uvm_swap.c revision 1.99.8.1 1 /* $NetBSD: uvm_swap.c,v 1.99.8.1 2006/03/08 00:31:57 elad Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.99.8.1 2006/03/08 00:31:57 elad Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/bufq.h>
46 #include <sys/conf.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/extent.h>
56 #include <sys/blist.h>
57 #include <sys/mount.h>
58 #include <sys/pool.h>
59 #include <sys/sa.h>
60 #include <sys/syscallargs.h>
61 #include <sys/swap.h>
62
63 #include <uvm/uvm.h>
64
65 #include <miscfs/specfs/specdev.h>
66
67 /*
68 * uvm_swap.c: manage configuration and i/o to swap space.
69 */
70
71 /*
72 * swap space is managed in the following way:
73 *
74 * each swap partition or file is described by a "swapdev" structure.
75 * each "swapdev" structure contains a "swapent" structure which contains
76 * information that is passed up to the user (via system calls).
77 *
78 * each swap partition is assigned a "priority" (int) which controls
79 * swap parition usage.
80 *
81 * the system maintains a global data structure describing all swap
82 * partitions/files. there is a sorted LIST of "swappri" structures
83 * which describe "swapdev"'s at that priority. this LIST is headed
84 * by the "swap_priority" global var. each "swappri" contains a
85 * CIRCLEQ of "swapdev" structures at that priority.
86 *
87 * locking:
88 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
89 * system call and prevents the swap priority list from changing
90 * while we are in the middle of a system call (e.g. SWAP_STATS).
91 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
92 * structures including the priority list, the swapdev structures,
93 * and the swapmap extent.
94 *
95 * each swap device has the following info:
96 * - swap device in use (could be disabled, preventing future use)
97 * - swap enabled (allows new allocations on swap)
98 * - map info in /dev/drum
99 * - vnode pointer
100 * for swap files only:
101 * - block size
102 * - max byte count in buffer
103 * - buffer
104 *
105 * userland controls and configures swap with the swapctl(2) system call.
106 * the sys_swapctl performs the following operations:
107 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
108 * [2] SWAP_STATS: given a pointer to an array of swapent structures
109 * (passed in via "arg") of a size passed in via "misc" ... we load
110 * the current swap config into the array. The actual work is done
111 * in the uvm_swap_stats(9) function.
112 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
113 * priority in "misc", start swapping on it.
114 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
115 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
116 * "misc")
117 */
118
119 /*
120 * swapdev: describes a single swap partition/file
121 *
122 * note the following should be true:
123 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
124 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
125 */
126 struct swapdev {
127 struct oswapent swd_ose;
128 #define swd_dev swd_ose.ose_dev /* device id */
129 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
130 #define swd_priority swd_ose.ose_priority /* our priority */
131 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
132 char *swd_path; /* saved pathname of device */
133 int swd_pathlen; /* length of pathname */
134 int swd_npages; /* #pages we can use */
135 int swd_npginuse; /* #pages in use */
136 int swd_npgbad; /* #pages bad */
137 int swd_drumoffset; /* page0 offset in drum */
138 int swd_drumsize; /* #pages in drum */
139 blist_t swd_blist; /* blist for this swapdev */
140 struct vnode *swd_vp; /* backing vnode */
141 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
142
143 int swd_bsize; /* blocksize (bytes) */
144 int swd_maxactive; /* max active i/o reqs */
145 struct bufq_state *swd_tab; /* buffer list */
146 int swd_active; /* number of active buffers */
147 };
148
149 /*
150 * swap device priority entry; the list is kept sorted on `spi_priority'.
151 */
152 struct swappri {
153 int spi_priority; /* priority */
154 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
155 /* circleq of swapdevs at this priority */
156 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
157 };
158
159 /*
160 * The following two structures are used to keep track of data transfers
161 * on swap devices associated with regular files.
162 * NOTE: this code is more or less a copy of vnd.c; we use the same
163 * structure names here to ease porting..
164 */
165 struct vndxfer {
166 struct buf *vx_bp; /* Pointer to parent buffer */
167 struct swapdev *vx_sdp;
168 int vx_error;
169 int vx_pending; /* # of pending aux buffers */
170 int vx_flags;
171 #define VX_BUSY 1
172 #define VX_DEAD 2
173 };
174
175 struct vndbuf {
176 struct buf vb_buf;
177 struct vndxfer *vb_xfer;
178 };
179
180
181 /*
182 * We keep a of pool vndbuf's and vndxfer structures.
183 */
184 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL);
185 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL);
186
187 #define getvndxfer(vnx) do { \
188 int sp = splbio(); \
189 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \
190 splx(sp); \
191 } while (/*CONSTCOND*/ 0)
192
193 #define putvndxfer(vnx) { \
194 pool_put(&vndxfer_pool, (void *)(vnx)); \
195 }
196
197 #define getvndbuf(vbp) do { \
198 int sp = splbio(); \
199 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \
200 splx(sp); \
201 } while (/*CONSTCOND*/ 0)
202
203 #define putvndbuf(vbp) { \
204 pool_put(&vndbuf_pool, (void *)(vbp)); \
205 }
206
207 /*
208 * local variables
209 */
210 static struct extent *swapmap; /* controls the mapping of /dev/drum */
211
212 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
213
214 /* list of all active swap devices [by priority] */
215 LIST_HEAD(swap_priority, swappri);
216 static struct swap_priority swap_priority;
217
218 /* locks */
219 static struct lock swap_syscall_lock;
220
221 /*
222 * prototypes
223 */
224 static struct swapdev *swapdrum_getsdp(int);
225
226 static struct swapdev *swaplist_find(struct vnode *, int);
227 static void swaplist_insert(struct swapdev *,
228 struct swappri *, int);
229 static void swaplist_trim(void);
230
231 static int swap_on(struct lwp *, struct swapdev *);
232 static int swap_off(struct lwp *, struct swapdev *);
233
234 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
235
236 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
237 static void sw_reg_iodone(struct buf *);
238 static void sw_reg_start(struct swapdev *);
239
240 static int uvm_swap_io(struct vm_page **, int, int, int);
241
242 /*
243 * uvm_swap_init: init the swap system data structures and locks
244 *
245 * => called at boot time from init_main.c after the filesystems
246 * are brought up (which happens after uvm_init())
247 */
248 void
249 uvm_swap_init(void)
250 {
251 UVMHIST_FUNC("uvm_swap_init");
252
253 UVMHIST_CALLED(pdhist);
254 /*
255 * first, init the swap list, its counter, and its lock.
256 * then get a handle on the vnode for /dev/drum by using
257 * the its dev_t number ("swapdev", from MD conf.c).
258 */
259
260 LIST_INIT(&swap_priority);
261 uvmexp.nswapdev = 0;
262 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
263 simple_lock_init(&uvm.swap_data_lock);
264
265 if (bdevvp(swapdev, &swapdev_vp))
266 panic("uvm_swap_init: can't get vnode for swap device");
267
268 /*
269 * create swap block resource map to map /dev/drum. the range
270 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
271 * that block 0 is reserved (used to indicate an allocation
272 * failure, or no allocation).
273 */
274 swapmap = extent_create("swapmap", 1, INT_MAX,
275 M_VMSWAP, 0, 0, EX_NOWAIT);
276 if (swapmap == 0)
277 panic("uvm_swap_init: extent_create failed");
278
279 /*
280 * done!
281 */
282 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
283 }
284
285 /*
286 * swaplist functions: functions that operate on the list of swap
287 * devices on the system.
288 */
289
290 /*
291 * swaplist_insert: insert swap device "sdp" into the global list
292 *
293 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
294 * => caller must provide a newly malloc'd swappri structure (we will
295 * FREE it if we don't need it... this it to prevent malloc blocking
296 * here while adding swap)
297 */
298 static void
299 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
300 {
301 struct swappri *spp, *pspp;
302 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
303
304 /*
305 * find entry at or after which to insert the new device.
306 */
307 pspp = NULL;
308 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
309 if (priority <= spp->spi_priority)
310 break;
311 pspp = spp;
312 }
313
314 /*
315 * new priority?
316 */
317 if (spp == NULL || spp->spi_priority != priority) {
318 spp = newspp; /* use newspp! */
319 UVMHIST_LOG(pdhist, "created new swappri = %d",
320 priority, 0, 0, 0);
321
322 spp->spi_priority = priority;
323 CIRCLEQ_INIT(&spp->spi_swapdev);
324
325 if (pspp)
326 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
327 else
328 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
329 } else {
330 /* we don't need a new priority structure, free it */
331 FREE(newspp, M_VMSWAP);
332 }
333
334 /*
335 * priority found (or created). now insert on the priority's
336 * circleq list and bump the total number of swapdevs.
337 */
338 sdp->swd_priority = priority;
339 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
340 uvmexp.nswapdev++;
341 }
342
343 /*
344 * swaplist_find: find and optionally remove a swap device from the
345 * global list.
346 *
347 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
348 * => we return the swapdev we found (and removed)
349 */
350 static struct swapdev *
351 swaplist_find(struct vnode *vp, boolean_t remove)
352 {
353 struct swapdev *sdp;
354 struct swappri *spp;
355
356 /*
357 * search the lists for the requested vp
358 */
359
360 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
361 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
362 if (sdp->swd_vp == vp) {
363 if (remove) {
364 CIRCLEQ_REMOVE(&spp->spi_swapdev,
365 sdp, swd_next);
366 uvmexp.nswapdev--;
367 }
368 return(sdp);
369 }
370 }
371 }
372 return (NULL);
373 }
374
375
376 /*
377 * swaplist_trim: scan priority list for empty priority entries and kill
378 * them.
379 *
380 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
381 */
382 static void
383 swaplist_trim(void)
384 {
385 struct swappri *spp, *nextspp;
386
387 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
388 nextspp = LIST_NEXT(spp, spi_swappri);
389 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
390 (void *)&spp->spi_swapdev)
391 continue;
392 LIST_REMOVE(spp, spi_swappri);
393 free(spp, M_VMSWAP);
394 }
395 }
396
397 /*
398 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
399 * to the "swapdev" that maps that section of the drum.
400 *
401 * => each swapdev takes one big contig chunk of the drum
402 * => caller must hold uvm.swap_data_lock
403 */
404 static struct swapdev *
405 swapdrum_getsdp(int pgno)
406 {
407 struct swapdev *sdp;
408 struct swappri *spp;
409
410 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
411 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
412 if (sdp->swd_flags & SWF_FAKE)
413 continue;
414 if (pgno >= sdp->swd_drumoffset &&
415 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
416 return sdp;
417 }
418 }
419 }
420 return NULL;
421 }
422
423
424 /*
425 * sys_swapctl: main entry point for swapctl(2) system call
426 * [with two helper functions: swap_on and swap_off]
427 */
428 int
429 sys_swapctl(struct lwp *l, void *v, register_t *retval)
430 {
431 struct sys_swapctl_args /* {
432 syscallarg(int) cmd;
433 syscallarg(void *) arg;
434 syscallarg(int) misc;
435 } */ *uap = (struct sys_swapctl_args *)v;
436 struct proc *p = l->l_proc;
437 struct vnode *vp;
438 struct nameidata nd;
439 struct swappri *spp;
440 struct swapdev *sdp;
441 struct swapent *sep;
442 char userpath[PATH_MAX + 1];
443 size_t len;
444 int error, misc;
445 int priority;
446 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
447
448 misc = SCARG(uap, misc);
449
450 /*
451 * ensure serialized syscall access by grabbing the swap_syscall_lock
452 */
453 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
454
455 /*
456 * we handle the non-priv NSWAP and STATS request first.
457 *
458 * SWAP_NSWAP: return number of config'd swap devices
459 * [can also be obtained with uvmexp sysctl]
460 */
461 if (SCARG(uap, cmd) == SWAP_NSWAP) {
462 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
463 0, 0, 0);
464 *retval = uvmexp.nswapdev;
465 error = 0;
466 goto out;
467 }
468
469 /*
470 * SWAP_STATS: get stats on current # of configured swap devs
471 *
472 * note that the swap_priority list can't change as long
473 * as we are holding the swap_syscall_lock. we don't want
474 * to grab the uvm.swap_data_lock because we may fault&sleep during
475 * copyout() and we don't want to be holding that lock then!
476 */
477 if (SCARG(uap, cmd) == SWAP_STATS
478 #if defined(COMPAT_13)
479 || SCARG(uap, cmd) == SWAP_OSTATS
480 #endif
481 ) {
482 if ((size_t)misc > (size_t)uvmexp.nswapdev)
483 misc = uvmexp.nswapdev;
484 #if defined(COMPAT_13)
485 if (SCARG(uap, cmd) == SWAP_OSTATS)
486 len = sizeof(struct oswapent) * misc;
487 else
488 #endif
489 len = sizeof(struct swapent) * misc;
490 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
491
492 uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
493 error = copyout(sep, SCARG(uap, arg), len);
494
495 free(sep, M_TEMP);
496 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
497 goto out;
498 }
499 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
500 dev_t *devp = (dev_t *)SCARG(uap, arg);
501
502 error = copyout(&dumpdev, devp, sizeof(dumpdev));
503 goto out;
504 }
505
506 /*
507 * all other requests require superuser privs. verify.
508 */
509 if ((error = generic_authorize(p->p_cred, KAUTH_GENERIC_ISSUSER,
510 &p->p_acflag)))
511 goto out;
512
513 /*
514 * at this point we expect a path name in arg. we will
515 * use namei() to gain a vnode reference (vref), and lock
516 * the vnode (VOP_LOCK).
517 *
518 * XXX: a NULL arg means use the root vnode pointer (e.g. for
519 * miniroot)
520 */
521 if (SCARG(uap, arg) == NULL) {
522 vp = rootvp; /* miniroot */
523 if (vget(vp, LK_EXCLUSIVE)) {
524 error = EBUSY;
525 goto out;
526 }
527 if (SCARG(uap, cmd) == SWAP_ON &&
528 copystr("miniroot", userpath, sizeof userpath, &len))
529 panic("swapctl: miniroot copy failed");
530 } else {
531 int space;
532 char *where;
533
534 if (SCARG(uap, cmd) == SWAP_ON) {
535 if ((error = copyinstr(SCARG(uap, arg), userpath,
536 sizeof userpath, &len)))
537 goto out;
538 space = UIO_SYSSPACE;
539 where = userpath;
540 } else {
541 space = UIO_USERSPACE;
542 where = (char *)SCARG(uap, arg);
543 }
544 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, l);
545 if ((error = namei(&nd)))
546 goto out;
547 vp = nd.ni_vp;
548 }
549 /* note: "vp" is referenced and locked */
550
551 error = 0; /* assume no error */
552 switch(SCARG(uap, cmd)) {
553
554 case SWAP_DUMPDEV:
555 if (vp->v_type != VBLK) {
556 error = ENOTBLK;
557 break;
558 }
559 dumpdev = vp->v_rdev;
560 cpu_dumpconf();
561 break;
562
563 case SWAP_CTL:
564 /*
565 * get new priority, remove old entry (if any) and then
566 * reinsert it in the correct place. finally, prune out
567 * any empty priority structures.
568 */
569 priority = SCARG(uap, misc);
570 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
571 simple_lock(&uvm.swap_data_lock);
572 if ((sdp = swaplist_find(vp, 1)) == NULL) {
573 error = ENOENT;
574 } else {
575 swaplist_insert(sdp, spp, priority);
576 swaplist_trim();
577 }
578 simple_unlock(&uvm.swap_data_lock);
579 if (error)
580 free(spp, M_VMSWAP);
581 break;
582
583 case SWAP_ON:
584
585 /*
586 * check for duplicates. if none found, then insert a
587 * dummy entry on the list to prevent someone else from
588 * trying to enable this device while we are working on
589 * it.
590 */
591
592 priority = SCARG(uap, misc);
593 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
594 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
595 memset(sdp, 0, sizeof(*sdp));
596 sdp->swd_flags = SWF_FAKE;
597 sdp->swd_vp = vp;
598 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
599 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
600 simple_lock(&uvm.swap_data_lock);
601 if (swaplist_find(vp, 0) != NULL) {
602 error = EBUSY;
603 simple_unlock(&uvm.swap_data_lock);
604 bufq_free(sdp->swd_tab);
605 free(sdp, M_VMSWAP);
606 free(spp, M_VMSWAP);
607 break;
608 }
609 swaplist_insert(sdp, spp, priority);
610 simple_unlock(&uvm.swap_data_lock);
611
612 sdp->swd_pathlen = len;
613 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
614 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
615 panic("swapctl: copystr");
616
617 /*
618 * we've now got a FAKE placeholder in the swap list.
619 * now attempt to enable swap on it. if we fail, undo
620 * what we've done and kill the fake entry we just inserted.
621 * if swap_on is a success, it will clear the SWF_FAKE flag
622 */
623
624 if ((error = swap_on(l, sdp)) != 0) {
625 simple_lock(&uvm.swap_data_lock);
626 (void) swaplist_find(vp, 1); /* kill fake entry */
627 swaplist_trim();
628 simple_unlock(&uvm.swap_data_lock);
629 bufq_free(sdp->swd_tab);
630 free(sdp->swd_path, M_VMSWAP);
631 free(sdp, M_VMSWAP);
632 break;
633 }
634 break;
635
636 case SWAP_OFF:
637 simple_lock(&uvm.swap_data_lock);
638 if ((sdp = swaplist_find(vp, 0)) == NULL) {
639 simple_unlock(&uvm.swap_data_lock);
640 error = ENXIO;
641 break;
642 }
643
644 /*
645 * If a device isn't in use or enabled, we
646 * can't stop swapping from it (again).
647 */
648 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
649 simple_unlock(&uvm.swap_data_lock);
650 error = EBUSY;
651 break;
652 }
653
654 /*
655 * do the real work.
656 */
657 error = swap_off(l, sdp);
658 break;
659
660 default:
661 error = EINVAL;
662 }
663
664 /*
665 * done! release the ref gained by namei() and unlock.
666 */
667 vput(vp);
668
669 out:
670 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
671
672 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
673 return (error);
674 }
675
676 /*
677 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
678 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
679 * emulation to use it directly without going through sys_swapctl().
680 * The problem with using sys_swapctl() there is that it involves
681 * copying the swapent array to the stackgap, and this array's size
682 * is not known at build time. Hence it would not be possible to
683 * ensure it would fit in the stackgap in any case.
684 */
685 void
686 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
687 {
688
689 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
690 uvm_swap_stats_locked(cmd, sep, sec, retval);
691 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
692 }
693
694 static void
695 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
696 {
697 struct swappri *spp;
698 struct swapdev *sdp;
699 int count = 0;
700
701 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
702 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
703 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
704 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
705 /*
706 * backwards compatibility for system call.
707 * note that we use 'struct oswapent' as an
708 * overlay into both 'struct swapdev' and
709 * the userland 'struct swapent', as we
710 * want to retain backwards compatibility
711 * with NetBSD 1.3.
712 */
713 sdp->swd_ose.ose_inuse =
714 btodb((uint64_t)sdp->swd_npginuse <<
715 PAGE_SHIFT);
716 (void)memcpy(sep, &sdp->swd_ose,
717 sizeof(struct oswapent));
718
719 /* now copy out the path if necessary */
720 #if defined(COMPAT_13)
721 if (cmd == SWAP_STATS)
722 #endif
723 (void)memcpy(&sep->se_path, sdp->swd_path,
724 sdp->swd_pathlen);
725
726 count++;
727 #if defined(COMPAT_13)
728 if (cmd == SWAP_OSTATS)
729 sep = (struct swapent *)
730 ((struct oswapent *)sep + 1);
731 else
732 #endif
733 sep++;
734 }
735 }
736
737 *retval = count;
738 return;
739 }
740
741 /*
742 * swap_on: attempt to enable a swapdev for swapping. note that the
743 * swapdev is already on the global list, but disabled (marked
744 * SWF_FAKE).
745 *
746 * => we avoid the start of the disk (to protect disk labels)
747 * => we also avoid the miniroot, if we are swapping to root.
748 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
749 * if needed.
750 */
751 static int
752 swap_on(struct lwp *l, struct swapdev *sdp)
753 {
754 struct vnode *vp;
755 struct proc *p = l->l_proc;
756 int error, npages, nblocks, size;
757 long addr;
758 u_long result;
759 struct vattr va;
760 #ifdef NFS
761 extern int (**nfsv2_vnodeop_p)(void *);
762 #endif /* NFS */
763 const struct bdevsw *bdev;
764 dev_t dev;
765 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
766
767 /*
768 * we want to enable swapping on sdp. the swd_vp contains
769 * the vnode we want (locked and ref'd), and the swd_dev
770 * contains the dev_t of the file, if it a block device.
771 */
772
773 vp = sdp->swd_vp;
774 dev = sdp->swd_dev;
775
776 /*
777 * open the swap file (mostly useful for block device files to
778 * let device driver know what is up).
779 *
780 * we skip the open/close for root on swap because the root
781 * has already been opened when root was mounted (mountroot).
782 */
783 if (vp != rootvp) {
784 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_cred, l)))
785 return (error);
786 }
787
788 /* XXX this only works for block devices */
789 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
790
791 /*
792 * we now need to determine the size of the swap area. for
793 * block specials we can call the d_psize function.
794 * for normal files, we must stat [get attrs].
795 *
796 * we put the result in nblks.
797 * for normal files, we also want the filesystem block size
798 * (which we get with statfs).
799 */
800 switch (vp->v_type) {
801 case VBLK:
802 bdev = bdevsw_lookup(dev);
803 if (bdev == NULL || bdev->d_psize == NULL ||
804 (nblocks = (*bdev->d_psize)(dev)) == -1) {
805 error = ENXIO;
806 goto bad;
807 }
808 break;
809
810 case VREG:
811 if ((error = VOP_GETATTR(vp, &va, p->p_cred, l)))
812 goto bad;
813 nblocks = (int)btodb(va.va_size);
814 if ((error =
815 VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, l)) != 0)
816 goto bad;
817
818 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
819 /*
820 * limit the max # of outstanding I/O requests we issue
821 * at any one time. take it easy on NFS servers.
822 */
823 #ifdef NFS
824 if (vp->v_op == nfsv2_vnodeop_p)
825 sdp->swd_maxactive = 2; /* XXX */
826 else
827 #endif /* NFS */
828 sdp->swd_maxactive = 8; /* XXX */
829 break;
830
831 default:
832 error = ENXIO;
833 goto bad;
834 }
835
836 /*
837 * save nblocks in a safe place and convert to pages.
838 */
839
840 sdp->swd_ose.ose_nblks = nblocks;
841 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
842
843 /*
844 * for block special files, we want to make sure that leave
845 * the disklabel and bootblocks alone, so we arrange to skip
846 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
847 * note that because of this the "size" can be less than the
848 * actual number of blocks on the device.
849 */
850 if (vp->v_type == VBLK) {
851 /* we use pages 1 to (size - 1) [inclusive] */
852 size = npages - 1;
853 addr = 1;
854 } else {
855 /* we use pages 0 to (size - 1) [inclusive] */
856 size = npages;
857 addr = 0;
858 }
859
860 /*
861 * make sure we have enough blocks for a reasonable sized swap
862 * area. we want at least one page.
863 */
864
865 if (size < 1) {
866 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
867 error = EINVAL;
868 goto bad;
869 }
870
871 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
872
873 /*
874 * now we need to allocate an extent to manage this swap device
875 */
876
877 sdp->swd_blist = blist_create(npages);
878 /* mark all expect the `saved' region free. */
879 blist_free(sdp->swd_blist, addr, size);
880
881 /*
882 * if the vnode we are swapping to is the root vnode
883 * (i.e. we are swapping to the miniroot) then we want
884 * to make sure we don't overwrite it. do a statfs to
885 * find its size and skip over it.
886 */
887 if (vp == rootvp) {
888 struct mount *mp;
889 struct statvfs *sp;
890 int rootblocks, rootpages;
891
892 mp = rootvnode->v_mount;
893 sp = &mp->mnt_stat;
894 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
895 /*
896 * XXX: sp->f_blocks isn't the total number of
897 * blocks in the filesystem, it's the number of
898 * data blocks. so, our rootblocks almost
899 * definitely underestimates the total size
900 * of the filesystem - how badly depends on the
901 * details of the filesystem type. there isn't
902 * an obvious way to deal with this cleanly
903 * and perfectly, so for now we just pad our
904 * rootblocks estimate with an extra 5 percent.
905 */
906 rootblocks += (rootblocks >> 5) +
907 (rootblocks >> 6) +
908 (rootblocks >> 7);
909 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
910 if (rootpages > size)
911 panic("swap_on: miniroot larger than swap?");
912
913 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
914 panic("swap_on: unable to preserve miniroot");
915 }
916
917 size -= rootpages;
918 printf("Preserved %d pages of miniroot ", rootpages);
919 printf("leaving %d pages of swap\n", size);
920 }
921
922 /*
923 * add a ref to vp to reflect usage as a swap device.
924 */
925 vref(vp);
926
927 /*
928 * now add the new swapdev to the drum and enable.
929 */
930 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
931 EX_WAITOK, &result))
932 panic("swapdrum_add");
933
934 sdp->swd_drumoffset = (int)result;
935 sdp->swd_drumsize = npages;
936 sdp->swd_npages = size;
937 simple_lock(&uvm.swap_data_lock);
938 sdp->swd_flags &= ~SWF_FAKE; /* going live */
939 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
940 uvmexp.swpages += size;
941 uvmexp.swpgavail += size;
942 simple_unlock(&uvm.swap_data_lock);
943 return (0);
944
945 /*
946 * failure: clean up and return error.
947 */
948
949 bad:
950 if (sdp->swd_blist) {
951 blist_destroy(sdp->swd_blist);
952 }
953 if (vp != rootvp) {
954 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_cred, l);
955 }
956 return (error);
957 }
958
959 /*
960 * swap_off: stop swapping on swapdev
961 *
962 * => swap data should be locked, we will unlock.
963 */
964 static int
965 swap_off(struct lwp *l, struct swapdev *sdp)
966 {
967 struct proc *p = l->l_proc;
968 int npages = sdp->swd_npages;
969 int error = 0;
970
971 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
972 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
973
974 /* disable the swap area being removed */
975 sdp->swd_flags &= ~SWF_ENABLE;
976 uvmexp.swpgavail -= npages;
977 simple_unlock(&uvm.swap_data_lock);
978
979 /*
980 * the idea is to find all the pages that are paged out to this
981 * device, and page them all in. in uvm, swap-backed pageable
982 * memory can take two forms: aobjs and anons. call the
983 * swapoff hook for each subsystem to bring in pages.
984 */
985
986 if (uao_swap_off(sdp->swd_drumoffset,
987 sdp->swd_drumoffset + sdp->swd_drumsize) ||
988 amap_swap_off(sdp->swd_drumoffset,
989 sdp->swd_drumoffset + sdp->swd_drumsize)) {
990 error = ENOMEM;
991 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
992 error = EBUSY;
993 }
994
995 if (error) {
996 simple_lock(&uvm.swap_data_lock);
997 sdp->swd_flags |= SWF_ENABLE;
998 uvmexp.swpgavail += npages;
999 simple_unlock(&uvm.swap_data_lock);
1000
1001 return error;
1002 }
1003
1004 /*
1005 * done with the vnode.
1006 * drop our ref on the vnode before calling VOP_CLOSE()
1007 * so that spec_close() can tell if this is the last close.
1008 */
1009 vrele(sdp->swd_vp);
1010 if (sdp->swd_vp != rootvp) {
1011 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_cred, l);
1012 }
1013
1014 simple_lock(&uvm.swap_data_lock);
1015 uvmexp.swpages -= npages;
1016 uvmexp.swpginuse -= sdp->swd_npgbad;
1017
1018 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1019 panic("swap_off: swapdev not in list");
1020 swaplist_trim();
1021 simple_unlock(&uvm.swap_data_lock);
1022
1023 /*
1024 * free all resources!
1025 */
1026 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1027 EX_WAITOK);
1028 blist_destroy(sdp->swd_blist);
1029 bufq_free(sdp->swd_tab);
1030 free(sdp, M_VMSWAP);
1031 return (0);
1032 }
1033
1034 /*
1035 * /dev/drum interface and i/o functions
1036 */
1037
1038 /*
1039 * swstrategy: perform I/O on the drum
1040 *
1041 * => we must map the i/o request from the drum to the correct swapdev.
1042 */
1043 static void
1044 swstrategy(struct buf *bp)
1045 {
1046 struct swapdev *sdp;
1047 struct vnode *vp;
1048 int s, pageno, bn;
1049 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1050
1051 /*
1052 * convert block number to swapdev. note that swapdev can't
1053 * be yanked out from under us because we are holding resources
1054 * in it (i.e. the blocks we are doing I/O on).
1055 */
1056 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1057 simple_lock(&uvm.swap_data_lock);
1058 sdp = swapdrum_getsdp(pageno);
1059 simple_unlock(&uvm.swap_data_lock);
1060 if (sdp == NULL) {
1061 bp->b_error = EINVAL;
1062 bp->b_flags |= B_ERROR;
1063 biodone(bp);
1064 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1065 return;
1066 }
1067
1068 /*
1069 * convert drum page number to block number on this swapdev.
1070 */
1071
1072 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1073 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1074
1075 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1076 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1077 sdp->swd_drumoffset, bn, bp->b_bcount);
1078
1079 /*
1080 * for block devices we finish up here.
1081 * for regular files we have to do more work which we delegate
1082 * to sw_reg_strategy().
1083 */
1084
1085 switch (sdp->swd_vp->v_type) {
1086 default:
1087 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1088
1089 case VBLK:
1090
1091 /*
1092 * must convert "bp" from an I/O on /dev/drum to an I/O
1093 * on the swapdev (sdp).
1094 */
1095 s = splbio();
1096 bp->b_blkno = bn; /* swapdev block number */
1097 vp = sdp->swd_vp; /* swapdev vnode pointer */
1098 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1099
1100 /*
1101 * if we are doing a write, we have to redirect the i/o on
1102 * drum's v_numoutput counter to the swapdevs.
1103 */
1104 if ((bp->b_flags & B_READ) == 0) {
1105 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1106 V_INCR_NUMOUTPUT(vp); /* put it on swapdev */
1107 }
1108
1109 /*
1110 * finally plug in swapdev vnode and start I/O
1111 */
1112 bp->b_vp = vp;
1113 splx(s);
1114 VOP_STRATEGY(vp, bp);
1115 return;
1116
1117 case VREG:
1118 /*
1119 * delegate to sw_reg_strategy function.
1120 */
1121 sw_reg_strategy(sdp, bp, bn);
1122 return;
1123 }
1124 /* NOTREACHED */
1125 }
1126
1127 /*
1128 * swread: the read function for the drum (just a call to physio)
1129 */
1130 /*ARGSUSED*/
1131 static int
1132 swread(dev_t dev, struct uio *uio, int ioflag)
1133 {
1134 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1135
1136 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1137 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1138 }
1139
1140 /*
1141 * swwrite: the write function for the drum (just a call to physio)
1142 */
1143 /*ARGSUSED*/
1144 static int
1145 swwrite(dev_t dev, struct uio *uio, int ioflag)
1146 {
1147 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1148
1149 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1150 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1151 }
1152
1153 const struct bdevsw swap_bdevsw = {
1154 noopen, noclose, swstrategy, noioctl, nodump, nosize,
1155 };
1156
1157 const struct cdevsw swap_cdevsw = {
1158 nullopen, nullclose, swread, swwrite, noioctl,
1159 nostop, notty, nopoll, nommap, nokqfilter
1160 };
1161
1162 /*
1163 * sw_reg_strategy: handle swap i/o to regular files
1164 */
1165 static void
1166 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1167 {
1168 struct vnode *vp;
1169 struct vndxfer *vnx;
1170 daddr_t nbn;
1171 caddr_t addr;
1172 off_t byteoff;
1173 int s, off, nra, error, sz, resid;
1174 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1175
1176 /*
1177 * allocate a vndxfer head for this transfer and point it to
1178 * our buffer.
1179 */
1180 getvndxfer(vnx);
1181 vnx->vx_flags = VX_BUSY;
1182 vnx->vx_error = 0;
1183 vnx->vx_pending = 0;
1184 vnx->vx_bp = bp;
1185 vnx->vx_sdp = sdp;
1186
1187 /*
1188 * setup for main loop where we read filesystem blocks into
1189 * our buffer.
1190 */
1191 error = 0;
1192 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1193 addr = bp->b_data; /* current position in buffer */
1194 byteoff = dbtob((uint64_t)bn);
1195
1196 for (resid = bp->b_resid; resid; resid -= sz) {
1197 struct vndbuf *nbp;
1198
1199 /*
1200 * translate byteoffset into block number. return values:
1201 * vp = vnode of underlying device
1202 * nbn = new block number (on underlying vnode dev)
1203 * nra = num blocks we can read-ahead (excludes requested
1204 * block)
1205 */
1206 nra = 0;
1207 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1208 &vp, &nbn, &nra);
1209
1210 if (error == 0 && nbn == (daddr_t)-1) {
1211 /*
1212 * this used to just set error, but that doesn't
1213 * do the right thing. Instead, it causes random
1214 * memory errors. The panic() should remain until
1215 * this condition doesn't destabilize the system.
1216 */
1217 #if 1
1218 panic("sw_reg_strategy: swap to sparse file");
1219 #else
1220 error = EIO; /* failure */
1221 #endif
1222 }
1223
1224 /*
1225 * punt if there was an error or a hole in the file.
1226 * we must wait for any i/o ops we have already started
1227 * to finish before returning.
1228 *
1229 * XXX we could deal with holes here but it would be
1230 * a hassle (in the write case).
1231 */
1232 if (error) {
1233 s = splbio();
1234 vnx->vx_error = error; /* pass error up */
1235 goto out;
1236 }
1237
1238 /*
1239 * compute the size ("sz") of this transfer (in bytes).
1240 */
1241 off = byteoff % sdp->swd_bsize;
1242 sz = (1 + nra) * sdp->swd_bsize - off;
1243 if (sz > resid)
1244 sz = resid;
1245
1246 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1247 "vp %p/%p offset 0x%x/0x%x",
1248 sdp->swd_vp, vp, byteoff, nbn);
1249
1250 /*
1251 * now get a buf structure. note that the vb_buf is
1252 * at the front of the nbp structure so that you can
1253 * cast pointers between the two structure easily.
1254 */
1255 getvndbuf(nbp);
1256 BUF_INIT(&nbp->vb_buf);
1257 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1258 nbp->vb_buf.b_bcount = sz;
1259 nbp->vb_buf.b_bufsize = sz;
1260 nbp->vb_buf.b_error = 0;
1261 nbp->vb_buf.b_data = addr;
1262 nbp->vb_buf.b_lblkno = 0;
1263 nbp->vb_buf.b_blkno = nbn + btodb(off);
1264 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1265 nbp->vb_buf.b_iodone = sw_reg_iodone;
1266 nbp->vb_buf.b_vp = vp;
1267 if (vp->v_type == VBLK) {
1268 nbp->vb_buf.b_dev = vp->v_rdev;
1269 }
1270
1271 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1272
1273 /*
1274 * Just sort by block number
1275 */
1276 s = splbio();
1277 if (vnx->vx_error != 0) {
1278 putvndbuf(nbp);
1279 goto out;
1280 }
1281 vnx->vx_pending++;
1282
1283 /* sort it in and start I/O if we are not over our limit */
1284 BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
1285 sw_reg_start(sdp);
1286 splx(s);
1287
1288 /*
1289 * advance to the next I/O
1290 */
1291 byteoff += sz;
1292 addr += sz;
1293 }
1294
1295 s = splbio();
1296
1297 out: /* Arrive here at splbio */
1298 vnx->vx_flags &= ~VX_BUSY;
1299 if (vnx->vx_pending == 0) {
1300 if (vnx->vx_error != 0) {
1301 bp->b_error = vnx->vx_error;
1302 bp->b_flags |= B_ERROR;
1303 }
1304 putvndxfer(vnx);
1305 biodone(bp);
1306 }
1307 splx(s);
1308 }
1309
1310 /*
1311 * sw_reg_start: start an I/O request on the requested swapdev
1312 *
1313 * => reqs are sorted by b_rawblkno (above)
1314 */
1315 static void
1316 sw_reg_start(struct swapdev *sdp)
1317 {
1318 struct buf *bp;
1319 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1320
1321 /* recursion control */
1322 if ((sdp->swd_flags & SWF_BUSY) != 0)
1323 return;
1324
1325 sdp->swd_flags |= SWF_BUSY;
1326
1327 while (sdp->swd_active < sdp->swd_maxactive) {
1328 bp = BUFQ_GET(sdp->swd_tab);
1329 if (bp == NULL)
1330 break;
1331 sdp->swd_active++;
1332
1333 UVMHIST_LOG(pdhist,
1334 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1335 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1336 if ((bp->b_flags & B_READ) == 0)
1337 V_INCR_NUMOUTPUT(bp->b_vp);
1338
1339 VOP_STRATEGY(bp->b_vp, bp);
1340 }
1341 sdp->swd_flags &= ~SWF_BUSY;
1342 }
1343
1344 /*
1345 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1346 *
1347 * => note that we can recover the vndbuf struct by casting the buf ptr
1348 */
1349 static void
1350 sw_reg_iodone(struct buf *bp)
1351 {
1352 struct vndbuf *vbp = (struct vndbuf *) bp;
1353 struct vndxfer *vnx = vbp->vb_xfer;
1354 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1355 struct swapdev *sdp = vnx->vx_sdp;
1356 int s, resid, error;
1357 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1358
1359 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1360 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1361 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1362 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1363
1364 /*
1365 * protect vbp at splbio and update.
1366 */
1367
1368 s = splbio();
1369 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1370 pbp->b_resid -= resid;
1371 vnx->vx_pending--;
1372
1373 if (vbp->vb_buf.b_flags & B_ERROR) {
1374 /* pass error upward */
1375 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1376 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1377 vnx->vx_error = error;
1378 }
1379
1380 /*
1381 * kill vbp structure
1382 */
1383 putvndbuf(vbp);
1384
1385 /*
1386 * wrap up this transaction if it has run to completion or, in
1387 * case of an error, when all auxiliary buffers have returned.
1388 */
1389 if (vnx->vx_error != 0) {
1390 /* pass error upward */
1391 pbp->b_flags |= B_ERROR;
1392 pbp->b_error = vnx->vx_error;
1393 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1394 putvndxfer(vnx);
1395 biodone(pbp);
1396 }
1397 } else if (pbp->b_resid == 0) {
1398 KASSERT(vnx->vx_pending == 0);
1399 if ((vnx->vx_flags & VX_BUSY) == 0) {
1400 UVMHIST_LOG(pdhist, " iodone error=%d !",
1401 pbp, vnx->vx_error, 0, 0);
1402 putvndxfer(vnx);
1403 biodone(pbp);
1404 }
1405 }
1406
1407 /*
1408 * done! start next swapdev I/O if one is pending
1409 */
1410 sdp->swd_active--;
1411 sw_reg_start(sdp);
1412 splx(s);
1413 }
1414
1415
1416 /*
1417 * uvm_swap_alloc: allocate space on swap
1418 *
1419 * => allocation is done "round robin" down the priority list, as we
1420 * allocate in a priority we "rotate" the circle queue.
1421 * => space can be freed with uvm_swap_free
1422 * => we return the page slot number in /dev/drum (0 == invalid slot)
1423 * => we lock uvm.swap_data_lock
1424 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1425 */
1426 int
1427 uvm_swap_alloc(int *nslots /* IN/OUT */, boolean_t lessok)
1428 {
1429 struct swapdev *sdp;
1430 struct swappri *spp;
1431 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1432
1433 /*
1434 * no swap devices configured yet? definite failure.
1435 */
1436 if (uvmexp.nswapdev < 1)
1437 return 0;
1438
1439 /*
1440 * lock data lock, convert slots into blocks, and enter loop
1441 */
1442 simple_lock(&uvm.swap_data_lock);
1443
1444 ReTry: /* XXXMRG */
1445 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1446 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1447 uint64_t result;
1448
1449 /* if it's not enabled, then we can't swap from it */
1450 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1451 continue;
1452 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1453 continue;
1454 result = blist_alloc(sdp->swd_blist, *nslots);
1455 if (result == BLIST_NONE) {
1456 continue;
1457 }
1458 KASSERT(result < sdp->swd_drumsize);
1459
1460 /*
1461 * successful allocation! now rotate the circleq.
1462 */
1463 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1464 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1465 sdp->swd_npginuse += *nslots;
1466 uvmexp.swpginuse += *nslots;
1467 simple_unlock(&uvm.swap_data_lock);
1468 /* done! return drum slot number */
1469 UVMHIST_LOG(pdhist,
1470 "success! returning %d slots starting at %d",
1471 *nslots, result + sdp->swd_drumoffset, 0, 0);
1472 return (result + sdp->swd_drumoffset);
1473 }
1474 }
1475
1476 /* XXXMRG: BEGIN HACK */
1477 if (*nslots > 1 && lessok) {
1478 *nslots = 1;
1479 /* XXXMRG: ugh! blist should support this for us */
1480 goto ReTry;
1481 }
1482 /* XXXMRG: END HACK */
1483
1484 simple_unlock(&uvm.swap_data_lock);
1485 return 0;
1486 }
1487
1488 boolean_t
1489 uvm_swapisfull(void)
1490 {
1491 boolean_t rv;
1492
1493 simple_lock(&uvm.swap_data_lock);
1494 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1495 rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1496 simple_unlock(&uvm.swap_data_lock);
1497
1498 return (rv);
1499 }
1500
1501 /*
1502 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1503 *
1504 * => we lock uvm.swap_data_lock
1505 */
1506 void
1507 uvm_swap_markbad(int startslot, int nslots)
1508 {
1509 struct swapdev *sdp;
1510 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1511
1512 simple_lock(&uvm.swap_data_lock);
1513 sdp = swapdrum_getsdp(startslot);
1514 KASSERT(sdp != NULL);
1515
1516 /*
1517 * we just keep track of how many pages have been marked bad
1518 * in this device, to make everything add up in swap_off().
1519 * we assume here that the range of slots will all be within
1520 * one swap device.
1521 */
1522
1523 KASSERT(uvmexp.swpgonly >= nslots);
1524 uvmexp.swpgonly -= nslots;
1525 sdp->swd_npgbad += nslots;
1526 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1527 simple_unlock(&uvm.swap_data_lock);
1528 }
1529
1530 /*
1531 * uvm_swap_free: free swap slots
1532 *
1533 * => this can be all or part of an allocation made by uvm_swap_alloc
1534 * => we lock uvm.swap_data_lock
1535 */
1536 void
1537 uvm_swap_free(int startslot, int nslots)
1538 {
1539 struct swapdev *sdp;
1540 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1541
1542 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1543 startslot, 0, 0);
1544
1545 /*
1546 * ignore attempts to free the "bad" slot.
1547 */
1548
1549 if (startslot == SWSLOT_BAD) {
1550 return;
1551 }
1552
1553 /*
1554 * convert drum slot offset back to sdp, free the blocks
1555 * in the extent, and return. must hold pri lock to do
1556 * lookup and access the extent.
1557 */
1558
1559 simple_lock(&uvm.swap_data_lock);
1560 sdp = swapdrum_getsdp(startslot);
1561 KASSERT(uvmexp.nswapdev >= 1);
1562 KASSERT(sdp != NULL);
1563 KASSERT(sdp->swd_npginuse >= nslots);
1564 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1565 sdp->swd_npginuse -= nslots;
1566 uvmexp.swpginuse -= nslots;
1567 simple_unlock(&uvm.swap_data_lock);
1568 }
1569
1570 /*
1571 * uvm_swap_put: put any number of pages into a contig place on swap
1572 *
1573 * => can be sync or async
1574 */
1575
1576 int
1577 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1578 {
1579 int error;
1580
1581 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1582 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1583 return error;
1584 }
1585
1586 /*
1587 * uvm_swap_get: get a single page from swap
1588 *
1589 * => usually a sync op (from fault)
1590 */
1591
1592 int
1593 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1594 {
1595 int error;
1596
1597 uvmexp.nswget++;
1598 KASSERT(flags & PGO_SYNCIO);
1599 if (swslot == SWSLOT_BAD) {
1600 return EIO;
1601 }
1602
1603 error = uvm_swap_io(&page, swslot, 1, B_READ |
1604 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1605 if (error == 0) {
1606
1607 /*
1608 * this page is no longer only in swap.
1609 */
1610
1611 simple_lock(&uvm.swap_data_lock);
1612 KASSERT(uvmexp.swpgonly > 0);
1613 uvmexp.swpgonly--;
1614 simple_unlock(&uvm.swap_data_lock);
1615 }
1616 return error;
1617 }
1618
1619 /*
1620 * uvm_swap_io: do an i/o operation to swap
1621 */
1622
1623 static int
1624 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1625 {
1626 daddr_t startblk;
1627 struct buf *bp;
1628 vaddr_t kva;
1629 int error, s, mapinflags;
1630 boolean_t write, async;
1631 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1632
1633 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1634 startslot, npages, flags, 0);
1635
1636 write = (flags & B_READ) == 0;
1637 async = (flags & B_ASYNC) != 0;
1638
1639 /*
1640 * convert starting drum slot to block number
1641 */
1642
1643 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1644
1645 /*
1646 * first, map the pages into the kernel.
1647 */
1648
1649 mapinflags = !write ?
1650 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1651 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1652 kva = uvm_pagermapin(pps, npages, mapinflags);
1653
1654 /*
1655 * now allocate a buf for the i/o.
1656 */
1657
1658 bp = getiobuf();
1659
1660 /*
1661 * fill in the bp/sbp. we currently route our i/o through
1662 * /dev/drum's vnode [swapdev_vp].
1663 */
1664
1665 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1666 bp->b_proc = &proc0; /* XXX */
1667 bp->b_vnbufs.le_next = NOLIST;
1668 bp->b_data = (caddr_t)kva;
1669 bp->b_blkno = startblk;
1670 bp->b_vp = swapdev_vp;
1671 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1672
1673 /*
1674 * bump v_numoutput (counter of number of active outputs).
1675 */
1676
1677 if (write) {
1678 s = splbio();
1679 V_INCR_NUMOUTPUT(swapdev_vp);
1680 splx(s);
1681 }
1682
1683 /*
1684 * for async ops we must set up the iodone handler.
1685 */
1686
1687 if (async) {
1688 bp->b_flags |= B_CALL;
1689 bp->b_iodone = uvm_aio_biodone;
1690 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1691 if (curproc == uvm.pagedaemon_proc)
1692 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1693 else
1694 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1695 } else {
1696 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1697 }
1698 UVMHIST_LOG(pdhist,
1699 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1700 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1701
1702 /*
1703 * now we start the I/O, and if async, return.
1704 */
1705
1706 VOP_STRATEGY(swapdev_vp, bp);
1707 if (async)
1708 return 0;
1709
1710 /*
1711 * must be sync i/o. wait for it to finish
1712 */
1713
1714 error = biowait(bp);
1715
1716 /*
1717 * kill the pager mapping
1718 */
1719
1720 uvm_pagermapout(kva, npages);
1721
1722 /*
1723 * now dispose of the buf and we're done.
1724 */
1725
1726 s = splbio();
1727 if (write)
1728 vwakeup(bp);
1729 putiobuf(bp);
1730 splx(s);
1731 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1732 return (error);
1733 }
1734