uvm_vnode.c revision 1.17.2.3 1 1.17.2.3 chs /* $NetBSD: uvm_vnode.c,v 1.17.2.3 1999/02/25 04:44:38 chs Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
5 1.1 mrg * >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
6 1.1 mrg */
7 1.1 mrg /*
8 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
9 1.1 mrg * Copyright (c) 1991, 1993
10 1.1 mrg * The Regents of the University of California.
11 1.1 mrg * Copyright (c) 1990 University of Utah.
12 1.1 mrg *
13 1.1 mrg * All rights reserved.
14 1.1 mrg *
15 1.1 mrg * This code is derived from software contributed to Berkeley by
16 1.1 mrg * the Systems Programming Group of the University of Utah Computer
17 1.1 mrg * Science Department.
18 1.1 mrg *
19 1.1 mrg * Redistribution and use in source and binary forms, with or without
20 1.1 mrg * modification, are permitted provided that the following conditions
21 1.1 mrg * are met:
22 1.1 mrg * 1. Redistributions of source code must retain the above copyright
23 1.1 mrg * notice, this list of conditions and the following disclaimer.
24 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
25 1.1 mrg * notice, this list of conditions and the following disclaimer in the
26 1.1 mrg * documentation and/or other materials provided with the distribution.
27 1.1 mrg * 3. All advertising materials mentioning features or use of this software
28 1.1 mrg * must display the following acknowledgement:
29 1.1 mrg * This product includes software developed by Charles D. Cranor,
30 1.1 mrg * Washington University, the University of California, Berkeley and
31 1.1 mrg * its contributors.
32 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
33 1.1 mrg * may be used to endorse or promote products derived from this software
34 1.1 mrg * without specific prior written permission.
35 1.1 mrg *
36 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
37 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
40 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46 1.1 mrg * SUCH DAMAGE.
47 1.1 mrg *
48 1.1 mrg * @(#)vnode_pager.c 8.8 (Berkeley) 2/13/94
49 1.3 mrg * from: Id: uvm_vnode.c,v 1.1.2.26 1998/02/02 20:38:07 chuck Exp
50 1.1 mrg */
51 1.1 mrg
52 1.6 thorpej #include "fs_nfs.h"
53 1.17.2.2 chs #include "opt_uvm.h"
54 1.4 mrg #include "opt_uvmhist.h"
55 1.4 mrg
56 1.1 mrg /*
57 1.1 mrg * uvm_vnode.c: the vnode pager.
58 1.1 mrg */
59 1.1 mrg
60 1.1 mrg #include <sys/param.h>
61 1.1 mrg #include <sys/systm.h>
62 1.17.2.1 chs #include <sys/kernel.h>
63 1.1 mrg #include <sys/proc.h>
64 1.1 mrg #include <sys/malloc.h>
65 1.1 mrg #include <sys/vnode.h>
66 1.13 thorpej #include <sys/disklabel.h>
67 1.13 thorpej #include <sys/ioctl.h>
68 1.13 thorpej #include <sys/fcntl.h>
69 1.13 thorpej #include <sys/conf.h>
70 1.13 thorpej
71 1.13 thorpej #include <miscfs/specfs/specdev.h>
72 1.1 mrg
73 1.1 mrg #include <vm/vm.h>
74 1.1 mrg #include <vm/vm_page.h>
75 1.1 mrg #include <vm/vm_kern.h>
76 1.1 mrg
77 1.1 mrg #include <uvm/uvm.h>
78 1.1 mrg #include <uvm/uvm_vnode.h>
79 1.1 mrg
80 1.1 mrg /*
81 1.1 mrg * private global data structure
82 1.1 mrg *
83 1.1 mrg * we keep a list of writeable active vnode-backed VM objects for sync op.
84 1.1 mrg * we keep a simpleq of vnodes that are currently being sync'd.
85 1.1 mrg */
86 1.1 mrg
87 1.1 mrg LIST_HEAD(uvn_list_struct, uvm_vnode);
88 1.1 mrg static struct uvn_list_struct uvn_wlist; /* writeable uvns */
89 1.1 mrg static simple_lock_data_t uvn_wl_lock; /* locks uvn_wlist */
90 1.1 mrg
91 1.1 mrg SIMPLEQ_HEAD(uvn_sq_struct, uvm_vnode);
92 1.1 mrg static struct uvn_sq_struct uvn_sync_q; /* sync'ing uvns */
93 1.1 mrg lock_data_t uvn_sync_lock; /* locks sync operation */
94 1.1 mrg
95 1.1 mrg /*
96 1.1 mrg * functions
97 1.1 mrg */
98 1.1 mrg
99 1.17.2.3 chs static int uvn_asyncget __P((struct uvm_object *, vaddr_t,
100 1.1 mrg int));
101 1.17.2.3 chs struct uvm_object * uvn_attach __P((void *, vm_prot_t));
102 1.17.2.3 chs static void uvn_cluster __P((struct uvm_object *, vaddr_t,
103 1.17.2.3 chs vaddr_t *, vaddr_t *));
104 1.17.2.3 chs static void uvn_detach __P((struct uvm_object *));
105 1.17.2.3 chs static int uvn_findpage __P((struct uvm_object *, vaddr_t,
106 1.17.2.3 chs struct vm_page **, int));
107 1.17.2.3 chs static boolean_t uvn_flush __P((struct uvm_object *, vaddr_t,
108 1.17.2.3 chs vaddr_t, int));
109 1.17.2.3 chs static int uvn_get __P((struct uvm_object *, vaddr_t,
110 1.17.2.3 chs vm_page_t *, int *, int,
111 1.17.2.3 chs vm_prot_t, int, int));
112 1.17.2.3 chs static void uvn_init __P((void));
113 1.17.2.3 chs static int uvn_put __P((struct uvm_object *, vm_page_t *,
114 1.17.2.3 chs int, boolean_t));
115 1.17.2.3 chs static void uvn_reference __P((struct uvm_object *));
116 1.17.2.3 chs static boolean_t uvn_releasepg __P((struct vm_page *,
117 1.17.2.3 chs struct vm_page **));
118 1.1 mrg
119 1.1 mrg /*
120 1.1 mrg * master pager structure
121 1.1 mrg */
122 1.1 mrg
123 1.1 mrg struct uvm_pagerops uvm_vnodeops = {
124 1.8 mrg uvn_init,
125 1.8 mrg uvn_attach,
126 1.8 mrg uvn_reference,
127 1.8 mrg uvn_detach,
128 1.8 mrg NULL, /* no specialized fault routine required */
129 1.8 mrg uvn_flush,
130 1.8 mrg uvn_get,
131 1.8 mrg uvn_asyncget,
132 1.8 mrg uvn_put,
133 1.8 mrg uvn_cluster,
134 1.8 mrg uvm_mk_pcluster, /* use generic version of this: see uvm_pager.c */
135 1.8 mrg uvm_shareprot, /* !NULL: allow us in share maps */
136 1.8 mrg NULL, /* AIO-DONE function (not until we have asyncio) */
137 1.8 mrg uvn_releasepg,
138 1.1 mrg };
139 1.1 mrg
140 1.1 mrg /*
141 1.1 mrg * the ops!
142 1.1 mrg */
143 1.1 mrg
144 1.1 mrg /*
145 1.1 mrg * uvn_init
146 1.1 mrg *
147 1.1 mrg * init pager private data structures.
148 1.1 mrg */
149 1.1 mrg
150 1.8 mrg static void
151 1.8 mrg uvn_init()
152 1.8 mrg {
153 1.1 mrg
154 1.8 mrg LIST_INIT(&uvn_wlist);
155 1.8 mrg simple_lock_init(&uvn_wl_lock);
156 1.8 mrg /* note: uvn_sync_q init'd in uvm_vnp_sync() */
157 1.8 mrg lockinit(&uvn_sync_lock, PVM, "uvnsync", 0, 0);
158 1.1 mrg }
159 1.1 mrg
160 1.1 mrg /*
161 1.1 mrg * uvn_attach
162 1.1 mrg *
163 1.1 mrg * attach a vnode structure to a VM object. if the vnode is already
164 1.1 mrg * attached, then just bump the reference count by one and return the
165 1.1 mrg * VM object. if not already attached, attach and return the new VM obj.
166 1.1 mrg * the "accessprot" tells the max access the attaching thread wants to
167 1.1 mrg * our pages.
168 1.1 mrg *
169 1.1 mrg * => caller must _not_ already be holding the lock on the uvm_object.
170 1.1 mrg * => in fact, nothing should be locked so that we can sleep here.
171 1.1 mrg * => note that uvm_object is first thing in vnode structure, so their
172 1.1 mrg * pointers are equiv.
173 1.1 mrg */
174 1.1 mrg
175 1.8 mrg struct uvm_object *
176 1.8 mrg uvn_attach(arg, accessprot)
177 1.8 mrg void *arg;
178 1.8 mrg vm_prot_t accessprot;
179 1.8 mrg {
180 1.8 mrg struct vnode *vp = arg;
181 1.8 mrg struct uvm_vnode *uvn = &vp->v_uvm;
182 1.8 mrg struct vattr vattr;
183 1.8 mrg int oldflags, result;
184 1.13 thorpej struct partinfo pi;
185 1.17.2.1 chs off_t used_vnode_size;
186 1.8 mrg UVMHIST_FUNC("uvn_attach"); UVMHIST_CALLED(maphist);
187 1.8 mrg
188 1.8 mrg UVMHIST_LOG(maphist, "(vn=0x%x)", arg,0,0,0);
189 1.8 mrg
190 1.13 thorpej used_vnode_size = (u_quad_t)0; /* XXX gcc -Wuninitialized */
191 1.13 thorpej
192 1.8 mrg /*
193 1.8 mrg * first get a lock on the uvn.
194 1.8 mrg */
195 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
196 1.8 mrg while (uvn->u_flags & UVM_VNODE_BLOCKED) {
197 1.8 mrg uvn->u_flags |= UVM_VNODE_WANTED;
198 1.8 mrg UVMHIST_LOG(maphist, " SLEEPING on blocked vn",0,0,0,0);
199 1.8 mrg UVM_UNLOCK_AND_WAIT(uvn, &uvn->u_obj.vmobjlock, FALSE,
200 1.8 mrg "uvn_attach", 0);
201 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
202 1.8 mrg UVMHIST_LOG(maphist," WOKE UP",0,0,0,0);
203 1.8 mrg }
204 1.1 mrg
205 1.8 mrg /*
206 1.17.2.1 chs * if we're mapping a BLK device, make sure it is a disk.
207 1.13 thorpej */
208 1.13 thorpej if (vp->v_type == VBLK && bdevsw[major(vp->v_rdev)].d_type != D_DISK) {
209 1.17.2.1 chs simple_unlock(&uvn->u_obj.vmobjlock);
210 1.13 thorpej UVMHIST_LOG(maphist,"<- done (VBLK not D_DISK!)", 0,0,0,0);
211 1.13 thorpej return(NULL);
212 1.13 thorpej }
213 1.13 thorpej
214 1.17.2.1 chs oldflags = 0;
215 1.17.2.1 chs
216 1.17.2.1 chs #ifdef DIAGNOSTIC
217 1.17.2.1 chs if (vp->v_type != VREG) {
218 1.17.2.1 chs panic("uvn_attach: vp %p not VREG", vp);
219 1.17.2.1 chs }
220 1.17.2.1 chs #endif
221 1.17.2.1 chs
222 1.17.2.1 chs /*
223 1.17.2.1 chs * set up our idea of the size
224 1.17.2.1 chs * if this hasn't been done already.
225 1.17.2.1 chs */
226 1.17.2.1 chs if (uvn->u_size == VSIZENOTSET) {
227 1.17.2.1 chs
228 1.17.2.1 chs uvn->u_flags = UVM_VNODE_ALOCK;
229 1.17.2.1 chs simple_unlock(&uvn->u_obj.vmobjlock); /* drop lock in case we sleep */
230 1.17.2.1 chs /* XXX: curproc? */
231 1.17.2.1 chs if (vp->v_type == VBLK) {
232 1.17.2.1 chs /*
233 1.17.2.1 chs * We could implement this as a specfs getattr call, but:
234 1.17.2.1 chs *
235 1.17.2.1 chs * (1) VOP_GETATTR() would get the file system
236 1.17.2.1 chs * vnode operation, not the specfs operation.
237 1.17.2.1 chs *
238 1.17.2.1 chs * (2) All we want is the size, anyhow.
239 1.17.2.1 chs */
240 1.17.2.1 chs result = (*bdevsw[major(vp->v_rdev)].d_ioctl)(vp->v_rdev,
241 1.17.2.1 chs DIOCGPART, (caddr_t)&pi, FREAD, curproc);
242 1.17.2.1 chs if (result == 0) {
243 1.17.2.1 chs /* XXX should remember blocksize */
244 1.17.2.1 chs used_vnode_size = (u_quad_t)pi.disklab->d_secsize *
245 1.17.2.1 chs (u_quad_t)pi.part->p_size;
246 1.17.2.1 chs }
247 1.17.2.1 chs } else {
248 1.17.2.1 chs result = VOP_GETATTR(vp, &vattr, curproc->p_ucred, curproc);
249 1.17.2.1 chs if (result == 0)
250 1.17.2.1 chs used_vnode_size = vattr.va_size;
251 1.17.2.1 chs }
252 1.17.2.1 chs
253 1.17.2.1 chs
254 1.17.2.1 chs /*
255 1.17.2.1 chs * make sure that the newsize fits within a vaddr_t
256 1.17.2.1 chs * XXX: need to revise addressing data types
257 1.17.2.1 chs */
258 1.17.2.1 chs if (used_vnode_size > (vaddr_t) -PAGE_SIZE) {
259 1.17.2.1 chs #ifdef DEBUG
260 1.17.2.1 chs printf("uvn_attach: vn %p size truncated %qx->%x\n", vp,
261 1.17.2.1 chs used_vnode_size, -PAGE_SIZE);
262 1.17.2.1 chs #endif
263 1.17.2.1 chs used_vnode_size = (vaddr_t) -PAGE_SIZE;
264 1.17.2.1 chs }
265 1.17.2.1 chs
266 1.17.2.1 chs /* relock object */
267 1.17.2.1 chs simple_lock(&uvn->u_obj.vmobjlock);
268 1.17.2.1 chs
269 1.17.2.1 chs if (uvn->u_flags & UVM_VNODE_WANTED)
270 1.17.2.1 chs wakeup(uvn);
271 1.17.2.1 chs uvn->u_flags = 0;
272 1.17.2.1 chs
273 1.17.2.1 chs if (result != 0) {
274 1.17.2.1 chs simple_unlock(&uvn->u_obj.vmobjlock); /* drop lock */
275 1.17.2.1 chs UVMHIST_LOG(maphist,"<- done (VOP_GETATTR FAILED!)", 0,0,0,0);
276 1.17.2.1 chs return(NULL);
277 1.17.2.1 chs }
278 1.17.2.1 chs uvn->u_size = used_vnode_size;
279 1.17.2.1 chs
280 1.17.2.1 chs }
281 1.17.2.1 chs
282 1.17.2.3 chs /* check for new writeable uvn */
283 1.17.2.3 chs if ((accessprot & VM_PROT_WRITE) != 0 &&
284 1.17.2.3 chs (uvn->u_flags & UVM_VNODE_WRITEABLE) == 0) {
285 1.8 mrg simple_lock(&uvn_wl_lock);
286 1.8 mrg LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist);
287 1.17.2.3 chs uvn->u_flags |= UVM_VNODE_WRITEABLE;
288 1.8 mrg simple_unlock(&uvn_wl_lock);
289 1.17.2.3 chs /* we are now on wlist! */
290 1.8 mrg }
291 1.8 mrg
292 1.17.2.3 chs /* unlock and return */
293 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
294 1.17.2.3 chs UVMHIST_LOG(maphist,"<- done, refcnt=%d", uvn->u_obj.uo_refs,
295 1.17.2.3 chs 0, 0, 0);
296 1.17.2.3 chs return (&uvn->u_obj);
297 1.1 mrg }
298 1.1 mrg
299 1.1 mrg
300 1.1 mrg /*
301 1.1 mrg * uvn_reference
302 1.1 mrg *
303 1.1 mrg * duplicate a reference to a VM object. Note that the reference
304 1.1 mrg * count must already be at least one (the passed in reference) so
305 1.1 mrg * there is no chance of the uvn being killed or locked out here.
306 1.1 mrg *
307 1.1 mrg * => caller must call with object unlocked.
308 1.1 mrg * => caller must be using the same accessprot as was used at attach time
309 1.1 mrg */
310 1.1 mrg
311 1.1 mrg
312 1.8 mrg static void
313 1.8 mrg uvn_reference(uobj)
314 1.8 mrg struct uvm_object *uobj;
315 1.1 mrg {
316 1.8 mrg UVMHIST_FUNC("uvn_reference"); UVMHIST_CALLED(maphist);
317 1.1 mrg
318 1.17.2.1 chs VREF((struct vnode *)uobj);
319 1.1 mrg }
320 1.1 mrg
321 1.1 mrg /*
322 1.1 mrg * uvn_detach
323 1.1 mrg *
324 1.1 mrg * remove a reference to a VM object.
325 1.1 mrg *
326 1.1 mrg * => caller must call with object unlocked and map locked.
327 1.1 mrg * => this starts the detach process, but doesn't have to finish it
328 1.1 mrg * (async i/o could still be pending).
329 1.1 mrg */
330 1.8 mrg static void
331 1.8 mrg uvn_detach(uobj)
332 1.8 mrg struct uvm_object *uobj;
333 1.8 mrg {
334 1.8 mrg UVMHIST_FUNC("uvn_detach"); UVMHIST_CALLED(maphist);
335 1.8 mrg
336 1.17.2.1 chs vrele((struct vnode *)uobj);
337 1.1 mrg }
338 1.1 mrg
339 1.1 mrg /*
340 1.1 mrg * uvm_vnp_terminate: external hook to clear out a vnode's VM
341 1.1 mrg *
342 1.5 mrg * called in two cases:
343 1.5 mrg * [1] when a persisting vnode vm object (i.e. one with a zero reference
344 1.5 mrg * count) needs to be freed so that a vnode can be reused. this
345 1.5 mrg * happens under "getnewvnode" in vfs_subr.c. if the vnode from
346 1.5 mrg * the free list is still attached (i.e. not VBAD) then vgone is
347 1.5 mrg * called. as part of the vgone trace this should get called to
348 1.5 mrg * free the vm object. this is the common case.
349 1.5 mrg * [2] when a filesystem is being unmounted by force (MNT_FORCE,
350 1.5 mrg * "umount -f") the vgone() function is called on active vnodes
351 1.5 mrg * on the mounted file systems to kill their data (the vnodes become
352 1.5 mrg * "dead" ones [see src/sys/miscfs/deadfs/...]). that results in a
353 1.5 mrg * call here (even if the uvn is still in use -- i.e. has a non-zero
354 1.5 mrg * reference count). this case happens at "umount -f" and during a
355 1.5 mrg * "reboot/halt" operation.
356 1.5 mrg *
357 1.5 mrg * => the caller must XLOCK and VOP_LOCK the vnode before calling us
358 1.5 mrg * [protects us from getting a vnode that is already in the DYING
359 1.5 mrg * state...]
360 1.5 mrg * => unlike uvn_detach, this function must not return until all the
361 1.5 mrg * uvn's pages are disposed of.
362 1.5 mrg * => in case [2] the uvn is still alive after this call, but all I/O
363 1.5 mrg * ops will fail (due to the backing vnode now being "dead"). this
364 1.5 mrg * will prob. kill any process using the uvn due to pgo_get failing.
365 1.1 mrg */
366 1.1 mrg
367 1.8 mrg void
368 1.8 mrg uvm_vnp_terminate(vp)
369 1.8 mrg struct vnode *vp;
370 1.8 mrg {
371 1.8 mrg struct uvm_vnode *uvn = &vp->v_uvm;
372 1.17.2.3 chs
373 1.17.2.1 chs if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
374 1.17.2.1 chs simple_lock(&uvn_wl_lock);
375 1.17.2.1 chs LIST_REMOVE(uvn, u_wlist);
376 1.17.2.1 chs uvn->u_flags &= ~(UVM_VNODE_WRITEABLE);
377 1.17.2.1 chs simple_unlock(&uvn_wl_lock);
378 1.17.2.1 chs }
379 1.1 mrg }
380 1.1 mrg
381 1.1 mrg /*
382 1.1 mrg * uvn_releasepg: handled a released page in a uvn
383 1.1 mrg *
384 1.1 mrg * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
385 1.1 mrg * to dispose of.
386 1.1 mrg * => caller must handled PG_WANTED case
387 1.1 mrg * => called with page's object locked, pageq's unlocked
388 1.1 mrg * => returns TRUE if page's object is still alive, FALSE if we
389 1.1 mrg * killed the page's object. if we return TRUE, then we
390 1.1 mrg * return with the object locked.
391 1.1 mrg * => if (nextpgp != NULL) => we return pageq.tqe_next here, and return
392 1.1 mrg * with the page queues locked [for pagedaemon]
393 1.1 mrg * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
394 1.1 mrg * => we kill the uvn if it is not referenced and we are suppose to
395 1.1 mrg * kill it ("relkill").
396 1.1 mrg */
397 1.1 mrg
398 1.8 mrg boolean_t
399 1.8 mrg uvn_releasepg(pg, nextpgp)
400 1.8 mrg struct vm_page *pg;
401 1.8 mrg struct vm_page **nextpgp; /* OUT */
402 1.1 mrg {
403 1.8 mrg struct uvm_vnode *uvn = (struct uvm_vnode *) pg->uobject;
404 1.1 mrg #ifdef DIAGNOSTIC
405 1.8 mrg if ((pg->flags & PG_RELEASED) == 0)
406 1.8 mrg panic("uvn_releasepg: page not released!");
407 1.1 mrg #endif
408 1.8 mrg
409 1.8 mrg /*
410 1.8 mrg * dispose of the page [caller handles PG_WANTED]
411 1.8 mrg */
412 1.8 mrg pmap_page_protect(PMAP_PGARG(pg), VM_PROT_NONE);
413 1.8 mrg uvm_lock_pageq();
414 1.8 mrg if (nextpgp)
415 1.8 mrg *nextpgp = pg->pageq.tqe_next; /* next page for daemon */
416 1.8 mrg uvm_pagefree(pg);
417 1.8 mrg if (!nextpgp)
418 1.8 mrg uvm_unlock_pageq();
419 1.8 mrg
420 1.17.2.1 chs #ifdef UBC
421 1.17.2.1 chs /* XXX I'm sure we need to do something here. */
422 1.17.2.1 chs uvn = uvn;
423 1.17.2.1 chs #else
424 1.8 mrg /*
425 1.8 mrg * now see if we need to kill the object
426 1.8 mrg */
427 1.8 mrg if (uvn->u_flags & UVM_VNODE_RELKILL) {
428 1.8 mrg if (uvn->u_obj.uo_refs)
429 1.8 mrg panic("uvn_releasepg: kill flag set on referenced "
430 1.8 mrg "object!");
431 1.8 mrg if (uvn->u_obj.uo_npages == 0) {
432 1.8 mrg if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
433 1.8 mrg simple_lock(&uvn_wl_lock);
434 1.8 mrg LIST_REMOVE(uvn, u_wlist);
435 1.8 mrg simple_unlock(&uvn_wl_lock);
436 1.8 mrg }
437 1.1 mrg #ifdef DIAGNOSTIC
438 1.8 mrg if (uvn->u_obj.memq.tqh_first)
439 1.1 mrg panic("uvn_releasepg: pages in object with npages == 0");
440 1.1 mrg #endif
441 1.8 mrg if (uvn->u_flags & UVM_VNODE_WANTED)
442 1.8 mrg /* still holding object lock */
443 1.8 mrg wakeup(uvn);
444 1.8 mrg
445 1.8 mrg uvn->u_flags = 0; /* DEAD! */
446 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
447 1.8 mrg return (FALSE);
448 1.8 mrg }
449 1.8 mrg }
450 1.17.2.1 chs #endif
451 1.8 mrg return (TRUE);
452 1.1 mrg }
453 1.1 mrg
454 1.1 mrg /*
455 1.1 mrg * NOTE: currently we have to use VOP_READ/VOP_WRITE because they go
456 1.1 mrg * through the buffer cache and allow I/O in any size. These VOPs use
457 1.1 mrg * synchronous i/o. [vs. VOP_STRATEGY which can be async, but doesn't
458 1.1 mrg * go through the buffer cache or allow I/O sizes larger than a
459 1.1 mrg * block]. we will eventually want to change this.
460 1.1 mrg *
461 1.1 mrg * issues to consider:
462 1.1 mrg * uvm provides the uvm_aiodesc structure for async i/o management.
463 1.1 mrg * there are two tailq's in the uvm. structure... one for pending async
464 1.1 mrg * i/o and one for "done" async i/o. to do an async i/o one puts
465 1.1 mrg * an aiodesc on the "pending" list (protected by splbio()), starts the
466 1.1 mrg * i/o and returns VM_PAGER_PEND. when the i/o is done, we expect
467 1.1 mrg * some sort of "i/o done" function to be called (at splbio(), interrupt
468 1.1 mrg * time). this function should remove the aiodesc from the pending list
469 1.1 mrg * and place it on the "done" list and wakeup the daemon. the daemon
470 1.1 mrg * will run at normal spl() and will remove all items from the "done"
471 1.1 mrg * list and call the "aiodone" hook for each done request (see uvm_pager.c).
472 1.1 mrg * [in the old vm code, this was done by calling the "put" routine with
473 1.1 mrg * null arguments which made the code harder to read and understand because
474 1.1 mrg * you had one function ("put") doing two things.]
475 1.1 mrg *
476 1.1 mrg * so the current pager needs:
477 1.1 mrg * int uvn_aiodone(struct uvm_aiodesc *)
478 1.1 mrg *
479 1.1 mrg * => return KERN_SUCCESS (aio finished, free it). otherwise requeue for
480 1.1 mrg * later collection.
481 1.1 mrg * => called with pageq's locked by the daemon.
482 1.1 mrg *
483 1.1 mrg * general outline:
484 1.1 mrg * - "try" to lock object. if fail, just return (will try again later)
485 1.1 mrg * - drop "u_nio" (this req is done!)
486 1.1 mrg * - if (object->iosync && u_naio == 0) { wakeup &uvn->u_naio }
487 1.1 mrg * - get "page" structures (atop?).
488 1.1 mrg * - handle "wanted" pages
489 1.1 mrg * - handle "released" pages [using pgo_releasepg]
490 1.1 mrg * >>> pgo_releasepg may kill the object
491 1.1 mrg * dont forget to look at "object" wanted flag in all cases.
492 1.1 mrg */
493 1.1 mrg
494 1.1 mrg
495 1.1 mrg /*
496 1.1 mrg * uvn_flush: flush pages out of a uvm object.
497 1.1 mrg *
498 1.1 mrg * => object should be locked by caller. we may _unlock_ the object
499 1.1 mrg * if (and only if) we need to clean a page (PGO_CLEANIT).
500 1.1 mrg * we return with the object locked.
501 1.1 mrg * => if PGO_CLEANIT is set, we may block (due to I/O). thus, a caller
502 1.1 mrg * might want to unlock higher level resources (e.g. vm_map)
503 1.1 mrg * before calling flush.
504 1.1 mrg * => if PGO_CLEANIT is not set, then we will neither unlock the object
505 1.1 mrg * or block.
506 1.1 mrg * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
507 1.1 mrg * for flushing.
508 1.1 mrg * => NOTE: we rely on the fact that the object's memq is a TAILQ and
509 1.1 mrg * that new pages are inserted on the tail end of the list. thus,
510 1.1 mrg * we can make a complete pass through the object in one go by starting
511 1.1 mrg * at the head and working towards the tail (new pages are put in
512 1.1 mrg * front of us).
513 1.1 mrg * => NOTE: we are allowed to lock the page queues, so the caller
514 1.1 mrg * must not be holding the lock on them [e.g. pagedaemon had
515 1.1 mrg * better not call us with the queues locked]
516 1.1 mrg * => we return TRUE unless we encountered some sort of I/O error
517 1.1 mrg *
518 1.1 mrg * comment on "cleaning" object and PG_BUSY pages:
519 1.1 mrg * this routine is holding the lock on the object. the only time
520 1.1 mrg * that it can run into a PG_BUSY page that it does not own is if
521 1.1 mrg * some other process has started I/O on the page (e.g. either
522 1.1 mrg * a pagein, or a pageout). if the PG_BUSY page is being paged
523 1.1 mrg * in, then it can not be dirty (!PG_CLEAN) because no one has
524 1.1 mrg * had a chance to modify it yet. if the PG_BUSY page is being
525 1.1 mrg * paged out then it means that someone else has already started
526 1.1 mrg * cleaning the page for us (how nice!). in this case, if we
527 1.1 mrg * have syncio specified, then after we make our pass through the
528 1.1 mrg * object we need to wait for the other PG_BUSY pages to clear
529 1.1 mrg * off (i.e. we need to do an iosync). also note that once a
530 1.1 mrg * page is PG_BUSY it must stay in its object until it is un-busyed.
531 1.1 mrg *
532 1.1 mrg * note on page traversal:
533 1.1 mrg * we can traverse the pages in an object either by going down the
534 1.1 mrg * linked list in "uobj->memq", or we can go over the address range
535 1.1 mrg * by page doing hash table lookups for each address. depending
536 1.1 mrg * on how many pages are in the object it may be cheaper to do one
537 1.1 mrg * or the other. we set "by_list" to true if we are using memq.
538 1.1 mrg * if the cost of a hash lookup was equal to the cost of the list
539 1.1 mrg * traversal we could compare the number of pages in the start->stop
540 1.1 mrg * range to the total number of pages in the object. however, it
541 1.1 mrg * seems that a hash table lookup is more expensive than the linked
542 1.1 mrg * list traversal, so we multiply the number of pages in the
543 1.1 mrg * start->stop range by a penalty which we define below.
544 1.1 mrg */
545 1.1 mrg
546 1.8 mrg #define UVN_HASH_PENALTY 4 /* XXX: a guess */
547 1.1 mrg
548 1.8 mrg static boolean_t
549 1.8 mrg uvn_flush(uobj, start, stop, flags)
550 1.8 mrg struct uvm_object *uobj;
551 1.15 eeh vaddr_t start, stop;
552 1.8 mrg int flags;
553 1.8 mrg {
554 1.8 mrg struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
555 1.8 mrg struct vm_page *pp, *ppnext, *ptmp;
556 1.16 chs struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
557 1.8 mrg int npages, result, lcv;
558 1.8 mrg boolean_t retval, need_iosync, by_list, needs_clean;
559 1.15 eeh vaddr_t curoff;
560 1.8 mrg u_short pp_version;
561 1.8 mrg UVMHIST_FUNC("uvn_flush"); UVMHIST_CALLED(maphist);
562 1.8 mrg
563 1.17.2.1 chs #ifdef UBC
564 1.17.2.1 chs if (uvn->u_size == VSIZENOTSET) {
565 1.17.2.1 chs void vp_name(void *);
566 1.17.2.1 chs
567 1.17.2.1 chs printf("uvn_flush: size not set vp %p\n", uvn);
568 1.17.2.1 chs if ((flags & PGO_ALLPAGES) == 0)
569 1.17.2.1 chs printf("... and PGO_ALLPAGES not set: "
570 1.17.2.1 chs "start 0x%lx end 0x%lx flags 0x%x\n",
571 1.17.2.1 chs start, stop, flags);
572 1.17.2.1 chs vp_name(uvn);
573 1.17.2.1 chs flags |= PGO_ALLPAGES;
574 1.17.2.1 chs }
575 1.17.2.1 chs #if 0
576 1.17.2.1 chs /* XXX unfortunately this is legitimate */
577 1.17.2.1 chs if (flags & PGO_FREE && uobj->uo_refs) {
578 1.17.2.1 chs printf("uvn_flush: PGO_FREE on ref'd vp %p\n", uobj);
579 1.17.2.1 chs Debugger();
580 1.17.2.1 chs }
581 1.17.2.1 chs #endif
582 1.17.2.1 chs #endif
583 1.17.2.1 chs
584 1.8 mrg curoff = 0; /* XXX: shut up gcc */
585 1.8 mrg /*
586 1.8 mrg * get init vals and determine how we are going to traverse object
587 1.8 mrg */
588 1.1 mrg
589 1.8 mrg need_iosync = FALSE;
590 1.8 mrg retval = TRUE; /* return value */
591 1.8 mrg if (flags & PGO_ALLPAGES) {
592 1.8 mrg start = 0;
593 1.17.2.1 chs #ifdef UBC
594 1.17.2.1 chs stop = -1;
595 1.17.2.1 chs #else
596 1.8 mrg stop = round_page(uvn->u_size);
597 1.17.2.1 chs #endif
598 1.8 mrg by_list = TRUE; /* always go by the list */
599 1.8 mrg } else {
600 1.8 mrg start = trunc_page(start);
601 1.8 mrg stop = round_page(stop);
602 1.17.2.1 chs if (stop > round_page(uvn->u_size)) {
603 1.17.2.2 chs printf("uvn_flush: oor vp %p start 0x%x stop 0x%x size 0x%x\n", uvn, (int)start, (int)stop, (int)round_page(uvn->u_size));
604 1.17.2.1 chs }
605 1.1 mrg
606 1.8 mrg by_list = (uobj->uo_npages <=
607 1.16 chs ((stop - start) >> PAGE_SHIFT) * UVN_HASH_PENALTY);
608 1.8 mrg }
609 1.8 mrg
610 1.8 mrg UVMHIST_LOG(maphist,
611 1.8 mrg " flush start=0x%x, stop=0x%x, by_list=%d, flags=0x%x",
612 1.8 mrg start, stop, by_list, flags);
613 1.8 mrg
614 1.8 mrg /*
615 1.8 mrg * PG_CLEANCHK: this bit is used by the pgo_mk_pcluster function as
616 1.8 mrg * a _hint_ as to how up to date the PG_CLEAN bit is. if the hint
617 1.8 mrg * is wrong it will only prevent us from clustering... it won't break
618 1.8 mrg * anything. we clear all PG_CLEANCHK bits here, and pgo_mk_pcluster
619 1.8 mrg * will set them as it syncs PG_CLEAN. This is only an issue if we
620 1.8 mrg * are looking at non-inactive pages (because inactive page's PG_CLEAN
621 1.8 mrg * bit is always up to date since there are no mappings).
622 1.8 mrg * [borrowed PG_CLEANCHK idea from FreeBSD VM]
623 1.8 mrg */
624 1.1 mrg
625 1.8 mrg if ((flags & PGO_CLEANIT) != 0 &&
626 1.8 mrg uobj->pgops->pgo_mk_pcluster != NULL) {
627 1.8 mrg if (by_list) {
628 1.17.2.1 chs for (pp = TAILQ_FIRST(&uobj->memq);
629 1.17.2.1 chs pp != NULL ;
630 1.17.2.1 chs pp = TAILQ_NEXT(pp, listq)) {
631 1.17.2.1 chs if (pp->offset < start ||
632 1.17.2.1 chs (pp->offset >= stop && stop != -1))
633 1.8 mrg continue;
634 1.8 mrg pp->flags &= ~PG_CLEANCHK;
635 1.8 mrg }
636 1.8 mrg
637 1.8 mrg } else { /* by hash */
638 1.8 mrg for (curoff = start ; curoff < stop;
639 1.8 mrg curoff += PAGE_SIZE) {
640 1.8 mrg pp = uvm_pagelookup(uobj, curoff);
641 1.8 mrg if (pp)
642 1.8 mrg pp->flags &= ~PG_CLEANCHK;
643 1.8 mrg }
644 1.8 mrg }
645 1.8 mrg }
646 1.1 mrg
647 1.8 mrg /*
648 1.8 mrg * now do it. note: we must update ppnext in body of loop or we
649 1.8 mrg * will get stuck. we need to use ppnext because we may free "pp"
650 1.8 mrg * before doing the next loop.
651 1.8 mrg */
652 1.1 mrg
653 1.8 mrg if (by_list) {
654 1.17.2.1 chs pp = TAILQ_FIRST(&uobj->memq);
655 1.1 mrg } else {
656 1.8 mrg curoff = start;
657 1.8 mrg pp = uvm_pagelookup(uobj, curoff);
658 1.1 mrg }
659 1.8 mrg
660 1.8 mrg ppnext = NULL; /* XXX: shut up gcc */
661 1.8 mrg ppsp = NULL; /* XXX: shut up gcc */
662 1.8 mrg uvm_lock_pageq(); /* page queues locked */
663 1.8 mrg
664 1.8 mrg /* locked: both page queues and uobj */
665 1.8 mrg for ( ; (by_list && pp != NULL) ||
666 1.8 mrg (!by_list && curoff < stop) ; pp = ppnext) {
667 1.8 mrg
668 1.8 mrg if (by_list) {
669 1.8 mrg
670 1.8 mrg /*
671 1.8 mrg * range check
672 1.8 mrg */
673 1.8 mrg
674 1.8 mrg if (pp->offset < start || pp->offset >= stop) {
675 1.17.2.1 chs ppnext = TAILQ_NEXT(pp, listq);
676 1.8 mrg continue;
677 1.8 mrg }
678 1.8 mrg
679 1.8 mrg } else {
680 1.8 mrg
681 1.8 mrg /*
682 1.8 mrg * null check
683 1.8 mrg */
684 1.8 mrg
685 1.8 mrg curoff += PAGE_SIZE;
686 1.8 mrg if (pp == NULL) {
687 1.8 mrg if (curoff < stop)
688 1.8 mrg ppnext = uvm_pagelookup(uobj, curoff);
689 1.8 mrg continue;
690 1.8 mrg }
691 1.8 mrg
692 1.8 mrg }
693 1.8 mrg
694 1.8 mrg /*
695 1.8 mrg * handle case where we do not need to clean page (either
696 1.8 mrg * because we are not clean or because page is not dirty or
697 1.8 mrg * is busy):
698 1.8 mrg *
699 1.8 mrg * NOTE: we are allowed to deactivate a non-wired active
700 1.8 mrg * PG_BUSY page, but once a PG_BUSY page is on the inactive
701 1.8 mrg * queue it must stay put until it is !PG_BUSY (so as not to
702 1.8 mrg * confuse pagedaemon).
703 1.8 mrg */
704 1.8 mrg
705 1.8 mrg if ((flags & PGO_CLEANIT) == 0 || (pp->flags & PG_BUSY) != 0) {
706 1.8 mrg needs_clean = FALSE;
707 1.8 mrg if ((pp->flags & PG_BUSY) != 0 &&
708 1.8 mrg (flags & (PGO_CLEANIT|PGO_SYNCIO)) ==
709 1.8 mrg (PGO_CLEANIT|PGO_SYNCIO))
710 1.8 mrg need_iosync = TRUE;
711 1.8 mrg } else {
712 1.8 mrg /*
713 1.8 mrg * freeing: nuke all mappings so we can sync
714 1.8 mrg * PG_CLEAN bit with no race
715 1.8 mrg */
716 1.8 mrg if ((pp->flags & PG_CLEAN) != 0 &&
717 1.8 mrg (flags & PGO_FREE) != 0 &&
718 1.8 mrg (pp->pqflags & PQ_ACTIVE) != 0)
719 1.8 mrg pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
720 1.8 mrg if ((pp->flags & PG_CLEAN) != 0 &&
721 1.8 mrg pmap_is_modified(PMAP_PGARG(pp)))
722 1.8 mrg pp->flags &= ~(PG_CLEAN);
723 1.8 mrg pp->flags |= PG_CLEANCHK; /* update "hint" */
724 1.8 mrg
725 1.8 mrg needs_clean = ((pp->flags & PG_CLEAN) == 0);
726 1.8 mrg }
727 1.8 mrg
728 1.8 mrg /*
729 1.8 mrg * if we don't need a clean... load ppnext and dispose of pp
730 1.8 mrg */
731 1.8 mrg if (!needs_clean) {
732 1.8 mrg /* load ppnext */
733 1.8 mrg if (by_list)
734 1.8 mrg ppnext = pp->listq.tqe_next;
735 1.8 mrg else {
736 1.8 mrg if (curoff < stop)
737 1.8 mrg ppnext = uvm_pagelookup(uobj, curoff);
738 1.8 mrg }
739 1.8 mrg
740 1.8 mrg /* now dispose of pp */
741 1.8 mrg if (flags & PGO_DEACTIVATE) {
742 1.8 mrg if ((pp->pqflags & PQ_INACTIVE) == 0 &&
743 1.8 mrg pp->wire_count == 0) {
744 1.8 mrg pmap_page_protect(PMAP_PGARG(pp),
745 1.8 mrg VM_PROT_NONE);
746 1.8 mrg uvm_pagedeactivate(pp);
747 1.8 mrg }
748 1.8 mrg
749 1.8 mrg } else if (flags & PGO_FREE) {
750 1.8 mrg if (pp->flags & PG_BUSY) {
751 1.8 mrg /* release busy pages */
752 1.8 mrg pp->flags |= PG_RELEASED;
753 1.8 mrg } else {
754 1.8 mrg pmap_page_protect(PMAP_PGARG(pp),
755 1.8 mrg VM_PROT_NONE);
756 1.8 mrg /* removed page from object */
757 1.8 mrg uvm_pagefree(pp);
758 1.8 mrg }
759 1.8 mrg }
760 1.8 mrg /* ppnext is valid so we can continue... */
761 1.8 mrg continue;
762 1.8 mrg }
763 1.8 mrg
764 1.8 mrg /*
765 1.8 mrg * pp points to a page in the locked object that we are
766 1.8 mrg * working on. if it is !PG_CLEAN,!PG_BUSY and we asked
767 1.8 mrg * for cleaning (PGO_CLEANIT). we clean it now.
768 1.8 mrg *
769 1.8 mrg * let uvm_pager_put attempted a clustered page out.
770 1.8 mrg * note: locked: uobj and page queues.
771 1.8 mrg */
772 1.8 mrg
773 1.8 mrg pp->flags |= PG_BUSY; /* we 'own' page now */
774 1.8 mrg UVM_PAGE_OWN(pp, "uvn_flush");
775 1.8 mrg pmap_page_protect(PMAP_PGARG(pp), VM_PROT_READ);
776 1.8 mrg pp_version = pp->version;
777 1.1 mrg ReTry:
778 1.8 mrg ppsp = pps;
779 1.8 mrg npages = sizeof(pps) / sizeof(struct vm_page *);
780 1.1 mrg
781 1.8 mrg /* locked: page queues, uobj */
782 1.8 mrg result = uvm_pager_put(uobj, pp, &ppsp, &npages,
783 1.17.2.3 chs flags | PGO_DOACTCLUST, start, stop);
784 1.8 mrg /* unlocked: page queues, uobj */
785 1.1 mrg
786 1.8 mrg /*
787 1.8 mrg * at this point nothing is locked. if we did an async I/O
788 1.8 mrg * it is remotely possible for the async i/o to complete and
789 1.8 mrg * the page "pp" be freed or what not before we get a chance
790 1.8 mrg * to relock the object. in order to detect this, we have
791 1.8 mrg * saved the version number of the page in "pp_version".
792 1.8 mrg */
793 1.8 mrg
794 1.8 mrg /* relock! */
795 1.8 mrg simple_lock(&uobj->vmobjlock);
796 1.8 mrg uvm_lock_pageq();
797 1.8 mrg
798 1.8 mrg /*
799 1.8 mrg * VM_PAGER_AGAIN: given the structure of this pager, this
800 1.8 mrg * can only happen when we are doing async I/O and can't
801 1.8 mrg * map the pages into kernel memory (pager_map) due to lack
802 1.8 mrg * of vm space. if this happens we drop back to sync I/O.
803 1.8 mrg */
804 1.8 mrg
805 1.8 mrg if (result == VM_PAGER_AGAIN) {
806 1.8 mrg /*
807 1.8 mrg * it is unlikely, but page could have been released
808 1.8 mrg * while we had the object lock dropped. we ignore
809 1.8 mrg * this now and retry the I/O. we will detect and
810 1.8 mrg * handle the released page after the syncio I/O
811 1.8 mrg * completes.
812 1.8 mrg */
813 1.1 mrg #ifdef DIAGNOSTIC
814 1.8 mrg if (flags & PGO_SYNCIO)
815 1.1 mrg panic("uvn_flush: PGO_SYNCIO return 'try again' error (impossible)");
816 1.1 mrg #endif
817 1.8 mrg flags |= PGO_SYNCIO;
818 1.8 mrg goto ReTry;
819 1.8 mrg }
820 1.8 mrg
821 1.8 mrg /*
822 1.8 mrg * the cleaning operation is now done. finish up. note that
823 1.8 mrg * on error (!OK, !PEND) uvm_pager_put drops the cluster for us.
824 1.8 mrg * if success (OK, PEND) then uvm_pager_put returns the cluster
825 1.8 mrg * to us in ppsp/npages.
826 1.8 mrg */
827 1.8 mrg
828 1.8 mrg /*
829 1.8 mrg * for pending async i/o if we are not deactivating/freeing
830 1.8 mrg * we can move on to the next page.
831 1.8 mrg */
832 1.8 mrg
833 1.8 mrg if (result == VM_PAGER_PEND) {
834 1.8 mrg
835 1.8 mrg if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
836 1.8 mrg /*
837 1.8 mrg * no per-page ops: refresh ppnext and continue
838 1.8 mrg */
839 1.8 mrg if (by_list) {
840 1.8 mrg if (pp->version == pp_version)
841 1.8 mrg ppnext = pp->listq.tqe_next;
842 1.8 mrg else
843 1.8 mrg /* reset */
844 1.8 mrg ppnext = uobj->memq.tqh_first;
845 1.8 mrg } else {
846 1.8 mrg if (curoff < stop)
847 1.8 mrg ppnext = uvm_pagelookup(uobj,
848 1.8 mrg curoff);
849 1.8 mrg }
850 1.8 mrg continue;
851 1.8 mrg }
852 1.8 mrg
853 1.8 mrg /* need to do anything here? */
854 1.8 mrg }
855 1.8 mrg
856 1.8 mrg /*
857 1.8 mrg * need to look at each page of the I/O operation. we defer
858 1.8 mrg * processing "pp" until the last trip through this "for" loop
859 1.8 mrg * so that we can load "ppnext" for the main loop after we
860 1.8 mrg * play with the cluster pages [thus the "npages + 1" in the
861 1.8 mrg * loop below].
862 1.8 mrg */
863 1.8 mrg
864 1.8 mrg for (lcv = 0 ; lcv < npages + 1 ; lcv++) {
865 1.8 mrg
866 1.8 mrg /*
867 1.8 mrg * handle ppnext for outside loop, and saving pp
868 1.8 mrg * until the end.
869 1.8 mrg */
870 1.8 mrg if (lcv < npages) {
871 1.8 mrg if (ppsp[lcv] == pp)
872 1.8 mrg continue; /* skip pp until the end */
873 1.8 mrg ptmp = ppsp[lcv];
874 1.8 mrg } else {
875 1.8 mrg ptmp = pp;
876 1.8 mrg
877 1.8 mrg /* set up next page for outer loop */
878 1.8 mrg if (by_list) {
879 1.8 mrg if (pp->version == pp_version)
880 1.8 mrg ppnext = pp->listq.tqe_next;
881 1.8 mrg else
882 1.8 mrg /* reset */
883 1.8 mrg ppnext = uobj->memq.tqh_first;
884 1.8 mrg } else {
885 1.8 mrg if (curoff < stop)
886 1.8 mrg ppnext = uvm_pagelookup(uobj, curoff);
887 1.8 mrg }
888 1.8 mrg }
889 1.8 mrg
890 1.8 mrg /*
891 1.8 mrg * verify the page didn't get moved while obj was
892 1.8 mrg * unlocked
893 1.8 mrg */
894 1.8 mrg if (result == VM_PAGER_PEND && ptmp->uobject != uobj)
895 1.8 mrg continue;
896 1.8 mrg
897 1.8 mrg /*
898 1.8 mrg * unbusy the page if I/O is done. note that for
899 1.8 mrg * pending I/O it is possible that the I/O op
900 1.8 mrg * finished before we relocked the object (in
901 1.8 mrg * which case the page is no longer busy).
902 1.8 mrg */
903 1.8 mrg
904 1.8 mrg if (result != VM_PAGER_PEND) {
905 1.8 mrg if (ptmp->flags & PG_WANTED)
906 1.8 mrg /* still holding object lock */
907 1.17.2.3 chs wakeup(ptmp);
908 1.8 mrg
909 1.8 mrg ptmp->flags &= ~(PG_WANTED|PG_BUSY);
910 1.8 mrg UVM_PAGE_OWN(ptmp, NULL);
911 1.8 mrg if (ptmp->flags & PG_RELEASED) {
912 1.8 mrg
913 1.8 mrg /* pgo_releasepg wants this */
914 1.8 mrg uvm_unlock_pageq();
915 1.8 mrg if (!uvn_releasepg(ptmp, NULL))
916 1.8 mrg return (TRUE);
917 1.8 mrg
918 1.8 mrg uvm_lock_pageq(); /* relock */
919 1.8 mrg continue; /* next page */
920 1.8 mrg
921 1.8 mrg } else {
922 1.8 mrg ptmp->flags |= (PG_CLEAN|PG_CLEANCHK);
923 1.8 mrg if ((flags & PGO_FREE) == 0)
924 1.8 mrg pmap_clear_modify(
925 1.8 mrg PMAP_PGARG(ptmp));
926 1.8 mrg }
927 1.8 mrg }
928 1.8 mrg
929 1.8 mrg /*
930 1.8 mrg * dispose of page
931 1.8 mrg */
932 1.8 mrg
933 1.8 mrg if (flags & PGO_DEACTIVATE) {
934 1.8 mrg if ((pp->pqflags & PQ_INACTIVE) == 0 &&
935 1.8 mrg pp->wire_count == 0) {
936 1.8 mrg pmap_page_protect(PMAP_PGARG(ptmp),
937 1.8 mrg VM_PROT_NONE);
938 1.8 mrg uvm_pagedeactivate(ptmp);
939 1.8 mrg }
940 1.8 mrg
941 1.8 mrg } else if (flags & PGO_FREE) {
942 1.8 mrg if (result == VM_PAGER_PEND) {
943 1.8 mrg if ((ptmp->flags & PG_BUSY) != 0)
944 1.8 mrg /* signal for i/o done */
945 1.8 mrg ptmp->flags |= PG_RELEASED;
946 1.8 mrg } else {
947 1.8 mrg if (result != VM_PAGER_OK) {
948 1.8 mrg printf("uvn_flush: obj=%p, "
949 1.17.2.1 chs "offset=0x%lx. error %d\n",
950 1.17.2.1 chs pp->uobject, pp->offset,
951 1.17.2.1 chs result);
952 1.8 mrg printf("uvn_flush: WARNING: "
953 1.8 mrg "changes to page may be "
954 1.8 mrg "lost!\n");
955 1.8 mrg retval = FALSE;
956 1.8 mrg }
957 1.8 mrg pmap_page_protect(PMAP_PGARG(ptmp),
958 1.8 mrg VM_PROT_NONE);
959 1.8 mrg uvm_pagefree(ptmp);
960 1.8 mrg }
961 1.8 mrg }
962 1.1 mrg
963 1.8 mrg } /* end of "lcv" for loop */
964 1.1 mrg
965 1.8 mrg } /* end of "pp" for loop */
966 1.1 mrg
967 1.8 mrg /*
968 1.8 mrg * done with pagequeues: unlock
969 1.8 mrg */
970 1.8 mrg uvm_unlock_pageq();
971 1.1 mrg
972 1.8 mrg /*
973 1.8 mrg * now wait for all I/O if required.
974 1.8 mrg */
975 1.17.2.1 chs #ifdef UBC
976 1.17.2.1 chs /*
977 1.17.2.1 chs * XXX currently not needed since all i/o is sync.
978 1.17.2.1 chs * merge this with VBWAIT.
979 1.17.2.1 chs */
980 1.17.2.1 chs #else
981 1.8 mrg if (need_iosync) {
982 1.1 mrg
983 1.8 mrg UVMHIST_LOG(maphist," <<DOING IOSYNC>>",0,0,0,0);
984 1.8 mrg while (uvn->u_nio != 0) {
985 1.8 mrg uvn->u_flags |= UVM_VNODE_IOSYNC;
986 1.8 mrg UVM_UNLOCK_AND_WAIT(&uvn->u_nio, &uvn->u_obj.vmobjlock,
987 1.8 mrg FALSE, "uvn_flush",0);
988 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
989 1.8 mrg }
990 1.8 mrg if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED)
991 1.8 mrg wakeup(&uvn->u_flags);
992 1.8 mrg uvn->u_flags &= ~(UVM_VNODE_IOSYNC|UVM_VNODE_IOSYNCWANTED);
993 1.1 mrg }
994 1.17.2.1 chs #endif
995 1.1 mrg
996 1.8 mrg /* return, with object locked! */
997 1.8 mrg UVMHIST_LOG(maphist,"<- done (retval=0x%x)",retval,0,0,0);
998 1.8 mrg return(retval);
999 1.1 mrg }
1000 1.1 mrg
1001 1.1 mrg /*
1002 1.1 mrg * uvn_cluster
1003 1.1 mrg *
1004 1.1 mrg * we are about to do I/O in an object at offset. this function is called
1005 1.1 mrg * to establish a range of offsets around "offset" in which we can cluster
1006 1.1 mrg * I/O.
1007 1.1 mrg *
1008 1.1 mrg * - currently doesn't matter if obj locked or not.
1009 1.1 mrg */
1010 1.1 mrg
1011 1.8 mrg static void
1012 1.8 mrg uvn_cluster(uobj, offset, loffset, hoffset)
1013 1.8 mrg struct uvm_object *uobj;
1014 1.15 eeh vaddr_t offset;
1015 1.15 eeh vaddr_t *loffset, *hoffset; /* OUT */
1016 1.1 mrg {
1017 1.8 mrg struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
1018 1.17.2.2 chs UVMHIST_FUNC("uvn_cluster"); UVMHIST_CALLED(ubchist);
1019 1.17.2.2 chs
1020 1.8 mrg *loffset = offset;
1021 1.1 mrg
1022 1.8 mrg if (*loffset >= uvn->u_size)
1023 1.17.2.1 chs #ifdef UBC
1024 1.17.2.1 chs {
1025 1.17.2.1 chs /* XXX nfs writes cause trouble with this */
1026 1.17.2.1 chs *loffset = *hoffset = offset;
1027 1.17.2.2 chs UVMHIST_LOG(ubchist, "uvn_cluster: offset out of range: vp %p loffset 0x%x",
1028 1.17.2.2 chs uobj, (int)*loffset, 0,0);
1029 1.17.2.2 chs Debugger();
1030 1.17.2.1 chs return;
1031 1.17.2.1 chs }
1032 1.17.2.1 chs #else
1033 1.17.2.1 chs panic("uvn_cluster: offset out of range: vp %p loffset 0x%x",
1034 1.17.2.1 chs uobj, (int) *loffset);
1035 1.17.2.1 chs #endif
1036 1.1 mrg
1037 1.8 mrg /*
1038 1.8 mrg * XXX: old pager claims we could use VOP_BMAP to get maxcontig value.
1039 1.8 mrg */
1040 1.8 mrg *hoffset = *loffset + MAXBSIZE;
1041 1.8 mrg if (*hoffset > round_page(uvn->u_size)) /* past end? */
1042 1.8 mrg *hoffset = round_page(uvn->u_size);
1043 1.1 mrg
1044 1.8 mrg return;
1045 1.1 mrg }
1046 1.1 mrg
1047 1.1 mrg /*
1048 1.1 mrg * uvn_put: flush page data to backing store.
1049 1.1 mrg *
1050 1.1 mrg * => prefer map unlocked (not required)
1051 1.1 mrg * => object must be locked! we will _unlock_ it before starting I/O.
1052 1.1 mrg * => flags: PGO_SYNCIO -- use sync. I/O
1053 1.1 mrg * => note: caller must set PG_CLEAN and pmap_clear_modify (if needed)
1054 1.1 mrg * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync.
1055 1.1 mrg * [thus we never do async i/o! see iodone comment]
1056 1.1 mrg */
1057 1.1 mrg
1058 1.8 mrg static int
1059 1.8 mrg uvn_put(uobj, pps, npages, flags)
1060 1.8 mrg struct uvm_object *uobj;
1061 1.8 mrg struct vm_page **pps;
1062 1.8 mrg int npages, flags;
1063 1.1 mrg {
1064 1.17.2.3 chs int retval, sync;
1065 1.17.2.3 chs
1066 1.17.2.3 chs sync = (flags & PGO_SYNCIO) ? 1 : 0;
1067 1.1 mrg
1068 1.8 mrg /* note: object locked */
1069 1.17.2.3 chs simple_lock_assert(&uobj->vmobjlock, SLOCK_LOCKED);
1070 1.17.2.2 chs
1071 1.17.2.2 chs /* XXX why would the VOP need it locked? */
1072 1.17.2.3 chs /* currently, just to increment vp->v_numoutput (aka uvn->u_nio) */
1073 1.17.2.2 chs simple_unlock(&uobj->vmobjlock);
1074 1.17.2.3 chs retval = VOP_PUTPAGES((struct vnode *)uobj, pps, npages, sync, &retval);
1075 1.8 mrg /* note: object unlocked */
1076 1.17.2.3 chs simple_lock_assert(&uobj->vmobjlock, SLOCK_UNLOCKED);
1077 1.1 mrg
1078 1.8 mrg return(retval);
1079 1.1 mrg }
1080 1.1 mrg
1081 1.1 mrg
1082 1.1 mrg /*
1083 1.1 mrg * uvn_get: get pages (synchronously) from backing store
1084 1.1 mrg *
1085 1.1 mrg * => prefer map unlocked (not required)
1086 1.1 mrg * => object must be locked! we will _unlock_ it before starting any I/O.
1087 1.1 mrg * => flags: PGO_ALLPAGES: get all of the pages
1088 1.1 mrg * PGO_LOCKED: fault data structures are locked
1089 1.1 mrg * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
1090 1.1 mrg * => NOTE: caller must check for released pages!!
1091 1.1 mrg */
1092 1.1 mrg
1093 1.8 mrg static int
1094 1.8 mrg uvn_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
1095 1.8 mrg struct uvm_object *uobj;
1096 1.15 eeh vaddr_t offset;
1097 1.8 mrg struct vm_page **pps; /* IN/OUT */
1098 1.8 mrg int *npagesp; /* IN (OUT if PGO_LOCKED) */
1099 1.8 mrg int centeridx, advice, flags;
1100 1.8 mrg vm_prot_t access_type;
1101 1.8 mrg {
1102 1.17.2.1 chs struct vnode *vp = (struct vnode *)uobj;
1103 1.17.2.1 chs int error;
1104 1.8 mrg
1105 1.17.2.3 chs simple_lock_assert(&uobj->vmobjlock, SLOCK_LOCKED);
1106 1.17.2.1 chs error = VOP_GETPAGES(vp, offset, pps, npagesp, centeridx,
1107 1.17.2.1 chs access_type, advice, flags);
1108 1.17.2.3 chs simple_lock_assert(&uobj->vmobjlock, flags & PGO_LOCKED ?
1109 1.17.2.3 chs SLOCK_LOCKED : SLOCK_UNLOCKED);
1110 1.8 mrg
1111 1.17.2.1 chs return error ? VM_PAGER_ERROR : VM_PAGER_OK;
1112 1.17.2.1 chs }
1113 1.8 mrg
1114 1.17.2.1 chs /*
1115 1.17.2.3 chs * uvn_findpages:
1116 1.17.2.1 chs * return the page for the uobj and offset requested, allocating if needed.
1117 1.17.2.1 chs * => uobj must be locked.
1118 1.17.2.1 chs * => returned page will be BUSY.
1119 1.17.2.1 chs */
1120 1.8 mrg
1121 1.17.2.1 chs void
1122 1.17.2.3 chs uvn_findpages(uobj, offset, npagesp, pps, flags)
1123 1.17.2.3 chs struct uvm_object *uobj;
1124 1.17.2.3 chs vaddr_t offset;
1125 1.17.2.3 chs int *npagesp;
1126 1.17.2.3 chs struct vm_page **pps;
1127 1.17.2.3 chs int flags;
1128 1.17.2.3 chs {
1129 1.17.2.3 chs int i, rv, npages;
1130 1.17.2.3 chs
1131 1.17.2.3 chs rv = 0;
1132 1.17.2.3 chs npages = *npagesp;
1133 1.17.2.3 chs for (i = 0; i < npages; i++, offset += PAGE_SIZE) {
1134 1.17.2.3 chs rv += uvn_findpage(uobj, offset, &pps[i], flags);
1135 1.17.2.3 chs }
1136 1.17.2.3 chs *npagesp = rv;
1137 1.17.2.3 chs }
1138 1.17.2.3 chs
1139 1.17.2.3 chs
1140 1.17.2.3 chs static int
1141 1.17.2.3 chs uvn_findpage(uobj, offset, pps, flags)
1142 1.17.2.1 chs struct uvm_object *uobj;
1143 1.17.2.1 chs vaddr_t offset;
1144 1.17.2.1 chs struct vm_page **pps;
1145 1.17.2.3 chs int flags;
1146 1.17.2.1 chs {
1147 1.17.2.1 chs struct vm_page *ptmp;
1148 1.17.2.3 chs UVMHIST_FUNC("uvn_findpage"); UVMHIST_CALLED(ubchist);
1149 1.17.2.3 chs UVMHIST_LOG(ubchist, "vp %p off 0x%lx", uobj, offset,0,0);
1150 1.17.2.3 chs
1151 1.17.2.3 chs simple_lock_assert(&uobj->vmobjlock, SLOCK_LOCKED);
1152 1.17.2.3 chs
1153 1.17.2.3 chs if (*pps == PGO_DONTCARE) {
1154 1.17.2.3 chs UVMHIST_LOG(ubchist, "dontcare", 0,0,0,0);
1155 1.17.2.3 chs return 0;
1156 1.17.2.3 chs }
1157 1.17.2.3 chs #ifdef DIAGNOTISTIC
1158 1.17.2.3 chs if (*pps != NULL) {
1159 1.17.2.3 chs panic("uvn_findpage: *pps not NULL");
1160 1.17.2.3 chs }
1161 1.17.2.3 chs #endif
1162 1.8 mrg
1163 1.17.2.1 chs for (;;) {
1164 1.17.2.3 chs /* look for an existing page */
1165 1.17.2.1 chs ptmp = uvm_pagelookup(uobj, offset);
1166 1.17.2.1 chs
1167 1.17.2.1 chs /* nope? allocate one now */
1168 1.17.2.1 chs if (ptmp == NULL) {
1169 1.17.2.3 chs if (flags & UFP_NOALLOC) {
1170 1.17.2.3 chs UVMHIST_LOG(ubchist, "noalloc", 0,0,0,0);
1171 1.17.2.3 chs return 0;
1172 1.17.2.3 chs }
1173 1.17.2.1 chs ptmp = uvm_pagealloc(uobj, offset, NULL);
1174 1.17.2.1 chs if (ptmp == NULL) {
1175 1.17.2.3 chs if (flags & UFP_NOWAIT) {
1176 1.17.2.3 chs UVMHIST_LOG(ubchist, "nowait",0,0,0,0);
1177 1.17.2.3 chs return 0;
1178 1.17.2.3 chs }
1179 1.17.2.1 chs simple_unlock(&uobj->vmobjlock);
1180 1.17.2.1 chs uvm_wait("uvn_fp1");
1181 1.17.2.1 chs simple_lock(&uobj->vmobjlock);
1182 1.8 mrg continue;
1183 1.8 mrg }
1184 1.17.2.3 chs UVMHIST_LOG(ubchist, "alloced",0,0,0,0);
1185 1.17.2.1 chs break;
1186 1.17.2.3 chs } else if (flags & UFP_NOCACHE) {
1187 1.17.2.3 chs UVMHIST_LOG(ubchist, "nocache",0,0,0,0);
1188 1.17.2.3 chs return 0;
1189 1.8 mrg }
1190 1.8 mrg
1191 1.17.2.1 chs /* page is there, see if we need to wait on it */
1192 1.17.2.1 chs if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1193 1.17.2.3 chs if (flags & UFP_NOWAIT) {
1194 1.17.2.3 chs UVMHIST_LOG(ubchist, "nowait",0,0,0,0);
1195 1.17.2.3 chs return 0;
1196 1.17.2.3 chs }
1197 1.17.2.1 chs ptmp->flags |= PG_WANTED;
1198 1.17.2.1 chs UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock, 0,
1199 1.17.2.1 chs "uvn_fp2",0);
1200 1.17.2.1 chs simple_lock(&uobj->vmobjlock);
1201 1.17.2.1 chs continue;
1202 1.8 mrg }
1203 1.17.2.1 chs
1204 1.17.2.1 chs /* BUSY the page and we're done. */
1205 1.17.2.1 chs ptmp->flags |= PG_BUSY;
1206 1.17.2.1 chs UVM_PAGE_OWN(ptmp, "uvn_findpage");
1207 1.17.2.3 chs UVMHIST_LOG(ubchist, "found",0,0,0,0);
1208 1.17.2.1 chs break;
1209 1.17.2.1 chs }
1210 1.17.2.1 chs *pps = ptmp;
1211 1.17.2.3 chs return 1;
1212 1.1 mrg }
1213 1.1 mrg
1214 1.1 mrg /*
1215 1.1 mrg * uvn_asyncget: start async I/O to bring pages into ram
1216 1.1 mrg *
1217 1.1 mrg * => caller must lock object(???XXX: see if this is best)
1218 1.1 mrg * => could be called from uvn_get or a madvise() fault-ahead.
1219 1.1 mrg * => if it fails, it doesn't matter.
1220 1.1 mrg */
1221 1.1 mrg
1222 1.8 mrg static int
1223 1.8 mrg uvn_asyncget(uobj, offset, npages)
1224 1.8 mrg struct uvm_object *uobj;
1225 1.15 eeh vaddr_t offset;
1226 1.8 mrg int npages;
1227 1.8 mrg {
1228 1.1 mrg
1229 1.8 mrg /*
1230 1.8 mrg * XXXCDC: we can't do async I/O yet
1231 1.8 mrg */
1232 1.8 mrg printf("uvn_asyncget called\n");
1233 1.8 mrg return (KERN_SUCCESS);
1234 1.1 mrg }
1235 1.1 mrg
1236 1.1 mrg /*
1237 1.1 mrg * uvm_vnp_uncache: disable "persisting" in a vnode... when last reference
1238 1.1 mrg * is gone we will kill the object (flushing dirty pages back to the vnode
1239 1.1 mrg * if needed).
1240 1.1 mrg *
1241 1.1 mrg * => returns TRUE if there was no uvm_object attached or if there was
1242 1.1 mrg * one and we killed it [i.e. if there is no active uvn]
1243 1.1 mrg * => called with the vnode VOP_LOCK'd [we will unlock it for I/O, if
1244 1.1 mrg * needed]
1245 1.1 mrg *
1246 1.1 mrg * => XXX: given that we now kill uvn's when a vnode is recycled (without
1247 1.1 mrg * having to hold a reference on the vnode) and given a working
1248 1.1 mrg * uvm_vnp_sync(), how does that effect the need for this function?
1249 1.1 mrg * [XXXCDC: seems like it can die?]
1250 1.1 mrg *
1251 1.1 mrg * => XXX: this function should DIE once we merge the VM and buffer
1252 1.1 mrg * cache.
1253 1.1 mrg *
1254 1.1 mrg * research shows that this is called in the following places:
1255 1.1 mrg * ext2fs_truncate, ffs_truncate, detrunc[msdosfs]: called when vnode
1256 1.1 mrg * changes sizes
1257 1.1 mrg * ext2fs_write, WRITE [ufs_readwrite], msdosfs_write: called when we
1258 1.1 mrg * are written to
1259 1.1 mrg * ex2fs_chmod, ufs_chmod: called if VTEXT vnode and the sticky bit
1260 1.1 mrg * is off
1261 1.1 mrg * ffs_realloccg: when we can't extend the current block and have
1262 1.1 mrg * to allocate a new one we call this [XXX: why?]
1263 1.1 mrg * nfsrv_rename, rename_files: called when the target filename is there
1264 1.1 mrg * and we want to remove it
1265 1.1 mrg * nfsrv_remove, sys_unlink: called on file we are removing
1266 1.1 mrg * nfsrv_access: if VTEXT and we want WRITE access and we don't uncache
1267 1.1 mrg * then return "text busy"
1268 1.1 mrg * nfs_open: seems to uncache any file opened with nfs
1269 1.1 mrg * vn_writechk: if VTEXT vnode and can't uncache return "text busy"
1270 1.1 mrg */
1271 1.1 mrg
1272 1.8 mrg boolean_t
1273 1.8 mrg uvm_vnp_uncache(vp)
1274 1.8 mrg struct vnode *vp;
1275 1.8 mrg {
1276 1.8 mrg return(TRUE);
1277 1.1 mrg }
1278 1.1 mrg
1279 1.1 mrg /*
1280 1.1 mrg * uvm_vnp_setsize: grow or shrink a vnode uvn
1281 1.1 mrg *
1282 1.1 mrg * grow => just update size value
1283 1.1 mrg * shrink => toss un-needed pages
1284 1.1 mrg *
1285 1.1 mrg * => we assume that the caller has a reference of some sort to the
1286 1.1 mrg * vnode in question so that it will not be yanked out from under
1287 1.1 mrg * us.
1288 1.1 mrg *
1289 1.1 mrg * called from:
1290 1.1 mrg * => truncate fns (ext2fs_truncate, ffs_truncate, detrunc[msdos])
1291 1.1 mrg * => "write" fns (ext2fs_write, WRITE [ufs/ufs], msdosfs_write, nfs_write)
1292 1.1 mrg * => ffs_balloc [XXX: why? doesn't WRITE handle?]
1293 1.1 mrg * => NFS: nfs_loadattrcache, nfs_getattrcache, nfs_setattr
1294 1.1 mrg * => union fs: union_newsize
1295 1.1 mrg */
1296 1.1 mrg
1297 1.8 mrg void
1298 1.8 mrg uvm_vnp_setsize(vp, newsize)
1299 1.8 mrg struct vnode *vp;
1300 1.8 mrg u_quad_t newsize;
1301 1.8 mrg {
1302 1.8 mrg struct uvm_vnode *uvn = &vp->v_uvm;
1303 1.1 mrg
1304 1.8 mrg /*
1305 1.8 mrg * lock uvn and check for valid object, and if valid: do it!
1306 1.8 mrg */
1307 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
1308 1.17.2.1 chs #ifdef UBC
1309 1.17.2.1 chs #else
1310 1.8 mrg if (uvn->u_flags & UVM_VNODE_VALID) {
1311 1.17.2.1 chs #endif
1312 1.8 mrg /*
1313 1.15 eeh * make sure that the newsize fits within a vaddr_t
1314 1.8 mrg * XXX: need to revise addressing data types
1315 1.8 mrg */
1316 1.1 mrg
1317 1.15 eeh if (newsize > (vaddr_t) -PAGE_SIZE) {
1318 1.1 mrg #ifdef DEBUG
1319 1.8 mrg printf("uvm_vnp_setsize: vn %p size truncated "
1320 1.15 eeh "%qx->%lx\n", vp, newsize, (vaddr_t)-PAGE_SIZE);
1321 1.1 mrg #endif
1322 1.15 eeh newsize = (vaddr_t)-PAGE_SIZE;
1323 1.8 mrg }
1324 1.8 mrg
1325 1.8 mrg /*
1326 1.8 mrg * now check if the size has changed: if we shrink we had better
1327 1.8 mrg * toss some pages...
1328 1.8 mrg */
1329 1.8 mrg
1330 1.17.2.1 chs #ifdef UBC
1331 1.17.2.1 chs if (uvn->u_size > newsize && uvn->u_size != VSIZENOTSET) {
1332 1.17.2.1 chs #else
1333 1.17.2.1 chs /*
1334 1.8 mrg if (uvn->u_size > newsize) {
1335 1.17.2.1 chs */
1336 1.17.2.1 chs #endif
1337 1.17.2.1 chs (void)uvn_flush(&uvn->u_obj, (vaddr_t)newsize,
1338 1.17.2.1 chs uvn->u_size, PGO_FREE);
1339 1.8 mrg }
1340 1.17.2.1 chs #ifdef DEBUGxx
1341 1.17.2.1 chs printf("uvm_vnp_setsize: vp %p newsize 0x%x\n", vp, (int)newsize);
1342 1.17.2.1 chs #endif
1343 1.17.2.2 chs uvn->u_size = (vaddr_t)newsize;
1344 1.17.2.1 chs #ifdef UBC
1345 1.17.2.1 chs #else
1346 1.8 mrg }
1347 1.17.2.1 chs #endif
1348 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
1349 1.1 mrg }
1350 1.1 mrg
1351 1.1 mrg /*
1352 1.1 mrg * uvm_vnp_sync: flush all dirty VM pages back to their backing vnodes.
1353 1.1 mrg *
1354 1.1 mrg * => called from sys_sync with no VM structures locked
1355 1.1 mrg * => only one process can do a sync at a time (because the uvn
1356 1.1 mrg * structure only has one queue for sync'ing). we ensure this
1357 1.1 mrg * by holding the uvn_sync_lock while the sync is in progress.
1358 1.1 mrg * other processes attempting a sync will sleep on this lock
1359 1.1 mrg * until we are done.
1360 1.1 mrg */
1361 1.1 mrg
1362 1.8 mrg void
1363 1.8 mrg uvm_vnp_sync(mp)
1364 1.8 mrg struct mount *mp;
1365 1.8 mrg {
1366 1.8 mrg struct uvm_vnode *uvn;
1367 1.8 mrg struct vnode *vp;
1368 1.8 mrg boolean_t got_lock;
1369 1.8 mrg
1370 1.8 mrg /*
1371 1.8 mrg * step 1: ensure we are only ones using the uvn_sync_q by locking
1372 1.8 mrg * our lock...
1373 1.8 mrg */
1374 1.8 mrg lockmgr(&uvn_sync_lock, LK_EXCLUSIVE, (void *)0);
1375 1.8 mrg
1376 1.8 mrg /*
1377 1.8 mrg * step 2: build up a simpleq of uvns of interest based on the
1378 1.8 mrg * write list. we gain a reference to uvns of interest. must
1379 1.8 mrg * be careful about locking uvn's since we will be holding uvn_wl_lock
1380 1.8 mrg * in the body of the loop.
1381 1.8 mrg */
1382 1.8 mrg SIMPLEQ_INIT(&uvn_sync_q);
1383 1.8 mrg simple_lock(&uvn_wl_lock);
1384 1.17.2.3 chs for (uvn = LIST_FIRST(&uvn_wlist); uvn != NULL;
1385 1.17.2.3 chs uvn = LIST_NEXT(uvn, u_wlist)) {
1386 1.1 mrg
1387 1.8 mrg vp = (struct vnode *) uvn;
1388 1.8 mrg if (mp && vp->v_mount != mp)
1389 1.8 mrg continue;
1390 1.8 mrg
1391 1.8 mrg /* attempt to gain reference */
1392 1.8 mrg while ((got_lock = simple_lock_try(&uvn->u_obj.vmobjlock)) ==
1393 1.9 chuck FALSE &&
1394 1.17.2.1 chs (uvn->u_flags & UVM_VNODE_BLOCKED) == 0)
1395 1.8 mrg /* spin */ ;
1396 1.8 mrg
1397 1.8 mrg /*
1398 1.9 chuck * we will exit the loop if either if the following are true:
1399 1.9 chuck * - we got the lock [always true if NCPU == 1]
1400 1.9 chuck * - we failed to get the lock but noticed the vnode was
1401 1.9 chuck * "blocked" -- in this case the vnode must be a dying
1402 1.9 chuck * vnode, and since dying vnodes are in the process of
1403 1.9 chuck * being flushed out, we can safely skip this one
1404 1.9 chuck *
1405 1.9 chuck * we want to skip over the vnode if we did not get the lock,
1406 1.9 chuck * or if the vnode is already dying (due to the above logic).
1407 1.8 mrg *
1408 1.8 mrg * note that uvn must already be valid because we found it on
1409 1.8 mrg * the wlist (this also means it can't be ALOCK'd).
1410 1.8 mrg */
1411 1.9 chuck if (!got_lock || (uvn->u_flags & UVM_VNODE_BLOCKED) != 0) {
1412 1.9 chuck if (got_lock)
1413 1.9 chuck simple_unlock(&uvn->u_obj.vmobjlock);
1414 1.9 chuck continue; /* skip it */
1415 1.9 chuck }
1416 1.8 mrg
1417 1.8 mrg /*
1418 1.8 mrg * gain reference. watch out for persisting uvns (need to
1419 1.8 mrg * regain vnode REF).
1420 1.8 mrg */
1421 1.17.2.1 chs #ifdef UBC
1422 1.17.2.1 chs /* XXX should be using a vref-like function here */
1423 1.17.2.1 chs #else
1424 1.8 mrg if (uvn->u_obj.uo_refs == 0)
1425 1.8 mrg VREF(vp);
1426 1.17.2.1 chs #endif
1427 1.8 mrg uvn->u_obj.uo_refs++;
1428 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
1429 1.8 mrg
1430 1.8 mrg /*
1431 1.8 mrg * got it!
1432 1.8 mrg */
1433 1.8 mrg SIMPLEQ_INSERT_HEAD(&uvn_sync_q, uvn, u_syncq);
1434 1.8 mrg }
1435 1.8 mrg simple_unlock(&uvn_wl_lock);
1436 1.1 mrg
1437 1.8 mrg /*
1438 1.8 mrg * step 3: we now have a list of uvn's that may need cleaning.
1439 1.8 mrg * we are holding the uvn_sync_lock, but have dropped the uvn_wl_lock
1440 1.8 mrg * (so we can now safely lock uvn's again).
1441 1.8 mrg */
1442 1.1 mrg
1443 1.8 mrg for (uvn = uvn_sync_q.sqh_first ; uvn ; uvn = uvn->u_syncq.sqe_next) {
1444 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
1445 1.17.2.1 chs #ifdef UBC
1446 1.17.2.1 chs #else
1447 1.1 mrg #ifdef DIAGNOSTIC
1448 1.8 mrg if (uvn->u_flags & UVM_VNODE_DYING) {
1449 1.8 mrg printf("uvm_vnp_sync: dying vnode on sync list\n");
1450 1.8 mrg }
1451 1.1 mrg #endif
1452 1.17.2.1 chs #endif
1453 1.8 mrg uvn_flush(&uvn->u_obj, 0, 0,
1454 1.8 mrg PGO_CLEANIT|PGO_ALLPAGES|PGO_DOACTCLUST);
1455 1.8 mrg
1456 1.8 mrg /*
1457 1.8 mrg * if we have the only reference and we just cleaned the uvn,
1458 1.8 mrg * then we can pull it out of the UVM_VNODE_WRITEABLE state
1459 1.8 mrg * thus allowing us to avoid thinking about flushing it again
1460 1.8 mrg * on later sync ops.
1461 1.8 mrg */
1462 1.8 mrg if (uvn->u_obj.uo_refs == 1 &&
1463 1.8 mrg (uvn->u_flags & UVM_VNODE_WRITEABLE)) {
1464 1.17.2.3 chs simple_lock(&uvn_wl_lock);
1465 1.8 mrg LIST_REMOVE(uvn, u_wlist);
1466 1.8 mrg uvn->u_flags &= ~UVM_VNODE_WRITEABLE;
1467 1.17.2.3 chs simple_unlock(&uvn_wl_lock);
1468 1.8 mrg }
1469 1.8 mrg
1470 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
1471 1.1 mrg
1472 1.8 mrg /* now drop our reference to the uvn */
1473 1.8 mrg uvn_detach(&uvn->u_obj);
1474 1.8 mrg }
1475 1.8 mrg
1476 1.8 mrg /*
1477 1.8 mrg * done! release sync lock
1478 1.8 mrg */
1479 1.8 mrg lockmgr(&uvn_sync_lock, LK_RELEASE, (void *)0);
1480 1.17.2.1 chs }
1481 1.17.2.1 chs
1482 1.17.2.1 chs
1483 1.17.2.1 chs /*
1484 1.17.2.3 chs * uvm_vnp_setpageblknos: find pages and set their blknos.
1485 1.17.2.3 chs * this is used for two purposes: updating blknos in existing pages
1486 1.17.2.3 chs * when the data is relocated on disk, and preallocating pages when
1487 1.17.2.3 chs * those pages are about to be completely overwritten.
1488 1.17.2.3 chs *
1489 1.17.2.3 chs * => vp's uobj should not be locked, and is returned not locked.
1490 1.17.2.1 chs */
1491 1.17.2.1 chs
1492 1.17.2.3 chs void
1493 1.17.2.3 chs uvm_vnp_setpageblknos(vp, off, len, blkno, ufp_flags, zero)
1494 1.17.2.1 chs struct vnode *vp;
1495 1.17.2.3 chs off_t off, len;
1496 1.17.2.1 chs daddr_t blkno;
1497 1.17.2.3 chs int ufp_flags;
1498 1.17.2.3 chs boolean_t zero;
1499 1.17.2.1 chs {
1500 1.17.2.3 chs int i;
1501 1.17.2.1 chs int npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1502 1.17.2.3 chs struct vm_page *pgs[npages];
1503 1.17.2.3 chs struct uvm_object *uobj = &vp->v_uvm.u_obj;
1504 1.17.2.1 chs
1505 1.17.2.3 chs memset(pgs, 0, npages);
1506 1.17.2.3 chs simple_lock(&uobj->vmobjlock);
1507 1.17.2.3 chs uvn_findpages(uobj, trunc_page(off), &npages, pgs, ufp_flags);
1508 1.17.2.1 chs for (i = 0; i < npages; i++) {
1509 1.17.2.3 chs if (pgs[i] == NULL) {
1510 1.17.2.3 chs continue;
1511 1.17.2.1 chs }
1512 1.17.2.3 chs pgs[i]->blkno = blkno;
1513 1.17.2.1 chs blkno += PAGE_SIZE >> DEV_BSHIFT;
1514 1.17.2.3 chs if (zero) {
1515 1.17.2.3 chs uvm_pagezero(pgs[i]);
1516 1.17.2.1 chs }
1517 1.17.2.1 chs }
1518 1.17.2.3 chs uvm_pager_dropcluster(uobj, NULL, pgs, &npages, PGO_PDFREECLUST, 0);
1519 1.17.2.3 chs simple_unlock(&uobj->vmobjlock);
1520 1.17.2.3 chs }
1521 1.17.2.3 chs
1522 1.17.2.3 chs
1523 1.17.2.3 chs /*
1524 1.17.2.3 chs * uvm_vnp_zerorange: set a range of bytes in a file to zero.
1525 1.17.2.3 chs * this is called from fs-specific code when truncating a file
1526 1.17.2.3 chs * to zero the part of last block that is past the new end-of-file.
1527 1.17.2.3 chs */
1528 1.17.2.3 chs void
1529 1.17.2.3 chs uvm_vnp_zerorange(vp, off, len)
1530 1.17.2.3 chs struct vnode *vp;
1531 1.17.2.3 chs off_t off;
1532 1.17.2.3 chs size_t len;
1533 1.17.2.3 chs {
1534 1.17.2.3 chs void *win;
1535 1.17.2.3 chs
1536 1.17.2.3 chs /*
1537 1.17.2.3 chs * XXX deal with multiple windows
1538 1.17.2.3 chs * XXX invent kzero() and use it
1539 1.17.2.3 chs */
1540 1.17.2.1 chs
1541 1.17.2.3 chs win = ubc_alloc(&vp->v_uvm.u_obj, off, len, UBC_WRITE);
1542 1.17.2.3 chs memset(win + (off & (MAXBSIZE - 1)), 0, len);
1543 1.17.2.3 chs ubc_release(win, 0);
1544 1.1 mrg }
1545