uvm_swap.c revision 1.9 1 /* $NetBSD: uvm_swap.c,v 1.9 1998/05/01 01:40:02 mrg Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include "fs_nfs.h"
35 #include "opt_uvmhist.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/buf.h>
40 #include <sys/proc.h>
41 #include <sys/namei.h>
42 #include <sys/disklabel.h>
43 #include <sys/errno.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/vnode.h>
47 #include <sys/file.h>
48 #include <sys/extent.h>
49 #include <sys/mount.h>
50 #include <sys/syscallargs.h>
51
52 #include <vm/vm.h>
53 #include <vm/vm_swap.h>
54 #include <vm/vm_conf.h>
55
56 #include <uvm/uvm.h>
57
58 #include <miscfs/specfs/specdev.h>
59
60 /*
61 * uvm_swap.c: manage configuration and i/o to swap space.
62 */
63
64 /*
65 * swap space is managed in the following way:
66 *
67 * each swap partition or file is described by a "swapdev" structure.
68 * each "swapdev" structure contains a "swapent" structure which contains
69 * information that is passed up to the user (via system calls).
70 *
71 * each swap partition is assigned a "priority" (int) which controls
72 * swap parition usage.
73 *
74 * the system maintains a global data structure describing all swap
75 * partitions/files. there is a sorted LIST of "swappri" structures
76 * which describe "swapdev"'s at that priority. this LIST is headed
77 * by the "swap_priority" global var. each "swappri" contains a
78 * CIRCLEQ of "swapdev" structures at that priority.
79 *
80 * the system maintains a fixed pool of "swapbuf" structures for use
81 * at swap i/o time. a swapbuf includes a "buf" structure and an
82 * "aiodone" [we want to avoid malloc()'ing anything at swapout time
83 * since memory may be low].
84 *
85 * locking:
86 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
87 * system call and prevents the swap priority list from changing
88 * while we are in the middle of a system call (e.g. SWAP_STATS).
89 * - swap_data_lock (simple_lock): this lock protects all swap data
90 * structures including the priority list, the swapdev structures,
91 * and the swapmap extent.
92 * - swap_buf_lock (simple_lock): this lock protects the free swapbuf
93 * pool.
94 *
95 * each swap device has the following info:
96 * - swap device in use (could be disabled, preventing future use)
97 * - swap enabled (allows new allocations on swap)
98 * - map info in /dev/drum
99 * - vnode pointer
100 * for swap files only:
101 * - block size
102 * - max byte count in buffer
103 * - buffer
104 * - credentials to use when doing i/o to file
105 *
106 * userland controls and configures swap with the swapctl(2) system call.
107 * the sys_swapctl performs the following operations:
108 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
109 * [2] SWAP_STATS: given a pointer to an array of swapent structures
110 * (passed in via "arg") of a size passed in via "misc" ... we load
111 * the current swap config into the array.
112 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
113 * priority in "misc", start swapping on it.
114 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
115 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
116 * "misc")
117 */
118
119 /*
120 * SWAP_TO_FILES: allows swapping to plain files.
121 */
122
123 #define SWAP_TO_FILES
124
125 /*
126 * swapdev: describes a single swap partition/file
127 *
128 * note the following should be true:
129 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
130 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
131 */
132 struct swapdev {
133 struct swapent swd_se; /* swap entry struct */
134 #define swd_dev swd_se.se_dev /* dev_t for this dev */
135 #define swd_flags swd_se.se_flags /* flags:inuse/enable/fake*/
136 #define swd_priority swd_se.se_priority /* our priority */
137 /* also: swd_se.se_nblks, swd_se.se_inuse */
138 int swd_npages; /* #pages we can use */
139 int swd_npginuse; /* #pages in use */
140 int swd_drumoffset; /* page0 offset in drum */
141 int swd_drumsize; /* #pages in drum */
142 struct extent *swd_ex; /* extent for this swapdev*/
143 struct vnode *swd_vp; /* backing vnode */
144 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
145
146 #ifdef SWAP_TO_FILES
147 int swd_bsize; /* blocksize (bytes) */
148 int swd_maxactive; /* max active i/o reqs */
149 struct buf swd_tab; /* buffer list */
150 struct ucred *swd_cred; /* cred for file access */
151 #endif
152 };
153
154 /*
155 * swap device priority entry; the list is kept sorted on `spi_priority'.
156 */
157 struct swappri {
158 int spi_priority; /* priority */
159 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
160 /* circleq of swapdevs at this priority */
161 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
162 };
163
164 /*
165 * swapbuf, swapbuffer plus async i/o info
166 */
167 struct swapbuf {
168 struct buf sw_buf; /* a buffer structure */
169 struct uvm_aiodesc sw_aio; /* aiodesc structure, used if ASYNC */
170 SIMPLEQ_ENTRY(swapbuf) sw_sq; /* free list pointer */
171 };
172
173 /*
174 * The following two structures are used to keep track of data transfers
175 * on swap devices associated with regular files.
176 * NOTE: this code is more or less a copy of vnd.c; we use the same
177 * structure names here to ease porting..
178 */
179 struct vndxfer {
180 struct buf *vx_bp; /* Pointer to parent buffer */
181 struct swapdev *vx_sdp;
182 int vx_error;
183 int vx_pending; /* # of pending aux buffers */
184 int vx_flags;
185 #define VX_BUSY 1
186 #define VX_DEAD 2
187 };
188
189 struct vndbuf {
190 struct buf vb_buf;
191 struct vndxfer *vb_xfer;
192 };
193
194 /*
195 * XXX: Not a very good idea in a swap strategy module!
196 */
197 #define getvndxfer() \
198 ((struct vndxfer *)malloc(sizeof(struct vndxfer), M_DEVBUF, M_WAITOK))
199
200 #define putvndxfer(vnx) \
201 free((caddr_t)(vnx), M_DEVBUF)
202
203 #define getvndbuf() \
204 ((struct vndbuf *)malloc(sizeof(struct vndbuf), M_DEVBUF, M_WAITOK))
205
206 #define putvndbuf(vbp) \
207 free((caddr_t)(vbp), M_DEVBUF)
208
209 /*
210 * local variables
211 */
212 static struct extent *swapmap; /* controls the mapping of /dev/drum */
213 SIMPLEQ_HEAD(swapbufhead, swapbuf);
214 static struct swapbufhead freesbufs; /* list of free swapbufs */
215 static int sbufs_wanted = 0; /* someone sleeping for swapbufs? */
216 static simple_lock_data_t swap_buf_lock;/* locks freesbufs and sbufs_wanted */
217
218 /* list of all active swap devices [by priority] */
219 LIST_HEAD(swap_priority, swappri);
220 static struct swap_priority swap_priority;
221
222 /* locks */
223 lock_data_t swap_syscall_lock;
224 static simple_lock_data_t swap_data_lock;
225
226 /*
227 * prototypes
228 */
229 static void swapdrum_add __P((struct swapdev *, int));
230 static struct swapdev *swapdrum_getsdp __P((int));
231
232 static struct swapdev *swaplist_find __P((struct vnode *, int));
233 static void swaplist_insert __P((struct swapdev *,
234 struct swappri *, int));
235 static void swaplist_trim __P((void));
236
237 static int swap_on __P((struct proc *, struct swapdev *));
238 #ifdef SWAP_OFF_WORKS
239 static int swap_off __P((struct proc *, struct swapdev *));
240 #endif
241
242 #ifdef SWAP_TO_FILES
243 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
244 static void sw_reg_iodone __P((struct buf *));
245 static void sw_reg_start __P((struct swapdev *));
246 #endif
247
248 static void uvm_swap_aiodone __P((struct uvm_aiodesc *));
249 static void uvm_swap_bufdone __P((struct buf *));
250 static int uvm_swap_io __P((struct vm_page **, int, int, int));
251
252 /*
253 * uvm_swap_init: init the swap system data structures and locks
254 *
255 * => called at boot time from init_main.c after the filesystems
256 * are brought up (which happens after uvm_init())
257 */
258 void
259 uvm_swap_init()
260 {
261 struct swapbuf *sp;
262 struct proc *p = &proc0; /* XXX */
263 int i;
264 UVMHIST_FUNC("uvm_swap_init");
265
266 UVMHIST_CALLED(pdhist);
267 /*
268 * first, init the swap list, its counter, and its lock.
269 * then get a handle on the vnode for /dev/drum by using
270 * the its dev_t number ("swapdev", from MD conf.c).
271 */
272
273 LIST_INIT(&swap_priority);
274 uvmexp.nswapdev = 0;
275 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
276 simple_lock_init(&swap_data_lock);
277 if (bdevvp(swapdev, &swapdev_vp))
278 panic("uvm_swap_init: can't get vnode for swap device");
279
280 /*
281 * create swap block resource map to map /dev/drum. the range
282 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
283 * that block 0 is reserved (used to indicate an allocation
284 * failure, or no allocation).
285 */
286 swapmap = extent_create("swapmap", 1, INT_MAX,
287 M_VMSWAP, 0, 0, EX_NOWAIT);
288 if (swapmap == 0)
289 panic("uvm_swap_init: extent_create failed");
290
291 /*
292 * allocate our private pool of "swapbuf" structures (includes
293 * a "buf" structure). ["nswbuf" comes from param.c and can
294 * be adjusted by MD code before we get here].
295 */
296
297 sp = malloc(sizeof(*sp) * nswbuf, M_VMSWAP, M_NOWAIT);
298 if (sp == NULL)
299 panic("uvm_swap_init: unable to malloc swap bufs");
300 bzero(sp, sizeof(*sp) * nswbuf);
301 SIMPLEQ_INIT(&freesbufs);
302 simple_lock_init(&swap_buf_lock);
303
304 /* build free list */
305 for (i = 0 ; i < nswbuf ; i++, sp++) {
306 /* p == proc0 */
307 sp->sw_buf.b_rcred = sp->sw_buf.b_wcred = p->p_ucred;
308 sp->sw_buf.b_vnbufs.le_next = NOLIST;
309 SIMPLEQ_INSERT_HEAD(&freesbufs, sp, sw_sq);
310 }
311 printf("uvm_swap: allocated %d swap buffer headers\n", nswbuf);
312
313 /*
314 * done!
315 */
316 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
317 }
318
319 /*
320 * swaplist functions: functions that operate on the list of swap
321 * devices on the system.
322 */
323
324 /*
325 * swaplist_insert: insert swap device "sdp" into the global list
326 *
327 * => caller must hold both swap_syscall_lock and swap_data_lock
328 * => caller must provide a newly malloc'd swappri structure (we will
329 * FREE it if we don't need it... this it to prevent malloc blocking
330 * here while adding swap)
331 */
332 static void
333 swaplist_insert(sdp, newspp, priority)
334 struct swapdev *sdp;
335 struct swappri *newspp;
336 int priority;
337 {
338 struct swappri *spp, *pspp;
339 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
340
341 /*
342 * find entry at or after which to insert the new device.
343 */
344 for (pspp = NULL, spp = swap_priority.lh_first; spp != NULL;
345 spp = spp->spi_swappri.le_next) {
346 if (priority <= spp->spi_priority)
347 break;
348 pspp = spp;
349 }
350
351 /*
352 * new priority?
353 */
354 if (spp == NULL || spp->spi_priority != priority) {
355 spp = newspp; /* use newspp! */
356 UVMHIST_LOG(pdhist, "created new swappri = %d", priority, 0, 0, 0);
357
358 spp->spi_priority = priority;
359 CIRCLEQ_INIT(&spp->spi_swapdev);
360
361 if (pspp)
362 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
363 else
364 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
365 } else {
366 /* we don't need a new priority structure, free it */
367 FREE(newspp, M_VMSWAP);
368 }
369
370 /*
371 * priority found (or created). now insert on the priority's
372 * circleq list and bump the total number of swapdevs.
373 */
374 sdp->swd_priority = priority;
375 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
376 uvmexp.nswapdev++;
377
378 /*
379 * done!
380 */
381 }
382
383 /*
384 * swaplist_find: find and optionally remove a swap device from the
385 * global list.
386 *
387 * => caller must hold both swap_syscall_lock and swap_data_lock
388 * => we return the swapdev we found (and removed)
389 */
390 static struct swapdev *
391 swaplist_find(vp, remove)
392 struct vnode *vp;
393 boolean_t remove;
394 {
395 struct swapdev *sdp;
396 struct swappri *spp;
397
398 /*
399 * search the lists for the requested vp
400 */
401 for (spp = swap_priority.lh_first; spp != NULL;
402 spp = spp->spi_swappri.le_next) {
403 for (sdp = spp->spi_swapdev.cqh_first;
404 sdp != (void *)&spp->spi_swapdev;
405 sdp = sdp->swd_next.cqe_next)
406 if (sdp->swd_vp == vp) {
407 if (remove) {
408 CIRCLEQ_REMOVE(&spp->spi_swapdev,
409 sdp, swd_next);
410 uvmexp.nswapdev--;
411 }
412 return(sdp);
413 }
414 }
415 return (NULL);
416 }
417
418
419 /*
420 * swaplist_trim: scan priority list for empty priority entries and kill
421 * them.
422 *
423 * => caller must hold both swap_syscall_lock and swap_data_lock
424 */
425 static void
426 swaplist_trim()
427 {
428 struct swappri *spp, *nextspp;
429
430 for (spp = swap_priority.lh_first; spp != NULL; spp = nextspp) {
431 nextspp = spp->spi_swappri.le_next;
432 if (spp->spi_swapdev.cqh_first != (void *)&spp->spi_swapdev)
433 continue;
434 LIST_REMOVE(spp, spi_swappri);
435 free((caddr_t)spp, M_VMSWAP);
436 }
437 }
438
439 /*
440 * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
441 *
442 * => caller must hold swap_syscall_lock
443 * => swap_data_lock should be unlocked (we may sleep)
444 */
445 static void
446 swapdrum_add(sdp, npages)
447 struct swapdev *sdp;
448 int npages;
449 {
450 u_long result;
451
452 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
453 EX_WAITOK, &result))
454 panic("swapdrum_add");
455
456 sdp->swd_drumoffset = result;
457 sdp->swd_drumsize = npages;
458 }
459
460 /*
461 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
462 * to the "swapdev" that maps that section of the drum.
463 *
464 * => each swapdev takes one big contig chunk of the drum
465 * => caller must hold swap_data_lock
466 */
467 static struct swapdev *
468 swapdrum_getsdp(pgno)
469 int pgno;
470 {
471 struct swapdev *sdp;
472 struct swappri *spp;
473
474 for (spp = swap_priority.lh_first; spp != NULL;
475 spp = spp->spi_swappri.le_next)
476 for (sdp = spp->spi_swapdev.cqh_first;
477 sdp != (void *)&spp->spi_swapdev;
478 sdp = sdp->swd_next.cqe_next)
479 if (pgno >= sdp->swd_drumoffset &&
480 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
481 return sdp;
482 }
483 return NULL;
484 }
485
486
487 /*
488 * sys_swapctl: main entry point for swapctl(2) system call
489 * [with two helper functions: swap_on and swap_off]
490 */
491 int
492 sys_swapctl(p, v, retval)
493 struct proc *p;
494 void *v;
495 register_t *retval;
496 {
497 struct sys_swapctl_args /* {
498 syscallarg(int) cmd;
499 syscallarg(void *) arg;
500 syscallarg(int) misc;
501 } */ *uap = (struct sys_swapctl_args *)v;
502 struct vnode *vp;
503 struct nameidata nd;
504 struct swappri *spp;
505 struct swapdev *sdp;
506 struct swapent *sep;
507 int count, error, misc;
508 int priority;
509 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
510
511 misc = SCARG(uap, misc);
512
513 /*
514 * ensure serialized syscall access by grabbing the swap_syscall_lock
515 */
516 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, (void *)0);
517
518 /*
519 * we handle the non-priv NSWAP and STATS request first.
520 *
521 * SWAP_NSWAP: return number of config'd swap devices
522 * [can also be obtained with uvmexp sysctl]
523 */
524 if (SCARG(uap, cmd) == SWAP_NSWAP) {
525 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
526 0, 0, 0);
527 *retval = uvmexp.nswapdev;
528 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0);
529 return (0);
530 }
531
532 /*
533 * SWAP_STATS: get stats on current # of configured swap devs
534 *
535 * note that the swap_priority list can't change as long
536 * as we are holding the swap_syscall_lock. we don't want
537 * to grab the swap_data_lock because we may fault&sleep during
538 * copyout() and we don't want to be holding that lock then!
539 */
540 if (SCARG(uap, cmd) == SWAP_STATS) {
541 sep = (struct swapent *)SCARG(uap, arg);
542 count = 0;
543
544 for (spp = swap_priority.lh_first; spp != NULL;
545 spp = spp->spi_swappri.le_next) {
546 for (sdp = spp->spi_swapdev.cqh_first;
547 sdp != (void *)&spp->spi_swapdev && misc-- > 0;
548 sdp = sdp->swd_next.cqe_next) {
549 /* backwards compatibility for system call */
550 sdp->swd_se.se_inuse =
551 btodb(sdp->swd_npginuse * PAGE_SIZE);
552 error = copyout((caddr_t)&sdp->swd_se,
553 (caddr_t)sep, sizeof(struct swapent));
554 if (error) {
555 lockmgr(&swap_syscall_lock,
556 LK_RELEASE, (void *)0);
557 return (error);
558 }
559 count++;
560 sep++;
561 }
562 }
563
564 UVMHIST_LOG(pdhist, "<-done SWAP_STATS", 0, 0, 0, 0);
565
566 *retval = count;
567 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0);
568 return (0);
569 }
570
571 /*
572 * all other requests require superuser privs. verify.
573 */
574 if ((error = suser(p->p_ucred, &p->p_acflag))) {
575 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0);
576 return (error);
577 }
578
579 /*
580 * at this point we expect a path name in arg. we will
581 * use namei() to gain a vnode reference (vref), and lock
582 * the vnode (VOP_LOCK).
583 *
584 * XXX: a NULL arg means use the root vnode pointer (e.g. for
585 * miniroot
586 */
587 if (SCARG(uap, arg) == NULL) {
588 vp = rootvp; /* miniroot */
589 if (vget(vp, LK_EXCLUSIVE)) {
590 lockmgr(&swap_syscall_lock, LK_RELEASE,
591 (void *)0);
592 return (EBUSY);
593 }
594 } else {
595 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, UIO_USERSPACE,
596 SCARG(uap, arg), p);
597 if ((error = namei(&nd))) {
598 lockmgr(&swap_syscall_lock, LK_RELEASE,
599 (void *)0);
600 return (error);
601 }
602 vp = nd.ni_vp;
603 }
604 /* note: "vp" is referenced and locked */
605
606 error = 0; /* assume no error */
607 switch(SCARG(uap, cmd)) {
608 case SWAP_CTL:
609 /*
610 * get new priority, remove old entry (if any) and then
611 * reinsert it in the correct place. finally, prune out
612 * any empty priority structures.
613 */
614 priority = SCARG(uap, misc);
615 spp = (struct swappri *)
616 malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
617 simple_lock(&swap_data_lock);
618 if ((sdp = swaplist_find(vp, 1)) == NULL) {
619 error = ENOENT;
620 } else {
621 swaplist_insert(sdp, spp, priority);
622 swaplist_trim();
623 }
624 simple_unlock(&swap_data_lock);
625 if (error)
626 free(spp, M_VMSWAP);
627 break;
628
629 case SWAP_ON:
630 /*
631 * check for duplicates. if none found, then insert a
632 * dummy entry on the list to prevent someone else from
633 * trying to enable this device while we are working on
634 * it.
635 */
636 priority = SCARG(uap, misc);
637 simple_lock(&swap_data_lock);
638 if ((sdp = swaplist_find(vp, 0)) != NULL) {
639 error = EBUSY;
640 simple_unlock(&swap_data_lock);
641 goto bad;
642 }
643 sdp = (struct swapdev *)
644 malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
645 spp = (struct swappri *)
646 malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
647 bzero(sdp, sizeof(*sdp));
648 sdp->swd_flags = SWF_FAKE; /* placeholder only */
649 sdp->swd_vp = vp;
650 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
651 #ifdef SWAP_TO_FILES
652 /*
653 * XXX Is NFS elaboration necessary?
654 */
655 if (vp->v_type == VREG)
656 sdp->swd_cred = crdup(p->p_ucred);
657 #endif
658 swaplist_insert(sdp, spp, priority);
659 simple_unlock(&swap_data_lock);
660
661 /*
662 * we've now got a FAKE placeholder in the swap list.
663 * now attempt to enable swap on it. if we fail, undo
664 * what we've done and kill the fake entry we just inserted.
665 * if swap_on is a success, it will clear the SWF_FAKE flag
666 */
667 if ((error = swap_on(p, sdp)) != 0) {
668 simple_lock(&swap_data_lock);
669 (void) swaplist_find(vp, 1); /* kill fake entry */
670 swaplist_trim();
671 simple_unlock(&swap_data_lock);
672 #ifdef SWAP_TO_FILES
673 if (vp->v_type == VREG)
674 crfree(sdp->swd_cred);
675 #endif
676 free((caddr_t)sdp, M_VMSWAP);
677 break;
678 }
679
680 /*
681 * got it! now add a second reference to vp so that
682 * we keep a reference to the vnode after we return.
683 */
684 vref(vp);
685 break;
686
687 case SWAP_OFF:
688 UVMHIST_LOG(pdhist, "someone is using SWAP_OFF...??", 0,0,0,0);
689 #ifdef SWAP_OFF_WORKS
690 /*
691 * find the entry of interest and ensure it is enabled.
692 */
693 simple_lock(&swap_data_lock);
694 if ((sdp = swaplist_find(vp, 0)) == NULL) {
695 simple_unlock(&swap_data_lock);
696 error = ENXIO;
697 break;
698 }
699 /*
700 * If a device isn't in use or enabled, we
701 * can't stop swapping from it (again).
702 */
703 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
704 simple_unlock(&swap_data_lock);
705 error = EBUSY;
706 goto bad;
707 }
708 /* XXXCDC: should we call with list locked or unlocked? */
709 if ((error = swap_off(p, sdp)) != 0)
710 goto bad;
711 /* XXXCDC: might need relock here */
712
713 /*
714 * now we can kill the entry.
715 */
716 if ((sdp = swaplist_find(vp, 1)) == NULL) {
717 error = ENXIO;
718 break;
719 }
720 simple_unlock(&swap_data_lock);
721 free((caddr_t)sdp, M_VMSWAP);
722 #else
723 error = EINVAL;
724 #endif
725 break;
726
727 default:
728 UVMHIST_LOG(pdhist, "unhandled command: %#x",
729 SCARG(uap, cmd), 0, 0, 0);
730 error = EINVAL;
731 }
732
733 bad:
734 /*
735 * done! use vput to drop our reference and unlock
736 */
737 vput(vp);
738 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0);
739
740 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
741 return (error);
742 }
743
744 /*
745 * swap_on: attempt to enable a swapdev for swapping. note that the
746 * swapdev is already on the global list, but disabled (marked
747 * SWF_FAKE).
748 *
749 * => we avoid the start of the disk (to protect disk labels)
750 * => we also avoid the miniroot, if we are swapping to root.
751 * => caller should leave swap_data_lock unlocked, we may lock it
752 * if needed.
753 */
754 static int
755 swap_on(p, sdp)
756 struct proc *p;
757 struct swapdev *sdp;
758 {
759 static int count = 0; /* static */
760 struct vnode *vp;
761 int error, npages, nblocks, size;
762 long addr;
763 char *storage;
764 int storagesize;
765 #ifdef SWAP_TO_FILES
766 struct vattr va;
767 #endif
768 #ifdef NFS
769 extern int (**nfsv2_vnodeop_p) __P((void *));
770 #endif /* NFS */
771 dev_t dev;
772 char *name;
773 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
774
775 /*
776 * we want to enable swapping on sdp. the swd_vp contains
777 * the vnode we want (locked and ref'd), and the swd_dev
778 * contains the dev_t of the file, if it a block device.
779 */
780
781 vp = sdp->swd_vp;
782 dev = sdp->swd_dev;
783
784 /*
785 * open the swap file (mostly useful for block device files to
786 * let device driver know what is up).
787 *
788 * we skip the open/close for root on swap because the root
789 * has already been opened when root was mounted (mountroot).
790 */
791 if (vp != rootvp) {
792 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
793 return (error);
794 }
795
796 /* XXX this only works for block devices */
797 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
798
799 /*
800 * we now need to determine the size of the swap area. for
801 * block specials we can call the d_psize function.
802 * for normal files, we must stat [get attrs].
803 *
804 * we put the result in nblks.
805 * for normal files, we also want the filesystem block size
806 * (which we get with statfs).
807 */
808 switch (vp->v_type) {
809 case VBLK:
810 if (bdevsw[major(dev)].d_psize == 0 ||
811 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
812 error = ENXIO;
813 goto bad;
814 }
815 break;
816
817 #ifdef SWAP_TO_FILES
818 case VREG:
819 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
820 goto bad;
821 nblocks = (int)btodb(va.va_size);
822 if ((error =
823 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
824 goto bad;
825
826 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
827 /*
828 * limit the max # of outstanding I/O requests we issue
829 * at any one time. take it easy on NFS servers.
830 */
831 #ifdef NFS
832 if (vp->v_op == nfsv2_vnodeop_p)
833 sdp->swd_maxactive = 2; /* XXX */
834 else
835 #endif /* NFS */
836 sdp->swd_maxactive = 8; /* XXX */
837 break;
838 #endif
839
840 default:
841 error = ENXIO;
842 goto bad;
843 }
844
845 /*
846 * save nblocks in a safe place and convert to pages.
847 */
848
849 sdp->swd_se.se_nblks = nblocks;
850 npages = dbtob(nblocks) / PAGE_SIZE;
851
852 /*
853 * for block special files, we want to make sure that leave
854 * the disklabel and bootblocks alone, so we arrange to skip
855 * over them (randomly choosing to skip PAGE_SIZE bytes).
856 * note that because of this the "size" can be less than the
857 * actual number of blocks on the device.
858 */
859 if (vp->v_type == VBLK) {
860 /* we use pages 1 to (size - 1) [inclusive] */
861 size = npages - 1;
862 addr = 1;
863 } else {
864 /* we use pages 0 to (size - 1) [inclusive] */
865 size = npages;
866 addr = 0;
867 }
868
869 /*
870 * make sure we have enough blocks for a reasonable sized swap
871 * area. we want at least one page.
872 */
873
874 if (size < 1) {
875 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
876 error = EINVAL;
877 goto bad;
878 }
879
880 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
881
882 /*
883 * now we need to allocate an extent to manage this swap device
884 */
885 name = malloc(12, M_VMSWAP, M_WAITOK);
886 sprintf(name, "swap0x%04x", count++);
887
888 /*
889 * XXXCDC: what should we make of this extent storage size stuff
890 *
891 * XXXMRG: well, i've come to realise that we need, at most,
892 * blocks2pages(npages)/2 extents (or so), to cover all possible
893 * allocations that may occur in the extent -- every other page
894 * being allocated.
895 */
896 #if 1
897 storagesize = EXTENT_FIXED_STORAGE_SIZE(maxproc * 2);
898 #else
899 /* XXXMRG: this uses lots of memory */
900 storagesize = EXTENT_FIXED_STORAGE_SIZE(npages / 2);
901 #endif
902 storage = malloc(storagesize, M_VMSWAP, M_WAITOK);
903 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
904 sdp->swd_ex = extent_create(name, 0, npages - 1, M_VMSWAP,
905 storage, storagesize, EX_WAITOK);
906 /* allocate the `saved' region from the extent so it won't be used */
907 if (addr) {
908 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
909 panic("disklabel region");
910 sdp->swd_npginuse += addr;
911 uvmexp.swpginuse += addr;
912 }
913
914
915 /*
916 * if the vnode we are swapping to is the root vnode
917 * (i.e. we are swapping to the miniroot) then we want
918 * to make sure we don't overwrite it. do a statfs to
919 * find its size and skip over it.
920 */
921 if (vp == rootvp) {
922 struct mount *mp;
923 struct statfs *sp;
924 int rootblocks, rootpages;
925
926 mp = rootvnode->v_mount;
927 sp = &mp->mnt_stat;
928 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
929 rootpages = round_page(dbtob(rootblocks)) / PAGE_SIZE;
930 if (rootpages > npages)
931 panic("swap_on: miniroot larger than swap?");
932
933 if (extent_alloc_region(sdp->swd_ex, addr,
934 rootpages, EX_WAITOK))
935 panic("swap_on: unable to preserve miniroot");
936
937 sdp->swd_npginuse += (rootpages - addr);
938 uvmexp.swpginuse += (rootpages - addr);
939
940 printf("Preserved %d pages of miniroot ", rootpages);
941 printf("leaving %d pages of swap\n", size - rootpages);
942 }
943
944 /*
945 * now add the new swapdev to the drum and enable.
946 */
947 simple_lock(&swap_data_lock);
948 swapdrum_add(sdp, npages);
949 sdp->swd_npages = npages;
950 sdp->swd_flags &= ~SWF_FAKE; /* going live */
951 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
952 simple_unlock(&swap_data_lock);
953 uvmexp.swpages += npages;
954
955 /*
956 * add anon's to reflect the swap space we added
957 */
958 uvm_anon_add(size);
959
960 return (0);
961
962 bad:
963 /*
964 * failure: close device if necessary and return error.
965 */
966 if (vp != rootvp)
967 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
968 return (error);
969 }
970
971 #ifdef SWAP_OFF_WORKS
972 /*
973 * swap_off: stop swapping on swapdev
974 *
975 * XXXCDC: what conditions go here?
976 */
977 static int
978 swap_off(p, sdp)
979 struct proc *p;
980 struct swapdev *sdp;
981 {
982 char *name;
983 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
984
985 /* turn off the enable flag */
986 sdp->swd_flags &= ~SWF_ENABLE;
987
988 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev);
989
990 /*
991 * XXX write me
992 *
993 * the idea is to find out which processes are using this swap
994 * device, and page them all in.
995 *
996 * eventually, we should try to move them out to other swap areas
997 * if available.
998 *
999 * The alternative is to create a redirection map for this swap
1000 * device. This should work by moving all the pages of data from
1001 * the ex-swap device to another one, and making an entry in the
1002 * redirection map for it. locking is going to be important for
1003 * this!
1004 *
1005 * XXXCDC: also need to shrink anon pool
1006 */
1007
1008 /* until the above code is written, we must ENODEV */
1009 return ENODEV;
1010
1011 extent_free(swapmap, sdp->swd_mapoffset, sdp->swd_mapsize, EX_WAITOK);
1012 name = sdp->swd_ex->ex_name;
1013 extent_destroy(sdp->swd_ex);
1014 free(name, M_VMSWAP);
1015 free((caddr_t)sdp->swd_ex, M_VMSWAP);
1016 if (sdp->swp_vp != rootvp)
1017 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1018 if (sdp->swd_vp)
1019 vrele(sdp->swd_vp);
1020 free((caddr_t)sdp, M_VMSWAP);
1021 return (0);
1022 }
1023 #endif
1024
1025 /*
1026 * /dev/drum interface and i/o functions
1027 */
1028
1029 /*
1030 * swread: the read function for the drum (just a call to physio)
1031 */
1032 /*ARGSUSED*/
1033 int
1034 swread(dev, uio, ioflag)
1035 dev_t dev;
1036 struct uio *uio;
1037 int ioflag;
1038 {
1039 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1040
1041 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1042 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1043 }
1044
1045 /*
1046 * swwrite: the write function for the drum (just a call to physio)
1047 */
1048 /*ARGSUSED*/
1049 int
1050 swwrite(dev, uio, ioflag)
1051 dev_t dev;
1052 struct uio *uio;
1053 int ioflag;
1054 {
1055 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1056
1057 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1058 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1059 }
1060
1061 /*
1062 * swstrategy: perform I/O on the drum
1063 *
1064 * => we must map the i/o request from the drum to the correct swapdev.
1065 */
1066 void
1067 swstrategy(bp)
1068 struct buf *bp;
1069 {
1070 struct swapdev *sdp;
1071 struct vnode *vp;
1072 int pageno;
1073 int bn;
1074 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1075
1076 /*
1077 * convert block number to swapdev. note that swapdev can't
1078 * be yanked out from under us because we are holding resources
1079 * in it (i.e. the blocks we are doing I/O on).
1080 */
1081 pageno = dbtob(bp->b_blkno) / PAGE_SIZE;
1082 simple_lock(&swap_data_lock);
1083 sdp = swapdrum_getsdp(pageno);
1084 simple_unlock(&swap_data_lock);
1085 if (sdp == NULL) {
1086 bp->b_error = EINVAL;
1087 bp->b_flags |= B_ERROR;
1088 biodone(bp);
1089 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1090 return;
1091 }
1092
1093 /*
1094 * convert drum page number to block number on this swapdev.
1095 */
1096
1097 pageno = pageno - sdp->swd_drumoffset; /* page # on swapdev */
1098 bn = btodb(pageno * PAGE_SIZE); /* convert to diskblock */
1099
1100 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld\n",
1101 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1102 sdp->swd_drumoffset, bn, bp->b_bcount);
1103
1104
1105 /*
1106 * for block devices we finish up here.
1107 * for regular files we have to do more work which we deligate
1108 * to sw_reg_strategy().
1109 */
1110
1111 switch (sdp->swd_vp->v_type) {
1112 default:
1113 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1114 case VBLK:
1115
1116 /*
1117 * must convert "bp" from an I/O on /dev/drum to an I/O
1118 * on the swapdev (sdp).
1119 */
1120 bp->b_blkno = bn; /* swapdev block number */
1121 vp = sdp->swd_vp; /* swapdev vnode pointer */
1122 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1123 VHOLD(vp); /* "hold" swapdev vp for i/o */
1124
1125 /*
1126 * if we are doing a write, we have to redirect the i/o on
1127 * drum's v_numoutput counter to the swapdevs.
1128 */
1129 if ((bp->b_flags & B_READ) == 0) {
1130 int s = splbio();
1131 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1132 vp->v_numoutput++; /* put it on swapdev */
1133 splx(s);
1134 }
1135
1136 /*
1137 * dissassocate buffer with /dev/drum vnode
1138 * [could be null if buf was from physio]
1139 */
1140 if (bp->b_vp != NULLVP)
1141 brelvp(bp);
1142
1143 /*
1144 * finally plug in swapdev vnode and start I/O
1145 */
1146 bp->b_vp = vp;
1147 VOP_STRATEGY(bp);
1148 return;
1149 #ifdef SWAP_TO_FILES
1150 case VREG:
1151 /*
1152 * deligate to sw_reg_strategy function.
1153 */
1154 sw_reg_strategy(sdp, bp, bn);
1155 return;
1156 #endif
1157 }
1158 /* NOTREACHED */
1159 }
1160
1161 #ifdef SWAP_TO_FILES
1162 /*
1163 * sw_reg_strategy: handle swap i/o to regular files
1164 */
1165 static void
1166 sw_reg_strategy(sdp, bp, bn)
1167 struct swapdev *sdp;
1168 struct buf *bp;
1169 int bn;
1170 {
1171 struct vnode *vp;
1172 struct vndxfer *vnx;
1173 daddr_t nbn, byteoff;
1174 caddr_t addr;
1175 int s, off, nra, error, sz, resid;
1176 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1177
1178 /*
1179 * allocate a vndxfer head for this transfer and point it to
1180 * our buffer.
1181 */
1182 vnx = getvndxfer();
1183 vnx->vx_flags = VX_BUSY;
1184 vnx->vx_error = 0;
1185 vnx->vx_pending = 0;
1186 vnx->vx_bp = bp;
1187 vnx->vx_sdp = sdp;
1188
1189 /*
1190 * setup for main loop where we read filesystem blocks into
1191 * our buffer.
1192 */
1193 error = 0;
1194 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1195 addr = bp->b_data; /* current position in buffer */
1196 byteoff = dbtob(bn);
1197
1198 for (resid = bp->b_resid; resid; resid -= sz) {
1199 struct vndbuf *nbp;
1200
1201 /*
1202 * translate byteoffset into block number. return values:
1203 * vp = vnode of underlying device
1204 * nbn = new block number (on underlying vnode dev)
1205 * nra = num blocks we can read-ahead (excludes requested
1206 * block)
1207 */
1208 nra = 0;
1209 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1210 &vp, &nbn, &nra);
1211
1212 if (error == 0 && (long)nbn == -1)
1213 error = EIO; /* failure */
1214
1215 /*
1216 * punt if there was an error or a hole in the file.
1217 * we must wait for any i/o ops we have already started
1218 * to finish before returning.
1219 *
1220 * XXX we could deal with holes here but it would be
1221 * a hassle (in the write case).
1222 */
1223 if (error) {
1224 s = splbio();
1225 vnx->vx_error = error; /* pass error up */
1226 goto out;
1227 }
1228
1229 /*
1230 * compute the size ("sz") of this transfer (in bytes).
1231 * XXXCDC: ignores read-ahead for non-zero offset
1232 */
1233 if ((off = (byteoff % sdp->swd_bsize)) != 0)
1234 sz = sdp->swd_bsize - off;
1235 else
1236 sz = (1 + nra) * sdp->swd_bsize;
1237
1238 if (resid < sz)
1239 sz = resid;
1240
1241 UVMHIST_LOG(pdhist, "sw_reg_strategy: vp %p/%p offset 0x%x/0x%x",
1242 sdp->swd_vp, vp, byteoff, nbn);
1243
1244 /*
1245 * now get a buf structure. note that the vb_buf is
1246 * at the front of the nbp structure so that you can
1247 * cast pointers between the two structure easily.
1248 */
1249 nbp = getvndbuf();
1250 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1251 nbp->vb_buf.b_bcount = sz;
1252 nbp->vb_buf.b_bufsize = bp->b_bufsize; /* XXXCDC: really? */
1253 nbp->vb_buf.b_error = 0;
1254 nbp->vb_buf.b_data = addr;
1255 nbp->vb_buf.b_blkno = nbn + btodb(off);
1256 nbp->vb_buf.b_proc = bp->b_proc;
1257 nbp->vb_buf.b_iodone = sw_reg_iodone;
1258 nbp->vb_buf.b_vp = NULLVP;
1259 nbp->vb_buf.b_rcred = sdp->swd_cred;
1260 nbp->vb_buf.b_wcred = sdp->swd_cred;
1261
1262 /*
1263 * set b_dirtyoff/end and b_vaildoff/end. this is
1264 * required by the NFS client code (otherwise it will
1265 * just discard our I/O request).
1266 */
1267 if (bp->b_dirtyend == 0) {
1268 nbp->vb_buf.b_dirtyoff = 0;
1269 nbp->vb_buf.b_dirtyend = sz;
1270 } else {
1271 nbp->vb_buf.b_dirtyoff =
1272 max(0, bp->b_dirtyoff - (bp->b_bcount-resid));
1273 nbp->vb_buf.b_dirtyend =
1274 min(sz,
1275 max(0, bp->b_dirtyend - (bp->b_bcount-resid)));
1276 }
1277 if (bp->b_validend == 0) {
1278 nbp->vb_buf.b_validoff = 0;
1279 nbp->vb_buf.b_validend = sz;
1280 } else {
1281 nbp->vb_buf.b_validoff =
1282 max(0, bp->b_validoff - (bp->b_bcount-resid));
1283 nbp->vb_buf.b_validend =
1284 min(sz,
1285 max(0, bp->b_validend - (bp->b_bcount-resid)));
1286 }
1287
1288 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1289
1290 /*
1291 * Just sort by block number
1292 */
1293 nbp->vb_buf.b_cylinder = nbp->vb_buf.b_blkno;
1294 s = splbio();
1295 if (vnx->vx_error != 0) {
1296 putvndbuf(nbp);
1297 goto out;
1298 }
1299 vnx->vx_pending++;
1300
1301 /* assoc new buffer with underlying vnode */
1302 bgetvp(vp, &nbp->vb_buf);
1303
1304 /* sort it in and start I/O if we are not over our limit */
1305 disksort(&sdp->swd_tab, &nbp->vb_buf);
1306 sw_reg_start(sdp);
1307 splx(s);
1308
1309 /*
1310 * advance to the next I/O
1311 */
1312 byteoff += sz;
1313 addr += sz;
1314 }
1315
1316 s = splbio();
1317
1318 out: /* Arrive here at splbio */
1319 vnx->vx_flags &= ~VX_BUSY;
1320 if (vnx->vx_pending == 0) {
1321 if (vnx->vx_error != 0) {
1322 bp->b_error = vnx->vx_error;
1323 bp->b_flags |= B_ERROR;
1324 }
1325 putvndxfer(vnx);
1326 biodone(bp);
1327 }
1328 splx(s);
1329 }
1330
1331 /*
1332 * sw_reg_start: start an I/O request on the requested swapdev
1333 *
1334 * => reqs are sorted by disksort (above)
1335 */
1336 static void
1337 sw_reg_start(sdp)
1338 struct swapdev *sdp;
1339 {
1340 struct buf *bp;
1341 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1342
1343 /* recursion control */
1344 if ((sdp->swd_flags & SWF_BUSY) != 0)
1345 return;
1346
1347 sdp->swd_flags |= SWF_BUSY;
1348
1349 while (sdp->swd_tab.b_active < sdp->swd_maxactive) {
1350 bp = sdp->swd_tab.b_actf;
1351 if (bp == NULL)
1352 break;
1353 sdp->swd_tab.b_actf = bp->b_actf;
1354 sdp->swd_tab.b_active++;
1355
1356 UVMHIST_LOG(pdhist,
1357 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1358 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1359 if ((bp->b_flags & B_READ) == 0)
1360 bp->b_vp->v_numoutput++;
1361 VOP_STRATEGY(bp);
1362 }
1363 sdp->swd_flags &= ~SWF_BUSY;
1364 }
1365
1366 /*
1367 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1368 *
1369 * => note that we can recover the vndbuf struct by casting the buf ptr
1370 */
1371 static void
1372 sw_reg_iodone(bp)
1373 struct buf *bp;
1374 {
1375 struct vndbuf *vbp = (struct vndbuf *) bp;
1376 struct vndxfer *vnx = vbp->vb_xfer;
1377 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1378 struct swapdev *sdp = vnx->vx_sdp;
1379 int s, resid;
1380 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1381
1382 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1383 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1384 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1385 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1386
1387 /*
1388 * protect vbp at splbio and update.
1389 */
1390
1391 s = splbio();
1392 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1393 pbp->b_resid -= resid;
1394 vnx->vx_pending--;
1395
1396 if (vbp->vb_buf.b_error) {
1397 UVMHIST_LOG(pdhist, " got error=%d !",
1398 vbp->vb_buf.b_error, 0, 0, 0);
1399
1400 /* pass error upward */
1401 vnx->vx_error = vbp->vb_buf.b_error;
1402 }
1403
1404 /*
1405 * drop "hold" reference to vnode (if one)
1406 * XXXCDC: always set to NULLVP, this is useless, right?
1407 */
1408 if (vbp->vb_buf.b_vp != NULLVP)
1409 brelvp(&vbp->vb_buf);
1410
1411 /*
1412 * kill vbp structure
1413 */
1414 putvndbuf(vbp);
1415
1416 /*
1417 * wrap up this transaction if it has run to completion or, in
1418 * case of an error, when all auxiliary buffers have returned.
1419 */
1420 if (vnx->vx_error != 0) {
1421 /* pass error upward */
1422 pbp->b_flags |= B_ERROR;
1423 pbp->b_error = vnx->vx_error;
1424 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1425 putvndxfer(vnx);
1426 biodone(pbp);
1427 }
1428 }
1429
1430 if (pbp->b_resid == 0) {
1431 #ifdef DIAGNOSTIC
1432 if (vnx->vx_pending != 0)
1433 panic("sw_reg_iodone: vnx pending: %d",vnx->vx_pending);
1434 #endif
1435
1436 if ((vnx->vx_flags & VX_BUSY) == 0) {
1437 UVMHIST_LOG(pdhist, " iodone error=%d !",
1438 pbp, vnx->vx_error, 0, 0);
1439 putvndxfer(vnx);
1440 biodone(pbp);
1441 }
1442 }
1443
1444 /*
1445 * done! start next swapdev I/O if one is pending
1446 */
1447 sdp->swd_tab.b_active--;
1448 sw_reg_start(sdp);
1449
1450 splx(s);
1451 }
1452 #endif /* SWAP_TO_FILES */
1453
1454
1455 /*
1456 * uvm_swap_alloc: allocate space on swap
1457 *
1458 * => allocation is done "round robin" down the priority list, as we
1459 * allocate in a priority we "rotate" the circle queue.
1460 * => space can be freed with uvm_swap_free
1461 * => we return the page slot number in /dev/drum (0 == invalid slot)
1462 * => we lock swap_data_lock
1463 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1464 */
1465 int
1466 uvm_swap_alloc(nslots, lessok)
1467 int *nslots; /* IN/OUT */
1468 boolean_t lessok;
1469 {
1470 struct swapdev *sdp;
1471 struct swappri *spp;
1472 u_long result;
1473 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1474
1475 /*
1476 * no swap devices configured yet? definite failure.
1477 */
1478 if (uvmexp.nswapdev < 1)
1479 return 0;
1480
1481 /*
1482 * lock data lock, convert slots into blocks, and enter loop
1483 */
1484 simple_lock(&swap_data_lock);
1485
1486 ReTry: /* XXXMRG */
1487 for (spp = swap_priority.lh_first; spp != NULL;
1488 spp = spp->spi_swappri.le_next) {
1489 for (sdp = spp->spi_swapdev.cqh_first;
1490 sdp != (void *)&spp->spi_swapdev;
1491 sdp = sdp->swd_next.cqe_next) {
1492 /* if it's not enabled, then we can't swap from it */
1493 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1494 continue;
1495 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1496 continue;
1497 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1498 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1499 &result) != 0) {
1500 continue;
1501 }
1502
1503 /*
1504 * successful allocation! now rotate the circleq.
1505 */
1506 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1507 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1508 sdp->swd_npginuse += *nslots;
1509 uvmexp.swpginuse += *nslots;
1510 simple_unlock(&swap_data_lock);
1511 /* done! return drum slot number */
1512 UVMHIST_LOG(pdhist,
1513 "success! returning %d slots starting at %d",
1514 *nslots, result + sdp->swd_drumoffset, 0, 0);
1515 #if 0
1516 {
1517 struct swapdev *sdp2;
1518
1519 sdp2 = swapdrum_getsdp(result + sdp->swd_drumoffset);
1520 if (sdp2 == NULL) {
1521 printf("uvm_swap_alloc: nslots=%d, dev=%x, drumoff=%d, result=%ld",
1522 *nslots, sdp->swd_dev, sdp->swd_drumoffset, result);
1523 panic("uvm_swap_alloc: allocating unmapped swap block!");
1524 }
1525 }
1526 #endif
1527 return(result + sdp->swd_drumoffset);
1528 }
1529 }
1530
1531 /* XXXMRG: BEGIN HACK */
1532 if (*nslots > 1 && lessok) {
1533 *nslots = 1;
1534 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1535 }
1536 /* XXXMRG: END HACK */
1537
1538 simple_unlock(&swap_data_lock);
1539 return 0; /* failed */
1540 }
1541
1542 /*
1543 * uvm_swap_free: free swap slots
1544 *
1545 * => this can be all or part of an allocation made by uvm_swap_alloc
1546 * => we lock swap_data_lock
1547 */
1548 void
1549 uvm_swap_free(startslot, nslots)
1550 int startslot;
1551 int nslots;
1552 {
1553 struct swapdev *sdp;
1554 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1555
1556 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1557 startslot, 0, 0);
1558 /*
1559 * convert drum slot offset back to sdp, free the blocks
1560 * in the extent, and return. must hold pri lock to do
1561 * lookup and access the extent.
1562 */
1563 simple_lock(&swap_data_lock);
1564 sdp = swapdrum_getsdp(startslot);
1565
1566 #ifdef DIAGNOSTIC
1567 if (uvmexp.nswapdev < 1)
1568 panic("uvm_swap_free: uvmexp.nswapdev < 1\n");
1569 if (sdp == NULL) {
1570 printf("uvm_swap_free: startslot %d, nslots %d\n", startslot,
1571 nslots);
1572 panic("uvm_swap_free: unmapped address\n");
1573 }
1574 #endif
1575 extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1576 EX_MALLOCOK|EX_NOWAIT);
1577 sdp->swd_npginuse -= nslots;
1578 uvmexp.swpginuse -= nslots;
1579 #ifdef DIAGNOSTIC
1580 if (sdp->swd_npginuse < 0)
1581 panic("uvm_swap_free: inuse < 0");
1582 #endif
1583 simple_unlock(&swap_data_lock);
1584 }
1585
1586 /*
1587 * uvm_swap_put: put any number of pages into a contig place on swap
1588 *
1589 * => can be sync or async
1590 * => XXXMRG: consider making it an inline or macro
1591 */
1592 int
1593 uvm_swap_put(swslot, ppsp, npages, flags)
1594 int swslot;
1595 struct vm_page **ppsp;
1596 int npages;
1597 int flags;
1598 {
1599 int result;
1600
1601 #if 0
1602 flags |= PGO_SYNCIO; /* XXXMRG: tmp, force sync */
1603 #endif
1604
1605 result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1606 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1607
1608 return (result);
1609 }
1610
1611 /*
1612 * uvm_swap_get: get a single page from swap
1613 *
1614 * => usually a sync op (from fault)
1615 * => XXXMRG: consider making it an inline or macro
1616 */
1617 int
1618 uvm_swap_get(page, swslot, flags)
1619 struct vm_page *page;
1620 int swslot, flags;
1621 {
1622 int result;
1623
1624 uvmexp.nswget++;
1625 #ifdef DIAGNOSTIC
1626 if ((flags & PGO_SYNCIO) == 0)
1627 printf("uvm_swap_get: ASYNC get requested?\n");
1628 #endif
1629
1630 result = uvm_swap_io(&page, swslot, 1, B_READ |
1631 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1632
1633 return (result);
1634 }
1635
1636 /*
1637 * uvm_swap_io: do an i/o operation to swap
1638 */
1639
1640 static int
1641 uvm_swap_io(pps, startslot, npages, flags)
1642 struct vm_page **pps;
1643 int startslot, npages, flags;
1644 {
1645 daddr_t startblk;
1646 struct swapbuf *sbp;
1647 struct buf *bp;
1648 vm_offset_t kva;
1649 int result, s, waitf;
1650 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1651
1652 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1653 startslot, npages, flags, 0);
1654 /*
1655 * convert starting drum slot to block number
1656 */
1657 startblk = btodb(startslot * PAGE_SIZE);
1658
1659 /*
1660 * first, map the pages into the kernel (XXX: currently required
1661 * by buffer system). note that we don't let pagermapin alloc
1662 * an aiodesc structure because we don't want to chance a malloc.
1663 * we've got our own pool of aiodesc structures (in swapbuf).
1664 */
1665 waitf = (flags & B_ASYNC) ? M_NOWAIT : M_WAITOK;
1666 kva = uvm_pagermapin(pps, npages, NULL, waitf);
1667 if (kva == NULL)
1668 return (VM_PAGER_AGAIN);
1669
1670 /*
1671 * now allocate a swap buffer off of freesbufs
1672 * [make sure we don't put the pagedaemon to sleep...]
1673 */
1674 s = splbio();
1675 simple_lock(&swap_buf_lock);
1676
1677 /* never put the pagedaemon to sleep! */
1678 if ((flags & B_ASYNC) != 0 || curproc == uvm.pagedaemon_proc) {
1679
1680 sbp = freesbufs.sqh_first;
1681
1682 } else {
1683
1684 /* we can sleep for a sbuf if needed */
1685 while (freesbufs.sqh_first == NULL) {
1686
1687 sbufs_wanted = 1;
1688 UVM_UNLOCK_AND_WAIT(&freesbufs, &swap_buf_lock, 0,
1689 "uvmswiobuf",0);
1690
1691 simple_lock(&swap_buf_lock); /* relock */
1692 }
1693 sbp = freesbufs.sqh_first;
1694 }
1695
1696 if (sbp)
1697 SIMPLEQ_REMOVE_HEAD(&freesbufs, sbp, sw_sq);
1698 simple_unlock(&swap_buf_lock);
1699 splx(s); /* drop splbio */
1700
1701 /*
1702 * if we failed to get a swapbuf, return "try again"
1703 */
1704 if (sbp == NULL)
1705 return (VM_PAGER_AGAIN);
1706
1707 /*
1708 * fill in the bp/sbp. we currently route our i/o through
1709 * /dev/drum's vnode [swapdev_vp].
1710 */
1711 bp = &sbp->sw_buf;
1712 bp->b_flags = B_BUSY | (flags & (B_READ|B_ASYNC));
1713 bp->b_proc = &proc0; /* XXX */
1714 bp->b_data = (caddr_t)kva;
1715 bp->b_blkno = startblk;
1716 VHOLD(swapdev_vp);
1717 bp->b_vp = swapdev_vp;
1718 /* XXXCDC: isn't swapdev_vp always a VCHR? */
1719 /* XXXMRG: probably -- this is obviously something inherited... */
1720 if (swapdev_vp->v_type == VBLK)
1721 bp->b_dev = swapdev_vp->v_rdev;
1722 bp->b_bcount = npages * PAGE_SIZE;
1723
1724 /*
1725 * for pageouts we must set "dirtyoff" [NFS client code needs it].
1726 * and we bump v_numoutput (counter of number of active outputs).
1727 */
1728 if ((bp->b_flags & B_READ) == 0) {
1729 bp->b_dirtyoff = 0;
1730 bp->b_dirtyend = npages * PAGE_SIZE;
1731 s = splbio();
1732 swapdev_vp->v_numoutput++;
1733 splx(s);
1734 }
1735
1736 /*
1737 * for async ops we must set up the aiodesc and setup the callback
1738 * XXX: we expect no async-reads, but we don't prevent it here.
1739 */
1740 if (flags & B_ASYNC) {
1741 sbp->sw_aio.aiodone = uvm_swap_aiodone;
1742 sbp->sw_aio.kva = kva;
1743 sbp->sw_aio.npages = npages;
1744 sbp->sw_aio.pd_ptr = sbp; /* backpointer */
1745 bp->b_flags |= B_CALL; /* set callback */
1746 bp->b_iodone = uvm_swap_bufdone;/* "buf" iodone function */
1747 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1748 }
1749 UVMHIST_LOG(pdhist,
1750 "about to start io: data = 0x%p blkno = 0x%x, bcount = %ld",
1751 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1752
1753 /*
1754 * now we start the I/O, and if async, return.
1755 */
1756 VOP_STRATEGY(bp);
1757 if (flags & B_ASYNC)
1758 return (VM_PAGER_PEND);
1759
1760 /*
1761 * must be sync i/o. wait for it to finish
1762 */
1763 bp->b_error = biowait(bp);
1764 result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
1765
1766 /*
1767 * kill the pager mapping
1768 */
1769 uvm_pagermapout(kva, npages);
1770
1771 /*
1772 * now dispose of the swap buffer
1773 */
1774 s = splbio();
1775 bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY);
1776 if (bp->b_vp)
1777 brelvp(bp);
1778
1779 simple_lock(&swap_buf_lock);
1780 SIMPLEQ_INSERT_HEAD(&freesbufs, sbp, sw_sq);
1781 if (sbufs_wanted) {
1782 sbufs_wanted = 0;
1783 thread_wakeup(&freesbufs);
1784 }
1785 simple_unlock(&swap_buf_lock);
1786 splx(s);
1787
1788 /*
1789 * finally return.
1790 */
1791 UVMHIST_LOG(pdhist, "<- done (sync) result=%d", result, 0, 0, 0);
1792 return (result);
1793 }
1794
1795 /*
1796 * uvm_swap_bufdone: called from the buffer system when the i/o is done
1797 */
1798 static void
1799 uvm_swap_bufdone(bp)
1800 struct buf *bp;
1801 {
1802 struct swapbuf *sbp = (struct swapbuf *) bp;
1803 int s = splbio();
1804 UVMHIST_FUNC("uvm_swap_bufdone"); UVMHIST_CALLED(pdhist);
1805
1806 UVMHIST_LOG(pdhist, "cleaning buf %p", buf, 0, 0, 0);
1807 #ifdef DIAGNOSTIC
1808 /*
1809 * sanity check: swapbufs are private, so they shouldn't be wanted
1810 */
1811 if (bp->b_flags & B_WANTED)
1812 panic("uvm_swap_bufdone: private buf wanted");
1813 #endif
1814
1815 /*
1816 * drop buffers reference to the vnode and its flags.
1817 */
1818 bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY);
1819 if (bp->b_vp)
1820 brelvp(bp);
1821
1822 /*
1823 * now put the aio on the uvm.aio_done list and wake the
1824 * pagedaemon (which will finish up our job in its context).
1825 */
1826 simple_lock(&uvm.pagedaemon_lock); /* locks uvm.aio_done */
1827 TAILQ_INSERT_TAIL(&uvm.aio_done, &sbp->sw_aio, aioq);
1828 simple_unlock(&uvm.pagedaemon_lock);
1829
1830 thread_wakeup(&uvm.pagedaemon);
1831 splx(s);
1832 }
1833
1834 /*
1835 * uvm_swap_aiodone: aiodone function for anonymous memory
1836 *
1837 * => this is called in the context of the pagedaemon (but with the
1838 * page queues unlocked!)
1839 * => our "aio" structure must be part of a "swapbuf"
1840 */
1841 static void
1842 uvm_swap_aiodone(aio)
1843 struct uvm_aiodesc *aio;
1844 {
1845 struct swapbuf *sbp = aio->pd_ptr;
1846 /* XXXMRG: does this work if PAGE_SIZE is a variable, eg SUN4C&&SUN4 */
1847 /* XXX it does with GCC */
1848 struct vm_page *pps[MAXBSIZE/PAGE_SIZE];
1849 int lcv, s;
1850 vm_offset_t addr;
1851 UVMHIST_FUNC("uvm_swap_aiodone"); UVMHIST_CALLED(pdhist);
1852
1853 UVMHIST_LOG(pdhist, "done with aio %p", aio, 0, 0, 0);
1854 #ifdef DIAGNOSTIC
1855 /*
1856 * sanity check
1857 */
1858 if (aio->npages > (MAXBSIZE/PAGE_SIZE))
1859 panic("uvm_swap_aiodone: aio too big!");
1860 #endif
1861
1862 /*
1863 * first, we have to recover the page pointers (pps) by poking in the
1864 * kernel pmap (XXX: should be saved in the buf structure).
1865 */
1866 for (addr = aio->kva, lcv = 0 ; lcv < aio->npages ;
1867 addr += PAGE_SIZE, lcv++) {
1868 pps[lcv] = uvm_pageratop(addr);
1869 }
1870
1871 /*
1872 * now we can dispose of the kernel mappings of the buffer
1873 */
1874 uvm_pagermapout(aio->kva, aio->npages);
1875
1876 /*
1877 * now we can dispose of the pages by using the dropcluster function
1878 * [note that we have no "page of interest" so we pass in null]
1879 */
1880 uvm_pager_dropcluster(NULL, NULL, pps, &aio->npages,
1881 PGO_PDFREECLUST, 0);
1882
1883 /*
1884 * finally, we can dispose of the swapbuf
1885 */
1886 s = splbio();
1887 simple_lock(&swap_buf_lock);
1888 SIMPLEQ_INSERT_HEAD(&freesbufs, sbp, sw_sq);
1889 if (sbufs_wanted) {
1890 sbufs_wanted = 0;
1891 thread_wakeup(&freesbufs);
1892 }
1893 simple_unlock(&swap_buf_lock);
1894 splx(s);
1895
1896 /*
1897 * done!
1898 */
1899 }
1900