uvm_swap.c revision 1.94 1 /* $NetBSD: uvm_swap.c,v 1.94 2005/06/27 02:29:32 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.94 2005/06/27 02:29:32 thorpej Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/bufq.h>
46 #include <sys/conf.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/extent.h>
56 #include <sys/blist.h>
57 #include <sys/mount.h>
58 #include <sys/pool.h>
59 #include <sys/sa.h>
60 #include <sys/syscallargs.h>
61 #include <sys/swap.h>
62
63 #include <uvm/uvm.h>
64
65 #include <miscfs/specfs/specdev.h>
66
67 /*
68 * uvm_swap.c: manage configuration and i/o to swap space.
69 */
70
71 /*
72 * swap space is managed in the following way:
73 *
74 * each swap partition or file is described by a "swapdev" structure.
75 * each "swapdev" structure contains a "swapent" structure which contains
76 * information that is passed up to the user (via system calls).
77 *
78 * each swap partition is assigned a "priority" (int) which controls
79 * swap parition usage.
80 *
81 * the system maintains a global data structure describing all swap
82 * partitions/files. there is a sorted LIST of "swappri" structures
83 * which describe "swapdev"'s at that priority. this LIST is headed
84 * by the "swap_priority" global var. each "swappri" contains a
85 * CIRCLEQ of "swapdev" structures at that priority.
86 *
87 * locking:
88 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
89 * system call and prevents the swap priority list from changing
90 * while we are in the middle of a system call (e.g. SWAP_STATS).
91 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
92 * structures including the priority list, the swapdev structures,
93 * and the swapmap extent.
94 *
95 * each swap device has the following info:
96 * - swap device in use (could be disabled, preventing future use)
97 * - swap enabled (allows new allocations on swap)
98 * - map info in /dev/drum
99 * - vnode pointer
100 * for swap files only:
101 * - block size
102 * - max byte count in buffer
103 * - buffer
104 *
105 * userland controls and configures swap with the swapctl(2) system call.
106 * the sys_swapctl performs the following operations:
107 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
108 * [2] SWAP_STATS: given a pointer to an array of swapent structures
109 * (passed in via "arg") of a size passed in via "misc" ... we load
110 * the current swap config into the array. The actual work is done
111 * in the uvm_swap_stats(9) function.
112 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
113 * priority in "misc", start swapping on it.
114 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
115 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
116 * "misc")
117 */
118
119 /*
120 * swapdev: describes a single swap partition/file
121 *
122 * note the following should be true:
123 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
124 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
125 */
126 struct swapdev {
127 struct oswapent swd_ose;
128 #define swd_dev swd_ose.ose_dev /* device id */
129 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
130 #define swd_priority swd_ose.ose_priority /* our priority */
131 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
132 char *swd_path; /* saved pathname of device */
133 int swd_pathlen; /* length of pathname */
134 int swd_npages; /* #pages we can use */
135 int swd_npginuse; /* #pages in use */
136 int swd_npgbad; /* #pages bad */
137 int swd_drumoffset; /* page0 offset in drum */
138 int swd_drumsize; /* #pages in drum */
139 blist_t swd_blist; /* blist for this swapdev */
140 struct vnode *swd_vp; /* backing vnode */
141 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
142
143 int swd_bsize; /* blocksize (bytes) */
144 int swd_maxactive; /* max active i/o reqs */
145 struct bufq_state swd_tab; /* buffer list */
146 int swd_active; /* number of active buffers */
147 };
148
149 /*
150 * swap device priority entry; the list is kept sorted on `spi_priority'.
151 */
152 struct swappri {
153 int spi_priority; /* priority */
154 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
155 /* circleq of swapdevs at this priority */
156 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
157 };
158
159 /*
160 * The following two structures are used to keep track of data transfers
161 * on swap devices associated with regular files.
162 * NOTE: this code is more or less a copy of vnd.c; we use the same
163 * structure names here to ease porting..
164 */
165 struct vndxfer {
166 struct buf *vx_bp; /* Pointer to parent buffer */
167 struct swapdev *vx_sdp;
168 int vx_error;
169 int vx_pending; /* # of pending aux buffers */
170 int vx_flags;
171 #define VX_BUSY 1
172 #define VX_DEAD 2
173 };
174
175 struct vndbuf {
176 struct buf vb_buf;
177 struct vndxfer *vb_xfer;
178 };
179
180
181 /*
182 * We keep a of pool vndbuf's and vndxfer structures.
183 */
184 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL);
185 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL);
186
187 #define getvndxfer(vnx) do { \
188 int sp = splbio(); \
189 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \
190 splx(sp); \
191 } while (/*CONSTCOND*/ 0)
192
193 #define putvndxfer(vnx) { \
194 pool_put(&vndxfer_pool, (void *)(vnx)); \
195 }
196
197 #define getvndbuf(vbp) do { \
198 int sp = splbio(); \
199 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \
200 splx(sp); \
201 } while (/*CONSTCOND*/ 0)
202
203 #define putvndbuf(vbp) { \
204 pool_put(&vndbuf_pool, (void *)(vbp)); \
205 }
206
207 /*
208 * local variables
209 */
210 static struct extent *swapmap; /* controls the mapping of /dev/drum */
211
212 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
213
214 /* list of all active swap devices [by priority] */
215 LIST_HEAD(swap_priority, swappri);
216 static struct swap_priority swap_priority;
217
218 /* locks */
219 struct lock swap_syscall_lock;
220
221 /*
222 * prototypes
223 */
224 static struct swapdev *swapdrum_getsdp(int);
225
226 static struct swapdev *swaplist_find(struct vnode *, int);
227 static void swaplist_insert(struct swapdev *,
228 struct swappri *, int);
229 static void swaplist_trim(void);
230
231 static int swap_on(struct proc *, struct swapdev *);
232 static int swap_off(struct proc *, struct swapdev *);
233
234 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
235 static void sw_reg_iodone(struct buf *);
236 static void sw_reg_start(struct swapdev *);
237
238 static int uvm_swap_io(struct vm_page **, int, int, int);
239
240 /*
241 * uvm_swap_init: init the swap system data structures and locks
242 *
243 * => called at boot time from init_main.c after the filesystems
244 * are brought up (which happens after uvm_init())
245 */
246 void
247 uvm_swap_init(void)
248 {
249 UVMHIST_FUNC("uvm_swap_init");
250
251 UVMHIST_CALLED(pdhist);
252 /*
253 * first, init the swap list, its counter, and its lock.
254 * then get a handle on the vnode for /dev/drum by using
255 * the its dev_t number ("swapdev", from MD conf.c).
256 */
257
258 LIST_INIT(&swap_priority);
259 uvmexp.nswapdev = 0;
260 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
261 simple_lock_init(&uvm.swap_data_lock);
262
263 if (bdevvp(swapdev, &swapdev_vp))
264 panic("uvm_swap_init: can't get vnode for swap device");
265
266 /*
267 * create swap block resource map to map /dev/drum. the range
268 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
269 * that block 0 is reserved (used to indicate an allocation
270 * failure, or no allocation).
271 */
272 swapmap = extent_create("swapmap", 1, INT_MAX,
273 M_VMSWAP, 0, 0, EX_NOWAIT);
274 if (swapmap == 0)
275 panic("uvm_swap_init: extent_create failed");
276
277 /*
278 * done!
279 */
280 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
281 }
282
283 /*
284 * swaplist functions: functions that operate on the list of swap
285 * devices on the system.
286 */
287
288 /*
289 * swaplist_insert: insert swap device "sdp" into the global list
290 *
291 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
292 * => caller must provide a newly malloc'd swappri structure (we will
293 * FREE it if we don't need it... this it to prevent malloc blocking
294 * here while adding swap)
295 */
296 static void
297 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
298 {
299 struct swappri *spp, *pspp;
300 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
301
302 /*
303 * find entry at or after which to insert the new device.
304 */
305 pspp = NULL;
306 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
307 if (priority <= spp->spi_priority)
308 break;
309 pspp = spp;
310 }
311
312 /*
313 * new priority?
314 */
315 if (spp == NULL || spp->spi_priority != priority) {
316 spp = newspp; /* use newspp! */
317 UVMHIST_LOG(pdhist, "created new swappri = %d",
318 priority, 0, 0, 0);
319
320 spp->spi_priority = priority;
321 CIRCLEQ_INIT(&spp->spi_swapdev);
322
323 if (pspp)
324 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
325 else
326 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
327 } else {
328 /* we don't need a new priority structure, free it */
329 FREE(newspp, M_VMSWAP);
330 }
331
332 /*
333 * priority found (or created). now insert on the priority's
334 * circleq list and bump the total number of swapdevs.
335 */
336 sdp->swd_priority = priority;
337 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
338 uvmexp.nswapdev++;
339 }
340
341 /*
342 * swaplist_find: find and optionally remove a swap device from the
343 * global list.
344 *
345 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
346 * => we return the swapdev we found (and removed)
347 */
348 static struct swapdev *
349 swaplist_find(struct vnode *vp, boolean_t remove)
350 {
351 struct swapdev *sdp;
352 struct swappri *spp;
353
354 /*
355 * search the lists for the requested vp
356 */
357
358 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
359 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
360 if (sdp->swd_vp == vp) {
361 if (remove) {
362 CIRCLEQ_REMOVE(&spp->spi_swapdev,
363 sdp, swd_next);
364 uvmexp.nswapdev--;
365 }
366 return(sdp);
367 }
368 }
369 }
370 return (NULL);
371 }
372
373
374 /*
375 * swaplist_trim: scan priority list for empty priority entries and kill
376 * them.
377 *
378 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
379 */
380 static void
381 swaplist_trim(void)
382 {
383 struct swappri *spp, *nextspp;
384
385 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
386 nextspp = LIST_NEXT(spp, spi_swappri);
387 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
388 (void *)&spp->spi_swapdev)
389 continue;
390 LIST_REMOVE(spp, spi_swappri);
391 free(spp, M_VMSWAP);
392 }
393 }
394
395 /*
396 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
397 * to the "swapdev" that maps that section of the drum.
398 *
399 * => each swapdev takes one big contig chunk of the drum
400 * => caller must hold uvm.swap_data_lock
401 */
402 static struct swapdev *
403 swapdrum_getsdp(int pgno)
404 {
405 struct swapdev *sdp;
406 struct swappri *spp;
407
408 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
409 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
410 if (sdp->swd_flags & SWF_FAKE)
411 continue;
412 if (pgno >= sdp->swd_drumoffset &&
413 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
414 return sdp;
415 }
416 }
417 }
418 return NULL;
419 }
420
421
422 /*
423 * sys_swapctl: main entry point for swapctl(2) system call
424 * [with two helper functions: swap_on and swap_off]
425 */
426 int
427 sys_swapctl(struct lwp *l, void *v, register_t *retval)
428 {
429 struct sys_swapctl_args /* {
430 syscallarg(int) cmd;
431 syscallarg(void *) arg;
432 syscallarg(int) misc;
433 } */ *uap = (struct sys_swapctl_args *)v;
434 struct proc *p = l->l_proc;
435 struct vnode *vp;
436 struct nameidata nd;
437 struct swappri *spp;
438 struct swapdev *sdp;
439 struct swapent *sep;
440 char userpath[PATH_MAX + 1];
441 size_t len;
442 int error, misc;
443 int priority;
444 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
445
446 misc = SCARG(uap, misc);
447
448 /*
449 * ensure serialized syscall access by grabbing the swap_syscall_lock
450 */
451 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
452
453 /*
454 * we handle the non-priv NSWAP and STATS request first.
455 *
456 * SWAP_NSWAP: return number of config'd swap devices
457 * [can also be obtained with uvmexp sysctl]
458 */
459 if (SCARG(uap, cmd) == SWAP_NSWAP) {
460 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
461 0, 0, 0);
462 *retval = uvmexp.nswapdev;
463 error = 0;
464 goto out;
465 }
466
467 /*
468 * SWAP_STATS: get stats on current # of configured swap devs
469 *
470 * note that the swap_priority list can't change as long
471 * as we are holding the swap_syscall_lock. we don't want
472 * to grab the uvm.swap_data_lock because we may fault&sleep during
473 * copyout() and we don't want to be holding that lock then!
474 */
475 if (SCARG(uap, cmd) == SWAP_STATS
476 #if defined(COMPAT_13)
477 || SCARG(uap, cmd) == SWAP_OSTATS
478 #endif
479 ) {
480 if ((size_t)misc > (size_t)uvmexp.nswapdev)
481 misc = uvmexp.nswapdev;
482 #if defined(COMPAT_13)
483 if (SCARG(uap, cmd) == SWAP_OSTATS)
484 len = sizeof(struct oswapent) * misc;
485 else
486 #endif
487 len = sizeof(struct swapent) * misc;
488 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
489
490 uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
491 error = copyout(sep, SCARG(uap, arg), len);
492
493 free(sep, M_TEMP);
494 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
495 goto out;
496 }
497 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
498 dev_t *devp = (dev_t *)SCARG(uap, arg);
499
500 error = copyout(&dumpdev, devp, sizeof(dumpdev));
501 goto out;
502 }
503
504 /*
505 * all other requests require superuser privs. verify.
506 */
507 if ((error = suser(p->p_ucred, &p->p_acflag)))
508 goto out;
509
510 /*
511 * at this point we expect a path name in arg. we will
512 * use namei() to gain a vnode reference (vref), and lock
513 * the vnode (VOP_LOCK).
514 *
515 * XXX: a NULL arg means use the root vnode pointer (e.g. for
516 * miniroot)
517 */
518 if (SCARG(uap, arg) == NULL) {
519 vp = rootvp; /* miniroot */
520 if (vget(vp, LK_EXCLUSIVE)) {
521 error = EBUSY;
522 goto out;
523 }
524 if (SCARG(uap, cmd) == SWAP_ON &&
525 copystr("miniroot", userpath, sizeof userpath, &len))
526 panic("swapctl: miniroot copy failed");
527 } else {
528 int space;
529 char *where;
530
531 if (SCARG(uap, cmd) == SWAP_ON) {
532 if ((error = copyinstr(SCARG(uap, arg), userpath,
533 sizeof userpath, &len)))
534 goto out;
535 space = UIO_SYSSPACE;
536 where = userpath;
537 } else {
538 space = UIO_USERSPACE;
539 where = (char *)SCARG(uap, arg);
540 }
541 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
542 if ((error = namei(&nd)))
543 goto out;
544 vp = nd.ni_vp;
545 }
546 /* note: "vp" is referenced and locked */
547
548 error = 0; /* assume no error */
549 switch(SCARG(uap, cmd)) {
550
551 case SWAP_DUMPDEV:
552 if (vp->v_type != VBLK) {
553 error = ENOTBLK;
554 break;
555 }
556 dumpdev = vp->v_rdev;
557 cpu_dumpconf();
558 break;
559
560 case SWAP_CTL:
561 /*
562 * get new priority, remove old entry (if any) and then
563 * reinsert it in the correct place. finally, prune out
564 * any empty priority structures.
565 */
566 priority = SCARG(uap, misc);
567 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
568 simple_lock(&uvm.swap_data_lock);
569 if ((sdp = swaplist_find(vp, 1)) == NULL) {
570 error = ENOENT;
571 } else {
572 swaplist_insert(sdp, spp, priority);
573 swaplist_trim();
574 }
575 simple_unlock(&uvm.swap_data_lock);
576 if (error)
577 free(spp, M_VMSWAP);
578 break;
579
580 case SWAP_ON:
581
582 /*
583 * check for duplicates. if none found, then insert a
584 * dummy entry on the list to prevent someone else from
585 * trying to enable this device while we are working on
586 * it.
587 */
588
589 priority = SCARG(uap, misc);
590 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
591 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
592 memset(sdp, 0, sizeof(*sdp));
593 sdp->swd_flags = SWF_FAKE;
594 sdp->swd_vp = vp;
595 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
596 bufq_alloc(&sdp->swd_tab, BUFQ_DISKSORT|BUFQ_SORT_RAWBLOCK);
597 simple_lock(&uvm.swap_data_lock);
598 if (swaplist_find(vp, 0) != NULL) {
599 error = EBUSY;
600 simple_unlock(&uvm.swap_data_lock);
601 bufq_free(&sdp->swd_tab);
602 free(sdp, M_VMSWAP);
603 free(spp, M_VMSWAP);
604 break;
605 }
606 swaplist_insert(sdp, spp, priority);
607 simple_unlock(&uvm.swap_data_lock);
608
609 sdp->swd_pathlen = len;
610 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
611 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
612 panic("swapctl: copystr");
613
614 /*
615 * we've now got a FAKE placeholder in the swap list.
616 * now attempt to enable swap on it. if we fail, undo
617 * what we've done and kill the fake entry we just inserted.
618 * if swap_on is a success, it will clear the SWF_FAKE flag
619 */
620
621 if ((error = swap_on(p, sdp)) != 0) {
622 simple_lock(&uvm.swap_data_lock);
623 (void) swaplist_find(vp, 1); /* kill fake entry */
624 swaplist_trim();
625 simple_unlock(&uvm.swap_data_lock);
626 bufq_free(&sdp->swd_tab);
627 free(sdp->swd_path, M_VMSWAP);
628 free(sdp, M_VMSWAP);
629 break;
630 }
631 break;
632
633 case SWAP_OFF:
634 simple_lock(&uvm.swap_data_lock);
635 if ((sdp = swaplist_find(vp, 0)) == NULL) {
636 simple_unlock(&uvm.swap_data_lock);
637 error = ENXIO;
638 break;
639 }
640
641 /*
642 * If a device isn't in use or enabled, we
643 * can't stop swapping from it (again).
644 */
645 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
646 simple_unlock(&uvm.swap_data_lock);
647 error = EBUSY;
648 break;
649 }
650
651 /*
652 * do the real work.
653 */
654 error = swap_off(p, sdp);
655 break;
656
657 default:
658 error = EINVAL;
659 }
660
661 /*
662 * done! release the ref gained by namei() and unlock.
663 */
664 vput(vp);
665
666 out:
667 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
668
669 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
670 return (error);
671 }
672
673 /*
674 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
675 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
676 * emulation to use it directly without going through sys_swapctl().
677 * The problem with using sys_swapctl() there is that it involves
678 * copying the swapent array to the stackgap, and this array's size
679 * is not known at build time. Hence it would not be possible to
680 * ensure it would fit in the stackgap in any case.
681 */
682 void
683 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
684 {
685 struct swappri *spp;
686 struct swapdev *sdp;
687 int count = 0;
688
689 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
690 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
691 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
692 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
693 /*
694 * backwards compatibility for system call.
695 * note that we use 'struct oswapent' as an
696 * overlay into both 'struct swapdev' and
697 * the userland 'struct swapent', as we
698 * want to retain backwards compatibility
699 * with NetBSD 1.3.
700 */
701 sdp->swd_ose.ose_inuse =
702 btodb((u_int64_t)sdp->swd_npginuse <<
703 PAGE_SHIFT);
704 (void)memcpy(sep, &sdp->swd_ose,
705 sizeof(struct oswapent));
706
707 /* now copy out the path if necessary */
708 #if defined(COMPAT_13)
709 if (cmd == SWAP_STATS)
710 #endif
711 (void)memcpy(&sep->se_path, sdp->swd_path,
712 sdp->swd_pathlen);
713
714 count++;
715 #if defined(COMPAT_13)
716 if (cmd == SWAP_OSTATS)
717 sep = (struct swapent *)
718 ((struct oswapent *)sep + 1);
719 else
720 #endif
721 sep++;
722 }
723 }
724
725 *retval = count;
726 return;
727 }
728
729 /*
730 * swap_on: attempt to enable a swapdev for swapping. note that the
731 * swapdev is already on the global list, but disabled (marked
732 * SWF_FAKE).
733 *
734 * => we avoid the start of the disk (to protect disk labels)
735 * => we also avoid the miniroot, if we are swapping to root.
736 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
737 * if needed.
738 */
739 static int
740 swap_on(struct proc *p, struct swapdev *sdp)
741 {
742 struct vnode *vp;
743 int error, npages, nblocks, size;
744 long addr;
745 u_long result;
746 struct vattr va;
747 #ifdef NFS
748 extern int (**nfsv2_vnodeop_p)(void *);
749 #endif /* NFS */
750 const struct bdevsw *bdev;
751 dev_t dev;
752 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
753
754 /*
755 * we want to enable swapping on sdp. the swd_vp contains
756 * the vnode we want (locked and ref'd), and the swd_dev
757 * contains the dev_t of the file, if it a block device.
758 */
759
760 vp = sdp->swd_vp;
761 dev = sdp->swd_dev;
762
763 /*
764 * open the swap file (mostly useful for block device files to
765 * let device driver know what is up).
766 *
767 * we skip the open/close for root on swap because the root
768 * has already been opened when root was mounted (mountroot).
769 */
770 if (vp != rootvp) {
771 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
772 return (error);
773 }
774
775 /* XXX this only works for block devices */
776 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
777
778 /*
779 * we now need to determine the size of the swap area. for
780 * block specials we can call the d_psize function.
781 * for normal files, we must stat [get attrs].
782 *
783 * we put the result in nblks.
784 * for normal files, we also want the filesystem block size
785 * (which we get with statfs).
786 */
787 switch (vp->v_type) {
788 case VBLK:
789 bdev = bdevsw_lookup(dev);
790 if (bdev == NULL || bdev->d_psize == NULL ||
791 (nblocks = (*bdev->d_psize)(dev)) == -1) {
792 error = ENXIO;
793 goto bad;
794 }
795 break;
796
797 case VREG:
798 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
799 goto bad;
800 nblocks = (int)btodb(va.va_size);
801 if ((error =
802 VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
803 goto bad;
804
805 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
806 /*
807 * limit the max # of outstanding I/O requests we issue
808 * at any one time. take it easy on NFS servers.
809 */
810 #ifdef NFS
811 if (vp->v_op == nfsv2_vnodeop_p)
812 sdp->swd_maxactive = 2; /* XXX */
813 else
814 #endif /* NFS */
815 sdp->swd_maxactive = 8; /* XXX */
816 break;
817
818 default:
819 error = ENXIO;
820 goto bad;
821 }
822
823 /*
824 * save nblocks in a safe place and convert to pages.
825 */
826
827 sdp->swd_ose.ose_nblks = nblocks;
828 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
829
830 /*
831 * for block special files, we want to make sure that leave
832 * the disklabel and bootblocks alone, so we arrange to skip
833 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
834 * note that because of this the "size" can be less than the
835 * actual number of blocks on the device.
836 */
837 if (vp->v_type == VBLK) {
838 /* we use pages 1 to (size - 1) [inclusive] */
839 size = npages - 1;
840 addr = 1;
841 } else {
842 /* we use pages 0 to (size - 1) [inclusive] */
843 size = npages;
844 addr = 0;
845 }
846
847 /*
848 * make sure we have enough blocks for a reasonable sized swap
849 * area. we want at least one page.
850 */
851
852 if (size < 1) {
853 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
854 error = EINVAL;
855 goto bad;
856 }
857
858 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
859
860 /*
861 * now we need to allocate an extent to manage this swap device
862 */
863
864 sdp->swd_blist = blist_create(npages);
865 /* mark all expect the `saved' region free. */
866 blist_free(sdp->swd_blist, addr, size);
867
868 /*
869 * if the vnode we are swapping to is the root vnode
870 * (i.e. we are swapping to the miniroot) then we want
871 * to make sure we don't overwrite it. do a statfs to
872 * find its size and skip over it.
873 */
874 if (vp == rootvp) {
875 struct mount *mp;
876 struct statvfs *sp;
877 int rootblocks, rootpages;
878
879 mp = rootvnode->v_mount;
880 sp = &mp->mnt_stat;
881 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
882 /*
883 * XXX: sp->f_blocks isn't the total number of
884 * blocks in the filesystem, it's the number of
885 * data blocks. so, our rootblocks almost
886 * definitely underestimates the total size
887 * of the filesystem - how badly depends on the
888 * details of the filesystem type. there isn't
889 * an obvious way to deal with this cleanly
890 * and perfectly, so for now we just pad our
891 * rootblocks estimate with an extra 5 percent.
892 */
893 rootblocks += (rootblocks >> 5) +
894 (rootblocks >> 6) +
895 (rootblocks >> 7);
896 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
897 if (rootpages > size)
898 panic("swap_on: miniroot larger than swap?");
899
900 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
901 panic("swap_on: unable to preserve miniroot");
902 }
903
904 size -= rootpages;
905 printf("Preserved %d pages of miniroot ", rootpages);
906 printf("leaving %d pages of swap\n", size);
907 }
908
909 /*
910 * add a ref to vp to reflect usage as a swap device.
911 */
912 vref(vp);
913
914 /*
915 * now add the new swapdev to the drum and enable.
916 */
917 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
918 EX_WAITOK, &result))
919 panic("swapdrum_add");
920
921 sdp->swd_drumoffset = (int)result;
922 sdp->swd_drumsize = npages;
923 sdp->swd_npages = size;
924 simple_lock(&uvm.swap_data_lock);
925 sdp->swd_flags &= ~SWF_FAKE; /* going live */
926 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
927 uvmexp.swpages += size;
928 uvmexp.swpgavail += size;
929 simple_unlock(&uvm.swap_data_lock);
930 return (0);
931
932 /*
933 * failure: clean up and return error.
934 */
935
936 bad:
937 if (sdp->swd_blist) {
938 blist_destroy(sdp->swd_blist);
939 }
940 if (vp != rootvp) {
941 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
942 }
943 return (error);
944 }
945
946 /*
947 * swap_off: stop swapping on swapdev
948 *
949 * => swap data should be locked, we will unlock.
950 */
951 static int
952 swap_off(struct proc *p, struct swapdev *sdp)
953 {
954 int npages = sdp->swd_npages;
955 int error = 0;
956
957 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
958 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
959
960 /* disable the swap area being removed */
961 sdp->swd_flags &= ~SWF_ENABLE;
962 uvmexp.swpgavail -= npages;
963 simple_unlock(&uvm.swap_data_lock);
964
965 /*
966 * the idea is to find all the pages that are paged out to this
967 * device, and page them all in. in uvm, swap-backed pageable
968 * memory can take two forms: aobjs and anons. call the
969 * swapoff hook for each subsystem to bring in pages.
970 */
971
972 if (uao_swap_off(sdp->swd_drumoffset,
973 sdp->swd_drumoffset + sdp->swd_drumsize) ||
974 amap_swap_off(sdp->swd_drumoffset,
975 sdp->swd_drumoffset + sdp->swd_drumsize)) {
976 error = ENOMEM;
977 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
978 error = EBUSY;
979 }
980
981 if (error) {
982 simple_lock(&uvm.swap_data_lock);
983 sdp->swd_flags |= SWF_ENABLE;
984 uvmexp.swpgavail += npages;
985 simple_unlock(&uvm.swap_data_lock);
986
987 return error;
988 }
989
990 /*
991 * done with the vnode.
992 * drop our ref on the vnode before calling VOP_CLOSE()
993 * so that spec_close() can tell if this is the last close.
994 */
995 vrele(sdp->swd_vp);
996 if (sdp->swd_vp != rootvp) {
997 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
998 }
999
1000 simple_lock(&uvm.swap_data_lock);
1001 uvmexp.swpages -= npages;
1002 uvmexp.swpginuse -= sdp->swd_npgbad;
1003
1004 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1005 panic("swap_off: swapdev not in list");
1006 swaplist_trim();
1007 simple_unlock(&uvm.swap_data_lock);
1008
1009 /*
1010 * free all resources!
1011 */
1012 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1013 EX_WAITOK);
1014 blist_destroy(sdp->swd_blist);
1015 bufq_free(&sdp->swd_tab);
1016 free(sdp, M_VMSWAP);
1017 return (0);
1018 }
1019
1020 /*
1021 * /dev/drum interface and i/o functions
1022 */
1023
1024 /*
1025 * swstrategy: perform I/O on the drum
1026 *
1027 * => we must map the i/o request from the drum to the correct swapdev.
1028 */
1029 static void
1030 swstrategy(struct buf *bp)
1031 {
1032 struct swapdev *sdp;
1033 struct vnode *vp;
1034 int s, pageno, bn;
1035 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1036
1037 /*
1038 * convert block number to swapdev. note that swapdev can't
1039 * be yanked out from under us because we are holding resources
1040 * in it (i.e. the blocks we are doing I/O on).
1041 */
1042 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1043 simple_lock(&uvm.swap_data_lock);
1044 sdp = swapdrum_getsdp(pageno);
1045 simple_unlock(&uvm.swap_data_lock);
1046 if (sdp == NULL) {
1047 bp->b_error = EINVAL;
1048 bp->b_flags |= B_ERROR;
1049 biodone(bp);
1050 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1051 return;
1052 }
1053
1054 /*
1055 * convert drum page number to block number on this swapdev.
1056 */
1057
1058 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1059 bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1060
1061 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1062 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1063 sdp->swd_drumoffset, bn, bp->b_bcount);
1064
1065 /*
1066 * for block devices we finish up here.
1067 * for regular files we have to do more work which we delegate
1068 * to sw_reg_strategy().
1069 */
1070
1071 switch (sdp->swd_vp->v_type) {
1072 default:
1073 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1074
1075 case VBLK:
1076
1077 /*
1078 * must convert "bp" from an I/O on /dev/drum to an I/O
1079 * on the swapdev (sdp).
1080 */
1081 s = splbio();
1082 bp->b_blkno = bn; /* swapdev block number */
1083 vp = sdp->swd_vp; /* swapdev vnode pointer */
1084 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1085
1086 /*
1087 * if we are doing a write, we have to redirect the i/o on
1088 * drum's v_numoutput counter to the swapdevs.
1089 */
1090 if ((bp->b_flags & B_READ) == 0) {
1091 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1092 V_INCR_NUMOUTPUT(vp); /* put it on swapdev */
1093 }
1094
1095 /*
1096 * finally plug in swapdev vnode and start I/O
1097 */
1098 bp->b_vp = vp;
1099 splx(s);
1100 VOP_STRATEGY(vp, bp);
1101 return;
1102
1103 case VREG:
1104 /*
1105 * delegate to sw_reg_strategy function.
1106 */
1107 sw_reg_strategy(sdp, bp, bn);
1108 return;
1109 }
1110 /* NOTREACHED */
1111 }
1112
1113 /*
1114 * swread: the read function for the drum (just a call to physio)
1115 */
1116 /*ARGSUSED*/
1117 static int
1118 swread(dev_t dev, struct uio *uio, int ioflag)
1119 {
1120 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1121
1122 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1123 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1124 }
1125
1126 /*
1127 * swwrite: the write function for the drum (just a call to physio)
1128 */
1129 /*ARGSUSED*/
1130 static int
1131 swwrite(dev_t dev, struct uio *uio, int ioflag)
1132 {
1133 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1134
1135 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1136 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1137 }
1138
1139 const struct bdevsw swap_bdevsw = {
1140 noopen, noclose, swstrategy, noioctl, nodump, nosize,
1141 };
1142
1143 const struct cdevsw swap_cdevsw = {
1144 nullopen, nullclose, swread, swwrite, noioctl,
1145 nostop, notty, nopoll, nommap, nokqfilter
1146 };
1147
1148 /*
1149 * sw_reg_strategy: handle swap i/o to regular files
1150 */
1151 static void
1152 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1153 {
1154 struct vnode *vp;
1155 struct vndxfer *vnx;
1156 daddr_t nbn;
1157 caddr_t addr;
1158 off_t byteoff;
1159 int s, off, nra, error, sz, resid;
1160 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1161
1162 /*
1163 * allocate a vndxfer head for this transfer and point it to
1164 * our buffer.
1165 */
1166 getvndxfer(vnx);
1167 vnx->vx_flags = VX_BUSY;
1168 vnx->vx_error = 0;
1169 vnx->vx_pending = 0;
1170 vnx->vx_bp = bp;
1171 vnx->vx_sdp = sdp;
1172
1173 /*
1174 * setup for main loop where we read filesystem blocks into
1175 * our buffer.
1176 */
1177 error = 0;
1178 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1179 addr = bp->b_data; /* current position in buffer */
1180 byteoff = dbtob((u_int64_t)bn);
1181
1182 for (resid = bp->b_resid; resid; resid -= sz) {
1183 struct vndbuf *nbp;
1184
1185 /*
1186 * translate byteoffset into block number. return values:
1187 * vp = vnode of underlying device
1188 * nbn = new block number (on underlying vnode dev)
1189 * nra = num blocks we can read-ahead (excludes requested
1190 * block)
1191 */
1192 nra = 0;
1193 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1194 &vp, &nbn, &nra);
1195
1196 if (error == 0 && nbn == (daddr_t)-1) {
1197 /*
1198 * this used to just set error, but that doesn't
1199 * do the right thing. Instead, it causes random
1200 * memory errors. The panic() should remain until
1201 * this condition doesn't destabilize the system.
1202 */
1203 #if 1
1204 panic("sw_reg_strategy: swap to sparse file");
1205 #else
1206 error = EIO; /* failure */
1207 #endif
1208 }
1209
1210 /*
1211 * punt if there was an error or a hole in the file.
1212 * we must wait for any i/o ops we have already started
1213 * to finish before returning.
1214 *
1215 * XXX we could deal with holes here but it would be
1216 * a hassle (in the write case).
1217 */
1218 if (error) {
1219 s = splbio();
1220 vnx->vx_error = error; /* pass error up */
1221 goto out;
1222 }
1223
1224 /*
1225 * compute the size ("sz") of this transfer (in bytes).
1226 */
1227 off = byteoff % sdp->swd_bsize;
1228 sz = (1 + nra) * sdp->swd_bsize - off;
1229 if (sz > resid)
1230 sz = resid;
1231
1232 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1233 "vp %p/%p offset 0x%x/0x%x",
1234 sdp->swd_vp, vp, byteoff, nbn);
1235
1236 /*
1237 * now get a buf structure. note that the vb_buf is
1238 * at the front of the nbp structure so that you can
1239 * cast pointers between the two structure easily.
1240 */
1241 getvndbuf(nbp);
1242 BUF_INIT(&nbp->vb_buf);
1243 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1244 nbp->vb_buf.b_bcount = sz;
1245 nbp->vb_buf.b_bufsize = sz;
1246 nbp->vb_buf.b_error = 0;
1247 nbp->vb_buf.b_data = addr;
1248 nbp->vb_buf.b_lblkno = 0;
1249 nbp->vb_buf.b_blkno = nbn + btodb(off);
1250 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1251 nbp->vb_buf.b_iodone = sw_reg_iodone;
1252 nbp->vb_buf.b_vp = vp;
1253 if (vp->v_type == VBLK) {
1254 nbp->vb_buf.b_dev = vp->v_rdev;
1255 }
1256
1257 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1258
1259 /*
1260 * Just sort by block number
1261 */
1262 s = splbio();
1263 if (vnx->vx_error != 0) {
1264 putvndbuf(nbp);
1265 goto out;
1266 }
1267 vnx->vx_pending++;
1268
1269 /* sort it in and start I/O if we are not over our limit */
1270 BUFQ_PUT(&sdp->swd_tab, &nbp->vb_buf);
1271 sw_reg_start(sdp);
1272 splx(s);
1273
1274 /*
1275 * advance to the next I/O
1276 */
1277 byteoff += sz;
1278 addr += sz;
1279 }
1280
1281 s = splbio();
1282
1283 out: /* Arrive here at splbio */
1284 vnx->vx_flags &= ~VX_BUSY;
1285 if (vnx->vx_pending == 0) {
1286 if (vnx->vx_error != 0) {
1287 bp->b_error = vnx->vx_error;
1288 bp->b_flags |= B_ERROR;
1289 }
1290 putvndxfer(vnx);
1291 biodone(bp);
1292 }
1293 splx(s);
1294 }
1295
1296 /*
1297 * sw_reg_start: start an I/O request on the requested swapdev
1298 *
1299 * => reqs are sorted by b_rawblkno (above)
1300 */
1301 static void
1302 sw_reg_start(struct swapdev *sdp)
1303 {
1304 struct buf *bp;
1305 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1306
1307 /* recursion control */
1308 if ((sdp->swd_flags & SWF_BUSY) != 0)
1309 return;
1310
1311 sdp->swd_flags |= SWF_BUSY;
1312
1313 while (sdp->swd_active < sdp->swd_maxactive) {
1314 bp = BUFQ_GET(&sdp->swd_tab);
1315 if (bp == NULL)
1316 break;
1317 sdp->swd_active++;
1318
1319 UVMHIST_LOG(pdhist,
1320 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1321 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1322 if ((bp->b_flags & B_READ) == 0)
1323 V_INCR_NUMOUTPUT(bp->b_vp);
1324
1325 VOP_STRATEGY(bp->b_vp, bp);
1326 }
1327 sdp->swd_flags &= ~SWF_BUSY;
1328 }
1329
1330 /*
1331 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1332 *
1333 * => note that we can recover the vndbuf struct by casting the buf ptr
1334 */
1335 static void
1336 sw_reg_iodone(struct buf *bp)
1337 {
1338 struct vndbuf *vbp = (struct vndbuf *) bp;
1339 struct vndxfer *vnx = vbp->vb_xfer;
1340 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1341 struct swapdev *sdp = vnx->vx_sdp;
1342 int s, resid, error;
1343 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1344
1345 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1346 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1347 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1348 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1349
1350 /*
1351 * protect vbp at splbio and update.
1352 */
1353
1354 s = splbio();
1355 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1356 pbp->b_resid -= resid;
1357 vnx->vx_pending--;
1358
1359 if (vbp->vb_buf.b_flags & B_ERROR) {
1360 /* pass error upward */
1361 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1362 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1363 vnx->vx_error = error;
1364 }
1365
1366 /*
1367 * kill vbp structure
1368 */
1369 putvndbuf(vbp);
1370
1371 /*
1372 * wrap up this transaction if it has run to completion or, in
1373 * case of an error, when all auxiliary buffers have returned.
1374 */
1375 if (vnx->vx_error != 0) {
1376 /* pass error upward */
1377 pbp->b_flags |= B_ERROR;
1378 pbp->b_error = vnx->vx_error;
1379 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1380 putvndxfer(vnx);
1381 biodone(pbp);
1382 }
1383 } else if (pbp->b_resid == 0) {
1384 KASSERT(vnx->vx_pending == 0);
1385 if ((vnx->vx_flags & VX_BUSY) == 0) {
1386 UVMHIST_LOG(pdhist, " iodone error=%d !",
1387 pbp, vnx->vx_error, 0, 0);
1388 putvndxfer(vnx);
1389 biodone(pbp);
1390 }
1391 }
1392
1393 /*
1394 * done! start next swapdev I/O if one is pending
1395 */
1396 sdp->swd_active--;
1397 sw_reg_start(sdp);
1398 splx(s);
1399 }
1400
1401
1402 /*
1403 * uvm_swap_alloc: allocate space on swap
1404 *
1405 * => allocation is done "round robin" down the priority list, as we
1406 * allocate in a priority we "rotate" the circle queue.
1407 * => space can be freed with uvm_swap_free
1408 * => we return the page slot number in /dev/drum (0 == invalid slot)
1409 * => we lock uvm.swap_data_lock
1410 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1411 */
1412 int
1413 uvm_swap_alloc(int *nslots /* IN/OUT */, boolean_t lessok)
1414 {
1415 struct swapdev *sdp;
1416 struct swappri *spp;
1417 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1418
1419 /*
1420 * no swap devices configured yet? definite failure.
1421 */
1422 if (uvmexp.nswapdev < 1)
1423 return 0;
1424
1425 /*
1426 * lock data lock, convert slots into blocks, and enter loop
1427 */
1428 simple_lock(&uvm.swap_data_lock);
1429
1430 ReTry: /* XXXMRG */
1431 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1432 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1433 uint64_t result;
1434
1435 /* if it's not enabled, then we can't swap from it */
1436 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1437 continue;
1438 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1439 continue;
1440 result = blist_alloc(sdp->swd_blist, *nslots);
1441 if (result == BLIST_NONE) {
1442 continue;
1443 }
1444 KASSERT(result < sdp->swd_drumsize);
1445
1446 /*
1447 * successful allocation! now rotate the circleq.
1448 */
1449 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1450 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1451 sdp->swd_npginuse += *nslots;
1452 uvmexp.swpginuse += *nslots;
1453 simple_unlock(&uvm.swap_data_lock);
1454 /* done! return drum slot number */
1455 UVMHIST_LOG(pdhist,
1456 "success! returning %d slots starting at %d",
1457 *nslots, result + sdp->swd_drumoffset, 0, 0);
1458 return (result + sdp->swd_drumoffset);
1459 }
1460 }
1461
1462 /* XXXMRG: BEGIN HACK */
1463 if (*nslots > 1 && lessok) {
1464 *nslots = 1;
1465 /* XXXMRG: ugh! blist should support this for us */
1466 goto ReTry;
1467 }
1468 /* XXXMRG: END HACK */
1469
1470 simple_unlock(&uvm.swap_data_lock);
1471 return 0;
1472 }
1473
1474 boolean_t
1475 uvm_swapisfull(void)
1476 {
1477 boolean_t rv;
1478
1479 simple_lock(&uvm.swap_data_lock);
1480 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1481 rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1482 simple_unlock(&uvm.swap_data_lock);
1483
1484 return (rv);
1485 }
1486
1487 /*
1488 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1489 *
1490 * => we lock uvm.swap_data_lock
1491 */
1492 void
1493 uvm_swap_markbad(int startslot, int nslots)
1494 {
1495 struct swapdev *sdp;
1496 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1497
1498 simple_lock(&uvm.swap_data_lock);
1499 sdp = swapdrum_getsdp(startslot);
1500 KASSERT(sdp != NULL);
1501
1502 /*
1503 * we just keep track of how many pages have been marked bad
1504 * in this device, to make everything add up in swap_off().
1505 * we assume here that the range of slots will all be within
1506 * one swap device.
1507 */
1508
1509 KASSERT(uvmexp.swpgonly >= nslots);
1510 uvmexp.swpgonly -= nslots;
1511 sdp->swd_npgbad += nslots;
1512 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1513 simple_unlock(&uvm.swap_data_lock);
1514 }
1515
1516 /*
1517 * uvm_swap_free: free swap slots
1518 *
1519 * => this can be all or part of an allocation made by uvm_swap_alloc
1520 * => we lock uvm.swap_data_lock
1521 */
1522 void
1523 uvm_swap_free(int startslot, int nslots)
1524 {
1525 struct swapdev *sdp;
1526 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1527
1528 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1529 startslot, 0, 0);
1530
1531 /*
1532 * ignore attempts to free the "bad" slot.
1533 */
1534
1535 if (startslot == SWSLOT_BAD) {
1536 return;
1537 }
1538
1539 /*
1540 * convert drum slot offset back to sdp, free the blocks
1541 * in the extent, and return. must hold pri lock to do
1542 * lookup and access the extent.
1543 */
1544
1545 simple_lock(&uvm.swap_data_lock);
1546 sdp = swapdrum_getsdp(startslot);
1547 KASSERT(uvmexp.nswapdev >= 1);
1548 KASSERT(sdp != NULL);
1549 KASSERT(sdp->swd_npginuse >= nslots);
1550 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1551 sdp->swd_npginuse -= nslots;
1552 uvmexp.swpginuse -= nslots;
1553 simple_unlock(&uvm.swap_data_lock);
1554 }
1555
1556 /*
1557 * uvm_swap_put: put any number of pages into a contig place on swap
1558 *
1559 * => can be sync or async
1560 */
1561
1562 int
1563 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1564 {
1565 int error;
1566
1567 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1568 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1569 return error;
1570 }
1571
1572 /*
1573 * uvm_swap_get: get a single page from swap
1574 *
1575 * => usually a sync op (from fault)
1576 */
1577
1578 int
1579 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1580 {
1581 int error;
1582
1583 uvmexp.nswget++;
1584 KASSERT(flags & PGO_SYNCIO);
1585 if (swslot == SWSLOT_BAD) {
1586 return EIO;
1587 }
1588
1589 error = uvm_swap_io(&page, swslot, 1, B_READ |
1590 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1591 if (error == 0) {
1592
1593 /*
1594 * this page is no longer only in swap.
1595 */
1596
1597 simple_lock(&uvm.swap_data_lock);
1598 KASSERT(uvmexp.swpgonly > 0);
1599 uvmexp.swpgonly--;
1600 simple_unlock(&uvm.swap_data_lock);
1601 }
1602 return error;
1603 }
1604
1605 /*
1606 * uvm_swap_io: do an i/o operation to swap
1607 */
1608
1609 static int
1610 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1611 {
1612 daddr_t startblk;
1613 struct buf *bp;
1614 vaddr_t kva;
1615 int error, s, mapinflags;
1616 boolean_t write, async;
1617 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1618
1619 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1620 startslot, npages, flags, 0);
1621
1622 write = (flags & B_READ) == 0;
1623 async = (flags & B_ASYNC) != 0;
1624
1625 /*
1626 * convert starting drum slot to block number
1627 */
1628
1629 startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1630
1631 /*
1632 * first, map the pages into the kernel.
1633 */
1634
1635 mapinflags = !write ?
1636 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1637 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1638 kva = uvm_pagermapin(pps, npages, mapinflags);
1639
1640 /*
1641 * now allocate a buf for the i/o.
1642 */
1643
1644 s = splbio();
1645 bp = pool_get(&bufpool, PR_WAITOK);
1646 splx(s);
1647
1648 /*
1649 * fill in the bp/sbp. we currently route our i/o through
1650 * /dev/drum's vnode [swapdev_vp].
1651 */
1652
1653 BUF_INIT(bp);
1654 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1655 bp->b_proc = &proc0; /* XXX */
1656 bp->b_vnbufs.le_next = NOLIST;
1657 bp->b_data = (caddr_t)kva;
1658 bp->b_blkno = startblk;
1659 bp->b_vp = swapdev_vp;
1660 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1661
1662 /*
1663 * bump v_numoutput (counter of number of active outputs).
1664 */
1665
1666 if (write) {
1667 s = splbio();
1668 V_INCR_NUMOUTPUT(swapdev_vp);
1669 splx(s);
1670 }
1671
1672 /*
1673 * for async ops we must set up the iodone handler.
1674 */
1675
1676 if (async) {
1677 bp->b_flags |= B_CALL;
1678 bp->b_iodone = uvm_aio_biodone;
1679 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1680 if (curproc == uvm.pagedaemon_proc)
1681 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1682 else
1683 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1684 } else {
1685 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1686 }
1687 UVMHIST_LOG(pdhist,
1688 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1689 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1690
1691 /*
1692 * now we start the I/O, and if async, return.
1693 */
1694
1695 VOP_STRATEGY(swapdev_vp, bp);
1696 if (async)
1697 return 0;
1698
1699 /*
1700 * must be sync i/o. wait for it to finish
1701 */
1702
1703 error = biowait(bp);
1704
1705 /*
1706 * kill the pager mapping
1707 */
1708
1709 uvm_pagermapout(kva, npages);
1710
1711 /*
1712 * now dispose of the buf and we're done.
1713 */
1714
1715 s = splbio();
1716 if (write)
1717 vwakeup(bp);
1718 pool_put(&bufpool, bp);
1719 splx(s);
1720 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1721 return (error);
1722 }
1723