \
194 pool_put(&vndxfer_pool, (void *)(vnx)); \
195 }
196
197 #define getvndbuf(vbp) do { \
198 int s = splbio(); \
199 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \
200 splx(s); \
201 } while (/*CONSTCOND*/ 0)
202
203 #define putvndbuf(vbp) { \
204 pool_put(&vndbuf_pool, (void *)(vbp)); \
205 }
206
207 /*
208 * local variables
209 */
210 static struct extent *swapmap; /* controls the mapping of /dev/drum */
211
212 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
213
214 /* list of all active swap devices [by priority] */
215 LIST_HEAD(swap_priority, swappri);
216 static struct swap_priority swap_priority;
217
218 /* locks */
219 struct lock swap_syscall_lock;
220
221 /*
222 * prototypes
223 */
224 static struct swapdev *swapdrum_getsdp(int);
225
226 static struct swapdev *swaplist_find(struct vnode *, int);
227 static void swaplist_insert(struct swapdev *,
228 struct swappri *, int);
229 static void swaplist_trim(void);
230
231 static int swap_on(struct proc *, struct swapdev *);
232 static int swap_off(struct proc *, struct swapdev *);
233
234 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
235 static void sw_reg_iodone(struct buf *);
236 static void sw_reg_start(struct swapdev *);
237
238 static int uvm_swap_io(struct vm_page **, int, int, int);
239
240 dev_type_read(swread);
241 dev_type_write(swwrite);
242 dev_type_strategy(swstrategy);
243
244 const struct bdevsw swap_bdevsw = {
245 noopen, noclose, swstrategy, noioctl, nodump, nosize,
246 };
247
248 const struct cdevsw swap_cdevsw = {
249 nullopen, nullclose, swread, swwrite, noioctl,
250 nostop, notty, nopoll, nommap, nokqfilter
251 };
252
253 /*
254 * uvm_swap_init: init the swap system data structures and locks
255 *
256 * => called at boot time from init_main.c after the filesystems
257 * are brought up (which happens after uvm_init())
258 */
259 void
260 uvm_swap_init()
261 {
262 UVMHIST_FUNC("uvm_swap_init");
263
264 UVMHIST_CALLED(pdhist);
265 /*
266 * first, init the swap list, its counter, and its lock.
267 * then get a handle on the vnode for /dev/drum by using
268 * the its dev_t number ("swapdev", from MD conf.c).
269 */
270
271 LIST_INIT(&swap_priority);
272 uvmexp.nswapdev = 0;
273 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
274 simple_lock_init(&uvm.swap_data_lock);
275
276 if (bdevvp(swapdev, &swapdev_vp))
277 panic("uvm_swap_init: can't get vnode for swap device");
278
279 /*
280 * create swap block resource map to map /dev/drum. the range
281 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
282 * that block 0 is reserved (used to indicate an allocation
283 * failure, or no allocation).
284 */
285 swapmap = extent_create("swapmap", 1, INT_MAX,
286 M_VMSWAP, 0, 0, EX_NOWAIT);
287 if (swapmap == 0)
288 panic("uvm_swap_init: extent_create failed");
289
290 /*
291 * done!
292 */
293 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
294 }
295
296 /*
297 * swaplist functions: functions that operate on the list of swap
298 * devices on the system.
299 */
300
301 /*
302 * swaplist_insert: insert swap device "sdp" into the global list
303 *
304 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
305 * => caller must provide a newly malloc'd swappri structure (we will
306 * FREE it if we don't need it... this it to prevent malloc blocking
307 * here while adding swap)
308 */
309 static void
310 swaplist_insert(sdp, newspp, priority)
311 struct swapdev *sdp;
312 struct swappri *newspp;
313 int priority;
314 {
315 struct swappri *spp, *pspp;
316 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
317
318 /*
319 * find entry at or after which to insert the new device.
320 */
321 pspp = NULL;
322 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
323 if (priority <= spp->spi_priority)
324 break;
325 pspp = spp;
326 }
327
328 /*
329 * new priority?
330 */
331 if (spp == NULL || spp->spi_priority != priority) {
332 spp = newspp; /* use newspp! */
333 UVMHIST_LOG(pdhist, "created new swappri = %d",
334 priority, 0, 0, 0);
335
336 spp->spi_priority = priority;
337 CIRCLEQ_INIT(&spp->spi_swapdev);
338
339 if (pspp)
340 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
341 else
342 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
343 } else {
344 /* we don't need a new priority structure, free it */
345 FREE(newspp, M_VMSWAP);
346 }
347
348 /*
349 * priority found (or created). now insert on the priority's
350 * circleq list and bump the total number of swapdevs.
351 */
352 sdp->swd_priority = priority;
353 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
354 uvmexp.nswapdev++;
355 }
356
357 /*
358 * swaplist_find: find and optionally remove a swap device from the
359 * global list.
360 *
361 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
362 * => we return the swapdev we found (and removed)
363 */
364 static struct swapdev *
365 swaplist_find(vp, remove)
366 struct vnode *vp;
367 boolean_t remove;
368 {
369 struct swapdev *sdp;
370 struct swappri *spp;
371
372 /*
373 * search the lists for the requested vp
374 */
375
376 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
377 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
378 if (sdp->swd_vp == vp) {
379 if (remove) {
380 CIRCLEQ_REMOVE(&spp->spi_swapdev,
381 sdp, swd_next);
382 uvmexp.nswapdev--;
383 }
384 return(sdp);
385 }
386 }
387 }
388 return (NULL);
389 }
390
391
392 /*
393 * swaplist_trim: scan priority list for empty priority entries and kill
394 * them.
395 *
396 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
397 */
398 static void
399 swaplist_trim()
400 {
401 struct swappri *spp, *nextspp;
402
403 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
404 nextspp = LIST_NEXT(spp, spi_swappri);
405 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
406 (void *)&spp->spi_swapdev)
407 continue;
408 LIST_REMOVE(spp, spi_swappri);
409 free(spp, M_VMSWAP);
410 }
411 }
412
413 /*
414 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
415 * to the "swapdev" that maps that section of the drum.
416 *
417 * => each swapdev takes one big contig chunk of the drum
418 * => caller must hold uvm.swap_data_lock
419 */
420 static struct swapdev *
421 swapdrum_getsdp(pgno)
422 int pgno;
423 {
424 struct swapdev *sdp;
425 struct swappri *spp;
426
427 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
428 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
429 if (sdp->swd_flags & SWF_FAKE)
430 continue;
431 if (pgno >= sdp->swd_drumoffset &&
432 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
433 return sdp;
434 }
435 }
436 }
437 return NULL;
438 }
439
440
441 /*
442 * sys_swapctl: main entry point for swapctl(2) system call
443 * [with two helper functions: swap_on and swap_off]
444 */
445 int
446 sys_swapctl(l, v, retval)
447 struct lwp *l;
448 void *v;
449 register_t *retval;
450 {
451 struct sys_swapctl_args /* {
452 syscallarg(int) cmd;
453 syscallarg(void *) arg;
454 syscallarg(int) misc;
455 } */ *uap = (struct sys_swapctl_args *)v;
456 struct proc *p = l->l_proc;
457 struct vnode *vp;
458 struct nameidata nd;
459 struct swappri *spp;
460 struct swapdev *sdp;
461 struct swapent *sep;
462 char userpath[PATH_MAX + 1];
463 size_t len;
464 int error, misc;
465 int priority;
466 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
467
468 misc = SCARG(uap, misc);
469
470 /*
471 * ensure serialized syscall access by grabbing the swap_syscall_lock
472 */
473 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
474
475 /*
476 * we handle the non-priv NSWAP and STATS request first.
477 *
478 * SWAP_NSWAP: return number of config'd swap devices
479 * [can also be obtained with uvmexp sysctl]
480 */
481 if (SCARG(uap, cmd) == SWAP_NSWAP) {
482 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
483 0, 0, 0);
484 *retval = uvmexp.nswapdev;
485 error = 0;
486 goto out;
487 }
488
489 /*
490 * SWAP_STATS: get stats on current # of configured swap devs
491 *
492 * note that the swap_priority list can't change as long
493 * as we are holding the swap_syscall_lock. we don't want
494 * to grab the uvm.swap_data_lock because we may fault&sleep during
495 * copyout() and we don't want to be holding that lock then!
496 */
497 if (SCARG(uap, cmd) == SWAP_STATS
498 #if defined(COMPAT_13)
499 || SCARG(uap, cmd) == SWAP_OSTATS
500 #endif
501 ) {
502 if ((size_t)misc > (size_t)uvmexp.nswapdev)
503 misc = uvmexp.nswapdev;
504 #if defined(COMPAT_13)
505 if (SCARG(uap, cmd) == SWAP_OSTATS)
506 len = sizeof(struct oswapent) * misc;
507 else
508 #endif
509 len = sizeof(struct swapent) * misc;
510 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
511
512 uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
513 error = copyout(sep, (void *)SCARG(uap, arg), len);
514
515 free(sep, M_TEMP);
516 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
517 goto out;
518 }
519 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
520 dev_t *devp = (dev_t *)SCARG(uap, arg);
521
522 error = copyout(&dumpdev, devp, sizeof(dumpdev));
523 goto out;
524 }
525
526 /*
527 * all other requests require superuser privs. verify.
528 */
529 if ((error = suser(p->p_ucred, &p->p_acflag)))
530 goto out;
531
532 /*
533 * at this point we expect a path name in arg. we will
534 * use namei() to gain a vnode reference (vref), and lock
535 * the vnode (VOP_LOCK).
536 *
537 * XXX: a NULL arg means use the root vnode pointer (e.g. for
538 * miniroot)
539 */
540 if (SCARG(uap, arg) == NULL) {
541 vp = rootvp; /* miniroot */
542 if (vget(vp, LK_EXCLUSIVE)) {
543 error = EBUSY;
544 goto out;
545 }
546 if (SCARG(uap, cmd) == SWAP_ON &&
547 copystr("miniroot", userpath, sizeof userpath, &len))
548 panic("swapctl: miniroot copy failed");
549 } else {
550 int space;
551 char *where;
552
553 if (SCARG(uap, cmd) == SWAP_ON) {
554 if ((error = copyinstr(SCARG(uap, arg), userpath,
555 sizeof userpath, &len)))
556 goto out;
557 space = UIO_SYSSPACE;
558 where = userpath;
559 } else {
560 space = UIO_USERSPACE;
561 where = (char *)SCARG(uap, arg);
562 }
563 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
564 if ((error = namei(&nd)))
565 goto out;
566 vp = nd.ni_vp;
567 }
568 /* note: "vp" is referenced and locked */
569
570 error = 0; /* assume no error */
571 switch(SCARG(uap, cmd)) {
572
573 case SWAP_DUMPDEV:
574 if (vp->v_type != VBLK) {
575 error = ENOTBLK;
576 break;
577 }
578 dumpdev = vp->v_rdev;
579 cpu_dumpconf();
580 break;
581
582 case SWAP_CTL:
583 /*
584 * get new priority, remove old entry (if any) and then
585 * reinsert it in the correct place. finally, prune out
586 * any empty priority structures.
587 */
588 priority = SCARG(uap, misc);
589 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
590 simple_lock(&uvm.swap_data_lock);
591 if ((sdp = swaplist_find(vp, 1)) == NULL) {
592 error = ENOENT;
593 } else {
594 swaplist_insert(sdp, spp, priority);
595 swaplist_trim();
596 }
597 simple_unlock(&uvm.swap_data_lock);
598 if (error)
599 free(spp, M_VMSWAP);
600 break;
601
602 case SWAP_ON:
603
604 /*
605 * check for duplicates. if none found, then insert a
606 * dummy entry on the list to prevent someone else from
607 * trying to enable this device while we are working on
608 * it.
609 */
610
611 priority = SCARG(uap, misc);
612 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
613 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
614 memset(sdp, 0, sizeof(*sdp));
615 sdp->swd_flags = SWF_FAKE;
616 sdp->swd_vp = vp;
617 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
618 bufq_alloc(&sdp->swd_tab, BUFQ_DISKSORT|BUFQ_SORT_RAWBLOCK);
619 simple_lock(&uvm.swap_data_lock);
620 if (swaplist_find(vp, 0) != NULL) {
621 error = EBUSY;
622 simple_unlock(&uvm.swap_data_lock);
623 bufq_free(&sdp->swd_tab);
624 free(sdp, M_VMSWAP);
625 free(spp, M_VMSWAP);
626 break;
627 }
628 swaplist_insert(sdp, spp, priority);
629 simple_unlock(&uvm.swap_data_lock);
630
631 sdp->swd_pathlen = len;
632 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
633 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
634 panic("swapctl: copystr");
635
636 /*
637 * we've now got a FAKE placeholder in the swap list.
638 * now attempt to enable swap on it. if we fail, undo
639 * what we've done and kill the fake entry we just inserted.
640 * if swap_on is a success, it will clear the SWF_FAKE flag
641 */
642
643 if ((error = swap_on(p, sdp)) != 0) {
644 simple_lock(&uvm.swap_data_lock);
645 (void) swaplist_find(vp, 1); /* kill fake entry */
646 swaplist_trim();
647 simple_unlock(&uvm.swap_data_lock);
648 bufq_free(&sdp->swd_tab);
649 free(sdp->swd_path, M_VMSWAP);
650 free(sdp, M_VMSWAP);
651 break;
652 }
653 break;
654
655 case SWAP_OFF:
656 simple_lock(&uvm.swap_data_lock);
657 if ((sdp = swaplist_find(vp, 0)) == NULL) {
658 simple_unlock(&uvm.swap_data_lock);
659 error = ENXIO;
660 break;
661 }
662
663 /*
664 * If a device isn't in use or enabled, we
665 * can't stop swapping from it (again).
666 */
667 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
668 simple_unlock(&uvm.swap_data_lock);
669 error = EBUSY;
670 break;
671 }
672
673 /*
674 * do the real work.
675 */
676 error = swap_off(p, sdp);
677 break;
678
679 default:
680 error = EINVAL;
681 }
682
683 /*
684 * done! release the ref gained by namei() and unlock.
685 */
686 vput(vp);
687
688 out:
689 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
690
691 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
692 return (error);
693 }
694
695 /*
696 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
697 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
698 * emulation to use it directly without going through sys_swapctl().
699 * The problem with using sys_swapctl() there is that it involves
700 * copying the swapent array to the stackgap, and this array's size
701 * is not known at build time. Hence it would not be possible to
702 * ensure it would fit in the stackgap in any case.
703 */
704 void
705 uvm_swap_stats(cmd, sep, sec, retval)
706 int cmd;
707 struct swapent *sep;
708 int sec;
709 register_t *retval;
710 {
711 struct swappri *spp;
712 struct swapdev *sdp;
713 int count = 0;
714
715 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
716 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
717 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
718 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
719 /*
720 * backwards compatibility for system call.
721 * note that we use 'struct oswapent' as an
722 * overlay into both 'struct swapdev' and
723 * the userland 'struct swapent', as we
724 * want to retain backwards compatibility
725 * with NetBSD 1.3.
726 */
727 sdp->swd_ose.ose_inuse =
728 btodb((u_int64_t)sdp->swd_npginuse <<
729 PAGE_SHIFT);
730 (void)memcpy(sep, &sdp->swd_ose,
731 sizeof(struct oswapent));
732
733 /* now copy out the path if necessary */
734 #if defined(COMPAT_13)
735 if (cmd == SWAP_STATS)
736 #endif
737 (void)memcpy(&sep->se_path, sdp->swd_path,
738 sdp->swd_pathlen);
739
740 count++;
741 #if defined(COMPAT_13)
742 if (cmd == SWAP_OSTATS)
743 sep = (struct swapent *)
744 ((struct oswapent *)sep + 1);
745 else
746 #endif
747 sep++;
748 }
749 }
750
751 *retval = count;
752 return;
753 }
754
755 /*
756 * swap_on: attempt to enable a swapdev for swapping. note that the
757 * swapdev is already on the global list, but disabled (marked
758 * SWF_FAKE).
759 *
760 * => we avoid the start of the disk (to protect disk labels)
761 * => we also avoid the miniroot, if we are swapping to root.
762 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
763 * if needed.
764 */
765 static int
766 swap_on(p, sdp)
767 struct proc *p;
768 struct swapdev *sdp;
769 {
770 struct vnode *vp;
771 int error, npages, nblocks, size;
772 long addr;
773 u_long result;
774 struct vattr va;
775 #ifdef NFS
776 extern int (**nfsv2_vnodeop_p)(void *);
777 #endif /* NFS */
778 const struct bdevsw *bdev;
779 dev_t dev;
780 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
781
782 /*
783 * we want to enable swapping on sdp. the swd_vp contains
784 * the vnode we want (locked and ref'd), and the swd_dev
785 * contains the dev_t of the file, if it a block device.
786 */
787
788 vp = sdp->swd_vp;
789 dev = sdp->swd_dev;
790
791 /*
792 * open the swap file (mostly useful for block device files to
793 * let device driver know what is up).
794 *
795 * we skip the open/close for root on swap because the root
796 * has already been opened when root was mounted (mountroot).
797 */
798 if (vp != rootvp) {
799 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
800 return (error);
801 }
802
803 /* XXX this only works for block devices */
804 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
805
806 /*
807 * we now need to determine the size of the swap area. for
808 * block specials we can call the d_psize function.
809 * for normal files, we must stat [get attrs].
810 *
811 * we put the result in nblks.
812 * for normal files, we also want the filesystem block size
813 * (which we get with statfs).
814 */
815 switch (vp->v_type) {
816 case VBLK:
817 bdev = bdevsw_lookup(dev);
818 if (bdev == NULL || bdev->d_psize == NULL ||
819 (nblocks = (*bdev->d_psize)(dev)) == -1) {
820 error = ENXIO;
821 goto bad;
822 }
823 break;
824
825 case VREG:
826 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
827 goto bad;
828 nblocks = (int)btodb(va.va_size);
829 if ((error =
830 VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
831 goto bad;
832
833 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
834 /*
835 * limit the max # of outstanding I/O requests we issue
836 * at any one time. take it easy on NFS servers.
837 */
838 #ifdef NFS
839 if (vp->v_op == nfsv2_vnodeop_p)
840 sdp->swd_maxactive = 2; /* XXX */
841 else
842 #endif /* NFS */
843 sdp->swd_maxactive = 8; /* XXX */
844 break;
845
846 default:
847 error = ENXIO;
848 goto bad;
849 }
850
851 /*
852 * save nblocks in a safe place and convert to pages.
853 */
854
855 sdp->swd_ose.ose_nblks = nblocks;
856 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
857
858 /*
859 * for block special files, we want to make sure that leave
860 * the disklabel and bootblocks alone, so we arrange to skip
861 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
862 * note that because of this the "size" can be less than the
863 * actual number of blocks on the device.
864 */
865 if (vp->v_type == VBLK) {
866 /* we use pages 1 to (size - 1) [inclusive] */
867 size = npages - 1;
868 addr = 1;
869 } else {
870 /* we use pages 0 to (size - 1) [inclusive] */
871 size = npages;
872 addr = 0;
873 }
874
875 /*
876 * make sure we have enough blocks for a reasonable sized swap
877 * area. we want at least one page.
878 */
879
880 if (size < 1) {
881 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
882 error = EINVAL;
883 goto bad;
884 }
885
886 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
887
888 /*
889 * now we need to allocate an extent to manage this swap device
890 */
891
892 sdp->swd_blist = blist_create(npages);
893 /* mark all expect the `saved' region free. */
894 blist_free(sdp->swd_blist, addr, size);
895
896 /*
897 * if the vnode we are swapping to is the root vnode
898 * (i.e. we are swapping to the miniroot) then we want
899 * to make sure we don't overwrite it. do a statfs to
900 * find its size and skip over it.
901 */
902 if (vp == rootvp) {
903 struct mount *mp;
904 struct statvfs *sp;
905 int rootblocks, rootpages;
906
907 mp = rootvnode->v_mount;
908 sp = &mp->mnt_stat;
909 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
910 /*
911 * XXX: sp->f_blocks isn't the total number of
912 * blocks in the filesystem, it's the number of
913 * data blocks. so, our rootblocks almost
914 * definitely underestimates the total size
915 * of the filesystem - how badly depends on the
916 * details of the filesystem type. there isn't
917 * an obvious way to deal with this cleanly
918 * and perfectly, so for now we just pad our
919 * rootblocks estimate with an extra 5 percent.
920 */
921 rootblocks += (rootblocks >> 5) +
922 (rootblocks >> 6) +
923 (rootblocks >> 7);
924 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
925 if (rootpages > size)
926 panic("swap_on: miniroot larger than swap?");
927
928 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
929 panic("swap_on: unable to preserve miniroot");
930 }
931
932 size -= rootpages;
933 printf("Preserved %d pages of miniroot ", rootpages);
934 printf("leaving %d pages of swap\n", size);
935 }
936
937 /*
938 * try to add anons to reflect the new swap space.
939 */
940
941 error = uvm_anon_add(size);
942 if (error) {
943 goto bad;
944 }
945
946 /*
947 * add a ref to vp to reflect usage as a swap device.
948 */
949 vref(vp);
950
951 /*
952 * now add the new swapdev to the drum and enable.
953 */
954 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
955 EX_WAITOK, &result))
956 panic("swapdrum_add");
957
958 sdp->swd_drumoffset = (int)result;
959 sdp->swd_drumsize = npages;
960 sdp->swd_npages = size;
961 simple_lock(&uvm.swap_data_lock);
962 sdp->swd_flags &= ~SWF_FAKE; /* going live */
963 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
964 uvmexp.swpages += size;
965 uvmexp.swpgavail += size;
966 simple_unlock(&uvm.swap_data_lock);
967 return (0);
968
969 /*
970 * failure: clean up and return error.
971 */
972
973 bad:
974 if (sdp->swd_blist) {
975 blist_destroy(sdp->swd_blist);
976 }
977 if (vp != rootvp) {
978 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
979 }
980 return (error);
981 }
982
983 /*
984 * swap_off: stop swapping on swapdev
985 *
986 * => swap data should be locked, we will unlock.
987 */
988 static int
989 swap_off(p, sdp)
990 struct proc *p;
991 struct swapdev *sdp;
992 {
993 int npages = sdp->swd_npages;
994
995 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
996 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
997
998 /* disable the swap area being removed */
999 sdp->swd_flags &= ~SWF_ENABLE;
1000 uvmexp.swpgavail -= npages;
1001 simple_unlock(&uvm.swap_data_lock);
1002
1003 /*
1004 * the idea is to find all the pages that are paged out to this
1005 * device, and page them all in. in uvm, swap-backed pageable
1006 * memory can take two forms: aobjs and anons. call the
1007 * swapoff hook for each subsystem to bring in pages.
1008 */
1009
1010 if (uao_swap_off(sdp->swd_drumoffset,
1011 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1012 anon_swap_off(sdp->swd_drumoffset,
1013 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1014
1015 simple_lock(&uvm.swap_data_lock);
1016 sdp->swd_flags |= SWF_ENABLE;
1017 uvmexp.swpgavail += npages;
1018 simple_unlock(&uvm.swap_data_lock);
1019 return ENOMEM;
1020 }
1021 KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
1022
1023 /*
1024 * done with the vnode.
1025 * drop our ref on the vnode before calling VOP_CLOSE()
1026 * so that spec_close() can tell if this is the last close.
1027 */
1028 vrele(sdp->swd_vp);
1029 if (sdp->swd_vp != rootvp) {
1030 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1031 }
1032
1033 /* remove anons from the system */
1034 uvm_anon_remove(npages);
1035
1036 simple_lock(&uvm.swap_data_lock);
1037 uvmexp.swpages -= npages;
1038 uvmexp.swpginuse -= sdp->swd_npgbad;
1039
1040 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1041 panic("swap_off: swapdev not in list");
1042 swaplist_trim();
1043 simple_unlock(&uvm.swap_data_lock);
1044
1045 /*
1046 * free all resources!
1047 */
1048 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1049 EX_WAITOK);
1050 blist_destroy(sdp->swd_blist);
1051 bufq_free(&sdp->swd_tab);
1052 free(sdp, M_VMSWAP);
1053 return (0);
1054 }
1055
1056 /*
1057 * /dev/drum interface and i/o functions
1058 */
1059
1060 /*
1061 * swread: the read function for the drum (just a call to physio)
1062 */
1063 /*ARGSUSED*/
1064 int
1065 swread(dev, uio, ioflag)
1066 dev_t dev;
1067 struct uio *uio;
1068 int ioflag;
1069 {
1070 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1071
1072 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1073 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1074 }
1075
1076 /*
1077 * swwrite: the write function for the drum (just a call to physio)
1078 */
1079 /*ARGSUSED*/
1080 int
1081 swwrite(dev, uio, ioflag)
1082 dev_t dev;
1083 struct uio *uio;
1084 int ioflag;
1085 {
1086 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1087
1088 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1089 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1090 }
1091
1092 /*
1093 * swstrategy: perform I/O on the drum
1094 *
1095 * => we must map the i/o request from the drum to the correct swapdev.
1096 */
1097 void
1098 swstrategy(bp)
1099 struct buf *bp;
1100 {
1101 struct swapdev *sdp;
1102 struct vnode *vp;
1103 int s, pageno, bn;
1104 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1105
1106 /*
1107 * convert block number to swapdev. note that swapdev can't
1108 * be yanked out from under us because we are holding resources
1109 * in it (i.e. the blocks we are doing I/O on).
1110 */
1111 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1112 simple_lock(&uvm.swap_data_lock);
1113 sdp = swapdrum_getsdp(pageno);
1114 simple_unlock(&uvm.swap_data_lock);
1115 if (sdp == NULL) {
1116 bp->b_error = EINVAL;
1117 bp->b_flags |= B_ERROR;
1118 biodone(bp);
1119 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1120 return;
1121 }
1122
1123 /*
1124 * convert drum page number to block number on this swapdev.
1125 */
1126
1127 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1128 bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1129
1130 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1131 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1132 sdp->swd_drumoffset, bn, bp->b_bcount);
1133
1134 /*
1135 * for block devices we finish up here.
1136 * for regular files we have to do more work which we delegate
1137 * to sw_reg_strategy().
1138 */
1139
1140 switch (sdp->swd_vp->v_type) {
1141 default:
1142 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1143
1144 case VBLK:
1145
1146 /*
1147 * must convert "bp" from an I/O on /dev/drum to an I/O
1148 * on the swapdev (sdp).
1149 */
1150 s = splbio();
1151 bp->b_blkno = bn; /* swapdev block number */
1152 vp = sdp->swd_vp; /* swapdev vnode pointer */
1153 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1154
1155 /*
1156 * if we are doing a write, we have to redirect the i/o on
1157 * drum's v_numoutput counter to the swapdevs.
1158 */
1159 if ((bp->b_flags & B_READ) == 0) {
1160 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1161 V_INCR_NUMOUTPUT(vp); /* put it on swapdev */
1162 }
1163
1164 /*
1165 * finally plug in swapdev vnode and start I/O
1166 */
1167 bp->b_vp = vp;
1168 splx(s);
1169 VOP_STRATEGY(vp, bp);
1170 return;
1171
1172 case VREG:
1173 /*
1174 * delegate to sw_reg_strategy function.
1175 */
1176 sw_reg_strategy(sdp, bp, bn);
1177 return;
1178 }
1179 /* NOTREACHED */
1180 }
1181
1182 /*
1183 * sw_reg_strategy: handle swap i/o to regular files
1184 */
1185 static void
1186 sw_reg_strategy(sdp, bp, bn)
1187 struct swapdev *sdp;
1188 struct buf *bp;
1189 int bn;
1190 {
1191 struct vnode *vp;
1192 struct vndxfer *vnx;
1193 daddr_t nbn;
1194 caddr_t addr;
1195 off_t byteoff;
1196 int s, off, nra, error, sz, resid;
1197 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1198
1199 /*
1200 * allocate a vndxfer head for this transfer and point it to
1201 * our buffer.
1202 */
1203 getvndxfer(vnx);
1204 vnx->vx_flags = VX_BUSY;
1205 vnx->vx_error = 0;
1206 vnx->vx_pending = 0;
1207 vnx->vx_bp = bp;
1208 vnx->vx_sdp = sdp;
1209
1210 /*
1211 * setup for main loop where we read filesystem blocks into
1212 * our buffer.
1213 */
1214 error = 0;
1215 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1216 addr = bp->b_data; /* current position in buffer */
1217 byteoff = dbtob((u_int64_t)bn);
1218
1219 for (resid = bp->b_resid; resid; resid -= sz) {
1220 struct vndbuf *nbp;
1221
1222 /*
1223 * translate byteoffset into block number. return values:
1224 * vp = vnode of underlying device
1225 * nbn = new block number (on underlying vnode dev)
1226 * nra = num blocks we can read-ahead (excludes requested
1227 * block)
1228 */
1229 nra = 0;
1230 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1231 &vp, &nbn, &nra);
1232
1233 if (error == 0 && nbn == (daddr_t)-1) {
1234 /*
1235 * this used to just set error, but that doesn't
1236 * do the right thing. Instead, it causes random
1237 * memory errors. The panic() should remain until
1238 * this condition doesn't destabilize the system.
1239 */
1240 #if 1
1241 panic("sw_reg_strategy: swap to sparse file");
1242 #else
1243 error = EIO; /* failure */
1244 #endif
1245 }
1246
1247 /*
1248 * punt if there was an error or a hole in the file.
1249 * we must wait for any i/o ops we have already started
1250 * to finish before returning.
1251 *
1252 * XXX we could deal with holes here but it would be
1253 * a hassle (in the write case).
1254 */
1255 if (error) {
1256 s = splbio();
1257 vnx->vx_error = error; /* pass error up */
1258 goto out;
1259 }
1260
1261 /*
1262 * compute the size ("sz") of this transfer (in bytes).
1263 */
1264 off = byteoff % sdp->swd_bsize;
1265 sz = (1 + nra) * sdp->swd_bsize - off;
1266 if (sz > resid)
1267 sz = resid;
1268
1269 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1270 "vp %p/%p offset 0x%x/0x%x",
1271 sdp->swd_vp, vp, byteoff, nbn);
1272
1273 /*
1274 * now get a buf structure. note that the vb_buf is
1275 * at the front of the nbp structure so that you can
1276 * cast pointers between the two structure easily.
1277 */
1278 getvndbuf(nbp);
1279 BUF_INIT(&nbp->vb_buf);
1280 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1281 nbp->vb_buf.b_bcount = sz;
1282 nbp->vb_buf.b_bufsize = sz;
1283 nbp->vb_buf.b_error = 0;
1284 nbp->vb_buf.b_data = addr;
1285 nbp->vb_buf.b_lblkno = 0;
1286 nbp->vb_buf.b_blkno = nbn + btodb(off);
1287 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1288 nbp->vb_buf.b_iodone = sw_reg_iodone;
1289 nbp->vb_buf.b_vp = vp;
1290 if (vp->v_type == VBLK) {
1291 nbp->vb_buf.b_dev = vp->v_rdev;
1292 }
1293
1294 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1295
1296 /*
1297 * Just sort by block number
1298 */
1299 s = splbio();
1300 if (vnx->vx_error != 0) {
1301 putvndbuf(nbp);
1302 goto out;
1303 }
1304 vnx->vx_pending++;
1305
1306 /* sort it in and start I/O if we are not over our limit */
1307 BUFQ_PUT(&sdp->swd_tab, &nbp->vb_buf);
1308 sw_reg_start(sdp);
1309 splx(s);
1310
1311 /*
1312 * advance to the next I/O
1313 */
1314 byteoff += sz;
1315 addr += sz;
1316 }
1317
1318 s = splbio();
1319
1320 out: /* Arrive here at splbio */
1321 vnx->vx_flags &= ~VX_BUSY;
1322 if (vnx->vx_pending == 0) {
1323 if (vnx->vx_error != 0) {
1324 bp->b_error = vnx->vx_error;
1325 bp->b_flags |= B_ERROR;
1326 }
1327 putvndxfer(vnx);
1328 biodone(bp);
1329 }
1330 splx(s);
1331 }
1332
1333 /*
1334 * sw_reg_start: start an I/O request on the requested swapdev
1335 *
1336 * => reqs are sorted by b_rawblkno (above)
1337 */
1338 static void
1339 sw_reg_start(sdp)
1340 struct swapdev *sdp;
1341 {
1342 struct buf *bp;
1343 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1344
1345 /* recursion control */
1346 if ((sdp->swd_flags & SWF_BUSY) != 0)
1347 return;
1348
1349 sdp->swd_flags |= SWF_BUSY;
1350
1351 while (sdp->swd_active < sdp->swd_maxactive) {
1352 bp = BUFQ_GET(&sdp->swd_tab);
1353 if (bp == NULL)
1354 break;
1355 sdp->swd_active++;
1356
1357 UVMHIST_LOG(pdhist,
1358 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1359 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1360 if ((bp->b_flags & B_READ) == 0)
1361 V_INCR_NUMOUTPUT(bp->b_vp);
1362
1363 VOP_STRATEGY(bp->b_vp, bp);
1364 }
1365 sdp->swd_flags &= ~SWF_BUSY;
1366 }
1367
1368 /*
1369 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1370 *
1371 * => note that we can recover the vndbuf struct by casting the buf ptr
1372 */
1373 static void
1374 sw_reg_iodone(bp)
1375 struct buf *bp;
1376 {
1377 struct vndbuf *vbp = (struct vndbuf *) bp;
1378 struct vndxfer *vnx = vbp->vb_xfer;
1379 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1380 struct swapdev *sdp = vnx->vx_sdp;
1381 int s, resid, error;
1382 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1383
1384 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1385 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1386 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1387 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1388
1389 /*
1390 * protect vbp at splbio and update.
1391 */
1392
1393 s = splbio();
1394 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1395 pbp->b_resid -= resid;
1396 vnx->vx_pending--;
1397
1398 if (vbp->vb_buf.b_flags & B_ERROR) {
1399 /* pass error upward */
1400 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1401 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1402 vnx->vx_error = error;
1403 }
1404
1405 /*
1406 * kill vbp structure
1407 */
1408 putvndbuf(vbp);
1409
1410 /*
1411 * wrap up this transaction if it has run to completion or, in
1412 * case of an error, when all auxiliary buffers have returned.
1413 */
1414 if (vnx->vx_error != 0) {
1415 /* pass error upward */
1416 pbp->b_flags |= B_ERROR;
1417 pbp->b_error = vnx->vx_error;
1418 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1419 putvndxfer(vnx);
1420 biodone(pbp);
1421 }
1422 } else if (pbp->b_resid == 0) {
1423 KASSERT(vnx->vx_pending == 0);
1424 if ((vnx->vx_flags & VX_BUSY) == 0) {
1425 UVMHIST_LOG(pdhist, " iodone error=%d !",
1426 pbp, vnx->vx_error, 0, 0);
1427 putvndxfer(vnx);
1428 biodone(pbp);
1429 }
1430 }
1431
1432 /*
1433 * done! start next swapdev I/O if one is pending
1434 */
1435 sdp->swd_active--;
1436 sw_reg_start(sdp);
1437 splx(s);
1438 }
1439
1440
1441 /*
1442 * uvm_swap_alloc: allocate space on swap
1443 *
1444 * => allocation is done "round robin" down the priority list, as we
1445 * allocate in a priority we "rotate" the circle queue.
1446 * => space can be freed with uvm_swap_free
1447 * => we return the page slot number in /dev/drum (0 == invalid slot)
1448 * => we lock uvm.swap_data_lock
1449 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1450 */
1451 int
1452 uvm_swap_alloc(nslots, lessok)
1453 int *nslots; /* IN/OUT */
1454 boolean_t lessok;
1455 {
1456 struct swapdev *sdp;
1457 struct swappri *spp;
1458 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1459
1460 /*
1461 * no swap devices configured yet? definite failure.
1462 */
1463 if (uvmexp.nswapdev < 1)
1464 return 0;
1465
1466 /*
1467 * lock data lock, convert slots into blocks, and enter loop
1468 */
1469 simple_lock(&uvm.swap_data_lock);
1470
1471 ReTry: /* XXXMRG */
1472 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1473 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1474 uint64_t result;
1475
1476 /* if it's not enabled, then we can't swap from it */
1477 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1478 continue;
1479 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1480 continue;
1481 result = blist_alloc(sdp->swd_blist, *nslots);
1482 if (result == BLIST_NONE) {
1483 continue;
1484 }
1485 KASSERT(result < sdp->swd_drumsize);
1486
1487 /*
1488 * successful allocation! now rotate the circleq.
1489 */
1490 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1491 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1492 sdp->swd_npginuse += *nslots;
1493 uvmexp.swpginuse += *nslots;
1494 simple_unlock(&uvm.swap_data_lock);
1495 /* done! return drum slot number */
1496 UVMHIST_LOG(pdhist,
1497 "success! returning %d slots starting at %d",
1498 *nslots, result + sdp->swd_drumoffset, 0, 0);
1499 return (result + sdp->swd_drumoffset);
1500 }
1501 }
1502
1503 /* XXXMRG: BEGIN HACK */
1504 if (*nslots > 1 && lessok) {
1505 *nslots = 1;
1506 /* XXXMRG: ugh! blist should support this for us */
1507 goto ReTry;
1508 }
1509 /* XXXMRG: END HACK */
1510
1511 simple_unlock(&uvm.swap_data_lock);
1512 return 0;
1513 }
1514
1515 boolean_t
1516 uvm_swapisfull(void)
1517 {
1518 boolean_t rv;
1519
1520 simple_lock(&uvm.swap_data_lock);
1521 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1522 rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1523 simple_unlock(&uvm.swap_data_lock);
1524
1525 return (rv);
1526 }
1527
1528 /*
1529 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1530 *
1531 * => we lock uvm.swap_data_lock
1532 */
1533 void
1534 uvm_swap_markbad(startslot, nslots)
1535 int startslot;
1536 int nslots;
1537 {
1538 struct swapdev *sdp;
1539 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1540
1541 simple_lock(&uvm.swap_data_lock);
1542 sdp = swapdrum_getsdp(startslot);
1543 KASSERT(sdp != NULL);
1544
1545 /*
1546 * we just keep track of how many pages have been marked bad
1547 * in this device, to make everything add up in swap_off().
1548 * we assume here that the range of slots will all be within
1549 * one swap device.
1550 */
1551
1552 KASSERT(uvmexp.swpgonly >= nslots);
1553 uvmexp.swpgonly -= nslots;
1554 sdp->swd_npgbad += nslots;
1555 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1556 simple_unlock(&uvm.swap_data_lock);
1557 }
1558
1559 /*
1560 * uvm_swap_free: free swap slots
1561 *
1562 * => this can be all or part of an allocation made by uvm_swap_alloc
1563 * => we lock uvm.swap_data_lock
1564 */
1565 void
1566 uvm_swap_free(startslot, nslots)
1567 int startslot;
1568 int nslots;
1569 {
1570 struct swapdev *sdp;
1571 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1572
1573 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1574 startslot, 0, 0);
1575
1576 /*
1577 * ignore attempts to free the "bad" slot.
1578 */
1579
1580 if (startslot == SWSLOT_BAD) {
1581 return;
1582 }
1583
1584 /*
1585 * convert drum slot offset back to sdp, free the blocks
1586 * in the extent, and return. must hold pri lock to do
1587 * lookup and access the extent.
1588 */
1589
1590 simple_lock(&uvm.swap_data_lock);
1591 sdp = swapdrum_getsdp(startslot);
1592 KASSERT(uvmexp.nswapdev >= 1);
1593 KASSERT(sdp != NULL);
1594 KASSERT(sdp->swd_npginuse >= nslots);
1595 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1596 sdp->swd_npginuse -= nslots;
1597 uvmexp.swpginuse -= nslots;
1598 simple_unlock(&uvm.swap_data_lock);
1599 }
1600
1601 /*
1602 * uvm_swap_put: put any number of pages into a contig place on swap
1603 *
1604 * => can be sync or async
1605 */
1606
1607 int
1608 uvm_swap_put(swslot, ppsp, npages, flags)
1609 int swslot;
1610 struct vm_page **ppsp;
1611 int npages;
1612 int flags;
1613 {
1614 int error;
1615
1616 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1617 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1618 return error;
1619 }
1620
1621 /*
1622 * uvm_swap_get: get a single page from swap
1623 *
1624 * => usually a sync op (from fault)
1625 */
1626
1627 int
1628 uvm_swap_get(page, swslot, flags)
1629 struct vm_page *page;
1630 int swslot, flags;
1631 {
1632 int error;
1633
1634 uvmexp.nswget++;
1635 KASSERT(flags & PGO_SYNCIO);
1636 if (swslot == SWSLOT_BAD) {
1637 return EIO;
1638 }
1639
1640 error = uvm_swap_io(&page, swslot, 1, B_READ |
1641 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1642 if (error == 0) {
1643
1644 /*
1645 * this page is no longer only in swap.
1646 */
1647
1648 simple_lock(&uvm.swap_data_lock);
1649 KASSERT(uvmexp.swpgonly > 0);
1650 uvmexp.swpgonly--;
1651 simple_unlock(&uvm.swap_data_lock);
1652 }
1653 return error;
1654 }
1655
1656 /*
1657 * uvm_swap_io: do an i/o operation to swap
1658 */
1659
1660 static int
1661 uvm_swap_io(pps, startslot, npages, flags)
1662 struct vm_page **pps;
1663 int startslot, npages, flags;
1664 {
1665 daddr_t startblk;
1666 struct buf *bp;
1667 vaddr_t kva;
1668 int error, s, mapinflags;
1669 boolean_t write, async;
1670 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1671
1672 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1673 startslot, npages, flags, 0);
1674
1675 write = (flags & B_READ) == 0;
1676 async = (flags & B_ASYNC) != 0;
1677
1678 /*
1679 * convert starting drum slot to block number
1680 */
1681
1682 startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1683
1684 /*
1685 * first, map the pages into the kernel.
1686 */
1687
1688 mapinflags = !write ?
1689 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1690 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1691 kva = uvm_pagermapin(pps, npages, mapinflags);
1692
1693 /*
1694 * now allocate a buf for the i/o.
1695 */
1696
1697 s = splbio();
1698 bp = pool_get(&bufpool, PR_WAITOK);
1699 splx(s);
1700
1701 /*
1702 * fill in the bp/sbp. we currently route our i/o through
1703 * /dev/drum's vnode [swapdev_vp].
1704 */
1705
1706 BUF_INIT(bp);
1707 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1708 bp->b_proc = &proc0; /* XXX */
1709 bp->b_vnbufs.le_next = NOLIST;
1710 bp->b_data = (caddr_t)kva;
1711 bp->b_blkno = startblk;
1712 bp->b_vp = swapdev_vp;
1713 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1714
1715 /*
1716 * bump v_numoutput (counter of number of active outputs).
1717 */
1718
1719 if (write) {
1720 s = splbio();
1721 V_INCR_NUMOUTPUT(swapdev_vp);
1722 splx(s);
1723 }
1724
1725 /*
1726 * for async ops we must set up the iodone handler.
1727 */
1728
1729 if (async) {
1730 bp->b_flags |= B_CALL;
1731 bp->b_iodone = uvm_aio_biodone;
1732 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1733 if (curproc == uvm.pagedaemon_proc)
1734 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1735 else
1736 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1737 } else {
1738 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1739 }
1740 UVMHIST_LOG(pdhist,
1741 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1742 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1743
1744 /*
1745 * now we start the I/O, and if async, return.
1746 */
1747
1748 VOP_STRATEGY(swapdev_vp, bp);
1749 if (async)
1750 return 0;
1751
1752 /*
1753 * must be sync i/o. wait for it to finish
1754 */
1755
1756 error = biowait(bp);
1757
1758 /*
1759 * kill the pager mapping
1760 */
1761
1762 uvm_pagermapout(kva, npages);
1763
1764 /*
1765 * now dispose of the buf and we're done.
1766 */
1767
1768 s = splbio();
1769 if (write)
1770 vwakeup(bp);
1771 pool_put(&bufpool, bp);
1772 splx(s);
1773 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1774 return (error);
1775 }
1776