Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.92
      1 /*	$NetBSD: uvm_swap.c,v 1.92 2005/05/29 21:06:33 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.92 2005/05/29 21:06:33 christos Exp $");
     36 
     37 #include "fs_nfs.h"
     38 #include "opt_uvmhist.h"
     39 #include "opt_compat_netbsd.h"
     40 #include "opt_ddb.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/buf.h>
     45 #include <sys/bufq.h>
     46 #include <sys/conf.h>
     47 #include <sys/proc.h>
     48 #include <sys/namei.h>
     49 #include <sys/disklabel.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/malloc.h>
     53 #include <sys/vnode.h>
     54 #include <sys/file.h>
     55 #include <sys/extent.h>
     56 #include <sys/blist.h>
     57 #include <sys/mount.h>
     58 #include <sys/pool.h>
     59 #include <sys/sa.h>
     60 #include <sys/syscallargs.h>
     61 #include <sys/swap.h>
     62 
     63 #include <uvm/uvm.h>
     64 
     65 #include <miscfs/specfs/specdev.h>
     66 
     67 /*
     68  * uvm_swap.c: manage configuration and i/o to swap space.
     69  */
     70 
     71 /*
     72  * swap space is managed in the following way:
     73  *
     74  * each swap partition or file is described by a "swapdev" structure.
     75  * each "swapdev" structure contains a "swapent" structure which contains
     76  * information that is passed up to the user (via system calls).
     77  *
     78  * each swap partition is assigned a "priority" (int) which controls
     79  * swap parition usage.
     80  *
     81  * the system maintains a global data structure describing all swap
     82  * partitions/files.   there is a sorted LIST of "swappri" structures
     83  * which describe "swapdev"'s at that priority.   this LIST is headed
     84  * by the "swap_priority" global var.    each "swappri" contains a
     85  * CIRCLEQ of "swapdev" structures at that priority.
     86  *
     87  * locking:
     88  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
     89  *    system call and prevents the swap priority list from changing
     90  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     91  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
     92  *    structures including the priority list, the swapdev structures,
     93  *    and the swapmap extent.
     94  *
     95  * each swap device has the following info:
     96  *  - swap device in use (could be disabled, preventing future use)
     97  *  - swap enabled (allows new allocations on swap)
     98  *  - map info in /dev/drum
     99  *  - vnode pointer
    100  * for swap files only:
    101  *  - block size
    102  *  - max byte count in buffer
    103  *  - buffer
    104  *
    105  * userland controls and configures swap with the swapctl(2) system call.
    106  * the sys_swapctl performs the following operations:
    107  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    108  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    109  *	(passed in via "arg") of a size passed in via "misc" ... we load
    110  *	the current swap config into the array. The actual work is done
    111  *	in the uvm_swap_stats(9) function.
    112  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    113  *	priority in "misc", start swapping on it.
    114  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    115  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    116  *	"misc")
    117  */
    118 
    119 /*
    120  * swapdev: describes a single swap partition/file
    121  *
    122  * note the following should be true:
    123  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    124  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    125  */
    126 struct swapdev {
    127 	struct oswapent swd_ose;
    128 #define	swd_dev		swd_ose.ose_dev		/* device id */
    129 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    130 #define	swd_priority	swd_ose.ose_priority	/* our priority */
    131 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    132 	char			*swd_path;	/* saved pathname of device */
    133 	int			swd_pathlen;	/* length of pathname */
    134 	int			swd_npages;	/* #pages we can use */
    135 	int			swd_npginuse;	/* #pages in use */
    136 	int			swd_npgbad;	/* #pages bad */
    137 	int			swd_drumoffset;	/* page0 offset in drum */
    138 	int			swd_drumsize;	/* #pages in drum */
    139 	blist_t			swd_blist;	/* blist for this swapdev */
    140 	struct vnode		*swd_vp;	/* backing vnode */
    141 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    142 
    143 	int			swd_bsize;	/* blocksize (bytes) */
    144 	int			swd_maxactive;	/* max active i/o reqs */
    145 	struct bufq_state	swd_tab;	/* buffer list */
    146 	int			swd_active;	/* number of active buffers */
    147 };
    148 
    149 /*
    150  * swap device priority entry; the list is kept sorted on `spi_priority'.
    151  */
    152 struct swappri {
    153 	int			spi_priority;     /* priority */
    154 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    155 	/* circleq of swapdevs at this priority */
    156 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    157 };
    158 
    159 /*
    160  * The following two structures are used to keep track of data transfers
    161  * on swap devices associated with regular files.
    162  * NOTE: this code is more or less a copy of vnd.c; we use the same
    163  * structure names here to ease porting..
    164  */
    165 struct vndxfer {
    166 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    167 	struct swapdev	*vx_sdp;
    168 	int		vx_error;
    169 	int		vx_pending;	/* # of pending aux buffers */
    170 	int		vx_flags;
    171 #define VX_BUSY		1
    172 #define VX_DEAD		2
    173 };
    174 
    175 struct vndbuf {
    176 	struct buf	vb_buf;
    177 	struct vndxfer	*vb_xfer;
    178 };
    179 
    180 
    181 /*
    182  * We keep a of pool vndbuf's and vndxfer structures.
    183  */
    184 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL);
    185 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL);
    186 
    187 #define	getvndxfer(vnx)	do {						\
    188 	int sp = splbio();						\
    189 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);			\
    190 	splx(sp);							\
    191 } while (/*CONSTCOND*/ 0)
    192 
    193 #define putvndxfer(vnx) {						\
    194 	pool_put(&vndxfer_pool, (void *)(vnx));				\
    195 }
    196 
    197 #define	getvndbuf(vbp)	do {						\
    198 	int sp = splbio();						\
    199 	vbp = pool_get(&vndbuf_pool, PR_WAITOK);			\
    200 	splx(sp);							\
    201 } while (/*CONSTCOND*/ 0)
    202 
    203 #define putvndbuf(vbp) {						\
    204 	pool_put(&vndbuf_pool, (void *)(vbp));				\
    205 }
    206 
    207 /*
    208  * local variables
    209  */
    210 static struct extent *swapmap;		/* controls the mapping of /dev/drum */
    211 
    212 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
    213 
    214 /* list of all active swap devices [by priority] */
    215 LIST_HEAD(swap_priority, swappri);
    216 static struct swap_priority swap_priority;
    217 
    218 /* locks */
    219 struct lock swap_syscall_lock;
    220 
    221 /*
    222  * prototypes
    223  */
    224 static struct swapdev	*swapdrum_getsdp(int);
    225 
    226 static struct swapdev	*swaplist_find(struct vnode *, int);
    227 static void		 swaplist_insert(struct swapdev *,
    228 					 struct swappri *, int);
    229 static void		 swaplist_trim(void);
    230 
    231 static int swap_on(struct proc *, struct swapdev *);
    232 static int swap_off(struct proc *, struct swapdev *);
    233 
    234 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    235 static void sw_reg_iodone(struct buf *);
    236 static void sw_reg_start(struct swapdev *);
    237 
    238 static int uvm_swap_io(struct vm_page **, int, int, int);
    239 
    240 dev_type_read(swread);
    241 dev_type_write(swwrite);
    242 dev_type_strategy(swstrategy);
    243 
    244 const struct bdevsw swap_bdevsw = {
    245 	noopen, noclose, swstrategy, noioctl, nodump, nosize,
    246 };
    247 
    248 const struct cdevsw swap_cdevsw = {
    249 	nullopen, nullclose, swread, swwrite, noioctl,
    250 	nostop, notty, nopoll, nommap, nokqfilter
    251 };
    252 
    253 /*
    254  * uvm_swap_init: init the swap system data structures and locks
    255  *
    256  * => called at boot time from init_main.c after the filesystems
    257  *	are brought up (which happens after uvm_init())
    258  */
    259 void
    260 uvm_swap_init()
    261 {
    262 	UVMHIST_FUNC("uvm_swap_init");
    263 
    264 	UVMHIST_CALLED(pdhist);
    265 	/*
    266 	 * first, init the swap list, its counter, and its lock.
    267 	 * then get a handle on the vnode for /dev/drum by using
    268 	 * the its dev_t number ("swapdev", from MD conf.c).
    269 	 */
    270 
    271 	LIST_INIT(&swap_priority);
    272 	uvmexp.nswapdev = 0;
    273 	lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
    274 	simple_lock_init(&uvm.swap_data_lock);
    275 
    276 	if (bdevvp(swapdev, &swapdev_vp))
    277 		panic("uvm_swap_init: can't get vnode for swap device");
    278 
    279 	/*
    280 	 * create swap block resource map to map /dev/drum.   the range
    281 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    282 	 * that block 0 is reserved (used to indicate an allocation
    283 	 * failure, or no allocation).
    284 	 */
    285 	swapmap = extent_create("swapmap", 1, INT_MAX,
    286 				M_VMSWAP, 0, 0, EX_NOWAIT);
    287 	if (swapmap == 0)
    288 		panic("uvm_swap_init: extent_create failed");
    289 
    290 	/*
    291 	 * done!
    292 	 */
    293 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    294 }
    295 
    296 /*
    297  * swaplist functions: functions that operate on the list of swap
    298  * devices on the system.
    299  */
    300 
    301 /*
    302  * swaplist_insert: insert swap device "sdp" into the global list
    303  *
    304  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    305  * => caller must provide a newly malloc'd swappri structure (we will
    306  *	FREE it if we don't need it... this it to prevent malloc blocking
    307  *	here while adding swap)
    308  */
    309 static void
    310 swaplist_insert(sdp, newspp, priority)
    311 	struct swapdev *sdp;
    312 	struct swappri *newspp;
    313 	int priority;
    314 {
    315 	struct swappri *spp, *pspp;
    316 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    317 
    318 	/*
    319 	 * find entry at or after which to insert the new device.
    320 	 */
    321 	pspp = NULL;
    322 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    323 		if (priority <= spp->spi_priority)
    324 			break;
    325 		pspp = spp;
    326 	}
    327 
    328 	/*
    329 	 * new priority?
    330 	 */
    331 	if (spp == NULL || spp->spi_priority != priority) {
    332 		spp = newspp;  /* use newspp! */
    333 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    334 			    priority, 0, 0, 0);
    335 
    336 		spp->spi_priority = priority;
    337 		CIRCLEQ_INIT(&spp->spi_swapdev);
    338 
    339 		if (pspp)
    340 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    341 		else
    342 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    343 	} else {
    344 	  	/* we don't need a new priority structure, free it */
    345 		FREE(newspp, M_VMSWAP);
    346 	}
    347 
    348 	/*
    349 	 * priority found (or created).   now insert on the priority's
    350 	 * circleq list and bump the total number of swapdevs.
    351 	 */
    352 	sdp->swd_priority = priority;
    353 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    354 	uvmexp.nswapdev++;
    355 }
    356 
    357 /*
    358  * swaplist_find: find and optionally remove a swap device from the
    359  *	global list.
    360  *
    361  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    362  * => we return the swapdev we found (and removed)
    363  */
    364 static struct swapdev *
    365 swaplist_find(vp, remove)
    366 	struct vnode *vp;
    367 	boolean_t remove;
    368 {
    369 	struct swapdev *sdp;
    370 	struct swappri *spp;
    371 
    372 	/*
    373 	 * search the lists for the requested vp
    374 	 */
    375 
    376 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    377 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    378 			if (sdp->swd_vp == vp) {
    379 				if (remove) {
    380 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    381 					    sdp, swd_next);
    382 					uvmexp.nswapdev--;
    383 				}
    384 				return(sdp);
    385 			}
    386 		}
    387 	}
    388 	return (NULL);
    389 }
    390 
    391 
    392 /*
    393  * swaplist_trim: scan priority list for empty priority entries and kill
    394  *	them.
    395  *
    396  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    397  */
    398 static void
    399 swaplist_trim()
    400 {
    401 	struct swappri *spp, *nextspp;
    402 
    403 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    404 		nextspp = LIST_NEXT(spp, spi_swappri);
    405 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    406 		    (void *)&spp->spi_swapdev)
    407 			continue;
    408 		LIST_REMOVE(spp, spi_swappri);
    409 		free(spp, M_VMSWAP);
    410 	}
    411 }
    412 
    413 /*
    414  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    415  *	to the "swapdev" that maps that section of the drum.
    416  *
    417  * => each swapdev takes one big contig chunk of the drum
    418  * => caller must hold uvm.swap_data_lock
    419  */
    420 static struct swapdev *
    421 swapdrum_getsdp(pgno)
    422 	int pgno;
    423 {
    424 	struct swapdev *sdp;
    425 	struct swappri *spp;
    426 
    427 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    428 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    429 			if (sdp->swd_flags & SWF_FAKE)
    430 				continue;
    431 			if (pgno >= sdp->swd_drumoffset &&
    432 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    433 				return sdp;
    434 			}
    435 		}
    436 	}
    437 	return NULL;
    438 }
    439 
    440 
    441 /*
    442  * sys_swapctl: main entry point for swapctl(2) system call
    443  * 	[with two helper functions: swap_on and swap_off]
    444  */
    445 int
    446 sys_swapctl(l, v, retval)
    447 	struct lwp *l;
    448 	void *v;
    449 	register_t *retval;
    450 {
    451 	struct sys_swapctl_args /* {
    452 		syscallarg(int) cmd;
    453 		syscallarg(void *) arg;
    454 		syscallarg(int) misc;
    455 	} */ *uap = (struct sys_swapctl_args *)v;
    456 	struct proc *p = l->l_proc;
    457 	struct vnode *vp;
    458 	struct nameidata nd;
    459 	struct swappri *spp;
    460 	struct swapdev *sdp;
    461 	struct swapent *sep;
    462 	char	userpath[PATH_MAX + 1];
    463 	size_t	len;
    464 	int	error, misc;
    465 	int	priority;
    466 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    467 
    468 	misc = SCARG(uap, misc);
    469 
    470 	/*
    471 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    472 	 */
    473 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
    474 
    475 	/*
    476 	 * we handle the non-priv NSWAP and STATS request first.
    477 	 *
    478 	 * SWAP_NSWAP: return number of config'd swap devices
    479 	 * [can also be obtained with uvmexp sysctl]
    480 	 */
    481 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    482 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    483 		    0, 0, 0);
    484 		*retval = uvmexp.nswapdev;
    485 		error = 0;
    486 		goto out;
    487 	}
    488 
    489 	/*
    490 	 * SWAP_STATS: get stats on current # of configured swap devs
    491 	 *
    492 	 * note that the swap_priority list can't change as long
    493 	 * as we are holding the swap_syscall_lock.  we don't want
    494 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
    495 	 * copyout() and we don't want to be holding that lock then!
    496 	 */
    497 	if (SCARG(uap, cmd) == SWAP_STATS
    498 #if defined(COMPAT_13)
    499 	    || SCARG(uap, cmd) == SWAP_OSTATS
    500 #endif
    501 	    ) {
    502 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    503 			misc = uvmexp.nswapdev;
    504 #if defined(COMPAT_13)
    505 		if (SCARG(uap, cmd) == SWAP_OSTATS)
    506 			len = sizeof(struct oswapent) * misc;
    507 		else
    508 #endif
    509 			len = sizeof(struct swapent) * misc;
    510 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
    511 
    512 		uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
    513 		error = copyout(sep, SCARG(uap, arg), len);
    514 
    515 		free(sep, M_TEMP);
    516 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    517 		goto out;
    518 	}
    519 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    520 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    521 
    522 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    523 		goto out;
    524 	}
    525 
    526 	/*
    527 	 * all other requests require superuser privs.   verify.
    528 	 */
    529 	if ((error = suser(p->p_ucred, &p->p_acflag)))
    530 		goto out;
    531 
    532 	/*
    533 	 * at this point we expect a path name in arg.   we will
    534 	 * use namei() to gain a vnode reference (vref), and lock
    535 	 * the vnode (VOP_LOCK).
    536 	 *
    537 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    538 	 * miniroot)
    539 	 */
    540 	if (SCARG(uap, arg) == NULL) {
    541 		vp = rootvp;		/* miniroot */
    542 		if (vget(vp, LK_EXCLUSIVE)) {
    543 			error = EBUSY;
    544 			goto out;
    545 		}
    546 		if (SCARG(uap, cmd) == SWAP_ON &&
    547 		    copystr("miniroot", userpath, sizeof userpath, &len))
    548 			panic("swapctl: miniroot copy failed");
    549 	} else {
    550 		int	space;
    551 		char	*where;
    552 
    553 		if (SCARG(uap, cmd) == SWAP_ON) {
    554 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    555 			    sizeof userpath, &len)))
    556 				goto out;
    557 			space = UIO_SYSSPACE;
    558 			where = userpath;
    559 		} else {
    560 			space = UIO_USERSPACE;
    561 			where = (char *)SCARG(uap, arg);
    562 		}
    563 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
    564 		if ((error = namei(&nd)))
    565 			goto out;
    566 		vp = nd.ni_vp;
    567 	}
    568 	/* note: "vp" is referenced and locked */
    569 
    570 	error = 0;		/* assume no error */
    571 	switch(SCARG(uap, cmd)) {
    572 
    573 	case SWAP_DUMPDEV:
    574 		if (vp->v_type != VBLK) {
    575 			error = ENOTBLK;
    576 			break;
    577 		}
    578 		dumpdev = vp->v_rdev;
    579 		cpu_dumpconf();
    580 		break;
    581 
    582 	case SWAP_CTL:
    583 		/*
    584 		 * get new priority, remove old entry (if any) and then
    585 		 * reinsert it in the correct place.  finally, prune out
    586 		 * any empty priority structures.
    587 		 */
    588 		priority = SCARG(uap, misc);
    589 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    590 		simple_lock(&uvm.swap_data_lock);
    591 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
    592 			error = ENOENT;
    593 		} else {
    594 			swaplist_insert(sdp, spp, priority);
    595 			swaplist_trim();
    596 		}
    597 		simple_unlock(&uvm.swap_data_lock);
    598 		if (error)
    599 			free(spp, M_VMSWAP);
    600 		break;
    601 
    602 	case SWAP_ON:
    603 
    604 		/*
    605 		 * check for duplicates.   if none found, then insert a
    606 		 * dummy entry on the list to prevent someone else from
    607 		 * trying to enable this device while we are working on
    608 		 * it.
    609 		 */
    610 
    611 		priority = SCARG(uap, misc);
    612 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    613 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    614 		memset(sdp, 0, sizeof(*sdp));
    615 		sdp->swd_flags = SWF_FAKE;
    616 		sdp->swd_vp = vp;
    617 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    618 		bufq_alloc(&sdp->swd_tab, BUFQ_DISKSORT|BUFQ_SORT_RAWBLOCK);
    619 		simple_lock(&uvm.swap_data_lock);
    620 		if (swaplist_find(vp, 0) != NULL) {
    621 			error = EBUSY;
    622 			simple_unlock(&uvm.swap_data_lock);
    623 			bufq_free(&sdp->swd_tab);
    624 			free(sdp, M_VMSWAP);
    625 			free(spp, M_VMSWAP);
    626 			break;
    627 		}
    628 		swaplist_insert(sdp, spp, priority);
    629 		simple_unlock(&uvm.swap_data_lock);
    630 
    631 		sdp->swd_pathlen = len;
    632 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    633 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    634 			panic("swapctl: copystr");
    635 
    636 		/*
    637 		 * we've now got a FAKE placeholder in the swap list.
    638 		 * now attempt to enable swap on it.  if we fail, undo
    639 		 * what we've done and kill the fake entry we just inserted.
    640 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    641 		 */
    642 
    643 		if ((error = swap_on(p, sdp)) != 0) {
    644 			simple_lock(&uvm.swap_data_lock);
    645 			(void) swaplist_find(vp, 1);  /* kill fake entry */
    646 			swaplist_trim();
    647 			simple_unlock(&uvm.swap_data_lock);
    648 			bufq_free(&sdp->swd_tab);
    649 			free(sdp->swd_path, M_VMSWAP);
    650 			free(sdp, M_VMSWAP);
    651 			break;
    652 		}
    653 		break;
    654 
    655 	case SWAP_OFF:
    656 		simple_lock(&uvm.swap_data_lock);
    657 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
    658 			simple_unlock(&uvm.swap_data_lock);
    659 			error = ENXIO;
    660 			break;
    661 		}
    662 
    663 		/*
    664 		 * If a device isn't in use or enabled, we
    665 		 * can't stop swapping from it (again).
    666 		 */
    667 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    668 			simple_unlock(&uvm.swap_data_lock);
    669 			error = EBUSY;
    670 			break;
    671 		}
    672 
    673 		/*
    674 		 * do the real work.
    675 		 */
    676 		error = swap_off(p, sdp);
    677 		break;
    678 
    679 	default:
    680 		error = EINVAL;
    681 	}
    682 
    683 	/*
    684 	 * done!  release the ref gained by namei() and unlock.
    685 	 */
    686 	vput(vp);
    687 
    688 out:
    689 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
    690 
    691 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    692 	return (error);
    693 }
    694 
    695 /*
    696  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
    697  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    698  * emulation to use it directly without going through sys_swapctl().
    699  * The problem with using sys_swapctl() there is that it involves
    700  * copying the swapent array to the stackgap, and this array's size
    701  * is not known at build time. Hence it would not be possible to
    702  * ensure it would fit in the stackgap in any case.
    703  */
    704 void
    705 uvm_swap_stats(cmd, sep, sec, retval)
    706 	int cmd;
    707 	struct swapent *sep;
    708 	int sec;
    709 	register_t *retval;
    710 {
    711 	struct swappri *spp;
    712 	struct swapdev *sdp;
    713 	int count = 0;
    714 
    715 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    716 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    717 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
    718 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    719 		  	/*
    720 			 * backwards compatibility for system call.
    721 			 * note that we use 'struct oswapent' as an
    722 			 * overlay into both 'struct swapdev' and
    723 			 * the userland 'struct swapent', as we
    724 			 * want to retain backwards compatibility
    725 			 * with NetBSD 1.3.
    726 			 */
    727 			sdp->swd_ose.ose_inuse =
    728 			    btodb((u_int64_t)sdp->swd_npginuse <<
    729 			    PAGE_SHIFT);
    730 			(void)memcpy(sep, &sdp->swd_ose,
    731 			    sizeof(struct oswapent));
    732 
    733 			/* now copy out the path if necessary */
    734 #if defined(COMPAT_13)
    735 			if (cmd == SWAP_STATS)
    736 #endif
    737 				(void)memcpy(&sep->se_path, sdp->swd_path,
    738 				    sdp->swd_pathlen);
    739 
    740 			count++;
    741 #if defined(COMPAT_13)
    742 			if (cmd == SWAP_OSTATS)
    743 				sep = (struct swapent *)
    744 				    ((struct oswapent *)sep + 1);
    745 			else
    746 #endif
    747 				sep++;
    748 		}
    749 	}
    750 
    751 	*retval = count;
    752 	return;
    753 }
    754 
    755 /*
    756  * swap_on: attempt to enable a swapdev for swapping.   note that the
    757  *	swapdev is already on the global list, but disabled (marked
    758  *	SWF_FAKE).
    759  *
    760  * => we avoid the start of the disk (to protect disk labels)
    761  * => we also avoid the miniroot, if we are swapping to root.
    762  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
    763  *	if needed.
    764  */
    765 static int
    766 swap_on(p, sdp)
    767 	struct proc *p;
    768 	struct swapdev *sdp;
    769 {
    770 	struct vnode *vp;
    771 	int error, npages, nblocks, size;
    772 	long addr;
    773 	u_long result;
    774 	struct vattr va;
    775 #ifdef NFS
    776 	extern int (**nfsv2_vnodeop_p)(void *);
    777 #endif /* NFS */
    778 	const struct bdevsw *bdev;
    779 	dev_t dev;
    780 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    781 
    782 	/*
    783 	 * we want to enable swapping on sdp.   the swd_vp contains
    784 	 * the vnode we want (locked and ref'd), and the swd_dev
    785 	 * contains the dev_t of the file, if it a block device.
    786 	 */
    787 
    788 	vp = sdp->swd_vp;
    789 	dev = sdp->swd_dev;
    790 
    791 	/*
    792 	 * open the swap file (mostly useful for block device files to
    793 	 * let device driver know what is up).
    794 	 *
    795 	 * we skip the open/close for root on swap because the root
    796 	 * has already been opened when root was mounted (mountroot).
    797 	 */
    798 	if (vp != rootvp) {
    799 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
    800 			return (error);
    801 	}
    802 
    803 	/* XXX this only works for block devices */
    804 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    805 
    806 	/*
    807 	 * we now need to determine the size of the swap area.   for
    808 	 * block specials we can call the d_psize function.
    809 	 * for normal files, we must stat [get attrs].
    810 	 *
    811 	 * we put the result in nblks.
    812 	 * for normal files, we also want the filesystem block size
    813 	 * (which we get with statfs).
    814 	 */
    815 	switch (vp->v_type) {
    816 	case VBLK:
    817 		bdev = bdevsw_lookup(dev);
    818 		if (bdev == NULL || bdev->d_psize == NULL ||
    819 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
    820 			error = ENXIO;
    821 			goto bad;
    822 		}
    823 		break;
    824 
    825 	case VREG:
    826 		if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
    827 			goto bad;
    828 		nblocks = (int)btodb(va.va_size);
    829 		if ((error =
    830 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
    831 			goto bad;
    832 
    833 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    834 		/*
    835 		 * limit the max # of outstanding I/O requests we issue
    836 		 * at any one time.   take it easy on NFS servers.
    837 		 */
    838 #ifdef NFS
    839 		if (vp->v_op == nfsv2_vnodeop_p)
    840 			sdp->swd_maxactive = 2; /* XXX */
    841 		else
    842 #endif /* NFS */
    843 			sdp->swd_maxactive = 8; /* XXX */
    844 		break;
    845 
    846 	default:
    847 		error = ENXIO;
    848 		goto bad;
    849 	}
    850 
    851 	/*
    852 	 * save nblocks in a safe place and convert to pages.
    853 	 */
    854 
    855 	sdp->swd_ose.ose_nblks = nblocks;
    856 	npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
    857 
    858 	/*
    859 	 * for block special files, we want to make sure that leave
    860 	 * the disklabel and bootblocks alone, so we arrange to skip
    861 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    862 	 * note that because of this the "size" can be less than the
    863 	 * actual number of blocks on the device.
    864 	 */
    865 	if (vp->v_type == VBLK) {
    866 		/* we use pages 1 to (size - 1) [inclusive] */
    867 		size = npages - 1;
    868 		addr = 1;
    869 	} else {
    870 		/* we use pages 0 to (size - 1) [inclusive] */
    871 		size = npages;
    872 		addr = 0;
    873 	}
    874 
    875 	/*
    876 	 * make sure we have enough blocks for a reasonable sized swap
    877 	 * area.   we want at least one page.
    878 	 */
    879 
    880 	if (size < 1) {
    881 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    882 		error = EINVAL;
    883 		goto bad;
    884 	}
    885 
    886 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    887 
    888 	/*
    889 	 * now we need to allocate an extent to manage this swap device
    890 	 */
    891 
    892 	sdp->swd_blist = blist_create(npages);
    893 	/* mark all expect the `saved' region free. */
    894 	blist_free(sdp->swd_blist, addr, size);
    895 
    896 	/*
    897 	 * if the vnode we are swapping to is the root vnode
    898 	 * (i.e. we are swapping to the miniroot) then we want
    899 	 * to make sure we don't overwrite it.   do a statfs to
    900 	 * find its size and skip over it.
    901 	 */
    902 	if (vp == rootvp) {
    903 		struct mount *mp;
    904 		struct statvfs *sp;
    905 		int rootblocks, rootpages;
    906 
    907 		mp = rootvnode->v_mount;
    908 		sp = &mp->mnt_stat;
    909 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    910 		/*
    911 		 * XXX: sp->f_blocks isn't the total number of
    912 		 * blocks in the filesystem, it's the number of
    913 		 * data blocks.  so, our rootblocks almost
    914 		 * definitely underestimates the total size
    915 		 * of the filesystem - how badly depends on the
    916 		 * details of the filesystem type.  there isn't
    917 		 * an obvious way to deal with this cleanly
    918 		 * and perfectly, so for now we just pad our
    919 		 * rootblocks estimate with an extra 5 percent.
    920 		 */
    921 		rootblocks += (rootblocks >> 5) +
    922 			(rootblocks >> 6) +
    923 			(rootblocks >> 7);
    924 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    925 		if (rootpages > size)
    926 			panic("swap_on: miniroot larger than swap?");
    927 
    928 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    929 			panic("swap_on: unable to preserve miniroot");
    930 		}
    931 
    932 		size -= rootpages;
    933 		printf("Preserved %d pages of miniroot ", rootpages);
    934 		printf("leaving %d pages of swap\n", size);
    935 	}
    936 
    937 	/*
    938 	 * add a ref to vp to reflect usage as a swap device.
    939 	 */
    940 	vref(vp);
    941 
    942 	/*
    943 	 * now add the new swapdev to the drum and enable.
    944 	 */
    945 	if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
    946 	    EX_WAITOK, &result))
    947 		panic("swapdrum_add");
    948 
    949 	sdp->swd_drumoffset = (int)result;
    950 	sdp->swd_drumsize = npages;
    951 	sdp->swd_npages = size;
    952 	simple_lock(&uvm.swap_data_lock);
    953 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    954 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    955 	uvmexp.swpages += size;
    956 	uvmexp.swpgavail += size;
    957 	simple_unlock(&uvm.swap_data_lock);
    958 	return (0);
    959 
    960 	/*
    961 	 * failure: clean up and return error.
    962 	 */
    963 
    964 bad:
    965 	if (sdp->swd_blist) {
    966 		blist_destroy(sdp->swd_blist);
    967 	}
    968 	if (vp != rootvp) {
    969 		(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
    970 	}
    971 	return (error);
    972 }
    973 
    974 /*
    975  * swap_off: stop swapping on swapdev
    976  *
    977  * => swap data should be locked, we will unlock.
    978  */
    979 static int
    980 swap_off(p, sdp)
    981 	struct proc *p;
    982 	struct swapdev *sdp;
    983 {
    984 	int npages = sdp->swd_npages;
    985 	int error = 0;
    986 
    987 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
    988 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
    989 
    990 	/* disable the swap area being removed */
    991 	sdp->swd_flags &= ~SWF_ENABLE;
    992 	uvmexp.swpgavail -= npages;
    993 	simple_unlock(&uvm.swap_data_lock);
    994 
    995 	/*
    996 	 * the idea is to find all the pages that are paged out to this
    997 	 * device, and page them all in.  in uvm, swap-backed pageable
    998 	 * memory can take two forms: aobjs and anons.  call the
    999 	 * swapoff hook for each subsystem to bring in pages.
   1000 	 */
   1001 
   1002 	if (uao_swap_off(sdp->swd_drumoffset,
   1003 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1004 	    amap_swap_off(sdp->swd_drumoffset,
   1005 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1006 		error = ENOMEM;
   1007 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1008 		error = EBUSY;
   1009 	}
   1010 
   1011 	if (error) {
   1012 		simple_lock(&uvm.swap_data_lock);
   1013 		sdp->swd_flags |= SWF_ENABLE;
   1014 		uvmexp.swpgavail += npages;
   1015 		simple_unlock(&uvm.swap_data_lock);
   1016 
   1017 		return error;
   1018 	}
   1019 
   1020 	/*
   1021 	 * done with the vnode.
   1022 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1023 	 * so that spec_close() can tell if this is the last close.
   1024 	 */
   1025 	vrele(sdp->swd_vp);
   1026 	if (sdp->swd_vp != rootvp) {
   1027 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
   1028 	}
   1029 
   1030 	simple_lock(&uvm.swap_data_lock);
   1031 	uvmexp.swpages -= npages;
   1032 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1033 
   1034 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
   1035 		panic("swap_off: swapdev not in list");
   1036 	swaplist_trim();
   1037 	simple_unlock(&uvm.swap_data_lock);
   1038 
   1039 	/*
   1040 	 * free all resources!
   1041 	 */
   1042 	extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
   1043 		    EX_WAITOK);
   1044 	blist_destroy(sdp->swd_blist);
   1045 	bufq_free(&sdp->swd_tab);
   1046 	free(sdp, M_VMSWAP);
   1047 	return (0);
   1048 }
   1049 
   1050 /*
   1051  * /dev/drum interface and i/o functions
   1052  */
   1053 
   1054 /*
   1055  * swread: the read function for the drum (just a call to physio)
   1056  */
   1057 /*ARGSUSED*/
   1058 int
   1059 swread(dev, uio, ioflag)
   1060 	dev_t dev;
   1061 	struct uio *uio;
   1062 	int ioflag;
   1063 {
   1064 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1065 
   1066 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1067 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1068 }
   1069 
   1070 /*
   1071  * swwrite: the write function for the drum (just a call to physio)
   1072  */
   1073 /*ARGSUSED*/
   1074 int
   1075 swwrite(dev, uio, ioflag)
   1076 	dev_t dev;
   1077 	struct uio *uio;
   1078 	int ioflag;
   1079 {
   1080 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1081 
   1082 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1083 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1084 }
   1085 
   1086 /*
   1087  * swstrategy: perform I/O on the drum
   1088  *
   1089  * => we must map the i/o request from the drum to the correct swapdev.
   1090  */
   1091 void
   1092 swstrategy(bp)
   1093 	struct buf *bp;
   1094 {
   1095 	struct swapdev *sdp;
   1096 	struct vnode *vp;
   1097 	int s, pageno, bn;
   1098 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1099 
   1100 	/*
   1101 	 * convert block number to swapdev.   note that swapdev can't
   1102 	 * be yanked out from under us because we are holding resources
   1103 	 * in it (i.e. the blocks we are doing I/O on).
   1104 	 */
   1105 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1106 	simple_lock(&uvm.swap_data_lock);
   1107 	sdp = swapdrum_getsdp(pageno);
   1108 	simple_unlock(&uvm.swap_data_lock);
   1109 	if (sdp == NULL) {
   1110 		bp->b_error = EINVAL;
   1111 		bp->b_flags |= B_ERROR;
   1112 		biodone(bp);
   1113 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1114 		return;
   1115 	}
   1116 
   1117 	/*
   1118 	 * convert drum page number to block number on this swapdev.
   1119 	 */
   1120 
   1121 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1122 	bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1123 
   1124 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1125 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1126 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1127 
   1128 	/*
   1129 	 * for block devices we finish up here.
   1130 	 * for regular files we have to do more work which we delegate
   1131 	 * to sw_reg_strategy().
   1132 	 */
   1133 
   1134 	switch (sdp->swd_vp->v_type) {
   1135 	default:
   1136 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
   1137 
   1138 	case VBLK:
   1139 
   1140 		/*
   1141 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1142 		 * on the swapdev (sdp).
   1143 		 */
   1144 		s = splbio();
   1145 		bp->b_blkno = bn;		/* swapdev block number */
   1146 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1147 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1148 
   1149 		/*
   1150 		 * if we are doing a write, we have to redirect the i/o on
   1151 		 * drum's v_numoutput counter to the swapdevs.
   1152 		 */
   1153 		if ((bp->b_flags & B_READ) == 0) {
   1154 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1155 			V_INCR_NUMOUTPUT(vp);	/* put it on swapdev */
   1156 		}
   1157 
   1158 		/*
   1159 		 * finally plug in swapdev vnode and start I/O
   1160 		 */
   1161 		bp->b_vp = vp;
   1162 		splx(s);
   1163 		VOP_STRATEGY(vp, bp);
   1164 		return;
   1165 
   1166 	case VREG:
   1167 		/*
   1168 		 * delegate to sw_reg_strategy function.
   1169 		 */
   1170 		sw_reg_strategy(sdp, bp, bn);
   1171 		return;
   1172 	}
   1173 	/* NOTREACHED */
   1174 }
   1175 
   1176 /*
   1177  * sw_reg_strategy: handle swap i/o to regular files
   1178  */
   1179 static void
   1180 sw_reg_strategy(sdp, bp, bn)
   1181 	struct swapdev	*sdp;
   1182 	struct buf	*bp;
   1183 	int		bn;
   1184 {
   1185 	struct vnode	*vp;
   1186 	struct vndxfer	*vnx;
   1187 	daddr_t		nbn;
   1188 	caddr_t		addr;
   1189 	off_t		byteoff;
   1190 	int		s, off, nra, error, sz, resid;
   1191 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1192 
   1193 	/*
   1194 	 * allocate a vndxfer head for this transfer and point it to
   1195 	 * our buffer.
   1196 	 */
   1197 	getvndxfer(vnx);
   1198 	vnx->vx_flags = VX_BUSY;
   1199 	vnx->vx_error = 0;
   1200 	vnx->vx_pending = 0;
   1201 	vnx->vx_bp = bp;
   1202 	vnx->vx_sdp = sdp;
   1203 
   1204 	/*
   1205 	 * setup for main loop where we read filesystem blocks into
   1206 	 * our buffer.
   1207 	 */
   1208 	error = 0;
   1209 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1210 	addr = bp->b_data;		/* current position in buffer */
   1211 	byteoff = dbtob((u_int64_t)bn);
   1212 
   1213 	for (resid = bp->b_resid; resid; resid -= sz) {
   1214 		struct vndbuf	*nbp;
   1215 
   1216 		/*
   1217 		 * translate byteoffset into block number.  return values:
   1218 		 *   vp = vnode of underlying device
   1219 		 *  nbn = new block number (on underlying vnode dev)
   1220 		 *  nra = num blocks we can read-ahead (excludes requested
   1221 		 *	block)
   1222 		 */
   1223 		nra = 0;
   1224 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1225 				 	&vp, &nbn, &nra);
   1226 
   1227 		if (error == 0 && nbn == (daddr_t)-1) {
   1228 			/*
   1229 			 * this used to just set error, but that doesn't
   1230 			 * do the right thing.  Instead, it causes random
   1231 			 * memory errors.  The panic() should remain until
   1232 			 * this condition doesn't destabilize the system.
   1233 			 */
   1234 #if 1
   1235 			panic("sw_reg_strategy: swap to sparse file");
   1236 #else
   1237 			error = EIO;	/* failure */
   1238 #endif
   1239 		}
   1240 
   1241 		/*
   1242 		 * punt if there was an error or a hole in the file.
   1243 		 * we must wait for any i/o ops we have already started
   1244 		 * to finish before returning.
   1245 		 *
   1246 		 * XXX we could deal with holes here but it would be
   1247 		 * a hassle (in the write case).
   1248 		 */
   1249 		if (error) {
   1250 			s = splbio();
   1251 			vnx->vx_error = error;	/* pass error up */
   1252 			goto out;
   1253 		}
   1254 
   1255 		/*
   1256 		 * compute the size ("sz") of this transfer (in bytes).
   1257 		 */
   1258 		off = byteoff % sdp->swd_bsize;
   1259 		sz = (1 + nra) * sdp->swd_bsize - off;
   1260 		if (sz > resid)
   1261 			sz = resid;
   1262 
   1263 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1264 			    "vp %p/%p offset 0x%x/0x%x",
   1265 			    sdp->swd_vp, vp, byteoff, nbn);
   1266 
   1267 		/*
   1268 		 * now get a buf structure.   note that the vb_buf is
   1269 		 * at the front of the nbp structure so that you can
   1270 		 * cast pointers between the two structure easily.
   1271 		 */
   1272 		getvndbuf(nbp);
   1273 		BUF_INIT(&nbp->vb_buf);
   1274 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
   1275 		nbp->vb_buf.b_bcount   = sz;
   1276 		nbp->vb_buf.b_bufsize  = sz;
   1277 		nbp->vb_buf.b_error    = 0;
   1278 		nbp->vb_buf.b_data     = addr;
   1279 		nbp->vb_buf.b_lblkno   = 0;
   1280 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1281 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1282 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
   1283 		nbp->vb_buf.b_vp       = vp;
   1284 		if (vp->v_type == VBLK) {
   1285 			nbp->vb_buf.b_dev = vp->v_rdev;
   1286 		}
   1287 
   1288 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1289 
   1290 		/*
   1291 		 * Just sort by block number
   1292 		 */
   1293 		s = splbio();
   1294 		if (vnx->vx_error != 0) {
   1295 			putvndbuf(nbp);
   1296 			goto out;
   1297 		}
   1298 		vnx->vx_pending++;
   1299 
   1300 		/* sort it in and start I/O if we are not over our limit */
   1301 		BUFQ_PUT(&sdp->swd_tab, &nbp->vb_buf);
   1302 		sw_reg_start(sdp);
   1303 		splx(s);
   1304 
   1305 		/*
   1306 		 * advance to the next I/O
   1307 		 */
   1308 		byteoff += sz;
   1309 		addr += sz;
   1310 	}
   1311 
   1312 	s = splbio();
   1313 
   1314 out: /* Arrive here at splbio */
   1315 	vnx->vx_flags &= ~VX_BUSY;
   1316 	if (vnx->vx_pending == 0) {
   1317 		if (vnx->vx_error != 0) {
   1318 			bp->b_error = vnx->vx_error;
   1319 			bp->b_flags |= B_ERROR;
   1320 		}
   1321 		putvndxfer(vnx);
   1322 		biodone(bp);
   1323 	}
   1324 	splx(s);
   1325 }
   1326 
   1327 /*
   1328  * sw_reg_start: start an I/O request on the requested swapdev
   1329  *
   1330  * => reqs are sorted by b_rawblkno (above)
   1331  */
   1332 static void
   1333 sw_reg_start(sdp)
   1334 	struct swapdev	*sdp;
   1335 {
   1336 	struct buf	*bp;
   1337 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1338 
   1339 	/* recursion control */
   1340 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1341 		return;
   1342 
   1343 	sdp->swd_flags |= SWF_BUSY;
   1344 
   1345 	while (sdp->swd_active < sdp->swd_maxactive) {
   1346 		bp = BUFQ_GET(&sdp->swd_tab);
   1347 		if (bp == NULL)
   1348 			break;
   1349 		sdp->swd_active++;
   1350 
   1351 		UVMHIST_LOG(pdhist,
   1352 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1353 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1354 		if ((bp->b_flags & B_READ) == 0)
   1355 			V_INCR_NUMOUTPUT(bp->b_vp);
   1356 
   1357 		VOP_STRATEGY(bp->b_vp, bp);
   1358 	}
   1359 	sdp->swd_flags &= ~SWF_BUSY;
   1360 }
   1361 
   1362 /*
   1363  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1364  *
   1365  * => note that we can recover the vndbuf struct by casting the buf ptr
   1366  */
   1367 static void
   1368 sw_reg_iodone(bp)
   1369 	struct buf *bp;
   1370 {
   1371 	struct vndbuf *vbp = (struct vndbuf *) bp;
   1372 	struct vndxfer *vnx = vbp->vb_xfer;
   1373 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1374 	struct swapdev	*sdp = vnx->vx_sdp;
   1375 	int s, resid, error;
   1376 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1377 
   1378 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1379 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1380 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1381 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1382 
   1383 	/*
   1384 	 * protect vbp at splbio and update.
   1385 	 */
   1386 
   1387 	s = splbio();
   1388 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1389 	pbp->b_resid -= resid;
   1390 	vnx->vx_pending--;
   1391 
   1392 	if (vbp->vb_buf.b_flags & B_ERROR) {
   1393 		/* pass error upward */
   1394 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1395 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1396 		vnx->vx_error = error;
   1397 	}
   1398 
   1399 	/*
   1400 	 * kill vbp structure
   1401 	 */
   1402 	putvndbuf(vbp);
   1403 
   1404 	/*
   1405 	 * wrap up this transaction if it has run to completion or, in
   1406 	 * case of an error, when all auxiliary buffers have returned.
   1407 	 */
   1408 	if (vnx->vx_error != 0) {
   1409 		/* pass error upward */
   1410 		pbp->b_flags |= B_ERROR;
   1411 		pbp->b_error = vnx->vx_error;
   1412 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1413 			putvndxfer(vnx);
   1414 			biodone(pbp);
   1415 		}
   1416 	} else if (pbp->b_resid == 0) {
   1417 		KASSERT(vnx->vx_pending == 0);
   1418 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1419 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1420 			    pbp, vnx->vx_error, 0, 0);
   1421 			putvndxfer(vnx);
   1422 			biodone(pbp);
   1423 		}
   1424 	}
   1425 
   1426 	/*
   1427 	 * done!   start next swapdev I/O if one is pending
   1428 	 */
   1429 	sdp->swd_active--;
   1430 	sw_reg_start(sdp);
   1431 	splx(s);
   1432 }
   1433 
   1434 
   1435 /*
   1436  * uvm_swap_alloc: allocate space on swap
   1437  *
   1438  * => allocation is done "round robin" down the priority list, as we
   1439  *	allocate in a priority we "rotate" the circle queue.
   1440  * => space can be freed with uvm_swap_free
   1441  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1442  * => we lock uvm.swap_data_lock
   1443  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1444  */
   1445 int
   1446 uvm_swap_alloc(nslots, lessok)
   1447 	int *nslots;	/* IN/OUT */
   1448 	boolean_t lessok;
   1449 {
   1450 	struct swapdev *sdp;
   1451 	struct swappri *spp;
   1452 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1453 
   1454 	/*
   1455 	 * no swap devices configured yet?   definite failure.
   1456 	 */
   1457 	if (uvmexp.nswapdev < 1)
   1458 		return 0;
   1459 
   1460 	/*
   1461 	 * lock data lock, convert slots into blocks, and enter loop
   1462 	 */
   1463 	simple_lock(&uvm.swap_data_lock);
   1464 
   1465 ReTry:	/* XXXMRG */
   1466 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1467 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1468 			uint64_t result;
   1469 
   1470 			/* if it's not enabled, then we can't swap from it */
   1471 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1472 				continue;
   1473 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1474 				continue;
   1475 			result = blist_alloc(sdp->swd_blist, *nslots);
   1476 			if (result == BLIST_NONE) {
   1477 				continue;
   1478 			}
   1479 			KASSERT(result < sdp->swd_drumsize);
   1480 
   1481 			/*
   1482 			 * successful allocation!  now rotate the circleq.
   1483 			 */
   1484 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1485 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1486 			sdp->swd_npginuse += *nslots;
   1487 			uvmexp.swpginuse += *nslots;
   1488 			simple_unlock(&uvm.swap_data_lock);
   1489 			/* done!  return drum slot number */
   1490 			UVMHIST_LOG(pdhist,
   1491 			    "success!  returning %d slots starting at %d",
   1492 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1493 			return (result + sdp->swd_drumoffset);
   1494 		}
   1495 	}
   1496 
   1497 	/* XXXMRG: BEGIN HACK */
   1498 	if (*nslots > 1 && lessok) {
   1499 		*nslots = 1;
   1500 		/* XXXMRG: ugh!  blist should support this for us */
   1501 		goto ReTry;
   1502 	}
   1503 	/* XXXMRG: END HACK */
   1504 
   1505 	simple_unlock(&uvm.swap_data_lock);
   1506 	return 0;
   1507 }
   1508 
   1509 boolean_t
   1510 uvm_swapisfull(void)
   1511 {
   1512 	boolean_t rv;
   1513 
   1514 	simple_lock(&uvm.swap_data_lock);
   1515 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1516 	rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
   1517 	simple_unlock(&uvm.swap_data_lock);
   1518 
   1519 	return (rv);
   1520 }
   1521 
   1522 /*
   1523  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1524  *
   1525  * => we lock uvm.swap_data_lock
   1526  */
   1527 void
   1528 uvm_swap_markbad(startslot, nslots)
   1529 	int startslot;
   1530 	int nslots;
   1531 {
   1532 	struct swapdev *sdp;
   1533 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1534 
   1535 	simple_lock(&uvm.swap_data_lock);
   1536 	sdp = swapdrum_getsdp(startslot);
   1537 	KASSERT(sdp != NULL);
   1538 
   1539 	/*
   1540 	 * we just keep track of how many pages have been marked bad
   1541 	 * in this device, to make everything add up in swap_off().
   1542 	 * we assume here that the range of slots will all be within
   1543 	 * one swap device.
   1544 	 */
   1545 
   1546 	KASSERT(uvmexp.swpgonly >= nslots);
   1547 	uvmexp.swpgonly -= nslots;
   1548 	sdp->swd_npgbad += nslots;
   1549 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1550 	simple_unlock(&uvm.swap_data_lock);
   1551 }
   1552 
   1553 /*
   1554  * uvm_swap_free: free swap slots
   1555  *
   1556  * => this can be all or part of an allocation made by uvm_swap_alloc
   1557  * => we lock uvm.swap_data_lock
   1558  */
   1559 void
   1560 uvm_swap_free(startslot, nslots)
   1561 	int startslot;
   1562 	int nslots;
   1563 {
   1564 	struct swapdev *sdp;
   1565 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1566 
   1567 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1568 	    startslot, 0, 0);
   1569 
   1570 	/*
   1571 	 * ignore attempts to free the "bad" slot.
   1572 	 */
   1573 
   1574 	if (startslot == SWSLOT_BAD) {
   1575 		return;
   1576 	}
   1577 
   1578 	/*
   1579 	 * convert drum slot offset back to sdp, free the blocks
   1580 	 * in the extent, and return.   must hold pri lock to do
   1581 	 * lookup and access the extent.
   1582 	 */
   1583 
   1584 	simple_lock(&uvm.swap_data_lock);
   1585 	sdp = swapdrum_getsdp(startslot);
   1586 	KASSERT(uvmexp.nswapdev >= 1);
   1587 	KASSERT(sdp != NULL);
   1588 	KASSERT(sdp->swd_npginuse >= nslots);
   1589 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1590 	sdp->swd_npginuse -= nslots;
   1591 	uvmexp.swpginuse -= nslots;
   1592 	simple_unlock(&uvm.swap_data_lock);
   1593 }
   1594 
   1595 /*
   1596  * uvm_swap_put: put any number of pages into a contig place on swap
   1597  *
   1598  * => can be sync or async
   1599  */
   1600 
   1601 int
   1602 uvm_swap_put(swslot, ppsp, npages, flags)
   1603 	int swslot;
   1604 	struct vm_page **ppsp;
   1605 	int npages;
   1606 	int flags;
   1607 {
   1608 	int error;
   1609 
   1610 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1611 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1612 	return error;
   1613 }
   1614 
   1615 /*
   1616  * uvm_swap_get: get a single page from swap
   1617  *
   1618  * => usually a sync op (from fault)
   1619  */
   1620 
   1621 int
   1622 uvm_swap_get(page, swslot, flags)
   1623 	struct vm_page *page;
   1624 	int swslot, flags;
   1625 {
   1626 	int error;
   1627 
   1628 	uvmexp.nswget++;
   1629 	KASSERT(flags & PGO_SYNCIO);
   1630 	if (swslot == SWSLOT_BAD) {
   1631 		return EIO;
   1632 	}
   1633 
   1634 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1635 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1636 	if (error == 0) {
   1637 
   1638 		/*
   1639 		 * this page is no longer only in swap.
   1640 		 */
   1641 
   1642 		simple_lock(&uvm.swap_data_lock);
   1643 		KASSERT(uvmexp.swpgonly > 0);
   1644 		uvmexp.swpgonly--;
   1645 		simple_unlock(&uvm.swap_data_lock);
   1646 	}
   1647 	return error;
   1648 }
   1649 
   1650 /*
   1651  * uvm_swap_io: do an i/o operation to swap
   1652  */
   1653 
   1654 static int
   1655 uvm_swap_io(pps, startslot, npages, flags)
   1656 	struct vm_page **pps;
   1657 	int startslot, npages, flags;
   1658 {
   1659 	daddr_t startblk;
   1660 	struct	buf *bp;
   1661 	vaddr_t kva;
   1662 	int	error, s, mapinflags;
   1663 	boolean_t write, async;
   1664 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1665 
   1666 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1667 	    startslot, npages, flags, 0);
   1668 
   1669 	write = (flags & B_READ) == 0;
   1670 	async = (flags & B_ASYNC) != 0;
   1671 
   1672 	/*
   1673 	 * convert starting drum slot to block number
   1674 	 */
   1675 
   1676 	startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
   1677 
   1678 	/*
   1679 	 * first, map the pages into the kernel.
   1680 	 */
   1681 
   1682 	mapinflags = !write ?
   1683 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1684 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1685 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1686 
   1687 	/*
   1688 	 * now allocate a buf for the i/o.
   1689 	 */
   1690 
   1691 	s = splbio();
   1692 	bp = pool_get(&bufpool, PR_WAITOK);
   1693 	splx(s);
   1694 
   1695 	/*
   1696 	 * fill in the bp/sbp.   we currently route our i/o through
   1697 	 * /dev/drum's vnode [swapdev_vp].
   1698 	 */
   1699 
   1700 	BUF_INIT(bp);
   1701 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
   1702 	bp->b_proc = &proc0;	/* XXX */
   1703 	bp->b_vnbufs.le_next = NOLIST;
   1704 	bp->b_data = (caddr_t)kva;
   1705 	bp->b_blkno = startblk;
   1706 	bp->b_vp = swapdev_vp;
   1707 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1708 
   1709 	/*
   1710 	 * bump v_numoutput (counter of number of active outputs).
   1711 	 */
   1712 
   1713 	if (write) {
   1714 		s = splbio();
   1715 		V_INCR_NUMOUTPUT(swapdev_vp);
   1716 		splx(s);
   1717 	}
   1718 
   1719 	/*
   1720 	 * for async ops we must set up the iodone handler.
   1721 	 */
   1722 
   1723 	if (async) {
   1724 		bp->b_flags |= B_CALL;
   1725 		bp->b_iodone = uvm_aio_biodone;
   1726 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1727 		if (curproc == uvm.pagedaemon_proc)
   1728 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1729 		else
   1730 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1731 	} else {
   1732 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1733 	}
   1734 	UVMHIST_LOG(pdhist,
   1735 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1736 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1737 
   1738 	/*
   1739 	 * now we start the I/O, and if async, return.
   1740 	 */
   1741 
   1742 	VOP_STRATEGY(swapdev_vp, bp);
   1743 	if (async)
   1744 		return 0;
   1745 
   1746 	/*
   1747 	 * must be sync i/o.   wait for it to finish
   1748 	 */
   1749 
   1750 	error = biowait(bp);
   1751 
   1752 	/*
   1753 	 * kill the pager mapping
   1754 	 */
   1755 
   1756 	uvm_pagermapout(kva, npages);
   1757 
   1758 	/*
   1759 	 * now dispose of the buf and we're done.
   1760 	 */
   1761 
   1762 	s = splbio();
   1763 	if (write)
   1764 		vwakeup(bp);
   1765 	pool_put(&bufpool, bp);
   1766 	splx(s);
   1767 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1768 	return (error);
   1769 }
   1770