Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.99.8.1
      1 /*	$NetBSD: uvm_swap.c,v 1.99.8.1 2006/03/08 00:31:57 elad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.99.8.1 2006/03/08 00:31:57 elad Exp $");
     36 
     37 #include "fs_nfs.h"
     38 #include "opt_uvmhist.h"
     39 #include "opt_compat_netbsd.h"
     40 #include "opt_ddb.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/buf.h>
     45 #include <sys/bufq.h>
     46 #include <sys/conf.h>
     47 #include <sys/proc.h>
     48 #include <sys/namei.h>
     49 #include <sys/disklabel.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/malloc.h>
     53 #include <sys/vnode.h>
     54 #include <sys/file.h>
     55 #include <sys/extent.h>
     56 #include <sys/blist.h>
     57 #include <sys/mount.h>
     58 #include <sys/pool.h>
     59 #include <sys/sa.h>
     60 #include <sys/syscallargs.h>
     61 #include <sys/swap.h>
     62 
     63 #include <uvm/uvm.h>
     64 
     65 #include <miscfs/specfs/specdev.h>
     66 
     67 /*
     68  * uvm_swap.c: manage configuration and i/o to swap space.
     69  */
     70 
     71 /*
     72  * swap space is managed in the following way:
     73  *
     74  * each swap partition or file is described by a "swapdev" structure.
     75  * each "swapdev" structure contains a "swapent" structure which contains
     76  * information that is passed up to the user (via system calls).
     77  *
     78  * each swap partition is assigned a "priority" (int) which controls
     79  * swap parition usage.
     80  *
     81  * the system maintains a global data structure describing all swap
     82  * partitions/files.   there is a sorted LIST of "swappri" structures
     83  * which describe "swapdev"'s at that priority.   this LIST is headed
     84  * by the "swap_priority" global var.    each "swappri" contains a
     85  * CIRCLEQ of "swapdev" structures at that priority.
     86  *
     87  * locking:
     88  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
     89  *    system call and prevents the swap priority list from changing
     90  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     91  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
     92  *    structures including the priority list, the swapdev structures,
     93  *    and the swapmap extent.
     94  *
     95  * each swap device has the following info:
     96  *  - swap device in use (could be disabled, preventing future use)
     97  *  - swap enabled (allows new allocations on swap)
     98  *  - map info in /dev/drum
     99  *  - vnode pointer
    100  * for swap files only:
    101  *  - block size
    102  *  - max byte count in buffer
    103  *  - buffer
    104  *
    105  * userland controls and configures swap with the swapctl(2) system call.
    106  * the sys_swapctl performs the following operations:
    107  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    108  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    109  *	(passed in via "arg") of a size passed in via "misc" ... we load
    110  *	the current swap config into the array. The actual work is done
    111  *	in the uvm_swap_stats(9) function.
    112  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    113  *	priority in "misc", start swapping on it.
    114  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    115  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    116  *	"misc")
    117  */
    118 
    119 /*
    120  * swapdev: describes a single swap partition/file
    121  *
    122  * note the following should be true:
    123  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    124  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    125  */
    126 struct swapdev {
    127 	struct oswapent swd_ose;
    128 #define	swd_dev		swd_ose.ose_dev		/* device id */
    129 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    130 #define	swd_priority	swd_ose.ose_priority	/* our priority */
    131 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    132 	char			*swd_path;	/* saved pathname of device */
    133 	int			swd_pathlen;	/* length of pathname */
    134 	int			swd_npages;	/* #pages we can use */
    135 	int			swd_npginuse;	/* #pages in use */
    136 	int			swd_npgbad;	/* #pages bad */
    137 	int			swd_drumoffset;	/* page0 offset in drum */
    138 	int			swd_drumsize;	/* #pages in drum */
    139 	blist_t			swd_blist;	/* blist for this swapdev */
    140 	struct vnode		*swd_vp;	/* backing vnode */
    141 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    142 
    143 	int			swd_bsize;	/* blocksize (bytes) */
    144 	int			swd_maxactive;	/* max active i/o reqs */
    145 	struct bufq_state	*swd_tab;	/* buffer list */
    146 	int			swd_active;	/* number of active buffers */
    147 };
    148 
    149 /*
    150  * swap device priority entry; the list is kept sorted on `spi_priority'.
    151  */
    152 struct swappri {
    153 	int			spi_priority;     /* priority */
    154 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    155 	/* circleq of swapdevs at this priority */
    156 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    157 };
    158 
    159 /*
    160  * The following two structures are used to keep track of data transfers
    161  * on swap devices associated with regular files.
    162  * NOTE: this code is more or less a copy of vnd.c; we use the same
    163  * structure names here to ease porting..
    164  */
    165 struct vndxfer {
    166 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    167 	struct swapdev	*vx_sdp;
    168 	int		vx_error;
    169 	int		vx_pending;	/* # of pending aux buffers */
    170 	int		vx_flags;
    171 #define VX_BUSY		1
    172 #define VX_DEAD		2
    173 };
    174 
    175 struct vndbuf {
    176 	struct buf	vb_buf;
    177 	struct vndxfer	*vb_xfer;
    178 };
    179 
    180 
    181 /*
    182  * We keep a of pool vndbuf's and vndxfer structures.
    183  */
    184 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL);
    185 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL);
    186 
    187 #define	getvndxfer(vnx)	do {						\
    188 	int sp = splbio();						\
    189 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);			\
    190 	splx(sp);							\
    191 } while (/*CONSTCOND*/ 0)
    192 
    193 #define putvndxfer(vnx) {						\
    194 	pool_put(&vndxfer_pool, (void *)(vnx));				\
    195 }
    196 
    197 #define	getvndbuf(vbp)	do {						\
    198 	int sp = splbio();						\
    199 	vbp = pool_get(&vndbuf_pool, PR_WAITOK);			\
    200 	splx(sp);							\
    201 } while (/*CONSTCOND*/ 0)
    202 
    203 #define putvndbuf(vbp) {						\
    204 	pool_put(&vndbuf_pool, (void *)(vbp));				\
    205 }
    206 
    207 /*
    208  * local variables
    209  */
    210 static struct extent *swapmap;		/* controls the mapping of /dev/drum */
    211 
    212 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
    213 
    214 /* list of all active swap devices [by priority] */
    215 LIST_HEAD(swap_priority, swappri);
    216 static struct swap_priority swap_priority;
    217 
    218 /* locks */
    219 static struct lock swap_syscall_lock;
    220 
    221 /*
    222  * prototypes
    223  */
    224 static struct swapdev	*swapdrum_getsdp(int);
    225 
    226 static struct swapdev	*swaplist_find(struct vnode *, int);
    227 static void		 swaplist_insert(struct swapdev *,
    228 					 struct swappri *, int);
    229 static void		 swaplist_trim(void);
    230 
    231 static int swap_on(struct lwp *, struct swapdev *);
    232 static int swap_off(struct lwp *, struct swapdev *);
    233 
    234 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
    235 
    236 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    237 static void sw_reg_iodone(struct buf *);
    238 static void sw_reg_start(struct swapdev *);
    239 
    240 static int uvm_swap_io(struct vm_page **, int, int, int);
    241 
    242 /*
    243  * uvm_swap_init: init the swap system data structures and locks
    244  *
    245  * => called at boot time from init_main.c after the filesystems
    246  *	are brought up (which happens after uvm_init())
    247  */
    248 void
    249 uvm_swap_init(void)
    250 {
    251 	UVMHIST_FUNC("uvm_swap_init");
    252 
    253 	UVMHIST_CALLED(pdhist);
    254 	/*
    255 	 * first, init the swap list, its counter, and its lock.
    256 	 * then get a handle on the vnode for /dev/drum by using
    257 	 * the its dev_t number ("swapdev", from MD conf.c).
    258 	 */
    259 
    260 	LIST_INIT(&swap_priority);
    261 	uvmexp.nswapdev = 0;
    262 	lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
    263 	simple_lock_init(&uvm.swap_data_lock);
    264 
    265 	if (bdevvp(swapdev, &swapdev_vp))
    266 		panic("uvm_swap_init: can't get vnode for swap device");
    267 
    268 	/*
    269 	 * create swap block resource map to map /dev/drum.   the range
    270 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    271 	 * that block 0 is reserved (used to indicate an allocation
    272 	 * failure, or no allocation).
    273 	 */
    274 	swapmap = extent_create("swapmap", 1, INT_MAX,
    275 				M_VMSWAP, 0, 0, EX_NOWAIT);
    276 	if (swapmap == 0)
    277 		panic("uvm_swap_init: extent_create failed");
    278 
    279 	/*
    280 	 * done!
    281 	 */
    282 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    283 }
    284 
    285 /*
    286  * swaplist functions: functions that operate on the list of swap
    287  * devices on the system.
    288  */
    289 
    290 /*
    291  * swaplist_insert: insert swap device "sdp" into the global list
    292  *
    293  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    294  * => caller must provide a newly malloc'd swappri structure (we will
    295  *	FREE it if we don't need it... this it to prevent malloc blocking
    296  *	here while adding swap)
    297  */
    298 static void
    299 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    300 {
    301 	struct swappri *spp, *pspp;
    302 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    303 
    304 	/*
    305 	 * find entry at or after which to insert the new device.
    306 	 */
    307 	pspp = NULL;
    308 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    309 		if (priority <= spp->spi_priority)
    310 			break;
    311 		pspp = spp;
    312 	}
    313 
    314 	/*
    315 	 * new priority?
    316 	 */
    317 	if (spp == NULL || spp->spi_priority != priority) {
    318 		spp = newspp;  /* use newspp! */
    319 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    320 			    priority, 0, 0, 0);
    321 
    322 		spp->spi_priority = priority;
    323 		CIRCLEQ_INIT(&spp->spi_swapdev);
    324 
    325 		if (pspp)
    326 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    327 		else
    328 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    329 	} else {
    330 	  	/* we don't need a new priority structure, free it */
    331 		FREE(newspp, M_VMSWAP);
    332 	}
    333 
    334 	/*
    335 	 * priority found (or created).   now insert on the priority's
    336 	 * circleq list and bump the total number of swapdevs.
    337 	 */
    338 	sdp->swd_priority = priority;
    339 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    340 	uvmexp.nswapdev++;
    341 }
    342 
    343 /*
    344  * swaplist_find: find and optionally remove a swap device from the
    345  *	global list.
    346  *
    347  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    348  * => we return the swapdev we found (and removed)
    349  */
    350 static struct swapdev *
    351 swaplist_find(struct vnode *vp, boolean_t remove)
    352 {
    353 	struct swapdev *sdp;
    354 	struct swappri *spp;
    355 
    356 	/*
    357 	 * search the lists for the requested vp
    358 	 */
    359 
    360 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    361 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    362 			if (sdp->swd_vp == vp) {
    363 				if (remove) {
    364 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    365 					    sdp, swd_next);
    366 					uvmexp.nswapdev--;
    367 				}
    368 				return(sdp);
    369 			}
    370 		}
    371 	}
    372 	return (NULL);
    373 }
    374 
    375 
    376 /*
    377  * swaplist_trim: scan priority list for empty priority entries and kill
    378  *	them.
    379  *
    380  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    381  */
    382 static void
    383 swaplist_trim(void)
    384 {
    385 	struct swappri *spp, *nextspp;
    386 
    387 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    388 		nextspp = LIST_NEXT(spp, spi_swappri);
    389 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    390 		    (void *)&spp->spi_swapdev)
    391 			continue;
    392 		LIST_REMOVE(spp, spi_swappri);
    393 		free(spp, M_VMSWAP);
    394 	}
    395 }
    396 
    397 /*
    398  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    399  *	to the "swapdev" that maps that section of the drum.
    400  *
    401  * => each swapdev takes one big contig chunk of the drum
    402  * => caller must hold uvm.swap_data_lock
    403  */
    404 static struct swapdev *
    405 swapdrum_getsdp(int pgno)
    406 {
    407 	struct swapdev *sdp;
    408 	struct swappri *spp;
    409 
    410 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    411 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    412 			if (sdp->swd_flags & SWF_FAKE)
    413 				continue;
    414 			if (pgno >= sdp->swd_drumoffset &&
    415 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    416 				return sdp;
    417 			}
    418 		}
    419 	}
    420 	return NULL;
    421 }
    422 
    423 
    424 /*
    425  * sys_swapctl: main entry point for swapctl(2) system call
    426  * 	[with two helper functions: swap_on and swap_off]
    427  */
    428 int
    429 sys_swapctl(struct lwp *l, void *v, register_t *retval)
    430 {
    431 	struct sys_swapctl_args /* {
    432 		syscallarg(int) cmd;
    433 		syscallarg(void *) arg;
    434 		syscallarg(int) misc;
    435 	} */ *uap = (struct sys_swapctl_args *)v;
    436 	struct proc *p = l->l_proc;
    437 	struct vnode *vp;
    438 	struct nameidata nd;
    439 	struct swappri *spp;
    440 	struct swapdev *sdp;
    441 	struct swapent *sep;
    442 	char	userpath[PATH_MAX + 1];
    443 	size_t	len;
    444 	int	error, misc;
    445 	int	priority;
    446 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    447 
    448 	misc = SCARG(uap, misc);
    449 
    450 	/*
    451 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    452 	 */
    453 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
    454 
    455 	/*
    456 	 * we handle the non-priv NSWAP and STATS request first.
    457 	 *
    458 	 * SWAP_NSWAP: return number of config'd swap devices
    459 	 * [can also be obtained with uvmexp sysctl]
    460 	 */
    461 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    462 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    463 		    0, 0, 0);
    464 		*retval = uvmexp.nswapdev;
    465 		error = 0;
    466 		goto out;
    467 	}
    468 
    469 	/*
    470 	 * SWAP_STATS: get stats on current # of configured swap devs
    471 	 *
    472 	 * note that the swap_priority list can't change as long
    473 	 * as we are holding the swap_syscall_lock.  we don't want
    474 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
    475 	 * copyout() and we don't want to be holding that lock then!
    476 	 */
    477 	if (SCARG(uap, cmd) == SWAP_STATS
    478 #if defined(COMPAT_13)
    479 	    || SCARG(uap, cmd) == SWAP_OSTATS
    480 #endif
    481 	    ) {
    482 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    483 			misc = uvmexp.nswapdev;
    484 #if defined(COMPAT_13)
    485 		if (SCARG(uap, cmd) == SWAP_OSTATS)
    486 			len = sizeof(struct oswapent) * misc;
    487 		else
    488 #endif
    489 			len = sizeof(struct swapent) * misc;
    490 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
    491 
    492 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
    493 		error = copyout(sep, SCARG(uap, arg), len);
    494 
    495 		free(sep, M_TEMP);
    496 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    497 		goto out;
    498 	}
    499 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    500 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    501 
    502 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    503 		goto out;
    504 	}
    505 
    506 	/*
    507 	 * all other requests require superuser privs.   verify.
    508 	 */
    509 	if ((error = generic_authorize(p->p_cred, KAUTH_GENERIC_ISSUSER,
    510 				       &p->p_acflag)))
    511 		goto out;
    512 
    513 	/*
    514 	 * at this point we expect a path name in arg.   we will
    515 	 * use namei() to gain a vnode reference (vref), and lock
    516 	 * the vnode (VOP_LOCK).
    517 	 *
    518 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    519 	 * miniroot)
    520 	 */
    521 	if (SCARG(uap, arg) == NULL) {
    522 		vp = rootvp;		/* miniroot */
    523 		if (vget(vp, LK_EXCLUSIVE)) {
    524 			error = EBUSY;
    525 			goto out;
    526 		}
    527 		if (SCARG(uap, cmd) == SWAP_ON &&
    528 		    copystr("miniroot", userpath, sizeof userpath, &len))
    529 			panic("swapctl: miniroot copy failed");
    530 	} else {
    531 		int	space;
    532 		char	*where;
    533 
    534 		if (SCARG(uap, cmd) == SWAP_ON) {
    535 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    536 			    sizeof userpath, &len)))
    537 				goto out;
    538 			space = UIO_SYSSPACE;
    539 			where = userpath;
    540 		} else {
    541 			space = UIO_USERSPACE;
    542 			where = (char *)SCARG(uap, arg);
    543 		}
    544 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, l);
    545 		if ((error = namei(&nd)))
    546 			goto out;
    547 		vp = nd.ni_vp;
    548 	}
    549 	/* note: "vp" is referenced and locked */
    550 
    551 	error = 0;		/* assume no error */
    552 	switch(SCARG(uap, cmd)) {
    553 
    554 	case SWAP_DUMPDEV:
    555 		if (vp->v_type != VBLK) {
    556 			error = ENOTBLK;
    557 			break;
    558 		}
    559 		dumpdev = vp->v_rdev;
    560 		cpu_dumpconf();
    561 		break;
    562 
    563 	case SWAP_CTL:
    564 		/*
    565 		 * get new priority, remove old entry (if any) and then
    566 		 * reinsert it in the correct place.  finally, prune out
    567 		 * any empty priority structures.
    568 		 */
    569 		priority = SCARG(uap, misc);
    570 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    571 		simple_lock(&uvm.swap_data_lock);
    572 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
    573 			error = ENOENT;
    574 		} else {
    575 			swaplist_insert(sdp, spp, priority);
    576 			swaplist_trim();
    577 		}
    578 		simple_unlock(&uvm.swap_data_lock);
    579 		if (error)
    580 			free(spp, M_VMSWAP);
    581 		break;
    582 
    583 	case SWAP_ON:
    584 
    585 		/*
    586 		 * check for duplicates.   if none found, then insert a
    587 		 * dummy entry on the list to prevent someone else from
    588 		 * trying to enable this device while we are working on
    589 		 * it.
    590 		 */
    591 
    592 		priority = SCARG(uap, misc);
    593 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    594 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    595 		memset(sdp, 0, sizeof(*sdp));
    596 		sdp->swd_flags = SWF_FAKE;
    597 		sdp->swd_vp = vp;
    598 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    599 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    600 		simple_lock(&uvm.swap_data_lock);
    601 		if (swaplist_find(vp, 0) != NULL) {
    602 			error = EBUSY;
    603 			simple_unlock(&uvm.swap_data_lock);
    604 			bufq_free(sdp->swd_tab);
    605 			free(sdp, M_VMSWAP);
    606 			free(spp, M_VMSWAP);
    607 			break;
    608 		}
    609 		swaplist_insert(sdp, spp, priority);
    610 		simple_unlock(&uvm.swap_data_lock);
    611 
    612 		sdp->swd_pathlen = len;
    613 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    614 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    615 			panic("swapctl: copystr");
    616 
    617 		/*
    618 		 * we've now got a FAKE placeholder in the swap list.
    619 		 * now attempt to enable swap on it.  if we fail, undo
    620 		 * what we've done and kill the fake entry we just inserted.
    621 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    622 		 */
    623 
    624 		if ((error = swap_on(l, sdp)) != 0) {
    625 			simple_lock(&uvm.swap_data_lock);
    626 			(void) swaplist_find(vp, 1);  /* kill fake entry */
    627 			swaplist_trim();
    628 			simple_unlock(&uvm.swap_data_lock);
    629 			bufq_free(sdp->swd_tab);
    630 			free(sdp->swd_path, M_VMSWAP);
    631 			free(sdp, M_VMSWAP);
    632 			break;
    633 		}
    634 		break;
    635 
    636 	case SWAP_OFF:
    637 		simple_lock(&uvm.swap_data_lock);
    638 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
    639 			simple_unlock(&uvm.swap_data_lock);
    640 			error = ENXIO;
    641 			break;
    642 		}
    643 
    644 		/*
    645 		 * If a device isn't in use or enabled, we
    646 		 * can't stop swapping from it (again).
    647 		 */
    648 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    649 			simple_unlock(&uvm.swap_data_lock);
    650 			error = EBUSY;
    651 			break;
    652 		}
    653 
    654 		/*
    655 		 * do the real work.
    656 		 */
    657 		error = swap_off(l, sdp);
    658 		break;
    659 
    660 	default:
    661 		error = EINVAL;
    662 	}
    663 
    664 	/*
    665 	 * done!  release the ref gained by namei() and unlock.
    666 	 */
    667 	vput(vp);
    668 
    669 out:
    670 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
    671 
    672 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    673 	return (error);
    674 }
    675 
    676 /*
    677  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
    678  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    679  * emulation to use it directly without going through sys_swapctl().
    680  * The problem with using sys_swapctl() there is that it involves
    681  * copying the swapent array to the stackgap, and this array's size
    682  * is not known at build time. Hence it would not be possible to
    683  * ensure it would fit in the stackgap in any case.
    684  */
    685 void
    686 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    687 {
    688 
    689 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
    690 	uvm_swap_stats_locked(cmd, sep, sec, retval);
    691 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
    692 }
    693 
    694 static void
    695 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
    696 {
    697 	struct swappri *spp;
    698 	struct swapdev *sdp;
    699 	int count = 0;
    700 
    701 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    702 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    703 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
    704 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    705 		  	/*
    706 			 * backwards compatibility for system call.
    707 			 * note that we use 'struct oswapent' as an
    708 			 * overlay into both 'struct swapdev' and
    709 			 * the userland 'struct swapent', as we
    710 			 * want to retain backwards compatibility
    711 			 * with NetBSD 1.3.
    712 			 */
    713 			sdp->swd_ose.ose_inuse =
    714 			    btodb((uint64_t)sdp->swd_npginuse <<
    715 			    PAGE_SHIFT);
    716 			(void)memcpy(sep, &sdp->swd_ose,
    717 			    sizeof(struct oswapent));
    718 
    719 			/* now copy out the path if necessary */
    720 #if defined(COMPAT_13)
    721 			if (cmd == SWAP_STATS)
    722 #endif
    723 				(void)memcpy(&sep->se_path, sdp->swd_path,
    724 				    sdp->swd_pathlen);
    725 
    726 			count++;
    727 #if defined(COMPAT_13)
    728 			if (cmd == SWAP_OSTATS)
    729 				sep = (struct swapent *)
    730 				    ((struct oswapent *)sep + 1);
    731 			else
    732 #endif
    733 				sep++;
    734 		}
    735 	}
    736 
    737 	*retval = count;
    738 	return;
    739 }
    740 
    741 /*
    742  * swap_on: attempt to enable a swapdev for swapping.   note that the
    743  *	swapdev is already on the global list, but disabled (marked
    744  *	SWF_FAKE).
    745  *
    746  * => we avoid the start of the disk (to protect disk labels)
    747  * => we also avoid the miniroot, if we are swapping to root.
    748  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
    749  *	if needed.
    750  */
    751 static int
    752 swap_on(struct lwp *l, struct swapdev *sdp)
    753 {
    754 	struct vnode *vp;
    755 	struct proc *p = l->l_proc;
    756 	int error, npages, nblocks, size;
    757 	long addr;
    758 	u_long result;
    759 	struct vattr va;
    760 #ifdef NFS
    761 	extern int (**nfsv2_vnodeop_p)(void *);
    762 #endif /* NFS */
    763 	const struct bdevsw *bdev;
    764 	dev_t dev;
    765 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    766 
    767 	/*
    768 	 * we want to enable swapping on sdp.   the swd_vp contains
    769 	 * the vnode we want (locked and ref'd), and the swd_dev
    770 	 * contains the dev_t of the file, if it a block device.
    771 	 */
    772 
    773 	vp = sdp->swd_vp;
    774 	dev = sdp->swd_dev;
    775 
    776 	/*
    777 	 * open the swap file (mostly useful for block device files to
    778 	 * let device driver know what is up).
    779 	 *
    780 	 * we skip the open/close for root on swap because the root
    781 	 * has already been opened when root was mounted (mountroot).
    782 	 */
    783 	if (vp != rootvp) {
    784 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_cred, l)))
    785 			return (error);
    786 	}
    787 
    788 	/* XXX this only works for block devices */
    789 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    790 
    791 	/*
    792 	 * we now need to determine the size of the swap area.   for
    793 	 * block specials we can call the d_psize function.
    794 	 * for normal files, we must stat [get attrs].
    795 	 *
    796 	 * we put the result in nblks.
    797 	 * for normal files, we also want the filesystem block size
    798 	 * (which we get with statfs).
    799 	 */
    800 	switch (vp->v_type) {
    801 	case VBLK:
    802 		bdev = bdevsw_lookup(dev);
    803 		if (bdev == NULL || bdev->d_psize == NULL ||
    804 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
    805 			error = ENXIO;
    806 			goto bad;
    807 		}
    808 		break;
    809 
    810 	case VREG:
    811 		if ((error = VOP_GETATTR(vp, &va, p->p_cred, l)))
    812 			goto bad;
    813 		nblocks = (int)btodb(va.va_size);
    814 		if ((error =
    815 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, l)) != 0)
    816 			goto bad;
    817 
    818 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    819 		/*
    820 		 * limit the max # of outstanding I/O requests we issue
    821 		 * at any one time.   take it easy on NFS servers.
    822 		 */
    823 #ifdef NFS
    824 		if (vp->v_op == nfsv2_vnodeop_p)
    825 			sdp->swd_maxactive = 2; /* XXX */
    826 		else
    827 #endif /* NFS */
    828 			sdp->swd_maxactive = 8; /* XXX */
    829 		break;
    830 
    831 	default:
    832 		error = ENXIO;
    833 		goto bad;
    834 	}
    835 
    836 	/*
    837 	 * save nblocks in a safe place and convert to pages.
    838 	 */
    839 
    840 	sdp->swd_ose.ose_nblks = nblocks;
    841 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    842 
    843 	/*
    844 	 * for block special files, we want to make sure that leave
    845 	 * the disklabel and bootblocks alone, so we arrange to skip
    846 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    847 	 * note that because of this the "size" can be less than the
    848 	 * actual number of blocks on the device.
    849 	 */
    850 	if (vp->v_type == VBLK) {
    851 		/* we use pages 1 to (size - 1) [inclusive] */
    852 		size = npages - 1;
    853 		addr = 1;
    854 	} else {
    855 		/* we use pages 0 to (size - 1) [inclusive] */
    856 		size = npages;
    857 		addr = 0;
    858 	}
    859 
    860 	/*
    861 	 * make sure we have enough blocks for a reasonable sized swap
    862 	 * area.   we want at least one page.
    863 	 */
    864 
    865 	if (size < 1) {
    866 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    867 		error = EINVAL;
    868 		goto bad;
    869 	}
    870 
    871 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    872 
    873 	/*
    874 	 * now we need to allocate an extent to manage this swap device
    875 	 */
    876 
    877 	sdp->swd_blist = blist_create(npages);
    878 	/* mark all expect the `saved' region free. */
    879 	blist_free(sdp->swd_blist, addr, size);
    880 
    881 	/*
    882 	 * if the vnode we are swapping to is the root vnode
    883 	 * (i.e. we are swapping to the miniroot) then we want
    884 	 * to make sure we don't overwrite it.   do a statfs to
    885 	 * find its size and skip over it.
    886 	 */
    887 	if (vp == rootvp) {
    888 		struct mount *mp;
    889 		struct statvfs *sp;
    890 		int rootblocks, rootpages;
    891 
    892 		mp = rootvnode->v_mount;
    893 		sp = &mp->mnt_stat;
    894 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    895 		/*
    896 		 * XXX: sp->f_blocks isn't the total number of
    897 		 * blocks in the filesystem, it's the number of
    898 		 * data blocks.  so, our rootblocks almost
    899 		 * definitely underestimates the total size
    900 		 * of the filesystem - how badly depends on the
    901 		 * details of the filesystem type.  there isn't
    902 		 * an obvious way to deal with this cleanly
    903 		 * and perfectly, so for now we just pad our
    904 		 * rootblocks estimate with an extra 5 percent.
    905 		 */
    906 		rootblocks += (rootblocks >> 5) +
    907 			(rootblocks >> 6) +
    908 			(rootblocks >> 7);
    909 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    910 		if (rootpages > size)
    911 			panic("swap_on: miniroot larger than swap?");
    912 
    913 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    914 			panic("swap_on: unable to preserve miniroot");
    915 		}
    916 
    917 		size -= rootpages;
    918 		printf("Preserved %d pages of miniroot ", rootpages);
    919 		printf("leaving %d pages of swap\n", size);
    920 	}
    921 
    922 	/*
    923 	 * add a ref to vp to reflect usage as a swap device.
    924 	 */
    925 	vref(vp);
    926 
    927 	/*
    928 	 * now add the new swapdev to the drum and enable.
    929 	 */
    930 	if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
    931 	    EX_WAITOK, &result))
    932 		panic("swapdrum_add");
    933 
    934 	sdp->swd_drumoffset = (int)result;
    935 	sdp->swd_drumsize = npages;
    936 	sdp->swd_npages = size;
    937 	simple_lock(&uvm.swap_data_lock);
    938 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    939 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    940 	uvmexp.swpages += size;
    941 	uvmexp.swpgavail += size;
    942 	simple_unlock(&uvm.swap_data_lock);
    943 	return (0);
    944 
    945 	/*
    946 	 * failure: clean up and return error.
    947 	 */
    948 
    949 bad:
    950 	if (sdp->swd_blist) {
    951 		blist_destroy(sdp->swd_blist);
    952 	}
    953 	if (vp != rootvp) {
    954 		(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_cred, l);
    955 	}
    956 	return (error);
    957 }
    958 
    959 /*
    960  * swap_off: stop swapping on swapdev
    961  *
    962  * => swap data should be locked, we will unlock.
    963  */
    964 static int
    965 swap_off(struct lwp *l, struct swapdev *sdp)
    966 {
    967 	struct proc *p = l->l_proc;
    968 	int npages = sdp->swd_npages;
    969 	int error = 0;
    970 
    971 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
    972 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
    973 
    974 	/* disable the swap area being removed */
    975 	sdp->swd_flags &= ~SWF_ENABLE;
    976 	uvmexp.swpgavail -= npages;
    977 	simple_unlock(&uvm.swap_data_lock);
    978 
    979 	/*
    980 	 * the idea is to find all the pages that are paged out to this
    981 	 * device, and page them all in.  in uvm, swap-backed pageable
    982 	 * memory can take two forms: aobjs and anons.  call the
    983 	 * swapoff hook for each subsystem to bring in pages.
    984 	 */
    985 
    986 	if (uao_swap_off(sdp->swd_drumoffset,
    987 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
    988 	    amap_swap_off(sdp->swd_drumoffset,
    989 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
    990 		error = ENOMEM;
    991 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
    992 		error = EBUSY;
    993 	}
    994 
    995 	if (error) {
    996 		simple_lock(&uvm.swap_data_lock);
    997 		sdp->swd_flags |= SWF_ENABLE;
    998 		uvmexp.swpgavail += npages;
    999 		simple_unlock(&uvm.swap_data_lock);
   1000 
   1001 		return error;
   1002 	}
   1003 
   1004 	/*
   1005 	 * done with the vnode.
   1006 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1007 	 * so that spec_close() can tell if this is the last close.
   1008 	 */
   1009 	vrele(sdp->swd_vp);
   1010 	if (sdp->swd_vp != rootvp) {
   1011 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_cred, l);
   1012 	}
   1013 
   1014 	simple_lock(&uvm.swap_data_lock);
   1015 	uvmexp.swpages -= npages;
   1016 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1017 
   1018 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
   1019 		panic("swap_off: swapdev not in list");
   1020 	swaplist_trim();
   1021 	simple_unlock(&uvm.swap_data_lock);
   1022 
   1023 	/*
   1024 	 * free all resources!
   1025 	 */
   1026 	extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
   1027 		    EX_WAITOK);
   1028 	blist_destroy(sdp->swd_blist);
   1029 	bufq_free(sdp->swd_tab);
   1030 	free(sdp, M_VMSWAP);
   1031 	return (0);
   1032 }
   1033 
   1034 /*
   1035  * /dev/drum interface and i/o functions
   1036  */
   1037 
   1038 /*
   1039  * swstrategy: perform I/O on the drum
   1040  *
   1041  * => we must map the i/o request from the drum to the correct swapdev.
   1042  */
   1043 static void
   1044 swstrategy(struct buf *bp)
   1045 {
   1046 	struct swapdev *sdp;
   1047 	struct vnode *vp;
   1048 	int s, pageno, bn;
   1049 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1050 
   1051 	/*
   1052 	 * convert block number to swapdev.   note that swapdev can't
   1053 	 * be yanked out from under us because we are holding resources
   1054 	 * in it (i.e. the blocks we are doing I/O on).
   1055 	 */
   1056 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1057 	simple_lock(&uvm.swap_data_lock);
   1058 	sdp = swapdrum_getsdp(pageno);
   1059 	simple_unlock(&uvm.swap_data_lock);
   1060 	if (sdp == NULL) {
   1061 		bp->b_error = EINVAL;
   1062 		bp->b_flags |= B_ERROR;
   1063 		biodone(bp);
   1064 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1065 		return;
   1066 	}
   1067 
   1068 	/*
   1069 	 * convert drum page number to block number on this swapdev.
   1070 	 */
   1071 
   1072 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1073 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1074 
   1075 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1076 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1077 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1078 
   1079 	/*
   1080 	 * for block devices we finish up here.
   1081 	 * for regular files we have to do more work which we delegate
   1082 	 * to sw_reg_strategy().
   1083 	 */
   1084 
   1085 	switch (sdp->swd_vp->v_type) {
   1086 	default:
   1087 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
   1088 
   1089 	case VBLK:
   1090 
   1091 		/*
   1092 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1093 		 * on the swapdev (sdp).
   1094 		 */
   1095 		s = splbio();
   1096 		bp->b_blkno = bn;		/* swapdev block number */
   1097 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1098 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1099 
   1100 		/*
   1101 		 * if we are doing a write, we have to redirect the i/o on
   1102 		 * drum's v_numoutput counter to the swapdevs.
   1103 		 */
   1104 		if ((bp->b_flags & B_READ) == 0) {
   1105 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1106 			V_INCR_NUMOUTPUT(vp);	/* put it on swapdev */
   1107 		}
   1108 
   1109 		/*
   1110 		 * finally plug in swapdev vnode and start I/O
   1111 		 */
   1112 		bp->b_vp = vp;
   1113 		splx(s);
   1114 		VOP_STRATEGY(vp, bp);
   1115 		return;
   1116 
   1117 	case VREG:
   1118 		/*
   1119 		 * delegate to sw_reg_strategy function.
   1120 		 */
   1121 		sw_reg_strategy(sdp, bp, bn);
   1122 		return;
   1123 	}
   1124 	/* NOTREACHED */
   1125 }
   1126 
   1127 /*
   1128  * swread: the read function for the drum (just a call to physio)
   1129  */
   1130 /*ARGSUSED*/
   1131 static int
   1132 swread(dev_t dev, struct uio *uio, int ioflag)
   1133 {
   1134 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1135 
   1136 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1137 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1138 }
   1139 
   1140 /*
   1141  * swwrite: the write function for the drum (just a call to physio)
   1142  */
   1143 /*ARGSUSED*/
   1144 static int
   1145 swwrite(dev_t dev, struct uio *uio, int ioflag)
   1146 {
   1147 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1148 
   1149 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1150 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1151 }
   1152 
   1153 const struct bdevsw swap_bdevsw = {
   1154 	noopen, noclose, swstrategy, noioctl, nodump, nosize,
   1155 };
   1156 
   1157 const struct cdevsw swap_cdevsw = {
   1158 	nullopen, nullclose, swread, swwrite, noioctl,
   1159 	    nostop, notty, nopoll, nommap, nokqfilter
   1160 };
   1161 
   1162 /*
   1163  * sw_reg_strategy: handle swap i/o to regular files
   1164  */
   1165 static void
   1166 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1167 {
   1168 	struct vnode	*vp;
   1169 	struct vndxfer	*vnx;
   1170 	daddr_t		nbn;
   1171 	caddr_t		addr;
   1172 	off_t		byteoff;
   1173 	int		s, off, nra, error, sz, resid;
   1174 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1175 
   1176 	/*
   1177 	 * allocate a vndxfer head for this transfer and point it to
   1178 	 * our buffer.
   1179 	 */
   1180 	getvndxfer(vnx);
   1181 	vnx->vx_flags = VX_BUSY;
   1182 	vnx->vx_error = 0;
   1183 	vnx->vx_pending = 0;
   1184 	vnx->vx_bp = bp;
   1185 	vnx->vx_sdp = sdp;
   1186 
   1187 	/*
   1188 	 * setup for main loop where we read filesystem blocks into
   1189 	 * our buffer.
   1190 	 */
   1191 	error = 0;
   1192 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1193 	addr = bp->b_data;		/* current position in buffer */
   1194 	byteoff = dbtob((uint64_t)bn);
   1195 
   1196 	for (resid = bp->b_resid; resid; resid -= sz) {
   1197 		struct vndbuf	*nbp;
   1198 
   1199 		/*
   1200 		 * translate byteoffset into block number.  return values:
   1201 		 *   vp = vnode of underlying device
   1202 		 *  nbn = new block number (on underlying vnode dev)
   1203 		 *  nra = num blocks we can read-ahead (excludes requested
   1204 		 *	block)
   1205 		 */
   1206 		nra = 0;
   1207 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1208 				 	&vp, &nbn, &nra);
   1209 
   1210 		if (error == 0 && nbn == (daddr_t)-1) {
   1211 			/*
   1212 			 * this used to just set error, but that doesn't
   1213 			 * do the right thing.  Instead, it causes random
   1214 			 * memory errors.  The panic() should remain until
   1215 			 * this condition doesn't destabilize the system.
   1216 			 */
   1217 #if 1
   1218 			panic("sw_reg_strategy: swap to sparse file");
   1219 #else
   1220 			error = EIO;	/* failure */
   1221 #endif
   1222 		}
   1223 
   1224 		/*
   1225 		 * punt if there was an error or a hole in the file.
   1226 		 * we must wait for any i/o ops we have already started
   1227 		 * to finish before returning.
   1228 		 *
   1229 		 * XXX we could deal with holes here but it would be
   1230 		 * a hassle (in the write case).
   1231 		 */
   1232 		if (error) {
   1233 			s = splbio();
   1234 			vnx->vx_error = error;	/* pass error up */
   1235 			goto out;
   1236 		}
   1237 
   1238 		/*
   1239 		 * compute the size ("sz") of this transfer (in bytes).
   1240 		 */
   1241 		off = byteoff % sdp->swd_bsize;
   1242 		sz = (1 + nra) * sdp->swd_bsize - off;
   1243 		if (sz > resid)
   1244 			sz = resid;
   1245 
   1246 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1247 			    "vp %p/%p offset 0x%x/0x%x",
   1248 			    sdp->swd_vp, vp, byteoff, nbn);
   1249 
   1250 		/*
   1251 		 * now get a buf structure.   note that the vb_buf is
   1252 		 * at the front of the nbp structure so that you can
   1253 		 * cast pointers between the two structure easily.
   1254 		 */
   1255 		getvndbuf(nbp);
   1256 		BUF_INIT(&nbp->vb_buf);
   1257 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
   1258 		nbp->vb_buf.b_bcount   = sz;
   1259 		nbp->vb_buf.b_bufsize  = sz;
   1260 		nbp->vb_buf.b_error    = 0;
   1261 		nbp->vb_buf.b_data     = addr;
   1262 		nbp->vb_buf.b_lblkno   = 0;
   1263 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1264 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1265 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
   1266 		nbp->vb_buf.b_vp       = vp;
   1267 		if (vp->v_type == VBLK) {
   1268 			nbp->vb_buf.b_dev = vp->v_rdev;
   1269 		}
   1270 
   1271 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1272 
   1273 		/*
   1274 		 * Just sort by block number
   1275 		 */
   1276 		s = splbio();
   1277 		if (vnx->vx_error != 0) {
   1278 			putvndbuf(nbp);
   1279 			goto out;
   1280 		}
   1281 		vnx->vx_pending++;
   1282 
   1283 		/* sort it in and start I/O if we are not over our limit */
   1284 		BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
   1285 		sw_reg_start(sdp);
   1286 		splx(s);
   1287 
   1288 		/*
   1289 		 * advance to the next I/O
   1290 		 */
   1291 		byteoff += sz;
   1292 		addr += sz;
   1293 	}
   1294 
   1295 	s = splbio();
   1296 
   1297 out: /* Arrive here at splbio */
   1298 	vnx->vx_flags &= ~VX_BUSY;
   1299 	if (vnx->vx_pending == 0) {
   1300 		if (vnx->vx_error != 0) {
   1301 			bp->b_error = vnx->vx_error;
   1302 			bp->b_flags |= B_ERROR;
   1303 		}
   1304 		putvndxfer(vnx);
   1305 		biodone(bp);
   1306 	}
   1307 	splx(s);
   1308 }
   1309 
   1310 /*
   1311  * sw_reg_start: start an I/O request on the requested swapdev
   1312  *
   1313  * => reqs are sorted by b_rawblkno (above)
   1314  */
   1315 static void
   1316 sw_reg_start(struct swapdev *sdp)
   1317 {
   1318 	struct buf	*bp;
   1319 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1320 
   1321 	/* recursion control */
   1322 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1323 		return;
   1324 
   1325 	sdp->swd_flags |= SWF_BUSY;
   1326 
   1327 	while (sdp->swd_active < sdp->swd_maxactive) {
   1328 		bp = BUFQ_GET(sdp->swd_tab);
   1329 		if (bp == NULL)
   1330 			break;
   1331 		sdp->swd_active++;
   1332 
   1333 		UVMHIST_LOG(pdhist,
   1334 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1335 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1336 		if ((bp->b_flags & B_READ) == 0)
   1337 			V_INCR_NUMOUTPUT(bp->b_vp);
   1338 
   1339 		VOP_STRATEGY(bp->b_vp, bp);
   1340 	}
   1341 	sdp->swd_flags &= ~SWF_BUSY;
   1342 }
   1343 
   1344 /*
   1345  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1346  *
   1347  * => note that we can recover the vndbuf struct by casting the buf ptr
   1348  */
   1349 static void
   1350 sw_reg_iodone(struct buf *bp)
   1351 {
   1352 	struct vndbuf *vbp = (struct vndbuf *) bp;
   1353 	struct vndxfer *vnx = vbp->vb_xfer;
   1354 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1355 	struct swapdev	*sdp = vnx->vx_sdp;
   1356 	int s, resid, error;
   1357 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1358 
   1359 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1360 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1361 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1362 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1363 
   1364 	/*
   1365 	 * protect vbp at splbio and update.
   1366 	 */
   1367 
   1368 	s = splbio();
   1369 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1370 	pbp->b_resid -= resid;
   1371 	vnx->vx_pending--;
   1372 
   1373 	if (vbp->vb_buf.b_flags & B_ERROR) {
   1374 		/* pass error upward */
   1375 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1376 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1377 		vnx->vx_error = error;
   1378 	}
   1379 
   1380 	/*
   1381 	 * kill vbp structure
   1382 	 */
   1383 	putvndbuf(vbp);
   1384 
   1385 	/*
   1386 	 * wrap up this transaction if it has run to completion or, in
   1387 	 * case of an error, when all auxiliary buffers have returned.
   1388 	 */
   1389 	if (vnx->vx_error != 0) {
   1390 		/* pass error upward */
   1391 		pbp->b_flags |= B_ERROR;
   1392 		pbp->b_error = vnx->vx_error;
   1393 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1394 			putvndxfer(vnx);
   1395 			biodone(pbp);
   1396 		}
   1397 	} else if (pbp->b_resid == 0) {
   1398 		KASSERT(vnx->vx_pending == 0);
   1399 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1400 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1401 			    pbp, vnx->vx_error, 0, 0);
   1402 			putvndxfer(vnx);
   1403 			biodone(pbp);
   1404 		}
   1405 	}
   1406 
   1407 	/*
   1408 	 * done!   start next swapdev I/O if one is pending
   1409 	 */
   1410 	sdp->swd_active--;
   1411 	sw_reg_start(sdp);
   1412 	splx(s);
   1413 }
   1414 
   1415 
   1416 /*
   1417  * uvm_swap_alloc: allocate space on swap
   1418  *
   1419  * => allocation is done "round robin" down the priority list, as we
   1420  *	allocate in a priority we "rotate" the circle queue.
   1421  * => space can be freed with uvm_swap_free
   1422  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1423  * => we lock uvm.swap_data_lock
   1424  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1425  */
   1426 int
   1427 uvm_swap_alloc(int *nslots /* IN/OUT */, boolean_t lessok)
   1428 {
   1429 	struct swapdev *sdp;
   1430 	struct swappri *spp;
   1431 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1432 
   1433 	/*
   1434 	 * no swap devices configured yet?   definite failure.
   1435 	 */
   1436 	if (uvmexp.nswapdev < 1)
   1437 		return 0;
   1438 
   1439 	/*
   1440 	 * lock data lock, convert slots into blocks, and enter loop
   1441 	 */
   1442 	simple_lock(&uvm.swap_data_lock);
   1443 
   1444 ReTry:	/* XXXMRG */
   1445 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1446 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1447 			uint64_t result;
   1448 
   1449 			/* if it's not enabled, then we can't swap from it */
   1450 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1451 				continue;
   1452 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1453 				continue;
   1454 			result = blist_alloc(sdp->swd_blist, *nslots);
   1455 			if (result == BLIST_NONE) {
   1456 				continue;
   1457 			}
   1458 			KASSERT(result < sdp->swd_drumsize);
   1459 
   1460 			/*
   1461 			 * successful allocation!  now rotate the circleq.
   1462 			 */
   1463 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1464 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1465 			sdp->swd_npginuse += *nslots;
   1466 			uvmexp.swpginuse += *nslots;
   1467 			simple_unlock(&uvm.swap_data_lock);
   1468 			/* done!  return drum slot number */
   1469 			UVMHIST_LOG(pdhist,
   1470 			    "success!  returning %d slots starting at %d",
   1471 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1472 			return (result + sdp->swd_drumoffset);
   1473 		}
   1474 	}
   1475 
   1476 	/* XXXMRG: BEGIN HACK */
   1477 	if (*nslots > 1 && lessok) {
   1478 		*nslots = 1;
   1479 		/* XXXMRG: ugh!  blist should support this for us */
   1480 		goto ReTry;
   1481 	}
   1482 	/* XXXMRG: END HACK */
   1483 
   1484 	simple_unlock(&uvm.swap_data_lock);
   1485 	return 0;
   1486 }
   1487 
   1488 boolean_t
   1489 uvm_swapisfull(void)
   1490 {
   1491 	boolean_t rv;
   1492 
   1493 	simple_lock(&uvm.swap_data_lock);
   1494 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1495 	rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
   1496 	simple_unlock(&uvm.swap_data_lock);
   1497 
   1498 	return (rv);
   1499 }
   1500 
   1501 /*
   1502  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1503  *
   1504  * => we lock uvm.swap_data_lock
   1505  */
   1506 void
   1507 uvm_swap_markbad(int startslot, int nslots)
   1508 {
   1509 	struct swapdev *sdp;
   1510 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1511 
   1512 	simple_lock(&uvm.swap_data_lock);
   1513 	sdp = swapdrum_getsdp(startslot);
   1514 	KASSERT(sdp != NULL);
   1515 
   1516 	/*
   1517 	 * we just keep track of how many pages have been marked bad
   1518 	 * in this device, to make everything add up in swap_off().
   1519 	 * we assume here that the range of slots will all be within
   1520 	 * one swap device.
   1521 	 */
   1522 
   1523 	KASSERT(uvmexp.swpgonly >= nslots);
   1524 	uvmexp.swpgonly -= nslots;
   1525 	sdp->swd_npgbad += nslots;
   1526 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1527 	simple_unlock(&uvm.swap_data_lock);
   1528 }
   1529 
   1530 /*
   1531  * uvm_swap_free: free swap slots
   1532  *
   1533  * => this can be all or part of an allocation made by uvm_swap_alloc
   1534  * => we lock uvm.swap_data_lock
   1535  */
   1536 void
   1537 uvm_swap_free(int startslot, int nslots)
   1538 {
   1539 	struct swapdev *sdp;
   1540 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1541 
   1542 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1543 	    startslot, 0, 0);
   1544 
   1545 	/*
   1546 	 * ignore attempts to free the "bad" slot.
   1547 	 */
   1548 
   1549 	if (startslot == SWSLOT_BAD) {
   1550 		return;
   1551 	}
   1552 
   1553 	/*
   1554 	 * convert drum slot offset back to sdp, free the blocks
   1555 	 * in the extent, and return.   must hold pri lock to do
   1556 	 * lookup and access the extent.
   1557 	 */
   1558 
   1559 	simple_lock(&uvm.swap_data_lock);
   1560 	sdp = swapdrum_getsdp(startslot);
   1561 	KASSERT(uvmexp.nswapdev >= 1);
   1562 	KASSERT(sdp != NULL);
   1563 	KASSERT(sdp->swd_npginuse >= nslots);
   1564 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1565 	sdp->swd_npginuse -= nslots;
   1566 	uvmexp.swpginuse -= nslots;
   1567 	simple_unlock(&uvm.swap_data_lock);
   1568 }
   1569 
   1570 /*
   1571  * uvm_swap_put: put any number of pages into a contig place on swap
   1572  *
   1573  * => can be sync or async
   1574  */
   1575 
   1576 int
   1577 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1578 {
   1579 	int error;
   1580 
   1581 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1582 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1583 	return error;
   1584 }
   1585 
   1586 /*
   1587  * uvm_swap_get: get a single page from swap
   1588  *
   1589  * => usually a sync op (from fault)
   1590  */
   1591 
   1592 int
   1593 uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1594 {
   1595 	int error;
   1596 
   1597 	uvmexp.nswget++;
   1598 	KASSERT(flags & PGO_SYNCIO);
   1599 	if (swslot == SWSLOT_BAD) {
   1600 		return EIO;
   1601 	}
   1602 
   1603 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1604 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1605 	if (error == 0) {
   1606 
   1607 		/*
   1608 		 * this page is no longer only in swap.
   1609 		 */
   1610 
   1611 		simple_lock(&uvm.swap_data_lock);
   1612 		KASSERT(uvmexp.swpgonly > 0);
   1613 		uvmexp.swpgonly--;
   1614 		simple_unlock(&uvm.swap_data_lock);
   1615 	}
   1616 	return error;
   1617 }
   1618 
   1619 /*
   1620  * uvm_swap_io: do an i/o operation to swap
   1621  */
   1622 
   1623 static int
   1624 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1625 {
   1626 	daddr_t startblk;
   1627 	struct	buf *bp;
   1628 	vaddr_t kva;
   1629 	int	error, s, mapinflags;
   1630 	boolean_t write, async;
   1631 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1632 
   1633 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1634 	    startslot, npages, flags, 0);
   1635 
   1636 	write = (flags & B_READ) == 0;
   1637 	async = (flags & B_ASYNC) != 0;
   1638 
   1639 	/*
   1640 	 * convert starting drum slot to block number
   1641 	 */
   1642 
   1643 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1644 
   1645 	/*
   1646 	 * first, map the pages into the kernel.
   1647 	 */
   1648 
   1649 	mapinflags = !write ?
   1650 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1651 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1652 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1653 
   1654 	/*
   1655 	 * now allocate a buf for the i/o.
   1656 	 */
   1657 
   1658 	bp = getiobuf();
   1659 
   1660 	/*
   1661 	 * fill in the bp/sbp.   we currently route our i/o through
   1662 	 * /dev/drum's vnode [swapdev_vp].
   1663 	 */
   1664 
   1665 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
   1666 	bp->b_proc = &proc0;	/* XXX */
   1667 	bp->b_vnbufs.le_next = NOLIST;
   1668 	bp->b_data = (caddr_t)kva;
   1669 	bp->b_blkno = startblk;
   1670 	bp->b_vp = swapdev_vp;
   1671 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1672 
   1673 	/*
   1674 	 * bump v_numoutput (counter of number of active outputs).
   1675 	 */
   1676 
   1677 	if (write) {
   1678 		s = splbio();
   1679 		V_INCR_NUMOUTPUT(swapdev_vp);
   1680 		splx(s);
   1681 	}
   1682 
   1683 	/*
   1684 	 * for async ops we must set up the iodone handler.
   1685 	 */
   1686 
   1687 	if (async) {
   1688 		bp->b_flags |= B_CALL;
   1689 		bp->b_iodone = uvm_aio_biodone;
   1690 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1691 		if (curproc == uvm.pagedaemon_proc)
   1692 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1693 		else
   1694 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1695 	} else {
   1696 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1697 	}
   1698 	UVMHIST_LOG(pdhist,
   1699 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1700 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1701 
   1702 	/*
   1703 	 * now we start the I/O, and if async, return.
   1704 	 */
   1705 
   1706 	VOP_STRATEGY(swapdev_vp, bp);
   1707 	if (async)
   1708 		return 0;
   1709 
   1710 	/*
   1711 	 * must be sync i/o.   wait for it to finish
   1712 	 */
   1713 
   1714 	error = biowait(bp);
   1715 
   1716 	/*
   1717 	 * kill the pager mapping
   1718 	 */
   1719 
   1720 	uvm_pagermapout(kva, npages);
   1721 
   1722 	/*
   1723 	 * now dispose of the buf and we're done.
   1724 	 */
   1725 
   1726 	s = splbio();
   1727 	if (write)
   1728 		vwakeup(bp);
   1729 	putiobuf(bp);
   1730 	splx(s);
   1731 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1732 	return (error);
   1733 }
   1734