uvm_swap.c revision 1.98 1 /* $NetBSD: uvm_swap.c,v 1.98 2006/01/04 10:13:06 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.98 2006/01/04 10:13:06 yamt Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/bufq.h>
46 #include <sys/conf.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/extent.h>
56 #include <sys/blist.h>
57 #include <sys/mount.h>
58 #include <sys/pool.h>
59 #include <sys/sa.h>
60 #include <sys/syscallargs.h>
61 #include <sys/swap.h>
62
63 #include <uvm/uvm.h>
64
65 #include <miscfs/specfs/specdev.h>
66
67 /*
68 * uvm_swap.c: manage configuration and i/o to swap space.
69 */
70
71 /*
72 * swap space is managed in the following way:
73 *
74 * each swap partition or file is described by a "swapdev" structure.
75 * each "swapdev" structure contains a "swapent" structure which contains
76 * information that is passed up to the user (via system calls).
77 *
78 * each swap partition is assigned a "priority" (int) which controls
79 * swap parition usage.
80 *
81 * the system maintains a global data structure describing all swap
82 * partitions/files. there is a sorted LIST of "swappri" structures
83 * which describe "swapdev"'s at that priority. this LIST is headed
84 * by the "swap_priority" global var. each "swappri" contains a
85 * CIRCLEQ of "swapdev" structures at that priority.
86 *
87 * locking:
88 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
89 * system call and prevents the swap priority list from changing
90 * while we are in the middle of a system call (e.g. SWAP_STATS).
91 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
92 * structures including the priority list, the swapdev structures,
93 * and the swapmap extent.
94 *
95 * each swap device has the following info:
96 * - swap device in use (could be disabled, preventing future use)
97 * - swap enabled (allows new allocations on swap)
98 * - map info in /dev/drum
99 * - vnode pointer
100 * for swap files only:
101 * - block size
102 * - max byte count in buffer
103 * - buffer
104 *
105 * userland controls and configures swap with the swapctl(2) system call.
106 * the sys_swapctl performs the following operations:
107 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
108 * [2] SWAP_STATS: given a pointer to an array of swapent structures
109 * (passed in via "arg") of a size passed in via "misc" ... we load
110 * the current swap config into the array. The actual work is done
111 * in the uvm_swap_stats(9) function.
112 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
113 * priority in "misc", start swapping on it.
114 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
115 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
116 * "misc")
117 */
118
119 /*
120 * swapdev: describes a single swap partition/file
121 *
122 * note the following should be true:
123 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
124 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
125 */
126 struct swapdev {
127 struct oswapent swd_ose;
128 #define swd_dev swd_ose.ose_dev /* device id */
129 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
130 #define swd_priority swd_ose.ose_priority /* our priority */
131 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
132 char *swd_path; /* saved pathname of device */
133 int swd_pathlen; /* length of pathname */
134 int swd_npages; /* #pages we can use */
135 int swd_npginuse; /* #pages in use */
136 int swd_npgbad; /* #pages bad */
137 int swd_drumoffset; /* page0 offset in drum */
138 int swd_drumsize; /* #pages in drum */
139 blist_t swd_blist; /* blist for this swapdev */
140 struct vnode *swd_vp; /* backing vnode */
141 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
142
143 int swd_bsize; /* blocksize (bytes) */
144 int swd_maxactive; /* max active i/o reqs */
145 struct bufq_state *swd_tab; /* buffer list */
146 int swd_active; /* number of active buffers */
147 };
148
149 /*
150 * swap device priority entry; the list is kept sorted on `spi_priority'.
151 */
152 struct swappri {
153 int spi_priority; /* priority */
154 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
155 /* circleq of swapdevs at this priority */
156 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
157 };
158
159 /*
160 * The following two structures are used to keep track of data transfers
161 * on swap devices associated with regular files.
162 * NOTE: this code is more or less a copy of vnd.c; we use the same
163 * structure names here to ease porting..
164 */
165 struct vndxfer {
166 struct buf *vx_bp; /* Pointer to parent buffer */
167 struct swapdev *vx_sdp;
168 int vx_error;
169 int vx_pending; /* # of pending aux buffers */
170 int vx_flags;
171 #define VX_BUSY 1
172 #define VX_DEAD 2
173 };
174
175 struct vndbuf {
176 struct buf vb_buf;
177 struct vndxfer *vb_xfer;
178 };
179
180
181 /*
182 * We keep a of pool vndbuf's and vndxfer structures.
183 */
184 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL);
185 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL);
186
187 #define getvndxfer(vnx) do { \
188 int sp = splbio(); \
189 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \
190 splx(sp); \
191 } while (/*CONSTCOND*/ 0)
192
193 #define putvndxfer(vnx) { \
194 pool_put(&vndxfer_pool, (void *)(vnx)); \
195 }
196
197 #define getvndbuf(vbp) do { \
198 int sp = splbio(); \
199 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \
200 splx(sp); \
201 } while (/*CONSTCOND*/ 0)
202
203 #define putvndbuf(vbp) { \
204 pool_put(&vndbuf_pool, (void *)(vbp)); \
205 }
206
207 /*
208 * local variables
209 */
210 static struct extent *swapmap; /* controls the mapping of /dev/drum */
211
212 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
213
214 /* list of all active swap devices [by priority] */
215 LIST_HEAD(swap_priority, swappri);
216 static struct swap_priority swap_priority;
217
218 /* locks */
219 static struct lock swap_syscall_lock;
220
221 /*
222 * prototypes
223 */
224 static struct swapdev *swapdrum_getsdp(int);
225
226 static struct swapdev *swaplist_find(struct vnode *, int);
227 static void swaplist_insert(struct swapdev *,
228 struct swappri *, int);
229 static void swaplist_trim(void);
230
231 static int swap_on(struct lwp *, struct swapdev *);
232 static int swap_off(struct lwp *, struct swapdev *);
233
234 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
235
236 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
237 static void sw_reg_iodone(struct buf *);
238 static void sw_reg_start(struct swapdev *);
239
240 static int uvm_swap_io(struct vm_page **, int, int, int);
241
242 /*
243 * uvm_swap_init: init the swap system data structures and locks
244 *
245 * => called at boot time from init_main.c after the filesystems
246 * are brought up (which happens after uvm_init())
247 */
248 void
249 uvm_swap_init(void)
250 {
251 UVMHIST_FUNC("uvm_swap_init");
252
253 UVMHIST_CALLED(pdhist);
254 /*
255 * first, init the swap list, its counter, and its lock.
256 * then get a handle on the vnode for /dev/drum by using
257 * the its dev_t number ("swapdev", from MD conf.c).
258 */
259
260 LIST_INIT(&swap_priority);
261 uvmexp.nswapdev = 0;
262 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
263 simple_lock_init(&uvm.swap_data_lock);
264
265 if (bdevvp(swapdev, &swapdev_vp))
266 panic("uvm_swap_init: can't get vnode for swap device");
267
268 /*
269 * create swap block resource map to map /dev/drum. the range
270 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
271 * that block 0 is reserved (used to indicate an allocation
272 * failure, or no allocation).
273 */
274 swapmap = extent_create("swapmap", 1, INT_MAX,
275 M_VMSWAP, 0, 0, EX_NOWAIT);
276 if (swapmap == 0)
277 panic("uvm_swap_init: extent_create failed");
278
279 /*
280 * done!
281 */
282 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
283 }
284
285 /*
286 * swaplist functions: functions that operate on the list of swap
287 * devices on the system.
288 */
289
290 /*
291 * swaplist_insert: insert swap device "sdp" into the global list
292 *
293 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
294 * => caller must provide a newly malloc'd swappri structure (we will
295 * FREE it if we don't need it... this it to prevent malloc blocking
296 * here while adding swap)
297 */
298 static void
299 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
300 {
301 struct swappri *spp, *pspp;
302 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
303
304 /*
305 * find entry at or after which to insert the new device.
306 */
307 pspp = NULL;
308 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
309 if (priority <= spp->spi_priority)
310 break;
311 pspp = spp;
312 }
313
314 /*
315 * new priority?
316 */
317 if (spp == NULL || spp->spi_priority != priority) {
318 spp = newspp; /* use newspp! */
319 UVMHIST_LOG(pdhist, "created new swappri = %d",
320 priority, 0, 0, 0);
321
322 spp->spi_priority = priority;
323 CIRCLEQ_INIT(&spp->spi_swapdev);
324
325 if (pspp)
326 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
327 else
328 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
329 } else {
330 /* we don't need a new priority structure, free it */
331 FREE(newspp, M_VMSWAP);
332 }
333
334 /*
335 * priority found (or created). now insert on the priority's
336 * circleq list and bump the total number of swapdevs.
337 */
338 sdp->swd_priority = priority;
339 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
340 uvmexp.nswapdev++;
341 }
342
343 /*
344 * swaplist_find: find and optionally remove a swap device from the
345 * global list.
346 *
347 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
348 * => we return the swapdev we found (and removed)
349 */
350 static struct swapdev *
351 swaplist_find(struct vnode *vp, boolean_t remove)
352 {
353 struct swapdev *sdp;
354 struct swappri *spp;
355
356 /*
357 * search the lists for the requested vp
358 */
359
360 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
361 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
362 if (sdp->swd_vp == vp) {
363 if (remove) {
364 CIRCLEQ_REMOVE(&spp->spi_swapdev,
365 sdp, swd_next);
366 uvmexp.nswapdev--;
367 }
368 return(sdp);
369 }
370 }
371 }
372 return (NULL);
373 }
374
375
376 /*
377 * swaplist_trim: scan priority list for empty priority entries and kill
378 * them.
379 *
380 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
381 */
382 static void
383 swaplist_trim(void)
384 {
385 struct swappri *spp, *nextspp;
386
387 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
388 nextspp = LIST_NEXT(spp, spi_swappri);
389 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
390 (void *)&spp->spi_swapdev)
391 continue;
392 LIST_REMOVE(spp, spi_swappri);
393 free(spp, M_VMSWAP);
394 }
395 }
396
397 /*
398 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
399 * to the "swapdev" that maps that section of the drum.
400 *
401 * => each swapdev takes one big contig chunk of the drum
402 * => caller must hold uvm.swap_data_lock
403 */
404 static struct swapdev *
405 swapdrum_getsdp(int pgno)
406 {
407 struct swapdev *sdp;
408 struct swappri *spp;
409
410 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
411 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
412 if (sdp->swd_flags & SWF_FAKE)
413 continue;
414 if (pgno >= sdp->swd_drumoffset &&
415 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
416 return sdp;
417 }
418 }
419 }
420 return NULL;
421 }
422
423
424 /*
425 * sys_swapctl: main entry point for swapctl(2) system call
426 * [with two helper functions: swap_on and swap_off]
427 */
428 int
429 sys_swapctl(struct lwp *l, void *v, register_t *retval)
430 {
431 struct sys_swapctl_args /* {
432 syscallarg(int) cmd;
433 syscallarg(void *) arg;
434 syscallarg(int) misc;
435 } */ *uap = (struct sys_swapctl_args *)v;
436 struct proc *p = l->l_proc;
437 struct vnode *vp;
438 struct nameidata nd;
439 struct swappri *spp;
440 struct swapdev *sdp;
441 struct swapent *sep;
442 char userpath[PATH_MAX + 1];
443 size_t len;
444 int error, misc;
445 int priority;
446 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
447
448 misc = SCARG(uap, misc);
449
450 /*
451 * ensure serialized syscall access by grabbing the swap_syscall_lock
452 */
453 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
454
455 /*
456 * we handle the non-priv NSWAP and STATS request first.
457 *
458 * SWAP_NSWAP: return number of config'd swap devices
459 * [can also be obtained with uvmexp sysctl]
460 */
461 if (SCARG(uap, cmd) == SWAP_NSWAP) {
462 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
463 0, 0, 0);
464 *retval = uvmexp.nswapdev;
465 error = 0;
466 goto out;
467 }
468
469 /*
470 * SWAP_STATS: get stats on current # of configured swap devs
471 *
472 * note that the swap_priority list can't change as long
473 * as we are holding the swap_syscall_lock. we don't want
474 * to grab the uvm.swap_data_lock because we may fault&sleep during
475 * copyout() and we don't want to be holding that lock then!
476 */
477 if (SCARG(uap, cmd) == SWAP_STATS
478 #if defined(COMPAT_13)
479 || SCARG(uap, cmd) == SWAP_OSTATS
480 #endif
481 ) {
482 if ((size_t)misc > (size_t)uvmexp.nswapdev)
483 misc = uvmexp.nswapdev;
484 #if defined(COMPAT_13)
485 if (SCARG(uap, cmd) == SWAP_OSTATS)
486 len = sizeof(struct oswapent) * misc;
487 else
488 #endif
489 len = sizeof(struct swapent) * misc;
490 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
491
492 uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
493 error = copyout(sep, SCARG(uap, arg), len);
494
495 free(sep, M_TEMP);
496 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
497 goto out;
498 }
499 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
500 dev_t *devp = (dev_t *)SCARG(uap, arg);
501
502 error = copyout(&dumpdev, devp, sizeof(dumpdev));
503 goto out;
504 }
505
506 /*
507 * all other requests require superuser privs. verify.
508 */
509 if ((error = suser(p->p_ucred, &p->p_acflag)))
510 goto out;
511
512 /*
513 * at this point we expect a path name in arg. we will
514 * use namei() to gain a vnode reference (vref), and lock
515 * the vnode (VOP_LOCK).
516 *
517 * XXX: a NULL arg means use the root vnode pointer (e.g. for
518 * miniroot)
519 */
520 if (SCARG(uap, arg) == NULL) {
521 vp = rootvp; /* miniroot */
522 if (vget(vp, LK_EXCLUSIVE)) {
523 error = EBUSY;
524 goto out;
525 }
526 if (SCARG(uap, cmd) == SWAP_ON &&
527 copystr("miniroot", userpath, sizeof userpath, &len))
528 panic("swapctl: miniroot copy failed");
529 } else {
530 int space;
531 char *where;
532
533 if (SCARG(uap, cmd) == SWAP_ON) {
534 if ((error = copyinstr(SCARG(uap, arg), userpath,
535 sizeof userpath, &len)))
536 goto out;
537 space = UIO_SYSSPACE;
538 where = userpath;
539 } else {
540 space = UIO_USERSPACE;
541 where = (char *)SCARG(uap, arg);
542 }
543 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, l);
544 if ((error = namei(&nd)))
545 goto out;
546 vp = nd.ni_vp;
547 }
548 /* note: "vp" is referenced and locked */
549
550 error = 0; /* assume no error */
551 switch(SCARG(uap, cmd)) {
552
553 case SWAP_DUMPDEV:
554 if (vp->v_type != VBLK) {
555 error = ENOTBLK;
556 break;
557 }
558 dumpdev = vp->v_rdev;
559 cpu_dumpconf();
560 break;
561
562 case SWAP_CTL:
563 /*
564 * get new priority, remove old entry (if any) and then
565 * reinsert it in the correct place. finally, prune out
566 * any empty priority structures.
567 */
568 priority = SCARG(uap, misc);
569 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
570 simple_lock(&uvm.swap_data_lock);
571 if ((sdp = swaplist_find(vp, 1)) == NULL) {
572 error = ENOENT;
573 } else {
574 swaplist_insert(sdp, spp, priority);
575 swaplist_trim();
576 }
577 simple_unlock(&uvm.swap_data_lock);
578 if (error)
579 free(spp, M_VMSWAP);
580 break;
581
582 case SWAP_ON:
583
584 /*
585 * check for duplicates. if none found, then insert a
586 * dummy entry on the list to prevent someone else from
587 * trying to enable this device while we are working on
588 * it.
589 */
590
591 priority = SCARG(uap, misc);
592 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
593 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
594 memset(sdp, 0, sizeof(*sdp));
595 sdp->swd_flags = SWF_FAKE;
596 sdp->swd_vp = vp;
597 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
598 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
599 simple_lock(&uvm.swap_data_lock);
600 if (swaplist_find(vp, 0) != NULL) {
601 error = EBUSY;
602 simple_unlock(&uvm.swap_data_lock);
603 bufq_free(sdp->swd_tab);
604 free(sdp, M_VMSWAP);
605 free(spp, M_VMSWAP);
606 break;
607 }
608 swaplist_insert(sdp, spp, priority);
609 simple_unlock(&uvm.swap_data_lock);
610
611 sdp->swd_pathlen = len;
612 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
613 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
614 panic("swapctl: copystr");
615
616 /*
617 * we've now got a FAKE placeholder in the swap list.
618 * now attempt to enable swap on it. if we fail, undo
619 * what we've done and kill the fake entry we just inserted.
620 * if swap_on is a success, it will clear the SWF_FAKE flag
621 */
622
623 if ((error = swap_on(l, sdp)) != 0) {
624 simple_lock(&uvm.swap_data_lock);
625 (void) swaplist_find(vp, 1); /* kill fake entry */
626 swaplist_trim();
627 simple_unlock(&uvm.swap_data_lock);
628 bufq_free(sdp->swd_tab);
629 free(sdp->swd_path, M_VMSWAP);
630 free(sdp, M_VMSWAP);
631 break;
632 }
633 break;
634
635 case SWAP_OFF:
636 simple_lock(&uvm.swap_data_lock);
637 if ((sdp = swaplist_find(vp, 0)) == NULL) {
638 simple_unlock(&uvm.swap_data_lock);
639 error = ENXIO;
640 break;
641 }
642
643 /*
644 * If a device isn't in use or enabled, we
645 * can't stop swapping from it (again).
646 */
647 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
648 simple_unlock(&uvm.swap_data_lock);
649 error = EBUSY;
650 break;
651 }
652
653 /*
654 * do the real work.
655 */
656 error = swap_off(l, sdp);
657 break;
658
659 default:
660 error = EINVAL;
661 }
662
663 /*
664 * done! release the ref gained by namei() and unlock.
665 */
666 vput(vp);
667
668 out:
669 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
670
671 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
672 return (error);
673 }
674
675 /*
676 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
677 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
678 * emulation to use it directly without going through sys_swapctl().
679 * The problem with using sys_swapctl() there is that it involves
680 * copying the swapent array to the stackgap, and this array's size
681 * is not known at build time. Hence it would not be possible to
682 * ensure it would fit in the stackgap in any case.
683 */
684 void
685 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
686 {
687
688 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
689 uvm_swap_stats_locked(cmd, sep, sec, retval);
690 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
691 }
692
693 static void
694 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
695 {
696 struct swappri *spp;
697 struct swapdev *sdp;
698 int count = 0;
699
700 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
701 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
702 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
703 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
704 /*
705 * backwards compatibility for system call.
706 * note that we use 'struct oswapent' as an
707 * overlay into both 'struct swapdev' and
708 * the userland 'struct swapent', as we
709 * want to retain backwards compatibility
710 * with NetBSD 1.3.
711 */
712 sdp->swd_ose.ose_inuse =
713 btodb((u_int64_t)sdp->swd_npginuse <<
714 PAGE_SHIFT);
715 (void)memcpy(sep, &sdp->swd_ose,
716 sizeof(struct oswapent));
717
718 /* now copy out the path if necessary */
719 #if defined(COMPAT_13)
720 if (cmd == SWAP_STATS)
721 #endif
722 (void)memcpy(&sep->se_path, sdp->swd_path,
723 sdp->swd_pathlen);
724
725 count++;
726 #if defined(COMPAT_13)
727 if (cmd == SWAP_OSTATS)
728 sep = (struct swapent *)
729 ((struct oswapent *)sep + 1);
730 else
731 #endif
732 sep++;
733 }
734 }
735
736 *retval = count;
737 return;
738 }
739
740 /*
741 * swap_on: attempt to enable a swapdev for swapping. note that the
742 * swapdev is already on the global list, but disabled (marked
743 * SWF_FAKE).
744 *
745 * => we avoid the start of the disk (to protect disk labels)
746 * => we also avoid the miniroot, if we are swapping to root.
747 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
748 * if needed.
749 */
750 static int
751 swap_on(struct lwp *l, struct swapdev *sdp)
752 {
753 struct vnode *vp;
754 struct proc *p = l->l_proc;
755 int error, npages, nblocks, size;
756 long addr;
757 u_long result;
758 struct vattr va;
759 #ifdef NFS
760 extern int (**nfsv2_vnodeop_p)(void *);
761 #endif /* NFS */
762 const struct bdevsw *bdev;
763 dev_t dev;
764 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
765
766 /*
767 * we want to enable swapping on sdp. the swd_vp contains
768 * the vnode we want (locked and ref'd), and the swd_dev
769 * contains the dev_t of the file, if it a block device.
770 */
771
772 vp = sdp->swd_vp;
773 dev = sdp->swd_dev;
774
775 /*
776 * open the swap file (mostly useful for block device files to
777 * let device driver know what is up).
778 *
779 * we skip the open/close for root on swap because the root
780 * has already been opened when root was mounted (mountroot).
781 */
782 if (vp != rootvp) {
783 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, l)))
784 return (error);
785 }
786
787 /* XXX this only works for block devices */
788 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
789
790 /*
791 * we now need to determine the size of the swap area. for
792 * block specials we can call the d_psize function.
793 * for normal files, we must stat [get attrs].
794 *
795 * we put the result in nblks.
796 * for normal files, we also want the filesystem block size
797 * (which we get with statfs).
798 */
799 switch (vp->v_type) {
800 case VBLK:
801 bdev = bdevsw_lookup(dev);
802 if (bdev == NULL || bdev->d_psize == NULL ||
803 (nblocks = (*bdev->d_psize)(dev)) == -1) {
804 error = ENXIO;
805 goto bad;
806 }
807 break;
808
809 case VREG:
810 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, l)))
811 goto bad;
812 nblocks = (int)btodb(va.va_size);
813 if ((error =
814 VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, l)) != 0)
815 goto bad;
816
817 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
818 /*
819 * limit the max # of outstanding I/O requests we issue
820 * at any one time. take it easy on NFS servers.
821 */
822 #ifdef NFS
823 if (vp->v_op == nfsv2_vnodeop_p)
824 sdp->swd_maxactive = 2; /* XXX */
825 else
826 #endif /* NFS */
827 sdp->swd_maxactive = 8; /* XXX */
828 break;
829
830 default:
831 error = ENXIO;
832 goto bad;
833 }
834
835 /*
836 * save nblocks in a safe place and convert to pages.
837 */
838
839 sdp->swd_ose.ose_nblks = nblocks;
840 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
841
842 /*
843 * for block special files, we want to make sure that leave
844 * the disklabel and bootblocks alone, so we arrange to skip
845 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
846 * note that because of this the "size" can be less than the
847 * actual number of blocks on the device.
848 */
849 if (vp->v_type == VBLK) {
850 /* we use pages 1 to (size - 1) [inclusive] */
851 size = npages - 1;
852 addr = 1;
853 } else {
854 /* we use pages 0 to (size - 1) [inclusive] */
855 size = npages;
856 addr = 0;
857 }
858
859 /*
860 * make sure we have enough blocks for a reasonable sized swap
861 * area. we want at least one page.
862 */
863
864 if (size < 1) {
865 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
866 error = EINVAL;
867 goto bad;
868 }
869
870 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
871
872 /*
873 * now we need to allocate an extent to manage this swap device
874 */
875
876 sdp->swd_blist = blist_create(npages);
877 /* mark all expect the `saved' region free. */
878 blist_free(sdp->swd_blist, addr, size);
879
880 /*
881 * if the vnode we are swapping to is the root vnode
882 * (i.e. we are swapping to the miniroot) then we want
883 * to make sure we don't overwrite it. do a statfs to
884 * find its size and skip over it.
885 */
886 if (vp == rootvp) {
887 struct mount *mp;
888 struct statvfs *sp;
889 int rootblocks, rootpages;
890
891 mp = rootvnode->v_mount;
892 sp = &mp->mnt_stat;
893 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
894 /*
895 * XXX: sp->f_blocks isn't the total number of
896 * blocks in the filesystem, it's the number of
897 * data blocks. so, our rootblocks almost
898 * definitely underestimates the total size
899 * of the filesystem - how badly depends on the
900 * details of the filesystem type. there isn't
901 * an obvious way to deal with this cleanly
902 * and perfectly, so for now we just pad our
903 * rootblocks estimate with an extra 5 percent.
904 */
905 rootblocks += (rootblocks >> 5) +
906 (rootblocks >> 6) +
907 (rootblocks >> 7);
908 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
909 if (rootpages > size)
910 panic("swap_on: miniroot larger than swap?");
911
912 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
913 panic("swap_on: unable to preserve miniroot");
914 }
915
916 size -= rootpages;
917 printf("Preserved %d pages of miniroot ", rootpages);
918 printf("leaving %d pages of swap\n", size);
919 }
920
921 /*
922 * add a ref to vp to reflect usage as a swap device.
923 */
924 vref(vp);
925
926 /*
927 * now add the new swapdev to the drum and enable.
928 */
929 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
930 EX_WAITOK, &result))
931 panic("swapdrum_add");
932
933 sdp->swd_drumoffset = (int)result;
934 sdp->swd_drumsize = npages;
935 sdp->swd_npages = size;
936 simple_lock(&uvm.swap_data_lock);
937 sdp->swd_flags &= ~SWF_FAKE; /* going live */
938 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
939 uvmexp.swpages += size;
940 uvmexp.swpgavail += size;
941 simple_unlock(&uvm.swap_data_lock);
942 return (0);
943
944 /*
945 * failure: clean up and return error.
946 */
947
948 bad:
949 if (sdp->swd_blist) {
950 blist_destroy(sdp->swd_blist);
951 }
952 if (vp != rootvp) {
953 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, l);
954 }
955 return (error);
956 }
957
958 /*
959 * swap_off: stop swapping on swapdev
960 *
961 * => swap data should be locked, we will unlock.
962 */
963 static int
964 swap_off(struct lwp *l, struct swapdev *sdp)
965 {
966 struct proc *p = l->l_proc;
967 int npages = sdp->swd_npages;
968 int error = 0;
969
970 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
971 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
972
973 /* disable the swap area being removed */
974 sdp->swd_flags &= ~SWF_ENABLE;
975 uvmexp.swpgavail -= npages;
976 simple_unlock(&uvm.swap_data_lock);
977
978 /*
979 * the idea is to find all the pages that are paged out to this
980 * device, and page them all in. in uvm, swap-backed pageable
981 * memory can take two forms: aobjs and anons. call the
982 * swapoff hook for each subsystem to bring in pages.
983 */
984
985 if (uao_swap_off(sdp->swd_drumoffset,
986 sdp->swd_drumoffset + sdp->swd_drumsize) ||
987 amap_swap_off(sdp->swd_drumoffset,
988 sdp->swd_drumoffset + sdp->swd_drumsize)) {
989 error = ENOMEM;
990 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
991 error = EBUSY;
992 }
993
994 if (error) {
995 simple_lock(&uvm.swap_data_lock);
996 sdp->swd_flags |= SWF_ENABLE;
997 uvmexp.swpgavail += npages;
998 simple_unlock(&uvm.swap_data_lock);
999
1000 return error;
1001 }
1002
1003 /*
1004 * done with the vnode.
1005 * drop our ref on the vnode before calling VOP_CLOSE()
1006 * so that spec_close() can tell if this is the last close.
1007 */
1008 vrele(sdp->swd_vp);
1009 if (sdp->swd_vp != rootvp) {
1010 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, l);
1011 }
1012
1013 simple_lock(&uvm.swap_data_lock);
1014 uvmexp.swpages -= npages;
1015 uvmexp.swpginuse -= sdp->swd_npgbad;
1016
1017 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1018 panic("swap_off: swapdev not in list");
1019 swaplist_trim();
1020 simple_unlock(&uvm.swap_data_lock);
1021
1022 /*
1023 * free all resources!
1024 */
1025 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1026 EX_WAITOK);
1027 blist_destroy(sdp->swd_blist);
1028 bufq_free(sdp->swd_tab);
1029 free(sdp, M_VMSWAP);
1030 return (0);
1031 }
1032
1033 /*
1034 * /dev/drum interface and i/o functions
1035 */
1036
1037 /*
1038 * swstrategy: perform I/O on the drum
1039 *
1040 * => we must map the i/o request from the drum to the correct swapdev.
1041 */
1042 static void
1043 swstrategy(struct buf *bp)
1044 {
1045 struct swapdev *sdp;
1046 struct vnode *vp;
1047 int s, pageno, bn;
1048 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1049
1050 /*
1051 * convert block number to swapdev. note that swapdev can't
1052 * be yanked out from under us because we are holding resources
1053 * in it (i.e. the blocks we are doing I/O on).
1054 */
1055 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1056 simple_lock(&uvm.swap_data_lock);
1057 sdp = swapdrum_getsdp(pageno);
1058 simple_unlock(&uvm.swap_data_lock);
1059 if (sdp == NULL) {
1060 bp->b_error = EINVAL;
1061 bp->b_flags |= B_ERROR;
1062 biodone(bp);
1063 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1064 return;
1065 }
1066
1067 /*
1068 * convert drum page number to block number on this swapdev.
1069 */
1070
1071 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1072 bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1073
1074 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1075 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1076 sdp->swd_drumoffset, bn, bp->b_bcount);
1077
1078 /*
1079 * for block devices we finish up here.
1080 * for regular files we have to do more work which we delegate
1081 * to sw_reg_strategy().
1082 */
1083
1084 switch (sdp->swd_vp->v_type) {
1085 default:
1086 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1087
1088 case VBLK:
1089
1090 /*
1091 * must convert "bp" from an I/O on /dev/drum to an I/O
1092 * on the swapdev (sdp).
1093 */
1094 s = splbio();
1095 bp->b_blkno = bn; /* swapdev block number */
1096 vp = sdp->swd_vp; /* swapdev vnode pointer */
1097 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1098
1099 /*
1100 * if we are doing a write, we have to redirect the i/o on
1101 * drum's v_numoutput counter to the swapdevs.
1102 */
1103 if ((bp->b_flags & B_READ) == 0) {
1104 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1105 V_INCR_NUMOUTPUT(vp); /* put it on swapdev */
1106 }
1107
1108 /*
1109 * finally plug in swapdev vnode and start I/O
1110 */
1111 bp->b_vp = vp;
1112 splx(s);
1113 VOP_STRATEGY(vp, bp);
1114 return;
1115
1116 case VREG:
1117 /*
1118 * delegate to sw_reg_strategy function.
1119 */
1120 sw_reg_strategy(sdp, bp, bn);
1121 return;
1122 }
1123 /* NOTREACHED */
1124 }
1125
1126 /*
1127 * swread: the read function for the drum (just a call to physio)
1128 */
1129 /*ARGSUSED*/
1130 static int
1131 swread(dev_t dev, struct uio *uio, int ioflag)
1132 {
1133 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1134
1135 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1136 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1137 }
1138
1139 /*
1140 * swwrite: the write function for the drum (just a call to physio)
1141 */
1142 /*ARGSUSED*/
1143 static int
1144 swwrite(dev_t dev, struct uio *uio, int ioflag)
1145 {
1146 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1147
1148 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1149 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1150 }
1151
1152 const struct bdevsw swap_bdevsw = {
1153 noopen, noclose, swstrategy, noioctl, nodump, nosize,
1154 };
1155
1156 const struct cdevsw swap_cdevsw = {
1157 nullopen, nullclose, swread, swwrite, noioctl,
1158 nostop, notty, nopoll, nommap, nokqfilter
1159 };
1160
1161 /*
1162 * sw_reg_strategy: handle swap i/o to regular files
1163 */
1164 static void
1165 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1166 {
1167 struct vnode *vp;
1168 struct vndxfer *vnx;
1169 daddr_t nbn;
1170 caddr_t addr;
1171 off_t byteoff;
1172 int s, off, nra, error, sz, resid;
1173 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1174
1175 /*
1176 * allocate a vndxfer head for this transfer and point it to
1177 * our buffer.
1178 */
1179 getvndxfer(vnx);
1180 vnx->vx_flags = VX_BUSY;
1181 vnx->vx_error = 0;
1182 vnx->vx_pending = 0;
1183 vnx->vx_bp = bp;
1184 vnx->vx_sdp = sdp;
1185
1186 /*
1187 * setup for main loop where we read filesystem blocks into
1188 * our buffer.
1189 */
1190 error = 0;
1191 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1192 addr = bp->b_data; /* current position in buffer */
1193 byteoff = dbtob((u_int64_t)bn);
1194
1195 for (resid = bp->b_resid; resid; resid -= sz) {
1196 struct vndbuf *nbp;
1197
1198 /*
1199 * translate byteoffset into block number. return values:
1200 * vp = vnode of underlying device
1201 * nbn = new block number (on underlying vnode dev)
1202 * nra = num blocks we can read-ahead (excludes requested
1203 * block)
1204 */
1205 nra = 0;
1206 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1207 &vp, &nbn, &nra);
1208
1209 if (error == 0 && nbn == (daddr_t)-1) {
1210 /*
1211 * this used to just set error, but that doesn't
1212 * do the right thing. Instead, it causes random
1213 * memory errors. The panic() should remain until
1214 * this condition doesn't destabilize the system.
1215 */
1216 #if 1
1217 panic("sw_reg_strategy: swap to sparse file");
1218 #else
1219 error = EIO; /* failure */
1220 #endif
1221 }
1222
1223 /*
1224 * punt if there was an error or a hole in the file.
1225 * we must wait for any i/o ops we have already started
1226 * to finish before returning.
1227 *
1228 * XXX we could deal with holes here but it would be
1229 * a hassle (in the write case).
1230 */
1231 if (error) {
1232 s = splbio();
1233 vnx->vx_error = error; /* pass error up */
1234 goto out;
1235 }
1236
1237 /*
1238 * compute the size ("sz") of this transfer (in bytes).
1239 */
1240 off = byteoff % sdp->swd_bsize;
1241 sz = (1 + nra) * sdp->swd_bsize - off;
1242 if (sz > resid)
1243 sz = resid;
1244
1245 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1246 "vp %p/%p offset 0x%x/0x%x",
1247 sdp->swd_vp, vp, byteoff, nbn);
1248
1249 /*
1250 * now get a buf structure. note that the vb_buf is
1251 * at the front of the nbp structure so that you can
1252 * cast pointers between the two structure easily.
1253 */
1254 getvndbuf(nbp);
1255 BUF_INIT(&nbp->vb_buf);
1256 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1257 nbp->vb_buf.b_bcount = sz;
1258 nbp->vb_buf.b_bufsize = sz;
1259 nbp->vb_buf.b_error = 0;
1260 nbp->vb_buf.b_data = addr;
1261 nbp->vb_buf.b_lblkno = 0;
1262 nbp->vb_buf.b_blkno = nbn + btodb(off);
1263 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1264 nbp->vb_buf.b_iodone = sw_reg_iodone;
1265 nbp->vb_buf.b_vp = vp;
1266 if (vp->v_type == VBLK) {
1267 nbp->vb_buf.b_dev = vp->v_rdev;
1268 }
1269
1270 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1271
1272 /*
1273 * Just sort by block number
1274 */
1275 s = splbio();
1276 if (vnx->vx_error != 0) {
1277 putvndbuf(nbp);
1278 goto out;
1279 }
1280 vnx->vx_pending++;
1281
1282 /* sort it in and start I/O if we are not over our limit */
1283 BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
1284 sw_reg_start(sdp);
1285 splx(s);
1286
1287 /*
1288 * advance to the next I/O
1289 */
1290 byteoff += sz;
1291 addr += sz;
1292 }
1293
1294 s = splbio();
1295
1296 out: /* Arrive here at splbio */
1297 vnx->vx_flags &= ~VX_BUSY;
1298 if (vnx->vx_pending == 0) {
1299 if (vnx->vx_error != 0) {
1300 bp->b_error = vnx->vx_error;
1301 bp->b_flags |= B_ERROR;
1302 }
1303 putvndxfer(vnx);
1304 biodone(bp);
1305 }
1306 splx(s);
1307 }
1308
1309 /*
1310 * sw_reg_start: start an I/O request on the requested swapdev
1311 *
1312 * => reqs are sorted by b_rawblkno (above)
1313 */
1314 static void
1315 sw_reg_start(struct swapdev *sdp)
1316 {
1317 struct buf *bp;
1318 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1319
1320 /* recursion control */
1321 if ((sdp->swd_flags & SWF_BUSY) != 0)
1322 return;
1323
1324 sdp->swd_flags |= SWF_BUSY;
1325
1326 while (sdp->swd_active < sdp->swd_maxactive) {
1327 bp = BUFQ_GET(sdp->swd_tab);
1328 if (bp == NULL)
1329 break;
1330 sdp->swd_active++;
1331
1332 UVMHIST_LOG(pdhist,
1333 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1334 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1335 if ((bp->b_flags & B_READ) == 0)
1336 V_INCR_NUMOUTPUT(bp->b_vp);
1337
1338 VOP_STRATEGY(bp->b_vp, bp);
1339 }
1340 sdp->swd_flags &= ~SWF_BUSY;
1341 }
1342
1343 /*
1344 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1345 *
1346 * => note that we can recover the vndbuf struct by casting the buf ptr
1347 */
1348 static void
1349 sw_reg_iodone(struct buf *bp)
1350 {
1351 struct vndbuf *vbp = (struct vndbuf *) bp;
1352 struct vndxfer *vnx = vbp->vb_xfer;
1353 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1354 struct swapdev *sdp = vnx->vx_sdp;
1355 int s, resid, error;
1356 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1357
1358 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1359 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1360 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1361 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1362
1363 /*
1364 * protect vbp at splbio and update.
1365 */
1366
1367 s = splbio();
1368 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1369 pbp->b_resid -= resid;
1370 vnx->vx_pending--;
1371
1372 if (vbp->vb_buf.b_flags & B_ERROR) {
1373 /* pass error upward */
1374 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1375 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1376 vnx->vx_error = error;
1377 }
1378
1379 /*
1380 * kill vbp structure
1381 */
1382 putvndbuf(vbp);
1383
1384 /*
1385 * wrap up this transaction if it has run to completion or, in
1386 * case of an error, when all auxiliary buffers have returned.
1387 */
1388 if (vnx->vx_error != 0) {
1389 /* pass error upward */
1390 pbp->b_flags |= B_ERROR;
1391 pbp->b_error = vnx->vx_error;
1392 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1393 putvndxfer(vnx);
1394 biodone(pbp);
1395 }
1396 } else if (pbp->b_resid == 0) {
1397 KASSERT(vnx->vx_pending == 0);
1398 if ((vnx->vx_flags & VX_BUSY) == 0) {
1399 UVMHIST_LOG(pdhist, " iodone error=%d !",
1400 pbp, vnx->vx_error, 0, 0);
1401 putvndxfer(vnx);
1402 biodone(pbp);
1403 }
1404 }
1405
1406 /*
1407 * done! start next swapdev I/O if one is pending
1408 */
1409 sdp->swd_active--;
1410 sw_reg_start(sdp);
1411 splx(s);
1412 }
1413
1414
1415 /*
1416 * uvm_swap_alloc: allocate space on swap
1417 *
1418 * => allocation is done "round robin" down the priority list, as we
1419 * allocate in a priority we "rotate" the circle queue.
1420 * => space can be freed with uvm_swap_free
1421 * => we return the page slot number in /dev/drum (0 == invalid slot)
1422 * => we lock uvm.swap_data_lock
1423 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1424 */
1425 int
1426 uvm_swap_alloc(int *nslots /* IN/OUT */, boolean_t lessok)
1427 {
1428 struct swapdev *sdp;
1429 struct swappri *spp;
1430 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1431
1432 /*
1433 * no swap devices configured yet? definite failure.
1434 */
1435 if (uvmexp.nswapdev < 1)
1436 return 0;
1437
1438 /*
1439 * lock data lock, convert slots into blocks, and enter loop
1440 */
1441 simple_lock(&uvm.swap_data_lock);
1442
1443 ReTry: /* XXXMRG */
1444 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1445 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1446 uint64_t result;
1447
1448 /* if it's not enabled, then we can't swap from it */
1449 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1450 continue;
1451 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1452 continue;
1453 result = blist_alloc(sdp->swd_blist, *nslots);
1454 if (result == BLIST_NONE) {
1455 continue;
1456 }
1457 KASSERT(result < sdp->swd_drumsize);
1458
1459 /*
1460 * successful allocation! now rotate the circleq.
1461 */
1462 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1463 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1464 sdp->swd_npginuse += *nslots;
1465 uvmexp.swpginuse += *nslots;
1466 simple_unlock(&uvm.swap_data_lock);
1467 /* done! return drum slot number */
1468 UVMHIST_LOG(pdhist,
1469 "success! returning %d slots starting at %d",
1470 *nslots, result + sdp->swd_drumoffset, 0, 0);
1471 return (result + sdp->swd_drumoffset);
1472 }
1473 }
1474
1475 /* XXXMRG: BEGIN HACK */
1476 if (*nslots > 1 && lessok) {
1477 *nslots = 1;
1478 /* XXXMRG: ugh! blist should support this for us */
1479 goto ReTry;
1480 }
1481 /* XXXMRG: END HACK */
1482
1483 simple_unlock(&uvm.swap_data_lock);
1484 return 0;
1485 }
1486
1487 boolean_t
1488 uvm_swapisfull(void)
1489 {
1490 boolean_t rv;
1491
1492 simple_lock(&uvm.swap_data_lock);
1493 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1494 rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1495 simple_unlock(&uvm.swap_data_lock);
1496
1497 return (rv);
1498 }
1499
1500 /*
1501 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1502 *
1503 * => we lock uvm.swap_data_lock
1504 */
1505 void
1506 uvm_swap_markbad(int startslot, int nslots)
1507 {
1508 struct swapdev *sdp;
1509 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1510
1511 simple_lock(&uvm.swap_data_lock);
1512 sdp = swapdrum_getsdp(startslot);
1513 KASSERT(sdp != NULL);
1514
1515 /*
1516 * we just keep track of how many pages have been marked bad
1517 * in this device, to make everything add up in swap_off().
1518 * we assume here that the range of slots will all be within
1519 * one swap device.
1520 */
1521
1522 KASSERT(uvmexp.swpgonly >= nslots);
1523 uvmexp.swpgonly -= nslots;
1524 sdp->swd_npgbad += nslots;
1525 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1526 simple_unlock(&uvm.swap_data_lock);
1527 }
1528
1529 /*
1530 * uvm_swap_free: free swap slots
1531 *
1532 * => this can be all or part of an allocation made by uvm_swap_alloc
1533 * => we lock uvm.swap_data_lock
1534 */
1535 void
1536 uvm_swap_free(int startslot, int nslots)
1537 {
1538 struct swapdev *sdp;
1539 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1540
1541 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1542 startslot, 0, 0);
1543
1544 /*
1545 * ignore attempts to free the "bad" slot.
1546 */
1547
1548 if (startslot == SWSLOT_BAD) {
1549 return;
1550 }
1551
1552 /*
1553 * convert drum slot offset back to sdp, free the blocks
1554 * in the extent, and return. must hold pri lock to do
1555 * lookup and access the extent.
1556 */
1557
1558 simple_lock(&uvm.swap_data_lock);
1559 sdp = swapdrum_getsdp(startslot);
1560 KASSERT(uvmexp.nswapdev >= 1);
1561 KASSERT(sdp != NULL);
1562 KASSERT(sdp->swd_npginuse >= nslots);
1563 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1564 sdp->swd_npginuse -= nslots;
1565 uvmexp.swpginuse -= nslots;
1566 simple_unlock(&uvm.swap_data_lock);
1567 }
1568
1569 /*
1570 * uvm_swap_put: put any number of pages into a contig place on swap
1571 *
1572 * => can be sync or async
1573 */
1574
1575 int
1576 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1577 {
1578 int error;
1579
1580 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1581 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1582 return error;
1583 }
1584
1585 /*
1586 * uvm_swap_get: get a single page from swap
1587 *
1588 * => usually a sync op (from fault)
1589 */
1590
1591 int
1592 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1593 {
1594 int error;
1595
1596 uvmexp.nswget++;
1597 KASSERT(flags & PGO_SYNCIO);
1598 if (swslot == SWSLOT_BAD) {
1599 return EIO;
1600 }
1601
1602 error = uvm_swap_io(&page, swslot, 1, B_READ |
1603 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1604 if (error == 0) {
1605
1606 /*
1607 * this page is no longer only in swap.
1608 */
1609
1610 simple_lock(&uvm.swap_data_lock);
1611 KASSERT(uvmexp.swpgonly > 0);
1612 uvmexp.swpgonly--;
1613 simple_unlock(&uvm.swap_data_lock);
1614 }
1615 return error;
1616 }
1617
1618 /*
1619 * uvm_swap_io: do an i/o operation to swap
1620 */
1621
1622 static int
1623 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1624 {
1625 daddr_t startblk;
1626 struct buf *bp;
1627 vaddr_t kva;
1628 int error, s, mapinflags;
1629 boolean_t write, async;
1630 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1631
1632 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1633 startslot, npages, flags, 0);
1634
1635 write = (flags & B_READ) == 0;
1636 async = (flags & B_ASYNC) != 0;
1637
1638 /*
1639 * convert starting drum slot to block number
1640 */
1641
1642 startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1643
1644 /*
1645 * first, map the pages into the kernel.
1646 */
1647
1648 mapinflags = !write ?
1649 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1650 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1651 kva = uvm_pagermapin(pps, npages, mapinflags);
1652
1653 /*
1654 * now allocate a buf for the i/o.
1655 */
1656
1657 bp = getiobuf();
1658
1659 /*
1660 * fill in the bp/sbp. we currently route our i/o through
1661 * /dev/drum's vnode [swapdev_vp].
1662 */
1663
1664 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1665 bp->b_proc = &proc0; /* XXX */
1666 bp->b_vnbufs.le_next = NOLIST;
1667 bp->b_data = (caddr_t)kva;
1668 bp->b_blkno = startblk;
1669 bp->b_vp = swapdev_vp;
1670 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1671
1672 /*
1673 * bump v_numoutput (counter of number of active outputs).
1674 */
1675
1676 if (write) {
1677 s = splbio();
1678 V_INCR_NUMOUTPUT(swapdev_vp);
1679 splx(s);
1680 }
1681
1682 /*
1683 * for async ops we must set up the iodone handler.
1684 */
1685
1686 if (async) {
1687 bp->b_flags |= B_CALL;
1688 bp->b_iodone = uvm_aio_biodone;
1689 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1690 if (curproc == uvm.pagedaemon_proc)
1691 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1692 else
1693 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1694 } else {
1695 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1696 }
1697 UVMHIST_LOG(pdhist,
1698 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1699 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1700
1701 /*
1702 * now we start the I/O, and if async, return.
1703 */
1704
1705 VOP_STRATEGY(swapdev_vp, bp);
1706 if (async)
1707 return 0;
1708
1709 /*
1710 * must be sync i/o. wait for it to finish
1711 */
1712
1713 error = biowait(bp);
1714
1715 /*
1716 * kill the pager mapping
1717 */
1718
1719 uvm_pagermapout(kva, npages);
1720
1721 /*
1722 * now dispose of the buf and we're done.
1723 */
1724
1725 s = splbio();
1726 if (write)
1727 vwakeup(bp);
1728 putiobuf(bp);
1729 splx(s);
1730 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1731 return (error);
1732 }
1733