Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.99
      1 /*	$NetBSD: uvm_swap.c,v 1.99 2006/01/21 18:57:45 matt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.99 2006/01/21 18:57:45 matt Exp $");
     36 
     37 #include "fs_nfs.h"
     38 #include "opt_uvmhist.h"
     39 #include "opt_compat_netbsd.h"
     40 #include "opt_ddb.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/buf.h>
     45 #include <sys/bufq.h>
     46 #include <sys/conf.h>
     47 #include <sys/proc.h>
     48 #include <sys/namei.h>
     49 #include <sys/disklabel.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/malloc.h>
     53 #include <sys/vnode.h>
     54 #include <sys/file.h>
     55 #include <sys/extent.h>
     56 #include <sys/blist.h>
     57 #include <sys/mount.h>
     58 #include <sys/pool.h>
     59 #include <sys/sa.h>
     60 #include <sys/syscallargs.h>
     61 #include <sys/swap.h>
     62 
     63 #include <uvm/uvm.h>
     64 
     65 #include <miscfs/specfs/specdev.h>
     66 
     67 /*
     68  * uvm_swap.c: manage configuration and i/o to swap space.
     69  */
     70 
     71 /*
     72  * swap space is managed in the following way:
     73  *
     74  * each swap partition or file is described by a "swapdev" structure.
     75  * each "swapdev" structure contains a "swapent" structure which contains
     76  * information that is passed up to the user (via system calls).
     77  *
     78  * each swap partition is assigned a "priority" (int) which controls
     79  * swap parition usage.
     80  *
     81  * the system maintains a global data structure describing all swap
     82  * partitions/files.   there is a sorted LIST of "swappri" structures
     83  * which describe "swapdev"'s at that priority.   this LIST is headed
     84  * by the "swap_priority" global var.    each "swappri" contains a
     85  * CIRCLEQ of "swapdev" structures at that priority.
     86  *
     87  * locking:
     88  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
     89  *    system call and prevents the swap priority list from changing
     90  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     91  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
     92  *    structures including the priority list, the swapdev structures,
     93  *    and the swapmap extent.
     94  *
     95  * each swap device has the following info:
     96  *  - swap device in use (could be disabled, preventing future use)
     97  *  - swap enabled (allows new allocations on swap)
     98  *  - map info in /dev/drum
     99  *  - vnode pointer
    100  * for swap files only:
    101  *  - block size
    102  *  - max byte count in buffer
    103  *  - buffer
    104  *
    105  * userland controls and configures swap with the swapctl(2) system call.
    106  * the sys_swapctl performs the following operations:
    107  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    108  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    109  *	(passed in via "arg") of a size passed in via "misc" ... we load
    110  *	the current swap config into the array. The actual work is done
    111  *	in the uvm_swap_stats(9) function.
    112  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    113  *	priority in "misc", start swapping on it.
    114  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    115  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    116  *	"misc")
    117  */
    118 
    119 /*
    120  * swapdev: describes a single swap partition/file
    121  *
    122  * note the following should be true:
    123  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    124  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    125  */
    126 struct swapdev {
    127 	struct oswapent swd_ose;
    128 #define	swd_dev		swd_ose.ose_dev		/* device id */
    129 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    130 #define	swd_priority	swd_ose.ose_priority	/* our priority */
    131 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    132 	char			*swd_path;	/* saved pathname of device */
    133 	int			swd_pathlen;	/* length of pathname */
    134 	int			swd_npages;	/* #pages we can use */
    135 	int			swd_npginuse;	/* #pages in use */
    136 	int			swd_npgbad;	/* #pages bad */
    137 	int			swd_drumoffset;	/* page0 offset in drum */
    138 	int			swd_drumsize;	/* #pages in drum */
    139 	blist_t			swd_blist;	/* blist for this swapdev */
    140 	struct vnode		*swd_vp;	/* backing vnode */
    141 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    142 
    143 	int			swd_bsize;	/* blocksize (bytes) */
    144 	int			swd_maxactive;	/* max active i/o reqs */
    145 	struct bufq_state	*swd_tab;	/* buffer list */
    146 	int			swd_active;	/* number of active buffers */
    147 };
    148 
    149 /*
    150  * swap device priority entry; the list is kept sorted on `spi_priority'.
    151  */
    152 struct swappri {
    153 	int			spi_priority;     /* priority */
    154 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    155 	/* circleq of swapdevs at this priority */
    156 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    157 };
    158 
    159 /*
    160  * The following two structures are used to keep track of data transfers
    161  * on swap devices associated with regular files.
    162  * NOTE: this code is more or less a copy of vnd.c; we use the same
    163  * structure names here to ease porting..
    164  */
    165 struct vndxfer {
    166 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    167 	struct swapdev	*vx_sdp;
    168 	int		vx_error;
    169 	int		vx_pending;	/* # of pending aux buffers */
    170 	int		vx_flags;
    171 #define VX_BUSY		1
    172 #define VX_DEAD		2
    173 };
    174 
    175 struct vndbuf {
    176 	struct buf	vb_buf;
    177 	struct vndxfer	*vb_xfer;
    178 };
    179 
    180 
    181 /*
    182  * We keep a of pool vndbuf's and vndxfer structures.
    183  */
    184 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL);
    185 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL);
    186 
    187 #define	getvndxfer(vnx)	do {						\
    188 	int sp = splbio();						\
    189 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);			\
    190 	splx(sp);							\
    191 } while (/*CONSTCOND*/ 0)
    192 
    193 #define putvndxfer(vnx) {						\
    194 	pool_put(&vndxfer_pool, (void *)(vnx));				\
    195 }
    196 
    197 #define	getvndbuf(vbp)	do {						\
    198 	int sp = splbio();						\
    199 	vbp = pool_get(&vndbuf_pool, PR_WAITOK);			\
    200 	splx(sp);							\
    201 } while (/*CONSTCOND*/ 0)
    202 
    203 #define putvndbuf(vbp) {						\
    204 	pool_put(&vndbuf_pool, (void *)(vbp));				\
    205 }
    206 
    207 /*
    208  * local variables
    209  */
    210 static struct extent *swapmap;		/* controls the mapping of /dev/drum */
    211 
    212 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
    213 
    214 /* list of all active swap devices [by priority] */
    215 LIST_HEAD(swap_priority, swappri);
    216 static struct swap_priority swap_priority;
    217 
    218 /* locks */
    219 static struct lock swap_syscall_lock;
    220 
    221 /*
    222  * prototypes
    223  */
    224 static struct swapdev	*swapdrum_getsdp(int);
    225 
    226 static struct swapdev	*swaplist_find(struct vnode *, int);
    227 static void		 swaplist_insert(struct swapdev *,
    228 					 struct swappri *, int);
    229 static void		 swaplist_trim(void);
    230 
    231 static int swap_on(struct lwp *, struct swapdev *);
    232 static int swap_off(struct lwp *, struct swapdev *);
    233 
    234 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
    235 
    236 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    237 static void sw_reg_iodone(struct buf *);
    238 static void sw_reg_start(struct swapdev *);
    239 
    240 static int uvm_swap_io(struct vm_page **, int, int, int);
    241 
    242 /*
    243  * uvm_swap_init: init the swap system data structures and locks
    244  *
    245  * => called at boot time from init_main.c after the filesystems
    246  *	are brought up (which happens after uvm_init())
    247  */
    248 void
    249 uvm_swap_init(void)
    250 {
    251 	UVMHIST_FUNC("uvm_swap_init");
    252 
    253 	UVMHIST_CALLED(pdhist);
    254 	/*
    255 	 * first, init the swap list, its counter, and its lock.
    256 	 * then get a handle on the vnode for /dev/drum by using
    257 	 * the its dev_t number ("swapdev", from MD conf.c).
    258 	 */
    259 
    260 	LIST_INIT(&swap_priority);
    261 	uvmexp.nswapdev = 0;
    262 	lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
    263 	simple_lock_init(&uvm.swap_data_lock);
    264 
    265 	if (bdevvp(swapdev, &swapdev_vp))
    266 		panic("uvm_swap_init: can't get vnode for swap device");
    267 
    268 	/*
    269 	 * create swap block resource map to map /dev/drum.   the range
    270 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    271 	 * that block 0 is reserved (used to indicate an allocation
    272 	 * failure, or no allocation).
    273 	 */
    274 	swapmap = extent_create("swapmap", 1, INT_MAX,
    275 				M_VMSWAP, 0, 0, EX_NOWAIT);
    276 	if (swapmap == 0)
    277 		panic("uvm_swap_init: extent_create failed");
    278 
    279 	/*
    280 	 * done!
    281 	 */
    282 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    283 }
    284 
    285 /*
    286  * swaplist functions: functions that operate on the list of swap
    287  * devices on the system.
    288  */
    289 
    290 /*
    291  * swaplist_insert: insert swap device "sdp" into the global list
    292  *
    293  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    294  * => caller must provide a newly malloc'd swappri structure (we will
    295  *	FREE it if we don't need it... this it to prevent malloc blocking
    296  *	here while adding swap)
    297  */
    298 static void
    299 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    300 {
    301 	struct swappri *spp, *pspp;
    302 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    303 
    304 	/*
    305 	 * find entry at or after which to insert the new device.
    306 	 */
    307 	pspp = NULL;
    308 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    309 		if (priority <= spp->spi_priority)
    310 			break;
    311 		pspp = spp;
    312 	}
    313 
    314 	/*
    315 	 * new priority?
    316 	 */
    317 	if (spp == NULL || spp->spi_priority != priority) {
    318 		spp = newspp;  /* use newspp! */
    319 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    320 			    priority, 0, 0, 0);
    321 
    322 		spp->spi_priority = priority;
    323 		CIRCLEQ_INIT(&spp->spi_swapdev);
    324 
    325 		if (pspp)
    326 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    327 		else
    328 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    329 	} else {
    330 	  	/* we don't need a new priority structure, free it */
    331 		FREE(newspp, M_VMSWAP);
    332 	}
    333 
    334 	/*
    335 	 * priority found (or created).   now insert on the priority's
    336 	 * circleq list and bump the total number of swapdevs.
    337 	 */
    338 	sdp->swd_priority = priority;
    339 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    340 	uvmexp.nswapdev++;
    341 }
    342 
    343 /*
    344  * swaplist_find: find and optionally remove a swap device from the
    345  *	global list.
    346  *
    347  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    348  * => we return the swapdev we found (and removed)
    349  */
    350 static struct swapdev *
    351 swaplist_find(struct vnode *vp, boolean_t remove)
    352 {
    353 	struct swapdev *sdp;
    354 	struct swappri *spp;
    355 
    356 	/*
    357 	 * search the lists for the requested vp
    358 	 */
    359 
    360 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    361 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    362 			if (sdp->swd_vp == vp) {
    363 				if (remove) {
    364 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    365 					    sdp, swd_next);
    366 					uvmexp.nswapdev--;
    367 				}
    368 				return(sdp);
    369 			}
    370 		}
    371 	}
    372 	return (NULL);
    373 }
    374 
    375 
    376 /*
    377  * swaplist_trim: scan priority list for empty priority entries and kill
    378  *	them.
    379  *
    380  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    381  */
    382 static void
    383 swaplist_trim(void)
    384 {
    385 	struct swappri *spp, *nextspp;
    386 
    387 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    388 		nextspp = LIST_NEXT(spp, spi_swappri);
    389 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    390 		    (void *)&spp->spi_swapdev)
    391 			continue;
    392 		LIST_REMOVE(spp, spi_swappri);
    393 		free(spp, M_VMSWAP);
    394 	}
    395 }
    396 
    397 /*
    398  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    399  *	to the "swapdev" that maps that section of the drum.
    400  *
    401  * => each swapdev takes one big contig chunk of the drum
    402  * => caller must hold uvm.swap_data_lock
    403  */
    404 static struct swapdev *
    405 swapdrum_getsdp(int pgno)
    406 {
    407 	struct swapdev *sdp;
    408 	struct swappri *spp;
    409 
    410 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    411 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    412 			if (sdp->swd_flags & SWF_FAKE)
    413 				continue;
    414 			if (pgno >= sdp->swd_drumoffset &&
    415 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    416 				return sdp;
    417 			}
    418 		}
    419 	}
    420 	return NULL;
    421 }
    422 
    423 
    424 /*
    425  * sys_swapctl: main entry point for swapctl(2) system call
    426  * 	[with two helper functions: swap_on and swap_off]
    427  */
    428 int
    429 sys_swapctl(struct lwp *l, void *v, register_t *retval)
    430 {
    431 	struct sys_swapctl_args /* {
    432 		syscallarg(int) cmd;
    433 		syscallarg(void *) arg;
    434 		syscallarg(int) misc;
    435 	} */ *uap = (struct sys_swapctl_args *)v;
    436 	struct proc *p = l->l_proc;
    437 	struct vnode *vp;
    438 	struct nameidata nd;
    439 	struct swappri *spp;
    440 	struct swapdev *sdp;
    441 	struct swapent *sep;
    442 	char	userpath[PATH_MAX + 1];
    443 	size_t	len;
    444 	int	error, misc;
    445 	int	priority;
    446 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    447 
    448 	misc = SCARG(uap, misc);
    449 
    450 	/*
    451 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    452 	 */
    453 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
    454 
    455 	/*
    456 	 * we handle the non-priv NSWAP and STATS request first.
    457 	 *
    458 	 * SWAP_NSWAP: return number of config'd swap devices
    459 	 * [can also be obtained with uvmexp sysctl]
    460 	 */
    461 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    462 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    463 		    0, 0, 0);
    464 		*retval = uvmexp.nswapdev;
    465 		error = 0;
    466 		goto out;
    467 	}
    468 
    469 	/*
    470 	 * SWAP_STATS: get stats on current # of configured swap devs
    471 	 *
    472 	 * note that the swap_priority list can't change as long
    473 	 * as we are holding the swap_syscall_lock.  we don't want
    474 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
    475 	 * copyout() and we don't want to be holding that lock then!
    476 	 */
    477 	if (SCARG(uap, cmd) == SWAP_STATS
    478 #if defined(COMPAT_13)
    479 	    || SCARG(uap, cmd) == SWAP_OSTATS
    480 #endif
    481 	    ) {
    482 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    483 			misc = uvmexp.nswapdev;
    484 #if defined(COMPAT_13)
    485 		if (SCARG(uap, cmd) == SWAP_OSTATS)
    486 			len = sizeof(struct oswapent) * misc;
    487 		else
    488 #endif
    489 			len = sizeof(struct swapent) * misc;
    490 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
    491 
    492 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
    493 		error = copyout(sep, SCARG(uap, arg), len);
    494 
    495 		free(sep, M_TEMP);
    496 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    497 		goto out;
    498 	}
    499 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    500 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    501 
    502 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    503 		goto out;
    504 	}
    505 
    506 	/*
    507 	 * all other requests require superuser privs.   verify.
    508 	 */
    509 	if ((error = suser(p->p_ucred, &p->p_acflag)))
    510 		goto out;
    511 
    512 	/*
    513 	 * at this point we expect a path name in arg.   we will
    514 	 * use namei() to gain a vnode reference (vref), and lock
    515 	 * the vnode (VOP_LOCK).
    516 	 *
    517 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    518 	 * miniroot)
    519 	 */
    520 	if (SCARG(uap, arg) == NULL) {
    521 		vp = rootvp;		/* miniroot */
    522 		if (vget(vp, LK_EXCLUSIVE)) {
    523 			error = EBUSY;
    524 			goto out;
    525 		}
    526 		if (SCARG(uap, cmd) == SWAP_ON &&
    527 		    copystr("miniroot", userpath, sizeof userpath, &len))
    528 			panic("swapctl: miniroot copy failed");
    529 	} else {
    530 		int	space;
    531 		char	*where;
    532 
    533 		if (SCARG(uap, cmd) == SWAP_ON) {
    534 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    535 			    sizeof userpath, &len)))
    536 				goto out;
    537 			space = UIO_SYSSPACE;
    538 			where = userpath;
    539 		} else {
    540 			space = UIO_USERSPACE;
    541 			where = (char *)SCARG(uap, arg);
    542 		}
    543 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, l);
    544 		if ((error = namei(&nd)))
    545 			goto out;
    546 		vp = nd.ni_vp;
    547 	}
    548 	/* note: "vp" is referenced and locked */
    549 
    550 	error = 0;		/* assume no error */
    551 	switch(SCARG(uap, cmd)) {
    552 
    553 	case SWAP_DUMPDEV:
    554 		if (vp->v_type != VBLK) {
    555 			error = ENOTBLK;
    556 			break;
    557 		}
    558 		dumpdev = vp->v_rdev;
    559 		cpu_dumpconf();
    560 		break;
    561 
    562 	case SWAP_CTL:
    563 		/*
    564 		 * get new priority, remove old entry (if any) and then
    565 		 * reinsert it in the correct place.  finally, prune out
    566 		 * any empty priority structures.
    567 		 */
    568 		priority = SCARG(uap, misc);
    569 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    570 		simple_lock(&uvm.swap_data_lock);
    571 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
    572 			error = ENOENT;
    573 		} else {
    574 			swaplist_insert(sdp, spp, priority);
    575 			swaplist_trim();
    576 		}
    577 		simple_unlock(&uvm.swap_data_lock);
    578 		if (error)
    579 			free(spp, M_VMSWAP);
    580 		break;
    581 
    582 	case SWAP_ON:
    583 
    584 		/*
    585 		 * check for duplicates.   if none found, then insert a
    586 		 * dummy entry on the list to prevent someone else from
    587 		 * trying to enable this device while we are working on
    588 		 * it.
    589 		 */
    590 
    591 		priority = SCARG(uap, misc);
    592 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    593 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    594 		memset(sdp, 0, sizeof(*sdp));
    595 		sdp->swd_flags = SWF_FAKE;
    596 		sdp->swd_vp = vp;
    597 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    598 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    599 		simple_lock(&uvm.swap_data_lock);
    600 		if (swaplist_find(vp, 0) != NULL) {
    601 			error = EBUSY;
    602 			simple_unlock(&uvm.swap_data_lock);
    603 			bufq_free(sdp->swd_tab);
    604 			free(sdp, M_VMSWAP);
    605 			free(spp, M_VMSWAP);
    606 			break;
    607 		}
    608 		swaplist_insert(sdp, spp, priority);
    609 		simple_unlock(&uvm.swap_data_lock);
    610 
    611 		sdp->swd_pathlen = len;
    612 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    613 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    614 			panic("swapctl: copystr");
    615 
    616 		/*
    617 		 * we've now got a FAKE placeholder in the swap list.
    618 		 * now attempt to enable swap on it.  if we fail, undo
    619 		 * what we've done and kill the fake entry we just inserted.
    620 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    621 		 */
    622 
    623 		if ((error = swap_on(l, sdp)) != 0) {
    624 			simple_lock(&uvm.swap_data_lock);
    625 			(void) swaplist_find(vp, 1);  /* kill fake entry */
    626 			swaplist_trim();
    627 			simple_unlock(&uvm.swap_data_lock);
    628 			bufq_free(sdp->swd_tab);
    629 			free(sdp->swd_path, M_VMSWAP);
    630 			free(sdp, M_VMSWAP);
    631 			break;
    632 		}
    633 		break;
    634 
    635 	case SWAP_OFF:
    636 		simple_lock(&uvm.swap_data_lock);
    637 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
    638 			simple_unlock(&uvm.swap_data_lock);
    639 			error = ENXIO;
    640 			break;
    641 		}
    642 
    643 		/*
    644 		 * If a device isn't in use or enabled, we
    645 		 * can't stop swapping from it (again).
    646 		 */
    647 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    648 			simple_unlock(&uvm.swap_data_lock);
    649 			error = EBUSY;
    650 			break;
    651 		}
    652 
    653 		/*
    654 		 * do the real work.
    655 		 */
    656 		error = swap_off(l, sdp);
    657 		break;
    658 
    659 	default:
    660 		error = EINVAL;
    661 	}
    662 
    663 	/*
    664 	 * done!  release the ref gained by namei() and unlock.
    665 	 */
    666 	vput(vp);
    667 
    668 out:
    669 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
    670 
    671 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    672 	return (error);
    673 }
    674 
    675 /*
    676  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
    677  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    678  * emulation to use it directly without going through sys_swapctl().
    679  * The problem with using sys_swapctl() there is that it involves
    680  * copying the swapent array to the stackgap, and this array's size
    681  * is not known at build time. Hence it would not be possible to
    682  * ensure it would fit in the stackgap in any case.
    683  */
    684 void
    685 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    686 {
    687 
    688 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
    689 	uvm_swap_stats_locked(cmd, sep, sec, retval);
    690 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
    691 }
    692 
    693 static void
    694 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
    695 {
    696 	struct swappri *spp;
    697 	struct swapdev *sdp;
    698 	int count = 0;
    699 
    700 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    701 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    702 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
    703 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    704 		  	/*
    705 			 * backwards compatibility for system call.
    706 			 * note that we use 'struct oswapent' as an
    707 			 * overlay into both 'struct swapdev' and
    708 			 * the userland 'struct swapent', as we
    709 			 * want to retain backwards compatibility
    710 			 * with NetBSD 1.3.
    711 			 */
    712 			sdp->swd_ose.ose_inuse =
    713 			    btodb((uint64_t)sdp->swd_npginuse <<
    714 			    PAGE_SHIFT);
    715 			(void)memcpy(sep, &sdp->swd_ose,
    716 			    sizeof(struct oswapent));
    717 
    718 			/* now copy out the path if necessary */
    719 #if defined(COMPAT_13)
    720 			if (cmd == SWAP_STATS)
    721 #endif
    722 				(void)memcpy(&sep->se_path, sdp->swd_path,
    723 				    sdp->swd_pathlen);
    724 
    725 			count++;
    726 #if defined(COMPAT_13)
    727 			if (cmd == SWAP_OSTATS)
    728 				sep = (struct swapent *)
    729 				    ((struct oswapent *)sep + 1);
    730 			else
    731 #endif
    732 				sep++;
    733 		}
    734 	}
    735 
    736 	*retval = count;
    737 	return;
    738 }
    739 
    740 /*
    741  * swap_on: attempt to enable a swapdev for swapping.   note that the
    742  *	swapdev is already on the global list, but disabled (marked
    743  *	SWF_FAKE).
    744  *
    745  * => we avoid the start of the disk (to protect disk labels)
    746  * => we also avoid the miniroot, if we are swapping to root.
    747  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
    748  *	if needed.
    749  */
    750 static int
    751 swap_on(struct lwp *l, struct swapdev *sdp)
    752 {
    753 	struct vnode *vp;
    754 	struct proc *p = l->l_proc;
    755 	int error, npages, nblocks, size;
    756 	long addr;
    757 	u_long result;
    758 	struct vattr va;
    759 #ifdef NFS
    760 	extern int (**nfsv2_vnodeop_p)(void *);
    761 #endif /* NFS */
    762 	const struct bdevsw *bdev;
    763 	dev_t dev;
    764 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    765 
    766 	/*
    767 	 * we want to enable swapping on sdp.   the swd_vp contains
    768 	 * the vnode we want (locked and ref'd), and the swd_dev
    769 	 * contains the dev_t of the file, if it a block device.
    770 	 */
    771 
    772 	vp = sdp->swd_vp;
    773 	dev = sdp->swd_dev;
    774 
    775 	/*
    776 	 * open the swap file (mostly useful for block device files to
    777 	 * let device driver know what is up).
    778 	 *
    779 	 * we skip the open/close for root on swap because the root
    780 	 * has already been opened when root was mounted (mountroot).
    781 	 */
    782 	if (vp != rootvp) {
    783 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, l)))
    784 			return (error);
    785 	}
    786 
    787 	/* XXX this only works for block devices */
    788 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    789 
    790 	/*
    791 	 * we now need to determine the size of the swap area.   for
    792 	 * block specials we can call the d_psize function.
    793 	 * for normal files, we must stat [get attrs].
    794 	 *
    795 	 * we put the result in nblks.
    796 	 * for normal files, we also want the filesystem block size
    797 	 * (which we get with statfs).
    798 	 */
    799 	switch (vp->v_type) {
    800 	case VBLK:
    801 		bdev = bdevsw_lookup(dev);
    802 		if (bdev == NULL || bdev->d_psize == NULL ||
    803 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
    804 			error = ENXIO;
    805 			goto bad;
    806 		}
    807 		break;
    808 
    809 	case VREG:
    810 		if ((error = VOP_GETATTR(vp, &va, p->p_ucred, l)))
    811 			goto bad;
    812 		nblocks = (int)btodb(va.va_size);
    813 		if ((error =
    814 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, l)) != 0)
    815 			goto bad;
    816 
    817 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    818 		/*
    819 		 * limit the max # of outstanding I/O requests we issue
    820 		 * at any one time.   take it easy on NFS servers.
    821 		 */
    822 #ifdef NFS
    823 		if (vp->v_op == nfsv2_vnodeop_p)
    824 			sdp->swd_maxactive = 2; /* XXX */
    825 		else
    826 #endif /* NFS */
    827 			sdp->swd_maxactive = 8; /* XXX */
    828 		break;
    829 
    830 	default:
    831 		error = ENXIO;
    832 		goto bad;
    833 	}
    834 
    835 	/*
    836 	 * save nblocks in a safe place and convert to pages.
    837 	 */
    838 
    839 	sdp->swd_ose.ose_nblks = nblocks;
    840 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    841 
    842 	/*
    843 	 * for block special files, we want to make sure that leave
    844 	 * the disklabel and bootblocks alone, so we arrange to skip
    845 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    846 	 * note that because of this the "size" can be less than the
    847 	 * actual number of blocks on the device.
    848 	 */
    849 	if (vp->v_type == VBLK) {
    850 		/* we use pages 1 to (size - 1) [inclusive] */
    851 		size = npages - 1;
    852 		addr = 1;
    853 	} else {
    854 		/* we use pages 0 to (size - 1) [inclusive] */
    855 		size = npages;
    856 		addr = 0;
    857 	}
    858 
    859 	/*
    860 	 * make sure we have enough blocks for a reasonable sized swap
    861 	 * area.   we want at least one page.
    862 	 */
    863 
    864 	if (size < 1) {
    865 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    866 		error = EINVAL;
    867 		goto bad;
    868 	}
    869 
    870 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    871 
    872 	/*
    873 	 * now we need to allocate an extent to manage this swap device
    874 	 */
    875 
    876 	sdp->swd_blist = blist_create(npages);
    877 	/* mark all expect the `saved' region free. */
    878 	blist_free(sdp->swd_blist, addr, size);
    879 
    880 	/*
    881 	 * if the vnode we are swapping to is the root vnode
    882 	 * (i.e. we are swapping to the miniroot) then we want
    883 	 * to make sure we don't overwrite it.   do a statfs to
    884 	 * find its size and skip over it.
    885 	 */
    886 	if (vp == rootvp) {
    887 		struct mount *mp;
    888 		struct statvfs *sp;
    889 		int rootblocks, rootpages;
    890 
    891 		mp = rootvnode->v_mount;
    892 		sp = &mp->mnt_stat;
    893 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    894 		/*
    895 		 * XXX: sp->f_blocks isn't the total number of
    896 		 * blocks in the filesystem, it's the number of
    897 		 * data blocks.  so, our rootblocks almost
    898 		 * definitely underestimates the total size
    899 		 * of the filesystem - how badly depends on the
    900 		 * details of the filesystem type.  there isn't
    901 		 * an obvious way to deal with this cleanly
    902 		 * and perfectly, so for now we just pad our
    903 		 * rootblocks estimate with an extra 5 percent.
    904 		 */
    905 		rootblocks += (rootblocks >> 5) +
    906 			(rootblocks >> 6) +
    907 			(rootblocks >> 7);
    908 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    909 		if (rootpages > size)
    910 			panic("swap_on: miniroot larger than swap?");
    911 
    912 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    913 			panic("swap_on: unable to preserve miniroot");
    914 		}
    915 
    916 		size -= rootpages;
    917 		printf("Preserved %d pages of miniroot ", rootpages);
    918 		printf("leaving %d pages of swap\n", size);
    919 	}
    920 
    921 	/*
    922 	 * add a ref to vp to reflect usage as a swap device.
    923 	 */
    924 	vref(vp);
    925 
    926 	/*
    927 	 * now add the new swapdev to the drum and enable.
    928 	 */
    929 	if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
    930 	    EX_WAITOK, &result))
    931 		panic("swapdrum_add");
    932 
    933 	sdp->swd_drumoffset = (int)result;
    934 	sdp->swd_drumsize = npages;
    935 	sdp->swd_npages = size;
    936 	simple_lock(&uvm.swap_data_lock);
    937 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    938 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    939 	uvmexp.swpages += size;
    940 	uvmexp.swpgavail += size;
    941 	simple_unlock(&uvm.swap_data_lock);
    942 	return (0);
    943 
    944 	/*
    945 	 * failure: clean up and return error.
    946 	 */
    947 
    948 bad:
    949 	if (sdp->swd_blist) {
    950 		blist_destroy(sdp->swd_blist);
    951 	}
    952 	if (vp != rootvp) {
    953 		(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, l);
    954 	}
    955 	return (error);
    956 }
    957 
    958 /*
    959  * swap_off: stop swapping on swapdev
    960  *
    961  * => swap data should be locked, we will unlock.
    962  */
    963 static int
    964 swap_off(struct lwp *l, struct swapdev *sdp)
    965 {
    966 	struct proc *p = l->l_proc;
    967 	int npages = sdp->swd_npages;
    968 	int error = 0;
    969 
    970 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
    971 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
    972 
    973 	/* disable the swap area being removed */
    974 	sdp->swd_flags &= ~SWF_ENABLE;
    975 	uvmexp.swpgavail -= npages;
    976 	simple_unlock(&uvm.swap_data_lock);
    977 
    978 	/*
    979 	 * the idea is to find all the pages that are paged out to this
    980 	 * device, and page them all in.  in uvm, swap-backed pageable
    981 	 * memory can take two forms: aobjs and anons.  call the
    982 	 * swapoff hook for each subsystem to bring in pages.
    983 	 */
    984 
    985 	if (uao_swap_off(sdp->swd_drumoffset,
    986 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
    987 	    amap_swap_off(sdp->swd_drumoffset,
    988 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
    989 		error = ENOMEM;
    990 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
    991 		error = EBUSY;
    992 	}
    993 
    994 	if (error) {
    995 		simple_lock(&uvm.swap_data_lock);
    996 		sdp->swd_flags |= SWF_ENABLE;
    997 		uvmexp.swpgavail += npages;
    998 		simple_unlock(&uvm.swap_data_lock);
    999 
   1000 		return error;
   1001 	}
   1002 
   1003 	/*
   1004 	 * done with the vnode.
   1005 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1006 	 * so that spec_close() can tell if this is the last close.
   1007 	 */
   1008 	vrele(sdp->swd_vp);
   1009 	if (sdp->swd_vp != rootvp) {
   1010 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, l);
   1011 	}
   1012 
   1013 	simple_lock(&uvm.swap_data_lock);
   1014 	uvmexp.swpages -= npages;
   1015 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1016 
   1017 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
   1018 		panic("swap_off: swapdev not in list");
   1019 	swaplist_trim();
   1020 	simple_unlock(&uvm.swap_data_lock);
   1021 
   1022 	/*
   1023 	 * free all resources!
   1024 	 */
   1025 	extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
   1026 		    EX_WAITOK);
   1027 	blist_destroy(sdp->swd_blist);
   1028 	bufq_free(sdp->swd_tab);
   1029 	free(sdp, M_VMSWAP);
   1030 	return (0);
   1031 }
   1032 
   1033 /*
   1034  * /dev/drum interface and i/o functions
   1035  */
   1036 
   1037 /*
   1038  * swstrategy: perform I/O on the drum
   1039  *
   1040  * => we must map the i/o request from the drum to the correct swapdev.
   1041  */
   1042 static void
   1043 swstrategy(struct buf *bp)
   1044 {
   1045 	struct swapdev *sdp;
   1046 	struct vnode *vp;
   1047 	int s, pageno, bn;
   1048 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1049 
   1050 	/*
   1051 	 * convert block number to swapdev.   note that swapdev can't
   1052 	 * be yanked out from under us because we are holding resources
   1053 	 * in it (i.e. the blocks we are doing I/O on).
   1054 	 */
   1055 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1056 	simple_lock(&uvm.swap_data_lock);
   1057 	sdp = swapdrum_getsdp(pageno);
   1058 	simple_unlock(&uvm.swap_data_lock);
   1059 	if (sdp == NULL) {
   1060 		bp->b_error = EINVAL;
   1061 		bp->b_flags |= B_ERROR;
   1062 		biodone(bp);
   1063 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1064 		return;
   1065 	}
   1066 
   1067 	/*
   1068 	 * convert drum page number to block number on this swapdev.
   1069 	 */
   1070 
   1071 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1072 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1073 
   1074 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1075 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1076 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1077 
   1078 	/*
   1079 	 * for block devices we finish up here.
   1080 	 * for regular files we have to do more work which we delegate
   1081 	 * to sw_reg_strategy().
   1082 	 */
   1083 
   1084 	switch (sdp->swd_vp->v_type) {
   1085 	default:
   1086 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
   1087 
   1088 	case VBLK:
   1089 
   1090 		/*
   1091 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1092 		 * on the swapdev (sdp).
   1093 		 */
   1094 		s = splbio();
   1095 		bp->b_blkno = bn;		/* swapdev block number */
   1096 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1097 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1098 
   1099 		/*
   1100 		 * if we are doing a write, we have to redirect the i/o on
   1101 		 * drum's v_numoutput counter to the swapdevs.
   1102 		 */
   1103 		if ((bp->b_flags & B_READ) == 0) {
   1104 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1105 			V_INCR_NUMOUTPUT(vp);	/* put it on swapdev */
   1106 		}
   1107 
   1108 		/*
   1109 		 * finally plug in swapdev vnode and start I/O
   1110 		 */
   1111 		bp->b_vp = vp;
   1112 		splx(s);
   1113 		VOP_STRATEGY(vp, bp);
   1114 		return;
   1115 
   1116 	case VREG:
   1117 		/*
   1118 		 * delegate to sw_reg_strategy function.
   1119 		 */
   1120 		sw_reg_strategy(sdp, bp, bn);
   1121 		return;
   1122 	}
   1123 	/* NOTREACHED */
   1124 }
   1125 
   1126 /*
   1127  * swread: the read function for the drum (just a call to physio)
   1128  */
   1129 /*ARGSUSED*/
   1130 static int
   1131 swread(dev_t dev, struct uio *uio, int ioflag)
   1132 {
   1133 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1134 
   1135 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1136 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1137 }
   1138 
   1139 /*
   1140  * swwrite: the write function for the drum (just a call to physio)
   1141  */
   1142 /*ARGSUSED*/
   1143 static int
   1144 swwrite(dev_t dev, struct uio *uio, int ioflag)
   1145 {
   1146 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1147 
   1148 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1149 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1150 }
   1151 
   1152 const struct bdevsw swap_bdevsw = {
   1153 	noopen, noclose, swstrategy, noioctl, nodump, nosize,
   1154 };
   1155 
   1156 const struct cdevsw swap_cdevsw = {
   1157 	nullopen, nullclose, swread, swwrite, noioctl,
   1158 	    nostop, notty, nopoll, nommap, nokqfilter
   1159 };
   1160 
   1161 /*
   1162  * sw_reg_strategy: handle swap i/o to regular files
   1163  */
   1164 static void
   1165 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1166 {
   1167 	struct vnode	*vp;
   1168 	struct vndxfer	*vnx;
   1169 	daddr_t		nbn;
   1170 	caddr_t		addr;
   1171 	off_t		byteoff;
   1172 	int		s, off, nra, error, sz, resid;
   1173 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1174 
   1175 	/*
   1176 	 * allocate a vndxfer head for this transfer and point it to
   1177 	 * our buffer.
   1178 	 */
   1179 	getvndxfer(vnx);
   1180 	vnx->vx_flags = VX_BUSY;
   1181 	vnx->vx_error = 0;
   1182 	vnx->vx_pending = 0;
   1183 	vnx->vx_bp = bp;
   1184 	vnx->vx_sdp = sdp;
   1185 
   1186 	/*
   1187 	 * setup for main loop where we read filesystem blocks into
   1188 	 * our buffer.
   1189 	 */
   1190 	error = 0;
   1191 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1192 	addr = bp->b_data;		/* current position in buffer */
   1193 	byteoff = dbtob((uint64_t)bn);
   1194 
   1195 	for (resid = bp->b_resid; resid; resid -= sz) {
   1196 		struct vndbuf	*nbp;
   1197 
   1198 		/*
   1199 		 * translate byteoffset into block number.  return values:
   1200 		 *   vp = vnode of underlying device
   1201 		 *  nbn = new block number (on underlying vnode dev)
   1202 		 *  nra = num blocks we can read-ahead (excludes requested
   1203 		 *	block)
   1204 		 */
   1205 		nra = 0;
   1206 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1207 				 	&vp, &nbn, &nra);
   1208 
   1209 		if (error == 0 && nbn == (daddr_t)-1) {
   1210 			/*
   1211 			 * this used to just set error, but that doesn't
   1212 			 * do the right thing.  Instead, it causes random
   1213 			 * memory errors.  The panic() should remain until
   1214 			 * this condition doesn't destabilize the system.
   1215 			 */
   1216 #if 1
   1217 			panic("sw_reg_strategy: swap to sparse file");
   1218 #else
   1219 			error = EIO;	/* failure */
   1220 #endif
   1221 		}
   1222 
   1223 		/*
   1224 		 * punt if there was an error or a hole in the file.
   1225 		 * we must wait for any i/o ops we have already started
   1226 		 * to finish before returning.
   1227 		 *
   1228 		 * XXX we could deal with holes here but it would be
   1229 		 * a hassle (in the write case).
   1230 		 */
   1231 		if (error) {
   1232 			s = splbio();
   1233 			vnx->vx_error = error;	/* pass error up */
   1234 			goto out;
   1235 		}
   1236 
   1237 		/*
   1238 		 * compute the size ("sz") of this transfer (in bytes).
   1239 		 */
   1240 		off = byteoff % sdp->swd_bsize;
   1241 		sz = (1 + nra) * sdp->swd_bsize - off;
   1242 		if (sz > resid)
   1243 			sz = resid;
   1244 
   1245 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1246 			    "vp %p/%p offset 0x%x/0x%x",
   1247 			    sdp->swd_vp, vp, byteoff, nbn);
   1248 
   1249 		/*
   1250 		 * now get a buf structure.   note that the vb_buf is
   1251 		 * at the front of the nbp structure so that you can
   1252 		 * cast pointers between the two structure easily.
   1253 		 */
   1254 		getvndbuf(nbp);
   1255 		BUF_INIT(&nbp->vb_buf);
   1256 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
   1257 		nbp->vb_buf.b_bcount   = sz;
   1258 		nbp->vb_buf.b_bufsize  = sz;
   1259 		nbp->vb_buf.b_error    = 0;
   1260 		nbp->vb_buf.b_data     = addr;
   1261 		nbp->vb_buf.b_lblkno   = 0;
   1262 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1263 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1264 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
   1265 		nbp->vb_buf.b_vp       = vp;
   1266 		if (vp->v_type == VBLK) {
   1267 			nbp->vb_buf.b_dev = vp->v_rdev;
   1268 		}
   1269 
   1270 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1271 
   1272 		/*
   1273 		 * Just sort by block number
   1274 		 */
   1275 		s = splbio();
   1276 		if (vnx->vx_error != 0) {
   1277 			putvndbuf(nbp);
   1278 			goto out;
   1279 		}
   1280 		vnx->vx_pending++;
   1281 
   1282 		/* sort it in and start I/O if we are not over our limit */
   1283 		BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
   1284 		sw_reg_start(sdp);
   1285 		splx(s);
   1286 
   1287 		/*
   1288 		 * advance to the next I/O
   1289 		 */
   1290 		byteoff += sz;
   1291 		addr += sz;
   1292 	}
   1293 
   1294 	s = splbio();
   1295 
   1296 out: /* Arrive here at splbio */
   1297 	vnx->vx_flags &= ~VX_BUSY;
   1298 	if (vnx->vx_pending == 0) {
   1299 		if (vnx->vx_error != 0) {
   1300 			bp->b_error = vnx->vx_error;
   1301 			bp->b_flags |= B_ERROR;
   1302 		}
   1303 		putvndxfer(vnx);
   1304 		biodone(bp);
   1305 	}
   1306 	splx(s);
   1307 }
   1308 
   1309 /*
   1310  * sw_reg_start: start an I/O request on the requested swapdev
   1311  *
   1312  * => reqs are sorted by b_rawblkno (above)
   1313  */
   1314 static void
   1315 sw_reg_start(struct swapdev *sdp)
   1316 {
   1317 	struct buf	*bp;
   1318 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1319 
   1320 	/* recursion control */
   1321 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1322 		return;
   1323 
   1324 	sdp->swd_flags |= SWF_BUSY;
   1325 
   1326 	while (sdp->swd_active < sdp->swd_maxactive) {
   1327 		bp = BUFQ_GET(sdp->swd_tab);
   1328 		if (bp == NULL)
   1329 			break;
   1330 		sdp->swd_active++;
   1331 
   1332 		UVMHIST_LOG(pdhist,
   1333 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1334 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1335 		if ((bp->b_flags & B_READ) == 0)
   1336 			V_INCR_NUMOUTPUT(bp->b_vp);
   1337 
   1338 		VOP_STRATEGY(bp->b_vp, bp);
   1339 	}
   1340 	sdp->swd_flags &= ~SWF_BUSY;
   1341 }
   1342 
   1343 /*
   1344  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1345  *
   1346  * => note that we can recover the vndbuf struct by casting the buf ptr
   1347  */
   1348 static void
   1349 sw_reg_iodone(struct buf *bp)
   1350 {
   1351 	struct vndbuf *vbp = (struct vndbuf *) bp;
   1352 	struct vndxfer *vnx = vbp->vb_xfer;
   1353 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1354 	struct swapdev	*sdp = vnx->vx_sdp;
   1355 	int s, resid, error;
   1356 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1357 
   1358 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1359 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1360 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1361 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1362 
   1363 	/*
   1364 	 * protect vbp at splbio and update.
   1365 	 */
   1366 
   1367 	s = splbio();
   1368 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1369 	pbp->b_resid -= resid;
   1370 	vnx->vx_pending--;
   1371 
   1372 	if (vbp->vb_buf.b_flags & B_ERROR) {
   1373 		/* pass error upward */
   1374 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1375 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1376 		vnx->vx_error = error;
   1377 	}
   1378 
   1379 	/*
   1380 	 * kill vbp structure
   1381 	 */
   1382 	putvndbuf(vbp);
   1383 
   1384 	/*
   1385 	 * wrap up this transaction if it has run to completion or, in
   1386 	 * case of an error, when all auxiliary buffers have returned.
   1387 	 */
   1388 	if (vnx->vx_error != 0) {
   1389 		/* pass error upward */
   1390 		pbp->b_flags |= B_ERROR;
   1391 		pbp->b_error = vnx->vx_error;
   1392 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1393 			putvndxfer(vnx);
   1394 			biodone(pbp);
   1395 		}
   1396 	} else if (pbp->b_resid == 0) {
   1397 		KASSERT(vnx->vx_pending == 0);
   1398 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1399 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1400 			    pbp, vnx->vx_error, 0, 0);
   1401 			putvndxfer(vnx);
   1402 			biodone(pbp);
   1403 		}
   1404 	}
   1405 
   1406 	/*
   1407 	 * done!   start next swapdev I/O if one is pending
   1408 	 */
   1409 	sdp->swd_active--;
   1410 	sw_reg_start(sdp);
   1411 	splx(s);
   1412 }
   1413 
   1414 
   1415 /*
   1416  * uvm_swap_alloc: allocate space on swap
   1417  *
   1418  * => allocation is done "round robin" down the priority list, as we
   1419  *	allocate in a priority we "rotate" the circle queue.
   1420  * => space can be freed with uvm_swap_free
   1421  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1422  * => we lock uvm.swap_data_lock
   1423  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1424  */
   1425 int
   1426 uvm_swap_alloc(int *nslots /* IN/OUT */, boolean_t lessok)
   1427 {
   1428 	struct swapdev *sdp;
   1429 	struct swappri *spp;
   1430 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1431 
   1432 	/*
   1433 	 * no swap devices configured yet?   definite failure.
   1434 	 */
   1435 	if (uvmexp.nswapdev < 1)
   1436 		return 0;
   1437 
   1438 	/*
   1439 	 * lock data lock, convert slots into blocks, and enter loop
   1440 	 */
   1441 	simple_lock(&uvm.swap_data_lock);
   1442 
   1443 ReTry:	/* XXXMRG */
   1444 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1445 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1446 			uint64_t result;
   1447 
   1448 			/* if it's not enabled, then we can't swap from it */
   1449 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1450 				continue;
   1451 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1452 				continue;
   1453 			result = blist_alloc(sdp->swd_blist, *nslots);
   1454 			if (result == BLIST_NONE) {
   1455 				continue;
   1456 			}
   1457 			KASSERT(result < sdp->swd_drumsize);
   1458 
   1459 			/*
   1460 			 * successful allocation!  now rotate the circleq.
   1461 			 */
   1462 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1463 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1464 			sdp->swd_npginuse += *nslots;
   1465 			uvmexp.swpginuse += *nslots;
   1466 			simple_unlock(&uvm.swap_data_lock);
   1467 			/* done!  return drum slot number */
   1468 			UVMHIST_LOG(pdhist,
   1469 			    "success!  returning %d slots starting at %d",
   1470 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1471 			return (result + sdp->swd_drumoffset);
   1472 		}
   1473 	}
   1474 
   1475 	/* XXXMRG: BEGIN HACK */
   1476 	if (*nslots > 1 && lessok) {
   1477 		*nslots = 1;
   1478 		/* XXXMRG: ugh!  blist should support this for us */
   1479 		goto ReTry;
   1480 	}
   1481 	/* XXXMRG: END HACK */
   1482 
   1483 	simple_unlock(&uvm.swap_data_lock);
   1484 	return 0;
   1485 }
   1486 
   1487 boolean_t
   1488 uvm_swapisfull(void)
   1489 {
   1490 	boolean_t rv;
   1491 
   1492 	simple_lock(&uvm.swap_data_lock);
   1493 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1494 	rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
   1495 	simple_unlock(&uvm.swap_data_lock);
   1496 
   1497 	return (rv);
   1498 }
   1499 
   1500 /*
   1501  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1502  *
   1503  * => we lock uvm.swap_data_lock
   1504  */
   1505 void
   1506 uvm_swap_markbad(int startslot, int nslots)
   1507 {
   1508 	struct swapdev *sdp;
   1509 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1510 
   1511 	simple_lock(&uvm.swap_data_lock);
   1512 	sdp = swapdrum_getsdp(startslot);
   1513 	KASSERT(sdp != NULL);
   1514 
   1515 	/*
   1516 	 * we just keep track of how many pages have been marked bad
   1517 	 * in this device, to make everything add up in swap_off().
   1518 	 * we assume here that the range of slots will all be within
   1519 	 * one swap device.
   1520 	 */
   1521 
   1522 	KASSERT(uvmexp.swpgonly >= nslots);
   1523 	uvmexp.swpgonly -= nslots;
   1524 	sdp->swd_npgbad += nslots;
   1525 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1526 	simple_unlock(&uvm.swap_data_lock);
   1527 }
   1528 
   1529 /*
   1530  * uvm_swap_free: free swap slots
   1531  *
   1532  * => this can be all or part of an allocation made by uvm_swap_alloc
   1533  * => we lock uvm.swap_data_lock
   1534  */
   1535 void
   1536 uvm_swap_free(int startslot, int nslots)
   1537 {
   1538 	struct swapdev *sdp;
   1539 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1540 
   1541 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1542 	    startslot, 0, 0);
   1543 
   1544 	/*
   1545 	 * ignore attempts to free the "bad" slot.
   1546 	 */
   1547 
   1548 	if (startslot == SWSLOT_BAD) {
   1549 		return;
   1550 	}
   1551 
   1552 	/*
   1553 	 * convert drum slot offset back to sdp, free the blocks
   1554 	 * in the extent, and return.   must hold pri lock to do
   1555 	 * lookup and access the extent.
   1556 	 */
   1557 
   1558 	simple_lock(&uvm.swap_data_lock);
   1559 	sdp = swapdrum_getsdp(startslot);
   1560 	KASSERT(uvmexp.nswapdev >= 1);
   1561 	KASSERT(sdp != NULL);
   1562 	KASSERT(sdp->swd_npginuse >= nslots);
   1563 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1564 	sdp->swd_npginuse -= nslots;
   1565 	uvmexp.swpginuse -= nslots;
   1566 	simple_unlock(&uvm.swap_data_lock);
   1567 }
   1568 
   1569 /*
   1570  * uvm_swap_put: put any number of pages into a contig place on swap
   1571  *
   1572  * => can be sync or async
   1573  */
   1574 
   1575 int
   1576 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1577 {
   1578 	int error;
   1579 
   1580 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1581 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1582 	return error;
   1583 }
   1584 
   1585 /*
   1586  * uvm_swap_get: get a single page from swap
   1587  *
   1588  * => usually a sync op (from fault)
   1589  */
   1590 
   1591 int
   1592 uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1593 {
   1594 	int error;
   1595 
   1596 	uvmexp.nswget++;
   1597 	KASSERT(flags & PGO_SYNCIO);
   1598 	if (swslot == SWSLOT_BAD) {
   1599 		return EIO;
   1600 	}
   1601 
   1602 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1603 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1604 	if (error == 0) {
   1605 
   1606 		/*
   1607 		 * this page is no longer only in swap.
   1608 		 */
   1609 
   1610 		simple_lock(&uvm.swap_data_lock);
   1611 		KASSERT(uvmexp.swpgonly > 0);
   1612 		uvmexp.swpgonly--;
   1613 		simple_unlock(&uvm.swap_data_lock);
   1614 	}
   1615 	return error;
   1616 }
   1617 
   1618 /*
   1619  * uvm_swap_io: do an i/o operation to swap
   1620  */
   1621 
   1622 static int
   1623 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1624 {
   1625 	daddr_t startblk;
   1626 	struct	buf *bp;
   1627 	vaddr_t kva;
   1628 	int	error, s, mapinflags;
   1629 	boolean_t write, async;
   1630 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1631 
   1632 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1633 	    startslot, npages, flags, 0);
   1634 
   1635 	write = (flags & B_READ) == 0;
   1636 	async = (flags & B_ASYNC) != 0;
   1637 
   1638 	/*
   1639 	 * convert starting drum slot to block number
   1640 	 */
   1641 
   1642 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1643 
   1644 	/*
   1645 	 * first, map the pages into the kernel.
   1646 	 */
   1647 
   1648 	mapinflags = !write ?
   1649 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1650 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1651 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1652 
   1653 	/*
   1654 	 * now allocate a buf for the i/o.
   1655 	 */
   1656 
   1657 	bp = getiobuf();
   1658 
   1659 	/*
   1660 	 * fill in the bp/sbp.   we currently route our i/o through
   1661 	 * /dev/drum's vnode [swapdev_vp].
   1662 	 */
   1663 
   1664 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
   1665 	bp->b_proc = &proc0;	/* XXX */
   1666 	bp->b_vnbufs.le_next = NOLIST;
   1667 	bp->b_data = (caddr_t)kva;
   1668 	bp->b_blkno = startblk;
   1669 	bp->b_vp = swapdev_vp;
   1670 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1671 
   1672 	/*
   1673 	 * bump v_numoutput (counter of number of active outputs).
   1674 	 */
   1675 
   1676 	if (write) {
   1677 		s = splbio();
   1678 		V_INCR_NUMOUTPUT(swapdev_vp);
   1679 		splx(s);
   1680 	}
   1681 
   1682 	/*
   1683 	 * for async ops we must set up the iodone handler.
   1684 	 */
   1685 
   1686 	if (async) {
   1687 		bp->b_flags |= B_CALL;
   1688 		bp->b_iodone = uvm_aio_biodone;
   1689 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1690 		if (curproc == uvm.pagedaemon_proc)
   1691 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1692 		else
   1693 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1694 	} else {
   1695 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1696 	}
   1697 	UVMHIST_LOG(pdhist,
   1698 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1699 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1700 
   1701 	/*
   1702 	 * now we start the I/O, and if async, return.
   1703 	 */
   1704 
   1705 	VOP_STRATEGY(swapdev_vp, bp);
   1706 	if (async)
   1707 		return 0;
   1708 
   1709 	/*
   1710 	 * must be sync i/o.   wait for it to finish
   1711 	 */
   1712 
   1713 	error = biowait(bp);
   1714 
   1715 	/*
   1716 	 * kill the pager mapping
   1717 	 */
   1718 
   1719 	uvm_pagermapout(kva, npages);
   1720 
   1721 	/*
   1722 	 * now dispose of the buf and we're done.
   1723 	 */
   1724 
   1725 	s = splbio();
   1726 	if (write)
   1727 		vwakeup(bp);
   1728 	putiobuf(bp);
   1729 	splx(s);
   1730 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1731 	return (error);
   1732 }
   1733