Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.94
      1 /*	$NetBSD: uvm_swap.c,v 1.94 2005/06/27 02:29:32 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.94 2005/06/27 02:29:32 thorpej Exp $");
     36 
     37 #include "fs_nfs.h"
     38 #include "opt_uvmhist.h"
     39 #include "opt_compat_netbsd.h"
     40 #include "opt_ddb.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/buf.h>
     45 #include <sys/bufq.h>
     46 #include <sys/conf.h>
     47 #include <sys/proc.h>
     48 #include <sys/namei.h>
     49 #include <sys/disklabel.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/malloc.h>
     53 #include <sys/vnode.h>
     54 #include <sys/file.h>
     55 #include <sys/extent.h>
     56 #include <sys/blist.h>
     57 #include <sys/mount.h>
     58 #include <sys/pool.h>
     59 #include <sys/sa.h>
     60 #include <sys/syscallargs.h>
     61 #include <sys/swap.h>
     62 
     63 #include <uvm/uvm.h>
     64 
     65 #include <miscfs/specfs/specdev.h>
     66 
     67 /*
     68  * uvm_swap.c: manage configuration and i/o to swap space.
     69  */
     70 
     71 /*
     72  * swap space is managed in the following way:
     73  *
     74  * each swap partition or file is described by a "swapdev" structure.
     75  * each "swapdev" structure contains a "swapent" structure which contains
     76  * information that is passed up to the user (via system calls).
     77  *
     78  * each swap partition is assigned a "priority" (int) which controls
     79  * swap parition usage.
     80  *
     81  * the system maintains a global data structure describing all swap
     82  * partitions/files.   there is a sorted LIST of "swappri" structures
     83  * which describe "swapdev"'s at that priority.   this LIST is headed
     84  * by the "swap_priority" global var.    each "swappri" contains a
     85  * CIRCLEQ of "swapdev" structures at that priority.
     86  *
     87  * locking:
     88  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
     89  *    system call and prevents the swap priority list from changing
     90  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     91  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
     92  *    structures including the priority list, the swapdev structures,
     93  *    and the swapmap extent.
     94  *
     95  * each swap device has the following info:
     96  *  - swap device in use (could be disabled, preventing future use)
     97  *  - swap enabled (allows new allocations on swap)
     98  *  - map info in /dev/drum
     99  *  - vnode pointer
    100  * for swap files only:
    101  *  - block size
    102  *  - max byte count in buffer
    103  *  - buffer
    104  *
    105  * userland controls and configures swap with the swapctl(2) system call.
    106  * the sys_swapctl performs the following operations:
    107  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    108  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    109  *	(passed in via "arg") of a size passed in via "misc" ... we load
    110  *	the current swap config into the array. The actual work is done
    111  *	in the uvm_swap_stats(9) function.
    112  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    113  *	priority in "misc", start swapping on it.
    114  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    115  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    116  *	"misc")
    117  */
    118 
    119 /*
    120  * swapdev: describes a single swap partition/file
    121  *
    122  * note the following should be true:
    123  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    124  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    125  */
    126 struct swapdev {
    127 	struct oswapent swd_ose;
    128 #define	swd_dev		swd_ose.ose_dev		/* device id */
    129 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    130 #define	swd_priority	swd_ose.ose_priority	/* our priority */
    131 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    132 	char			*swd_path;	/* saved pathname of device */
    133 	int			swd_pathlen;	/* length of pathname */
    134 	int			swd_npages;	/* #pages we can use */
    135 	int			swd_npginuse;	/* #pages in use */
    136 	int			swd_npgbad;	/* #pages bad */
    137 	int			swd_drumoffset;	/* page0 offset in drum */
    138 	int			swd_drumsize;	/* #pages in drum */
    139 	blist_t			swd_blist;	/* blist for this swapdev */
    140 	struct vnode		*swd_vp;	/* backing vnode */
    141 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    142 
    143 	int			swd_bsize;	/* blocksize (bytes) */
    144 	int			swd_maxactive;	/* max active i/o reqs */
    145 	struct bufq_state	swd_tab;	/* buffer list */
    146 	int			swd_active;	/* number of active buffers */
    147 };
    148 
    149 /*
    150  * swap device priority entry; the list is kept sorted on `spi_priority'.
    151  */
    152 struct swappri {
    153 	int			spi_priority;     /* priority */
    154 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    155 	/* circleq of swapdevs at this priority */
    156 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    157 };
    158 
    159 /*
    160  * The following two structures are used to keep track of data transfers
    161  * on swap devices associated with regular files.
    162  * NOTE: this code is more or less a copy of vnd.c; we use the same
    163  * structure names here to ease porting..
    164  */
    165 struct vndxfer {
    166 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    167 	struct swapdev	*vx_sdp;
    168 	int		vx_error;
    169 	int		vx_pending;	/* # of pending aux buffers */
    170 	int		vx_flags;
    171 #define VX_BUSY		1
    172 #define VX_DEAD		2
    173 };
    174 
    175 struct vndbuf {
    176 	struct buf	vb_buf;
    177 	struct vndxfer	*vb_xfer;
    178 };
    179 
    180 
    181 /*
    182  * We keep a of pool vndbuf's and vndxfer structures.
    183  */
    184 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL);
    185 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL);
    186 
    187 #define	getvndxfer(vnx)	do {						\
    188 	int sp = splbio();						\
    189 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);			\
    190 	splx(sp);							\
    191 } while (/*CONSTCOND*/ 0)
    192 
    193 #define putvndxfer(vnx) {						\
    194 	pool_put(&vndxfer_pool, (void *)(vnx));				\
    195 }
    196 
    197 #define	getvndbuf(vbp)	do {						\
    198 	int sp = splbio();						\
    199 	vbp = pool_get(&vndbuf_pool, PR_WAITOK);			\
    200 	splx(sp);							\
    201 } while (/*CONSTCOND*/ 0)
    202 
    203 #define putvndbuf(vbp) {						\
    204 	pool_put(&vndbuf_pool, (void *)(vbp));				\
    205 }
    206 
    207 /*
    208  * local variables
    209  */
    210 static struct extent *swapmap;		/* controls the mapping of /dev/drum */
    211 
    212 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
    213 
    214 /* list of all active swap devices [by priority] */
    215 LIST_HEAD(swap_priority, swappri);
    216 static struct swap_priority swap_priority;
    217 
    218 /* locks */
    219 struct lock swap_syscall_lock;
    220 
    221 /*
    222  * prototypes
    223  */
    224 static struct swapdev	*swapdrum_getsdp(int);
    225 
    226 static struct swapdev	*swaplist_find(struct vnode *, int);
    227 static void		 swaplist_insert(struct swapdev *,
    228 					 struct swappri *, int);
    229 static void		 swaplist_trim(void);
    230 
    231 static int swap_on(struct proc *, struct swapdev *);
    232 static int swap_off(struct proc *, struct swapdev *);
    233 
    234 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    235 static void sw_reg_iodone(struct buf *);
    236 static void sw_reg_start(struct swapdev *);
    237 
    238 static int uvm_swap_io(struct vm_page **, int, int, int);
    239 
    240 /*
    241  * uvm_swap_init: init the swap system data structures and locks
    242  *
    243  * => called at boot time from init_main.c after the filesystems
    244  *	are brought up (which happens after uvm_init())
    245  */
    246 void
    247 uvm_swap_init(void)
    248 {
    249 	UVMHIST_FUNC("uvm_swap_init");
    250 
    251 	UVMHIST_CALLED(pdhist);
    252 	/*
    253 	 * first, init the swap list, its counter, and its lock.
    254 	 * then get a handle on the vnode for /dev/drum by using
    255 	 * the its dev_t number ("swapdev", from MD conf.c).
    256 	 */
    257 
    258 	LIST_INIT(&swap_priority);
    259 	uvmexp.nswapdev = 0;
    260 	lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
    261 	simple_lock_init(&uvm.swap_data_lock);
    262 
    263 	if (bdevvp(swapdev, &swapdev_vp))
    264 		panic("uvm_swap_init: can't get vnode for swap device");
    265 
    266 	/*
    267 	 * create swap block resource map to map /dev/drum.   the range
    268 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    269 	 * that block 0 is reserved (used to indicate an allocation
    270 	 * failure, or no allocation).
    271 	 */
    272 	swapmap = extent_create("swapmap", 1, INT_MAX,
    273 				M_VMSWAP, 0, 0, EX_NOWAIT);
    274 	if (swapmap == 0)
    275 		panic("uvm_swap_init: extent_create failed");
    276 
    277 	/*
    278 	 * done!
    279 	 */
    280 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    281 }
    282 
    283 /*
    284  * swaplist functions: functions that operate on the list of swap
    285  * devices on the system.
    286  */
    287 
    288 /*
    289  * swaplist_insert: insert swap device "sdp" into the global list
    290  *
    291  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    292  * => caller must provide a newly malloc'd swappri structure (we will
    293  *	FREE it if we don't need it... this it to prevent malloc blocking
    294  *	here while adding swap)
    295  */
    296 static void
    297 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    298 {
    299 	struct swappri *spp, *pspp;
    300 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    301 
    302 	/*
    303 	 * find entry at or after which to insert the new device.
    304 	 */
    305 	pspp = NULL;
    306 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    307 		if (priority <= spp->spi_priority)
    308 			break;
    309 		pspp = spp;
    310 	}
    311 
    312 	/*
    313 	 * new priority?
    314 	 */
    315 	if (spp == NULL || spp->spi_priority != priority) {
    316 		spp = newspp;  /* use newspp! */
    317 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    318 			    priority, 0, 0, 0);
    319 
    320 		spp->spi_priority = priority;
    321 		CIRCLEQ_INIT(&spp->spi_swapdev);
    322 
    323 		if (pspp)
    324 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    325 		else
    326 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    327 	} else {
    328 	  	/* we don't need a new priority structure, free it */
    329 		FREE(newspp, M_VMSWAP);
    330 	}
    331 
    332 	/*
    333 	 * priority found (or created).   now insert on the priority's
    334 	 * circleq list and bump the total number of swapdevs.
    335 	 */
    336 	sdp->swd_priority = priority;
    337 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    338 	uvmexp.nswapdev++;
    339 }
    340 
    341 /*
    342  * swaplist_find: find and optionally remove a swap device from the
    343  *	global list.
    344  *
    345  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    346  * => we return the swapdev we found (and removed)
    347  */
    348 static struct swapdev *
    349 swaplist_find(struct vnode *vp, boolean_t remove)
    350 {
    351 	struct swapdev *sdp;
    352 	struct swappri *spp;
    353 
    354 	/*
    355 	 * search the lists for the requested vp
    356 	 */
    357 
    358 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    359 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    360 			if (sdp->swd_vp == vp) {
    361 				if (remove) {
    362 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    363 					    sdp, swd_next);
    364 					uvmexp.nswapdev--;
    365 				}
    366 				return(sdp);
    367 			}
    368 		}
    369 	}
    370 	return (NULL);
    371 }
    372 
    373 
    374 /*
    375  * swaplist_trim: scan priority list for empty priority entries and kill
    376  *	them.
    377  *
    378  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    379  */
    380 static void
    381 swaplist_trim(void)
    382 {
    383 	struct swappri *spp, *nextspp;
    384 
    385 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    386 		nextspp = LIST_NEXT(spp, spi_swappri);
    387 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    388 		    (void *)&spp->spi_swapdev)
    389 			continue;
    390 		LIST_REMOVE(spp, spi_swappri);
    391 		free(spp, M_VMSWAP);
    392 	}
    393 }
    394 
    395 /*
    396  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    397  *	to the "swapdev" that maps that section of the drum.
    398  *
    399  * => each swapdev takes one big contig chunk of the drum
    400  * => caller must hold uvm.swap_data_lock
    401  */
    402 static struct swapdev *
    403 swapdrum_getsdp(int pgno)
    404 {
    405 	struct swapdev *sdp;
    406 	struct swappri *spp;
    407 
    408 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    409 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    410 			if (sdp->swd_flags & SWF_FAKE)
    411 				continue;
    412 			if (pgno >= sdp->swd_drumoffset &&
    413 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    414 				return sdp;
    415 			}
    416 		}
    417 	}
    418 	return NULL;
    419 }
    420 
    421 
    422 /*
    423  * sys_swapctl: main entry point for swapctl(2) system call
    424  * 	[with two helper functions: swap_on and swap_off]
    425  */
    426 int
    427 sys_swapctl(struct lwp *l, void *v, register_t *retval)
    428 {
    429 	struct sys_swapctl_args /* {
    430 		syscallarg(int) cmd;
    431 		syscallarg(void *) arg;
    432 		syscallarg(int) misc;
    433 	} */ *uap = (struct sys_swapctl_args *)v;
    434 	struct proc *p = l->l_proc;
    435 	struct vnode *vp;
    436 	struct nameidata nd;
    437 	struct swappri *spp;
    438 	struct swapdev *sdp;
    439 	struct swapent *sep;
    440 	char	userpath[PATH_MAX + 1];
    441 	size_t	len;
    442 	int	error, misc;
    443 	int	priority;
    444 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    445 
    446 	misc = SCARG(uap, misc);
    447 
    448 	/*
    449 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    450 	 */
    451 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
    452 
    453 	/*
    454 	 * we handle the non-priv NSWAP and STATS request first.
    455 	 *
    456 	 * SWAP_NSWAP: return number of config'd swap devices
    457 	 * [can also be obtained with uvmexp sysctl]
    458 	 */
    459 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    460 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    461 		    0, 0, 0);
    462 		*retval = uvmexp.nswapdev;
    463 		error = 0;
    464 		goto out;
    465 	}
    466 
    467 	/*
    468 	 * SWAP_STATS: get stats on current # of configured swap devs
    469 	 *
    470 	 * note that the swap_priority list can't change as long
    471 	 * as we are holding the swap_syscall_lock.  we don't want
    472 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
    473 	 * copyout() and we don't want to be holding that lock then!
    474 	 */
    475 	if (SCARG(uap, cmd) == SWAP_STATS
    476 #if defined(COMPAT_13)
    477 	    || SCARG(uap, cmd) == SWAP_OSTATS
    478 #endif
    479 	    ) {
    480 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    481 			misc = uvmexp.nswapdev;
    482 #if defined(COMPAT_13)
    483 		if (SCARG(uap, cmd) == SWAP_OSTATS)
    484 			len = sizeof(struct oswapent) * misc;
    485 		else
    486 #endif
    487 			len = sizeof(struct swapent) * misc;
    488 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
    489 
    490 		uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
    491 		error = copyout(sep, SCARG(uap, arg), len);
    492 
    493 		free(sep, M_TEMP);
    494 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    495 		goto out;
    496 	}
    497 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    498 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    499 
    500 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    501 		goto out;
    502 	}
    503 
    504 	/*
    505 	 * all other requests require superuser privs.   verify.
    506 	 */
    507 	if ((error = suser(p->p_ucred, &p->p_acflag)))
    508 		goto out;
    509 
    510 	/*
    511 	 * at this point we expect a path name in arg.   we will
    512 	 * use namei() to gain a vnode reference (vref), and lock
    513 	 * the vnode (VOP_LOCK).
    514 	 *
    515 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    516 	 * miniroot)
    517 	 */
    518 	if (SCARG(uap, arg) == NULL) {
    519 		vp = rootvp;		/* miniroot */
    520 		if (vget(vp, LK_EXCLUSIVE)) {
    521 			error = EBUSY;
    522 			goto out;
    523 		}
    524 		if (SCARG(uap, cmd) == SWAP_ON &&
    525 		    copystr("miniroot", userpath, sizeof userpath, &len))
    526 			panic("swapctl: miniroot copy failed");
    527 	} else {
    528 		int	space;
    529 		char	*where;
    530 
    531 		if (SCARG(uap, cmd) == SWAP_ON) {
    532 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    533 			    sizeof userpath, &len)))
    534 				goto out;
    535 			space = UIO_SYSSPACE;
    536 			where = userpath;
    537 		} else {
    538 			space = UIO_USERSPACE;
    539 			where = (char *)SCARG(uap, arg);
    540 		}
    541 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
    542 		if ((error = namei(&nd)))
    543 			goto out;
    544 		vp = nd.ni_vp;
    545 	}
    546 	/* note: "vp" is referenced and locked */
    547 
    548 	error = 0;		/* assume no error */
    549 	switch(SCARG(uap, cmd)) {
    550 
    551 	case SWAP_DUMPDEV:
    552 		if (vp->v_type != VBLK) {
    553 			error = ENOTBLK;
    554 			break;
    555 		}
    556 		dumpdev = vp->v_rdev;
    557 		cpu_dumpconf();
    558 		break;
    559 
    560 	case SWAP_CTL:
    561 		/*
    562 		 * get new priority, remove old entry (if any) and then
    563 		 * reinsert it in the correct place.  finally, prune out
    564 		 * any empty priority structures.
    565 		 */
    566 		priority = SCARG(uap, misc);
    567 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    568 		simple_lock(&uvm.swap_data_lock);
    569 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
    570 			error = ENOENT;
    571 		} else {
    572 			swaplist_insert(sdp, spp, priority);
    573 			swaplist_trim();
    574 		}
    575 		simple_unlock(&uvm.swap_data_lock);
    576 		if (error)
    577 			free(spp, M_VMSWAP);
    578 		break;
    579 
    580 	case SWAP_ON:
    581 
    582 		/*
    583 		 * check for duplicates.   if none found, then insert a
    584 		 * dummy entry on the list to prevent someone else from
    585 		 * trying to enable this device while we are working on
    586 		 * it.
    587 		 */
    588 
    589 		priority = SCARG(uap, misc);
    590 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    591 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    592 		memset(sdp, 0, sizeof(*sdp));
    593 		sdp->swd_flags = SWF_FAKE;
    594 		sdp->swd_vp = vp;
    595 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    596 		bufq_alloc(&sdp->swd_tab, BUFQ_DISKSORT|BUFQ_SORT_RAWBLOCK);
    597 		simple_lock(&uvm.swap_data_lock);
    598 		if (swaplist_find(vp, 0) != NULL) {
    599 			error = EBUSY;
    600 			simple_unlock(&uvm.swap_data_lock);
    601 			bufq_free(&sdp->swd_tab);
    602 			free(sdp, M_VMSWAP);
    603 			free(spp, M_VMSWAP);
    604 			break;
    605 		}
    606 		swaplist_insert(sdp, spp, priority);
    607 		simple_unlock(&uvm.swap_data_lock);
    608 
    609 		sdp->swd_pathlen = len;
    610 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    611 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    612 			panic("swapctl: copystr");
    613 
    614 		/*
    615 		 * we've now got a FAKE placeholder in the swap list.
    616 		 * now attempt to enable swap on it.  if we fail, undo
    617 		 * what we've done and kill the fake entry we just inserted.
    618 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    619 		 */
    620 
    621 		if ((error = swap_on(p, sdp)) != 0) {
    622 			simple_lock(&uvm.swap_data_lock);
    623 			(void) swaplist_find(vp, 1);  /* kill fake entry */
    624 			swaplist_trim();
    625 			simple_unlock(&uvm.swap_data_lock);
    626 			bufq_free(&sdp->swd_tab);
    627 			free(sdp->swd_path, M_VMSWAP);
    628 			free(sdp, M_VMSWAP);
    629 			break;
    630 		}
    631 		break;
    632 
    633 	case SWAP_OFF:
    634 		simple_lock(&uvm.swap_data_lock);
    635 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
    636 			simple_unlock(&uvm.swap_data_lock);
    637 			error = ENXIO;
    638 			break;
    639 		}
    640 
    641 		/*
    642 		 * If a device isn't in use or enabled, we
    643 		 * can't stop swapping from it (again).
    644 		 */
    645 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    646 			simple_unlock(&uvm.swap_data_lock);
    647 			error = EBUSY;
    648 			break;
    649 		}
    650 
    651 		/*
    652 		 * do the real work.
    653 		 */
    654 		error = swap_off(p, sdp);
    655 		break;
    656 
    657 	default:
    658 		error = EINVAL;
    659 	}
    660 
    661 	/*
    662 	 * done!  release the ref gained by namei() and unlock.
    663 	 */
    664 	vput(vp);
    665 
    666 out:
    667 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
    668 
    669 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    670 	return (error);
    671 }
    672 
    673 /*
    674  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
    675  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    676  * emulation to use it directly without going through sys_swapctl().
    677  * The problem with using sys_swapctl() there is that it involves
    678  * copying the swapent array to the stackgap, and this array's size
    679  * is not known at build time. Hence it would not be possible to
    680  * ensure it would fit in the stackgap in any case.
    681  */
    682 void
    683 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    684 {
    685 	struct swappri *spp;
    686 	struct swapdev *sdp;
    687 	int count = 0;
    688 
    689 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    690 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    691 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
    692 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    693 		  	/*
    694 			 * backwards compatibility for system call.
    695 			 * note that we use 'struct oswapent' as an
    696 			 * overlay into both 'struct swapdev' and
    697 			 * the userland 'struct swapent', as we
    698 			 * want to retain backwards compatibility
    699 			 * with NetBSD 1.3.
    700 			 */
    701 			sdp->swd_ose.ose_inuse =
    702 			    btodb((u_int64_t)sdp->swd_npginuse <<
    703 			    PAGE_SHIFT);
    704 			(void)memcpy(sep, &sdp->swd_ose,
    705 			    sizeof(struct oswapent));
    706 
    707 			/* now copy out the path if necessary */
    708 #if defined(COMPAT_13)
    709 			if (cmd == SWAP_STATS)
    710 #endif
    711 				(void)memcpy(&sep->se_path, sdp->swd_path,
    712 				    sdp->swd_pathlen);
    713 
    714 			count++;
    715 #if defined(COMPAT_13)
    716 			if (cmd == SWAP_OSTATS)
    717 				sep = (struct swapent *)
    718 				    ((struct oswapent *)sep + 1);
    719 			else
    720 #endif
    721 				sep++;
    722 		}
    723 	}
    724 
    725 	*retval = count;
    726 	return;
    727 }
    728 
    729 /*
    730  * swap_on: attempt to enable a swapdev for swapping.   note that the
    731  *	swapdev is already on the global list, but disabled (marked
    732  *	SWF_FAKE).
    733  *
    734  * => we avoid the start of the disk (to protect disk labels)
    735  * => we also avoid the miniroot, if we are swapping to root.
    736  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
    737  *	if needed.
    738  */
    739 static int
    740 swap_on(struct proc *p, struct swapdev *sdp)
    741 {
    742 	struct vnode *vp;
    743 	int error, npages, nblocks, size;
    744 	long addr;
    745 	u_long result;
    746 	struct vattr va;
    747 #ifdef NFS
    748 	extern int (**nfsv2_vnodeop_p)(void *);
    749 #endif /* NFS */
    750 	const struct bdevsw *bdev;
    751 	dev_t dev;
    752 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    753 
    754 	/*
    755 	 * we want to enable swapping on sdp.   the swd_vp contains
    756 	 * the vnode we want (locked and ref'd), and the swd_dev
    757 	 * contains the dev_t of the file, if it a block device.
    758 	 */
    759 
    760 	vp = sdp->swd_vp;
    761 	dev = sdp->swd_dev;
    762 
    763 	/*
    764 	 * open the swap file (mostly useful for block device files to
    765 	 * let device driver know what is up).
    766 	 *
    767 	 * we skip the open/close for root on swap because the root
    768 	 * has already been opened when root was mounted (mountroot).
    769 	 */
    770 	if (vp != rootvp) {
    771 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
    772 			return (error);
    773 	}
    774 
    775 	/* XXX this only works for block devices */
    776 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    777 
    778 	/*
    779 	 * we now need to determine the size of the swap area.   for
    780 	 * block specials we can call the d_psize function.
    781 	 * for normal files, we must stat [get attrs].
    782 	 *
    783 	 * we put the result in nblks.
    784 	 * for normal files, we also want the filesystem block size
    785 	 * (which we get with statfs).
    786 	 */
    787 	switch (vp->v_type) {
    788 	case VBLK:
    789 		bdev = bdevsw_lookup(dev);
    790 		if (bdev == NULL || bdev->d_psize == NULL ||
    791 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
    792 			error = ENXIO;
    793 			goto bad;
    794 		}
    795 		break;
    796 
    797 	case VREG:
    798 		if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
    799 			goto bad;
    800 		nblocks = (int)btodb(va.va_size);
    801 		if ((error =
    802 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
    803 			goto bad;
    804 
    805 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    806 		/*
    807 		 * limit the max # of outstanding I/O requests we issue
    808 		 * at any one time.   take it easy on NFS servers.
    809 		 */
    810 #ifdef NFS
    811 		if (vp->v_op == nfsv2_vnodeop_p)
    812 			sdp->swd_maxactive = 2; /* XXX */
    813 		else
    814 #endif /* NFS */
    815 			sdp->swd_maxactive = 8; /* XXX */
    816 		break;
    817 
    818 	default:
    819 		error = ENXIO;
    820 		goto bad;
    821 	}
    822 
    823 	/*
    824 	 * save nblocks in a safe place and convert to pages.
    825 	 */
    826 
    827 	sdp->swd_ose.ose_nblks = nblocks;
    828 	npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
    829 
    830 	/*
    831 	 * for block special files, we want to make sure that leave
    832 	 * the disklabel and bootblocks alone, so we arrange to skip
    833 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    834 	 * note that because of this the "size" can be less than the
    835 	 * actual number of blocks on the device.
    836 	 */
    837 	if (vp->v_type == VBLK) {
    838 		/* we use pages 1 to (size - 1) [inclusive] */
    839 		size = npages - 1;
    840 		addr = 1;
    841 	} else {
    842 		/* we use pages 0 to (size - 1) [inclusive] */
    843 		size = npages;
    844 		addr = 0;
    845 	}
    846 
    847 	/*
    848 	 * make sure we have enough blocks for a reasonable sized swap
    849 	 * area.   we want at least one page.
    850 	 */
    851 
    852 	if (size < 1) {
    853 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    854 		error = EINVAL;
    855 		goto bad;
    856 	}
    857 
    858 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    859 
    860 	/*
    861 	 * now we need to allocate an extent to manage this swap device
    862 	 */
    863 
    864 	sdp->swd_blist = blist_create(npages);
    865 	/* mark all expect the `saved' region free. */
    866 	blist_free(sdp->swd_blist, addr, size);
    867 
    868 	/*
    869 	 * if the vnode we are swapping to is the root vnode
    870 	 * (i.e. we are swapping to the miniroot) then we want
    871 	 * to make sure we don't overwrite it.   do a statfs to
    872 	 * find its size and skip over it.
    873 	 */
    874 	if (vp == rootvp) {
    875 		struct mount *mp;
    876 		struct statvfs *sp;
    877 		int rootblocks, rootpages;
    878 
    879 		mp = rootvnode->v_mount;
    880 		sp = &mp->mnt_stat;
    881 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    882 		/*
    883 		 * XXX: sp->f_blocks isn't the total number of
    884 		 * blocks in the filesystem, it's the number of
    885 		 * data blocks.  so, our rootblocks almost
    886 		 * definitely underestimates the total size
    887 		 * of the filesystem - how badly depends on the
    888 		 * details of the filesystem type.  there isn't
    889 		 * an obvious way to deal with this cleanly
    890 		 * and perfectly, so for now we just pad our
    891 		 * rootblocks estimate with an extra 5 percent.
    892 		 */
    893 		rootblocks += (rootblocks >> 5) +
    894 			(rootblocks >> 6) +
    895 			(rootblocks >> 7);
    896 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    897 		if (rootpages > size)
    898 			panic("swap_on: miniroot larger than swap?");
    899 
    900 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    901 			panic("swap_on: unable to preserve miniroot");
    902 		}
    903 
    904 		size -= rootpages;
    905 		printf("Preserved %d pages of miniroot ", rootpages);
    906 		printf("leaving %d pages of swap\n", size);
    907 	}
    908 
    909 	/*
    910 	 * add a ref to vp to reflect usage as a swap device.
    911 	 */
    912 	vref(vp);
    913 
    914 	/*
    915 	 * now add the new swapdev to the drum and enable.
    916 	 */
    917 	if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
    918 	    EX_WAITOK, &result))
    919 		panic("swapdrum_add");
    920 
    921 	sdp->swd_drumoffset = (int)result;
    922 	sdp->swd_drumsize = npages;
    923 	sdp->swd_npages = size;
    924 	simple_lock(&uvm.swap_data_lock);
    925 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    926 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    927 	uvmexp.swpages += size;
    928 	uvmexp.swpgavail += size;
    929 	simple_unlock(&uvm.swap_data_lock);
    930 	return (0);
    931 
    932 	/*
    933 	 * failure: clean up and return error.
    934 	 */
    935 
    936 bad:
    937 	if (sdp->swd_blist) {
    938 		blist_destroy(sdp->swd_blist);
    939 	}
    940 	if (vp != rootvp) {
    941 		(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
    942 	}
    943 	return (error);
    944 }
    945 
    946 /*
    947  * swap_off: stop swapping on swapdev
    948  *
    949  * => swap data should be locked, we will unlock.
    950  */
    951 static int
    952 swap_off(struct proc *p, struct swapdev *sdp)
    953 {
    954 	int npages = sdp->swd_npages;
    955 	int error = 0;
    956 
    957 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
    958 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
    959 
    960 	/* disable the swap area being removed */
    961 	sdp->swd_flags &= ~SWF_ENABLE;
    962 	uvmexp.swpgavail -= npages;
    963 	simple_unlock(&uvm.swap_data_lock);
    964 
    965 	/*
    966 	 * the idea is to find all the pages that are paged out to this
    967 	 * device, and page them all in.  in uvm, swap-backed pageable
    968 	 * memory can take two forms: aobjs and anons.  call the
    969 	 * swapoff hook for each subsystem to bring in pages.
    970 	 */
    971 
    972 	if (uao_swap_off(sdp->swd_drumoffset,
    973 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
    974 	    amap_swap_off(sdp->swd_drumoffset,
    975 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
    976 		error = ENOMEM;
    977 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
    978 		error = EBUSY;
    979 	}
    980 
    981 	if (error) {
    982 		simple_lock(&uvm.swap_data_lock);
    983 		sdp->swd_flags |= SWF_ENABLE;
    984 		uvmexp.swpgavail += npages;
    985 		simple_unlock(&uvm.swap_data_lock);
    986 
    987 		return error;
    988 	}
    989 
    990 	/*
    991 	 * done with the vnode.
    992 	 * drop our ref on the vnode before calling VOP_CLOSE()
    993 	 * so that spec_close() can tell if this is the last close.
    994 	 */
    995 	vrele(sdp->swd_vp);
    996 	if (sdp->swd_vp != rootvp) {
    997 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
    998 	}
    999 
   1000 	simple_lock(&uvm.swap_data_lock);
   1001 	uvmexp.swpages -= npages;
   1002 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1003 
   1004 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
   1005 		panic("swap_off: swapdev not in list");
   1006 	swaplist_trim();
   1007 	simple_unlock(&uvm.swap_data_lock);
   1008 
   1009 	/*
   1010 	 * free all resources!
   1011 	 */
   1012 	extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
   1013 		    EX_WAITOK);
   1014 	blist_destroy(sdp->swd_blist);
   1015 	bufq_free(&sdp->swd_tab);
   1016 	free(sdp, M_VMSWAP);
   1017 	return (0);
   1018 }
   1019 
   1020 /*
   1021  * /dev/drum interface and i/o functions
   1022  */
   1023 
   1024 /*
   1025  * swstrategy: perform I/O on the drum
   1026  *
   1027  * => we must map the i/o request from the drum to the correct swapdev.
   1028  */
   1029 static void
   1030 swstrategy(struct buf *bp)
   1031 {
   1032 	struct swapdev *sdp;
   1033 	struct vnode *vp;
   1034 	int s, pageno, bn;
   1035 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1036 
   1037 	/*
   1038 	 * convert block number to swapdev.   note that swapdev can't
   1039 	 * be yanked out from under us because we are holding resources
   1040 	 * in it (i.e. the blocks we are doing I/O on).
   1041 	 */
   1042 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1043 	simple_lock(&uvm.swap_data_lock);
   1044 	sdp = swapdrum_getsdp(pageno);
   1045 	simple_unlock(&uvm.swap_data_lock);
   1046 	if (sdp == NULL) {
   1047 		bp->b_error = EINVAL;
   1048 		bp->b_flags |= B_ERROR;
   1049 		biodone(bp);
   1050 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1051 		return;
   1052 	}
   1053 
   1054 	/*
   1055 	 * convert drum page number to block number on this swapdev.
   1056 	 */
   1057 
   1058 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1059 	bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1060 
   1061 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1062 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1063 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1064 
   1065 	/*
   1066 	 * for block devices we finish up here.
   1067 	 * for regular files we have to do more work which we delegate
   1068 	 * to sw_reg_strategy().
   1069 	 */
   1070 
   1071 	switch (sdp->swd_vp->v_type) {
   1072 	default:
   1073 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
   1074 
   1075 	case VBLK:
   1076 
   1077 		/*
   1078 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1079 		 * on the swapdev (sdp).
   1080 		 */
   1081 		s = splbio();
   1082 		bp->b_blkno = bn;		/* swapdev block number */
   1083 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1084 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1085 
   1086 		/*
   1087 		 * if we are doing a write, we have to redirect the i/o on
   1088 		 * drum's v_numoutput counter to the swapdevs.
   1089 		 */
   1090 		if ((bp->b_flags & B_READ) == 0) {
   1091 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1092 			V_INCR_NUMOUTPUT(vp);	/* put it on swapdev */
   1093 		}
   1094 
   1095 		/*
   1096 		 * finally plug in swapdev vnode and start I/O
   1097 		 */
   1098 		bp->b_vp = vp;
   1099 		splx(s);
   1100 		VOP_STRATEGY(vp, bp);
   1101 		return;
   1102 
   1103 	case VREG:
   1104 		/*
   1105 		 * delegate to sw_reg_strategy function.
   1106 		 */
   1107 		sw_reg_strategy(sdp, bp, bn);
   1108 		return;
   1109 	}
   1110 	/* NOTREACHED */
   1111 }
   1112 
   1113 /*
   1114  * swread: the read function for the drum (just a call to physio)
   1115  */
   1116 /*ARGSUSED*/
   1117 static int
   1118 swread(dev_t dev, struct uio *uio, int ioflag)
   1119 {
   1120 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1121 
   1122 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1123 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1124 }
   1125 
   1126 /*
   1127  * swwrite: the write function for the drum (just a call to physio)
   1128  */
   1129 /*ARGSUSED*/
   1130 static int
   1131 swwrite(dev_t dev, struct uio *uio, int ioflag)
   1132 {
   1133 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1134 
   1135 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1136 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1137 }
   1138 
   1139 const struct bdevsw swap_bdevsw = {
   1140 	noopen, noclose, swstrategy, noioctl, nodump, nosize,
   1141 };
   1142 
   1143 const struct cdevsw swap_cdevsw = {
   1144 	nullopen, nullclose, swread, swwrite, noioctl,
   1145 	    nostop, notty, nopoll, nommap, nokqfilter
   1146 };
   1147 
   1148 /*
   1149  * sw_reg_strategy: handle swap i/o to regular files
   1150  */
   1151 static void
   1152 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1153 {
   1154 	struct vnode	*vp;
   1155 	struct vndxfer	*vnx;
   1156 	daddr_t		nbn;
   1157 	caddr_t		addr;
   1158 	off_t		byteoff;
   1159 	int		s, off, nra, error, sz, resid;
   1160 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1161 
   1162 	/*
   1163 	 * allocate a vndxfer head for this transfer and point it to
   1164 	 * our buffer.
   1165 	 */
   1166 	getvndxfer(vnx);
   1167 	vnx->vx_flags = VX_BUSY;
   1168 	vnx->vx_error = 0;
   1169 	vnx->vx_pending = 0;
   1170 	vnx->vx_bp = bp;
   1171 	vnx->vx_sdp = sdp;
   1172 
   1173 	/*
   1174 	 * setup for main loop where we read filesystem blocks into
   1175 	 * our buffer.
   1176 	 */
   1177 	error = 0;
   1178 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1179 	addr = bp->b_data;		/* current position in buffer */
   1180 	byteoff = dbtob((u_int64_t)bn);
   1181 
   1182 	for (resid = bp->b_resid; resid; resid -= sz) {
   1183 		struct vndbuf	*nbp;
   1184 
   1185 		/*
   1186 		 * translate byteoffset into block number.  return values:
   1187 		 *   vp = vnode of underlying device
   1188 		 *  nbn = new block number (on underlying vnode dev)
   1189 		 *  nra = num blocks we can read-ahead (excludes requested
   1190 		 *	block)
   1191 		 */
   1192 		nra = 0;
   1193 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1194 				 	&vp, &nbn, &nra);
   1195 
   1196 		if (error == 0 && nbn == (daddr_t)-1) {
   1197 			/*
   1198 			 * this used to just set error, but that doesn't
   1199 			 * do the right thing.  Instead, it causes random
   1200 			 * memory errors.  The panic() should remain until
   1201 			 * this condition doesn't destabilize the system.
   1202 			 */
   1203 #if 1
   1204 			panic("sw_reg_strategy: swap to sparse file");
   1205 #else
   1206 			error = EIO;	/* failure */
   1207 #endif
   1208 		}
   1209 
   1210 		/*
   1211 		 * punt if there was an error or a hole in the file.
   1212 		 * we must wait for any i/o ops we have already started
   1213 		 * to finish before returning.
   1214 		 *
   1215 		 * XXX we could deal with holes here but it would be
   1216 		 * a hassle (in the write case).
   1217 		 */
   1218 		if (error) {
   1219 			s = splbio();
   1220 			vnx->vx_error = error;	/* pass error up */
   1221 			goto out;
   1222 		}
   1223 
   1224 		/*
   1225 		 * compute the size ("sz") of this transfer (in bytes).
   1226 		 */
   1227 		off = byteoff % sdp->swd_bsize;
   1228 		sz = (1 + nra) * sdp->swd_bsize - off;
   1229 		if (sz > resid)
   1230 			sz = resid;
   1231 
   1232 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1233 			    "vp %p/%p offset 0x%x/0x%x",
   1234 			    sdp->swd_vp, vp, byteoff, nbn);
   1235 
   1236 		/*
   1237 		 * now get a buf structure.   note that the vb_buf is
   1238 		 * at the front of the nbp structure so that you can
   1239 		 * cast pointers between the two structure easily.
   1240 		 */
   1241 		getvndbuf(nbp);
   1242 		BUF_INIT(&nbp->vb_buf);
   1243 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
   1244 		nbp->vb_buf.b_bcount   = sz;
   1245 		nbp->vb_buf.b_bufsize  = sz;
   1246 		nbp->vb_buf.b_error    = 0;
   1247 		nbp->vb_buf.b_data     = addr;
   1248 		nbp->vb_buf.b_lblkno   = 0;
   1249 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1250 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1251 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
   1252 		nbp->vb_buf.b_vp       = vp;
   1253 		if (vp->v_type == VBLK) {
   1254 			nbp->vb_buf.b_dev = vp->v_rdev;
   1255 		}
   1256 
   1257 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1258 
   1259 		/*
   1260 		 * Just sort by block number
   1261 		 */
   1262 		s = splbio();
   1263 		if (vnx->vx_error != 0) {
   1264 			putvndbuf(nbp);
   1265 			goto out;
   1266 		}
   1267 		vnx->vx_pending++;
   1268 
   1269 		/* sort it in and start I/O if we are not over our limit */
   1270 		BUFQ_PUT(&sdp->swd_tab, &nbp->vb_buf);
   1271 		sw_reg_start(sdp);
   1272 		splx(s);
   1273 
   1274 		/*
   1275 		 * advance to the next I/O
   1276 		 */
   1277 		byteoff += sz;
   1278 		addr += sz;
   1279 	}
   1280 
   1281 	s = splbio();
   1282 
   1283 out: /* Arrive here at splbio */
   1284 	vnx->vx_flags &= ~VX_BUSY;
   1285 	if (vnx->vx_pending == 0) {
   1286 		if (vnx->vx_error != 0) {
   1287 			bp->b_error = vnx->vx_error;
   1288 			bp->b_flags |= B_ERROR;
   1289 		}
   1290 		putvndxfer(vnx);
   1291 		biodone(bp);
   1292 	}
   1293 	splx(s);
   1294 }
   1295 
   1296 /*
   1297  * sw_reg_start: start an I/O request on the requested swapdev
   1298  *
   1299  * => reqs are sorted by b_rawblkno (above)
   1300  */
   1301 static void
   1302 sw_reg_start(struct swapdev *sdp)
   1303 {
   1304 	struct buf	*bp;
   1305 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1306 
   1307 	/* recursion control */
   1308 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1309 		return;
   1310 
   1311 	sdp->swd_flags |= SWF_BUSY;
   1312 
   1313 	while (sdp->swd_active < sdp->swd_maxactive) {
   1314 		bp = BUFQ_GET(&sdp->swd_tab);
   1315 		if (bp == NULL)
   1316 			break;
   1317 		sdp->swd_active++;
   1318 
   1319 		UVMHIST_LOG(pdhist,
   1320 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1321 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1322 		if ((bp->b_flags & B_READ) == 0)
   1323 			V_INCR_NUMOUTPUT(bp->b_vp);
   1324 
   1325 		VOP_STRATEGY(bp->b_vp, bp);
   1326 	}
   1327 	sdp->swd_flags &= ~SWF_BUSY;
   1328 }
   1329 
   1330 /*
   1331  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1332  *
   1333  * => note that we can recover the vndbuf struct by casting the buf ptr
   1334  */
   1335 static void
   1336 sw_reg_iodone(struct buf *bp)
   1337 {
   1338 	struct vndbuf *vbp = (struct vndbuf *) bp;
   1339 	struct vndxfer *vnx = vbp->vb_xfer;
   1340 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1341 	struct swapdev	*sdp = vnx->vx_sdp;
   1342 	int s, resid, error;
   1343 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1344 
   1345 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1346 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1347 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1348 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1349 
   1350 	/*
   1351 	 * protect vbp at splbio and update.
   1352 	 */
   1353 
   1354 	s = splbio();
   1355 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1356 	pbp->b_resid -= resid;
   1357 	vnx->vx_pending--;
   1358 
   1359 	if (vbp->vb_buf.b_flags & B_ERROR) {
   1360 		/* pass error upward */
   1361 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1362 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1363 		vnx->vx_error = error;
   1364 	}
   1365 
   1366 	/*
   1367 	 * kill vbp structure
   1368 	 */
   1369 	putvndbuf(vbp);
   1370 
   1371 	/*
   1372 	 * wrap up this transaction if it has run to completion or, in
   1373 	 * case of an error, when all auxiliary buffers have returned.
   1374 	 */
   1375 	if (vnx->vx_error != 0) {
   1376 		/* pass error upward */
   1377 		pbp->b_flags |= B_ERROR;
   1378 		pbp->b_error = vnx->vx_error;
   1379 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1380 			putvndxfer(vnx);
   1381 			biodone(pbp);
   1382 		}
   1383 	} else if (pbp->b_resid == 0) {
   1384 		KASSERT(vnx->vx_pending == 0);
   1385 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1386 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1387 			    pbp, vnx->vx_error, 0, 0);
   1388 			putvndxfer(vnx);
   1389 			biodone(pbp);
   1390 		}
   1391 	}
   1392 
   1393 	/*
   1394 	 * done!   start next swapdev I/O if one is pending
   1395 	 */
   1396 	sdp->swd_active--;
   1397 	sw_reg_start(sdp);
   1398 	splx(s);
   1399 }
   1400 
   1401 
   1402 /*
   1403  * uvm_swap_alloc: allocate space on swap
   1404  *
   1405  * => allocation is done "round robin" down the priority list, as we
   1406  *	allocate in a priority we "rotate" the circle queue.
   1407  * => space can be freed with uvm_swap_free
   1408  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1409  * => we lock uvm.swap_data_lock
   1410  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1411  */
   1412 int
   1413 uvm_swap_alloc(int *nslots /* IN/OUT */, boolean_t lessok)
   1414 {
   1415 	struct swapdev *sdp;
   1416 	struct swappri *spp;
   1417 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1418 
   1419 	/*
   1420 	 * no swap devices configured yet?   definite failure.
   1421 	 */
   1422 	if (uvmexp.nswapdev < 1)
   1423 		return 0;
   1424 
   1425 	/*
   1426 	 * lock data lock, convert slots into blocks, and enter loop
   1427 	 */
   1428 	simple_lock(&uvm.swap_data_lock);
   1429 
   1430 ReTry:	/* XXXMRG */
   1431 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1432 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1433 			uint64_t result;
   1434 
   1435 			/* if it's not enabled, then we can't swap from it */
   1436 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1437 				continue;
   1438 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1439 				continue;
   1440 			result = blist_alloc(sdp->swd_blist, *nslots);
   1441 			if (result == BLIST_NONE) {
   1442 				continue;
   1443 			}
   1444 			KASSERT(result < sdp->swd_drumsize);
   1445 
   1446 			/*
   1447 			 * successful allocation!  now rotate the circleq.
   1448 			 */
   1449 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1450 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1451 			sdp->swd_npginuse += *nslots;
   1452 			uvmexp.swpginuse += *nslots;
   1453 			simple_unlock(&uvm.swap_data_lock);
   1454 			/* done!  return drum slot number */
   1455 			UVMHIST_LOG(pdhist,
   1456 			    "success!  returning %d slots starting at %d",
   1457 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1458 			return (result + sdp->swd_drumoffset);
   1459 		}
   1460 	}
   1461 
   1462 	/* XXXMRG: BEGIN HACK */
   1463 	if (*nslots > 1 && lessok) {
   1464 		*nslots = 1;
   1465 		/* XXXMRG: ugh!  blist should support this for us */
   1466 		goto ReTry;
   1467 	}
   1468 	/* XXXMRG: END HACK */
   1469 
   1470 	simple_unlock(&uvm.swap_data_lock);
   1471 	return 0;
   1472 }
   1473 
   1474 boolean_t
   1475 uvm_swapisfull(void)
   1476 {
   1477 	boolean_t rv;
   1478 
   1479 	simple_lock(&uvm.swap_data_lock);
   1480 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1481 	rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
   1482 	simple_unlock(&uvm.swap_data_lock);
   1483 
   1484 	return (rv);
   1485 }
   1486 
   1487 /*
   1488  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1489  *
   1490  * => we lock uvm.swap_data_lock
   1491  */
   1492 void
   1493 uvm_swap_markbad(int startslot, int nslots)
   1494 {
   1495 	struct swapdev *sdp;
   1496 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1497 
   1498 	simple_lock(&uvm.swap_data_lock);
   1499 	sdp = swapdrum_getsdp(startslot);
   1500 	KASSERT(sdp != NULL);
   1501 
   1502 	/*
   1503 	 * we just keep track of how many pages have been marked bad
   1504 	 * in this device, to make everything add up in swap_off().
   1505 	 * we assume here that the range of slots will all be within
   1506 	 * one swap device.
   1507 	 */
   1508 
   1509 	KASSERT(uvmexp.swpgonly >= nslots);
   1510 	uvmexp.swpgonly -= nslots;
   1511 	sdp->swd_npgbad += nslots;
   1512 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1513 	simple_unlock(&uvm.swap_data_lock);
   1514 }
   1515 
   1516 /*
   1517  * uvm_swap_free: free swap slots
   1518  *
   1519  * => this can be all or part of an allocation made by uvm_swap_alloc
   1520  * => we lock uvm.swap_data_lock
   1521  */
   1522 void
   1523 uvm_swap_free(int startslot, int nslots)
   1524 {
   1525 	struct swapdev *sdp;
   1526 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1527 
   1528 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1529 	    startslot, 0, 0);
   1530 
   1531 	/*
   1532 	 * ignore attempts to free the "bad" slot.
   1533 	 */
   1534 
   1535 	if (startslot == SWSLOT_BAD) {
   1536 		return;
   1537 	}
   1538 
   1539 	/*
   1540 	 * convert drum slot offset back to sdp, free the blocks
   1541 	 * in the extent, and return.   must hold pri lock to do
   1542 	 * lookup and access the extent.
   1543 	 */
   1544 
   1545 	simple_lock(&uvm.swap_data_lock);
   1546 	sdp = swapdrum_getsdp(startslot);
   1547 	KASSERT(uvmexp.nswapdev >= 1);
   1548 	KASSERT(sdp != NULL);
   1549 	KASSERT(sdp->swd_npginuse >= nslots);
   1550 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1551 	sdp->swd_npginuse -= nslots;
   1552 	uvmexp.swpginuse -= nslots;
   1553 	simple_unlock(&uvm.swap_data_lock);
   1554 }
   1555 
   1556 /*
   1557  * uvm_swap_put: put any number of pages into a contig place on swap
   1558  *
   1559  * => can be sync or async
   1560  */
   1561 
   1562 int
   1563 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1564 {
   1565 	int error;
   1566 
   1567 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1568 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1569 	return error;
   1570 }
   1571 
   1572 /*
   1573  * uvm_swap_get: get a single page from swap
   1574  *
   1575  * => usually a sync op (from fault)
   1576  */
   1577 
   1578 int
   1579 uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1580 {
   1581 	int error;
   1582 
   1583 	uvmexp.nswget++;
   1584 	KASSERT(flags & PGO_SYNCIO);
   1585 	if (swslot == SWSLOT_BAD) {
   1586 		return EIO;
   1587 	}
   1588 
   1589 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1590 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1591 	if (error == 0) {
   1592 
   1593 		/*
   1594 		 * this page is no longer only in swap.
   1595 		 */
   1596 
   1597 		simple_lock(&uvm.swap_data_lock);
   1598 		KASSERT(uvmexp.swpgonly > 0);
   1599 		uvmexp.swpgonly--;
   1600 		simple_unlock(&uvm.swap_data_lock);
   1601 	}
   1602 	return error;
   1603 }
   1604 
   1605 /*
   1606  * uvm_swap_io: do an i/o operation to swap
   1607  */
   1608 
   1609 static int
   1610 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1611 {
   1612 	daddr_t startblk;
   1613 	struct	buf *bp;
   1614 	vaddr_t kva;
   1615 	int	error, s, mapinflags;
   1616 	boolean_t write, async;
   1617 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1618 
   1619 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1620 	    startslot, npages, flags, 0);
   1621 
   1622 	write = (flags & B_READ) == 0;
   1623 	async = (flags & B_ASYNC) != 0;
   1624 
   1625 	/*
   1626 	 * convert starting drum slot to block number
   1627 	 */
   1628 
   1629 	startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
   1630 
   1631 	/*
   1632 	 * first, map the pages into the kernel.
   1633 	 */
   1634 
   1635 	mapinflags = !write ?
   1636 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1637 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1638 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1639 
   1640 	/*
   1641 	 * now allocate a buf for the i/o.
   1642 	 */
   1643 
   1644 	s = splbio();
   1645 	bp = pool_get(&bufpool, PR_WAITOK);
   1646 	splx(s);
   1647 
   1648 	/*
   1649 	 * fill in the bp/sbp.   we currently route our i/o through
   1650 	 * /dev/drum's vnode [swapdev_vp].
   1651 	 */
   1652 
   1653 	BUF_INIT(bp);
   1654 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
   1655 	bp->b_proc = &proc0;	/* XXX */
   1656 	bp->b_vnbufs.le_next = NOLIST;
   1657 	bp->b_data = (caddr_t)kva;
   1658 	bp->b_blkno = startblk;
   1659 	bp->b_vp = swapdev_vp;
   1660 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1661 
   1662 	/*
   1663 	 * bump v_numoutput (counter of number of active outputs).
   1664 	 */
   1665 
   1666 	if (write) {
   1667 		s = splbio();
   1668 		V_INCR_NUMOUTPUT(swapdev_vp);
   1669 		splx(s);
   1670 	}
   1671 
   1672 	/*
   1673 	 * for async ops we must set up the iodone handler.
   1674 	 */
   1675 
   1676 	if (async) {
   1677 		bp->b_flags |= B_CALL;
   1678 		bp->b_iodone = uvm_aio_biodone;
   1679 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1680 		if (curproc == uvm.pagedaemon_proc)
   1681 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1682 		else
   1683 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1684 	} else {
   1685 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1686 	}
   1687 	UVMHIST_LOG(pdhist,
   1688 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1689 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1690 
   1691 	/*
   1692 	 * now we start the I/O, and if async, return.
   1693 	 */
   1694 
   1695 	VOP_STRATEGY(swapdev_vp, bp);
   1696 	if (async)
   1697 		return 0;
   1698 
   1699 	/*
   1700 	 * must be sync i/o.   wait for it to finish
   1701 	 */
   1702 
   1703 	error = biowait(bp);
   1704 
   1705 	/*
   1706 	 * kill the pager mapping
   1707 	 */
   1708 
   1709 	uvm_pagermapout(kva, npages);
   1710 
   1711 	/*
   1712 	 * now dispose of the buf and we're done.
   1713 	 */
   1714 
   1715 	s = splbio();
   1716 	if (write)
   1717 		vwakeup(bp);
   1718 	pool_put(&bufpool, bp);
   1719 	splx(s);
   1720 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1721 	return (error);
   1722 }
   1723