uvm_vnode.c revision 1.17.2.7 1 1.17.2.7 chs /* $NetBSD: uvm_vnode.c,v 1.17.2.7 1999/05/30 15:41:44 chs Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
5 1.1 mrg * >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
6 1.1 mrg */
7 1.1 mrg /*
8 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
9 1.1 mrg * Copyright (c) 1991, 1993
10 1.1 mrg * The Regents of the University of California.
11 1.1 mrg * Copyright (c) 1990 University of Utah.
12 1.1 mrg *
13 1.1 mrg * All rights reserved.
14 1.1 mrg *
15 1.1 mrg * This code is derived from software contributed to Berkeley by
16 1.1 mrg * the Systems Programming Group of the University of Utah Computer
17 1.1 mrg * Science Department.
18 1.1 mrg *
19 1.1 mrg * Redistribution and use in source and binary forms, with or without
20 1.1 mrg * modification, are permitted provided that the following conditions
21 1.1 mrg * are met:
22 1.1 mrg * 1. Redistributions of source code must retain the above copyright
23 1.1 mrg * notice, this list of conditions and the following disclaimer.
24 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
25 1.1 mrg * notice, this list of conditions and the following disclaimer in the
26 1.1 mrg * documentation and/or other materials provided with the distribution.
27 1.1 mrg * 3. All advertising materials mentioning features or use of this software
28 1.1 mrg * must display the following acknowledgement:
29 1.1 mrg * This product includes software developed by Charles D. Cranor,
30 1.1 mrg * Washington University, the University of California, Berkeley and
31 1.1 mrg * its contributors.
32 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
33 1.1 mrg * may be used to endorse or promote products derived from this software
34 1.1 mrg * without specific prior written permission.
35 1.1 mrg *
36 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
37 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
40 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46 1.1 mrg * SUCH DAMAGE.
47 1.1 mrg *
48 1.1 mrg * @(#)vnode_pager.c 8.8 (Berkeley) 2/13/94
49 1.3 mrg * from: Id: uvm_vnode.c,v 1.1.2.26 1998/02/02 20:38:07 chuck Exp
50 1.1 mrg */
51 1.1 mrg
52 1.6 thorpej #include "fs_nfs.h"
53 1.17.2.2 chs #include "opt_uvm.h"
54 1.4 mrg #include "opt_uvmhist.h"
55 1.4 mrg
56 1.1 mrg /*
57 1.1 mrg * uvm_vnode.c: the vnode pager.
58 1.1 mrg */
59 1.1 mrg
60 1.1 mrg #include <sys/param.h>
61 1.1 mrg #include <sys/systm.h>
62 1.17.2.1 chs #include <sys/kernel.h>
63 1.1 mrg #include <sys/proc.h>
64 1.1 mrg #include <sys/malloc.h>
65 1.1 mrg #include <sys/vnode.h>
66 1.13 thorpej #include <sys/disklabel.h>
67 1.13 thorpej #include <sys/ioctl.h>
68 1.13 thorpej #include <sys/fcntl.h>
69 1.13 thorpej #include <sys/conf.h>
70 1.17.2.7 chs #include <sys/pool.h>
71 1.13 thorpej
72 1.13 thorpej #include <miscfs/specfs/specdev.h>
73 1.1 mrg
74 1.1 mrg #include <vm/vm.h>
75 1.1 mrg #include <vm/vm_page.h>
76 1.1 mrg #include <vm/vm_kern.h>
77 1.1 mrg
78 1.1 mrg #include <uvm/uvm.h>
79 1.1 mrg #include <uvm/uvm_vnode.h>
80 1.1 mrg
81 1.1 mrg /*
82 1.1 mrg * private global data structure
83 1.1 mrg *
84 1.1 mrg * we keep a list of writeable active vnode-backed VM objects for sync op.
85 1.1 mrg * we keep a simpleq of vnodes that are currently being sync'd.
86 1.1 mrg */
87 1.1 mrg
88 1.1 mrg LIST_HEAD(uvn_list_struct, uvm_vnode);
89 1.1 mrg static struct uvn_list_struct uvn_wlist; /* writeable uvns */
90 1.1 mrg static simple_lock_data_t uvn_wl_lock; /* locks uvn_wlist */
91 1.1 mrg
92 1.1 mrg SIMPLEQ_HEAD(uvn_sq_struct, uvm_vnode);
93 1.1 mrg static struct uvn_sq_struct uvn_sync_q; /* sync'ing uvns */
94 1.1 mrg lock_data_t uvn_sync_lock; /* locks sync operation */
95 1.1 mrg
96 1.1 mrg /*
97 1.1 mrg * functions
98 1.1 mrg */
99 1.1 mrg
100 1.17.2.3 chs static int uvn_asyncget __P((struct uvm_object *, vaddr_t,
101 1.1 mrg int));
102 1.17.2.3 chs struct uvm_object * uvn_attach __P((void *, vm_prot_t));
103 1.17.2.3 chs static void uvn_cluster __P((struct uvm_object *, vaddr_t,
104 1.17.2.3 chs vaddr_t *, vaddr_t *));
105 1.17.2.3 chs static void uvn_detach __P((struct uvm_object *));
106 1.17.2.3 chs static int uvn_findpage __P((struct uvm_object *, vaddr_t,
107 1.17.2.3 chs struct vm_page **, int));
108 1.17.2.3 chs static boolean_t uvn_flush __P((struct uvm_object *, vaddr_t,
109 1.17.2.3 chs vaddr_t, int));
110 1.17.2.3 chs static int uvn_get __P((struct uvm_object *, vaddr_t,
111 1.17.2.3 chs vm_page_t *, int *, int,
112 1.17.2.3 chs vm_prot_t, int, int));
113 1.17.2.3 chs static void uvn_init __P((void));
114 1.17.2.3 chs static int uvn_put __P((struct uvm_object *, vm_page_t *,
115 1.17.2.3 chs int, boolean_t));
116 1.17.2.3 chs static void uvn_reference __P((struct uvm_object *));
117 1.17.2.3 chs static boolean_t uvn_releasepg __P((struct vm_page *,
118 1.17.2.3 chs struct vm_page **));
119 1.17.2.7 chs static void uvn_doasyncget __P((struct vm_page **, size_t,
120 1.17.2.7 chs daddr_t));
121 1.1 mrg
122 1.1 mrg /*
123 1.1 mrg * master pager structure
124 1.1 mrg */
125 1.1 mrg
126 1.1 mrg struct uvm_pagerops uvm_vnodeops = {
127 1.8 mrg uvn_init,
128 1.8 mrg uvn_attach,
129 1.8 mrg uvn_reference,
130 1.8 mrg uvn_detach,
131 1.8 mrg NULL, /* no specialized fault routine required */
132 1.8 mrg uvn_flush,
133 1.8 mrg uvn_get,
134 1.8 mrg uvn_asyncget,
135 1.8 mrg uvn_put,
136 1.8 mrg uvn_cluster,
137 1.8 mrg uvm_mk_pcluster, /* use generic version of this: see uvm_pager.c */
138 1.8 mrg uvm_shareprot, /* !NULL: allow us in share maps */
139 1.8 mrg NULL, /* AIO-DONE function (not until we have asyncio) */
140 1.8 mrg uvn_releasepg,
141 1.1 mrg };
142 1.1 mrg
143 1.1 mrg /*
144 1.1 mrg * the ops!
145 1.1 mrg */
146 1.1 mrg
147 1.1 mrg /*
148 1.1 mrg * uvn_init
149 1.1 mrg *
150 1.1 mrg * init pager private data structures.
151 1.1 mrg */
152 1.1 mrg
153 1.8 mrg static void
154 1.8 mrg uvn_init()
155 1.8 mrg {
156 1.1 mrg
157 1.8 mrg LIST_INIT(&uvn_wlist);
158 1.8 mrg simple_lock_init(&uvn_wl_lock);
159 1.8 mrg /* note: uvn_sync_q init'd in uvm_vnp_sync() */
160 1.8 mrg lockinit(&uvn_sync_lock, PVM, "uvnsync", 0, 0);
161 1.1 mrg }
162 1.1 mrg
163 1.1 mrg /*
164 1.1 mrg * uvn_attach
165 1.1 mrg *
166 1.1 mrg * attach a vnode structure to a VM object. if the vnode is already
167 1.1 mrg * attached, then just bump the reference count by one and return the
168 1.1 mrg * VM object. if not already attached, attach and return the new VM obj.
169 1.1 mrg * the "accessprot" tells the max access the attaching thread wants to
170 1.1 mrg * our pages.
171 1.1 mrg *
172 1.1 mrg * => caller must _not_ already be holding the lock on the uvm_object.
173 1.1 mrg * => in fact, nothing should be locked so that we can sleep here.
174 1.1 mrg * => note that uvm_object is first thing in vnode structure, so their
175 1.1 mrg * pointers are equiv.
176 1.1 mrg */
177 1.1 mrg
178 1.8 mrg struct uvm_object *
179 1.8 mrg uvn_attach(arg, accessprot)
180 1.8 mrg void *arg;
181 1.8 mrg vm_prot_t accessprot;
182 1.8 mrg {
183 1.8 mrg struct vnode *vp = arg;
184 1.8 mrg struct uvm_vnode *uvn = &vp->v_uvm;
185 1.8 mrg struct vattr vattr;
186 1.8 mrg int oldflags, result;
187 1.13 thorpej struct partinfo pi;
188 1.17.2.1 chs off_t used_vnode_size;
189 1.8 mrg UVMHIST_FUNC("uvn_attach"); UVMHIST_CALLED(maphist);
190 1.8 mrg
191 1.8 mrg UVMHIST_LOG(maphist, "(vn=0x%x)", arg,0,0,0);
192 1.8 mrg
193 1.13 thorpej used_vnode_size = (u_quad_t)0; /* XXX gcc -Wuninitialized */
194 1.13 thorpej
195 1.8 mrg /*
196 1.8 mrg * first get a lock on the uvn.
197 1.8 mrg */
198 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
199 1.8 mrg while (uvn->u_flags & UVM_VNODE_BLOCKED) {
200 1.8 mrg uvn->u_flags |= UVM_VNODE_WANTED;
201 1.8 mrg UVMHIST_LOG(maphist, " SLEEPING on blocked vn",0,0,0,0);
202 1.8 mrg UVM_UNLOCK_AND_WAIT(uvn, &uvn->u_obj.vmobjlock, FALSE,
203 1.8 mrg "uvn_attach", 0);
204 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
205 1.8 mrg UVMHIST_LOG(maphist," WOKE UP",0,0,0,0);
206 1.8 mrg }
207 1.1 mrg
208 1.8 mrg /*
209 1.17.2.1 chs * if we're mapping a BLK device, make sure it is a disk.
210 1.13 thorpej */
211 1.13 thorpej if (vp->v_type == VBLK && bdevsw[major(vp->v_rdev)].d_type != D_DISK) {
212 1.17.2.1 chs simple_unlock(&uvn->u_obj.vmobjlock);
213 1.13 thorpej UVMHIST_LOG(maphist,"<- done (VBLK not D_DISK!)", 0,0,0,0);
214 1.13 thorpej return(NULL);
215 1.13 thorpej }
216 1.13 thorpej
217 1.17.2.1 chs oldflags = 0;
218 1.17.2.1 chs
219 1.17.2.1 chs #ifdef DIAGNOSTIC
220 1.17.2.1 chs if (vp->v_type != VREG) {
221 1.17.2.1 chs panic("uvn_attach: vp %p not VREG", vp);
222 1.17.2.1 chs }
223 1.17.2.1 chs #endif
224 1.17.2.1 chs
225 1.17.2.1 chs /*
226 1.17.2.1 chs * set up our idea of the size
227 1.17.2.1 chs * if this hasn't been done already.
228 1.17.2.1 chs */
229 1.17.2.1 chs if (uvn->u_size == VSIZENOTSET) {
230 1.17.2.1 chs
231 1.17.2.1 chs uvn->u_flags = UVM_VNODE_ALOCK;
232 1.17.2.1 chs simple_unlock(&uvn->u_obj.vmobjlock); /* drop lock in case we sleep */
233 1.17.2.1 chs /* XXX: curproc? */
234 1.17.2.1 chs if (vp->v_type == VBLK) {
235 1.17.2.1 chs /*
236 1.17.2.1 chs * We could implement this as a specfs getattr call, but:
237 1.17.2.1 chs *
238 1.17.2.1 chs * (1) VOP_GETATTR() would get the file system
239 1.17.2.1 chs * vnode operation, not the specfs operation.
240 1.17.2.1 chs *
241 1.17.2.1 chs * (2) All we want is the size, anyhow.
242 1.17.2.1 chs */
243 1.17.2.1 chs result = (*bdevsw[major(vp->v_rdev)].d_ioctl)(vp->v_rdev,
244 1.17.2.1 chs DIOCGPART, (caddr_t)&pi, FREAD, curproc);
245 1.17.2.1 chs if (result == 0) {
246 1.17.2.1 chs /* XXX should remember blocksize */
247 1.17.2.1 chs used_vnode_size = (u_quad_t)pi.disklab->d_secsize *
248 1.17.2.1 chs (u_quad_t)pi.part->p_size;
249 1.17.2.1 chs }
250 1.17.2.1 chs } else {
251 1.17.2.1 chs result = VOP_GETATTR(vp, &vattr, curproc->p_ucred, curproc);
252 1.17.2.1 chs if (result == 0)
253 1.17.2.1 chs used_vnode_size = vattr.va_size;
254 1.17.2.1 chs }
255 1.17.2.1 chs
256 1.17.2.1 chs
257 1.17.2.1 chs /*
258 1.17.2.1 chs * make sure that the newsize fits within a vaddr_t
259 1.17.2.1 chs * XXX: need to revise addressing data types
260 1.17.2.1 chs */
261 1.17.2.1 chs if (used_vnode_size > (vaddr_t) -PAGE_SIZE) {
262 1.17.2.1 chs #ifdef DEBUG
263 1.17.2.1 chs printf("uvn_attach: vn %p size truncated %qx->%x\n", vp,
264 1.17.2.1 chs used_vnode_size, -PAGE_SIZE);
265 1.17.2.1 chs #endif
266 1.17.2.1 chs used_vnode_size = (vaddr_t) -PAGE_SIZE;
267 1.17.2.1 chs }
268 1.17.2.1 chs
269 1.17.2.1 chs /* relock object */
270 1.17.2.1 chs simple_lock(&uvn->u_obj.vmobjlock);
271 1.17.2.1 chs
272 1.17.2.1 chs if (uvn->u_flags & UVM_VNODE_WANTED)
273 1.17.2.1 chs wakeup(uvn);
274 1.17.2.1 chs uvn->u_flags = 0;
275 1.17.2.1 chs
276 1.17.2.1 chs if (result != 0) {
277 1.17.2.1 chs simple_unlock(&uvn->u_obj.vmobjlock); /* drop lock */
278 1.17.2.1 chs UVMHIST_LOG(maphist,"<- done (VOP_GETATTR FAILED!)", 0,0,0,0);
279 1.17.2.1 chs return(NULL);
280 1.17.2.1 chs }
281 1.17.2.1 chs uvn->u_size = used_vnode_size;
282 1.17.2.1 chs
283 1.17.2.1 chs }
284 1.17.2.1 chs
285 1.17.2.3 chs /* check for new writeable uvn */
286 1.17.2.3 chs if ((accessprot & VM_PROT_WRITE) != 0 &&
287 1.17.2.3 chs (uvn->u_flags & UVM_VNODE_WRITEABLE) == 0) {
288 1.8 mrg simple_lock(&uvn_wl_lock);
289 1.8 mrg LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist);
290 1.17.2.3 chs uvn->u_flags |= UVM_VNODE_WRITEABLE;
291 1.8 mrg simple_unlock(&uvn_wl_lock);
292 1.17.2.3 chs /* we are now on wlist! */
293 1.8 mrg }
294 1.8 mrg
295 1.17.2.3 chs /* unlock and return */
296 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
297 1.17.2.3 chs UVMHIST_LOG(maphist,"<- done, refcnt=%d", uvn->u_obj.uo_refs,
298 1.17.2.3 chs 0, 0, 0);
299 1.17.2.3 chs return (&uvn->u_obj);
300 1.1 mrg }
301 1.1 mrg
302 1.1 mrg
303 1.1 mrg /*
304 1.1 mrg * uvn_reference
305 1.1 mrg *
306 1.1 mrg * duplicate a reference to a VM object. Note that the reference
307 1.1 mrg * count must already be at least one (the passed in reference) so
308 1.1 mrg * there is no chance of the uvn being killed or locked out here.
309 1.1 mrg *
310 1.1 mrg * => caller must call with object unlocked.
311 1.1 mrg * => caller must be using the same accessprot as was used at attach time
312 1.1 mrg */
313 1.1 mrg
314 1.1 mrg
315 1.8 mrg static void
316 1.8 mrg uvn_reference(uobj)
317 1.8 mrg struct uvm_object *uobj;
318 1.1 mrg {
319 1.8 mrg UVMHIST_FUNC("uvn_reference"); UVMHIST_CALLED(maphist);
320 1.1 mrg
321 1.17.2.1 chs VREF((struct vnode *)uobj);
322 1.1 mrg }
323 1.1 mrg
324 1.1 mrg /*
325 1.1 mrg * uvn_detach
326 1.1 mrg *
327 1.1 mrg * remove a reference to a VM object.
328 1.1 mrg *
329 1.1 mrg * => caller must call with object unlocked and map locked.
330 1.1 mrg * => this starts the detach process, but doesn't have to finish it
331 1.1 mrg * (async i/o could still be pending).
332 1.1 mrg */
333 1.8 mrg static void
334 1.8 mrg uvn_detach(uobj)
335 1.8 mrg struct uvm_object *uobj;
336 1.8 mrg {
337 1.8 mrg UVMHIST_FUNC("uvn_detach"); UVMHIST_CALLED(maphist);
338 1.8 mrg
339 1.17.2.1 chs vrele((struct vnode *)uobj);
340 1.1 mrg }
341 1.1 mrg
342 1.1 mrg /*
343 1.1 mrg * uvm_vnp_terminate: external hook to clear out a vnode's VM
344 1.1 mrg *
345 1.5 mrg * called in two cases:
346 1.5 mrg * [1] when a persisting vnode vm object (i.e. one with a zero reference
347 1.5 mrg * count) needs to be freed so that a vnode can be reused. this
348 1.5 mrg * happens under "getnewvnode" in vfs_subr.c. if the vnode from
349 1.5 mrg * the free list is still attached (i.e. not VBAD) then vgone is
350 1.5 mrg * called. as part of the vgone trace this should get called to
351 1.5 mrg * free the vm object. this is the common case.
352 1.5 mrg * [2] when a filesystem is being unmounted by force (MNT_FORCE,
353 1.5 mrg * "umount -f") the vgone() function is called on active vnodes
354 1.5 mrg * on the mounted file systems to kill their data (the vnodes become
355 1.5 mrg * "dead" ones [see src/sys/miscfs/deadfs/...]). that results in a
356 1.5 mrg * call here (even if the uvn is still in use -- i.e. has a non-zero
357 1.5 mrg * reference count). this case happens at "umount -f" and during a
358 1.5 mrg * "reboot/halt" operation.
359 1.5 mrg *
360 1.5 mrg * => the caller must XLOCK and VOP_LOCK the vnode before calling us
361 1.5 mrg * [protects us from getting a vnode that is already in the DYING
362 1.5 mrg * state...]
363 1.5 mrg * => unlike uvn_detach, this function must not return until all the
364 1.5 mrg * uvn's pages are disposed of.
365 1.5 mrg * => in case [2] the uvn is still alive after this call, but all I/O
366 1.5 mrg * ops will fail (due to the backing vnode now being "dead"). this
367 1.5 mrg * will prob. kill any process using the uvn due to pgo_get failing.
368 1.1 mrg */
369 1.1 mrg
370 1.8 mrg void
371 1.8 mrg uvm_vnp_terminate(vp)
372 1.8 mrg struct vnode *vp;
373 1.8 mrg {
374 1.8 mrg struct uvm_vnode *uvn = &vp->v_uvm;
375 1.17.2.3 chs
376 1.17.2.1 chs if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
377 1.17.2.1 chs simple_lock(&uvn_wl_lock);
378 1.17.2.1 chs LIST_REMOVE(uvn, u_wlist);
379 1.17.2.1 chs uvn->u_flags &= ~(UVM_VNODE_WRITEABLE);
380 1.17.2.1 chs simple_unlock(&uvn_wl_lock);
381 1.17.2.1 chs }
382 1.1 mrg }
383 1.1 mrg
384 1.1 mrg /*
385 1.1 mrg * uvn_releasepg: handled a released page in a uvn
386 1.1 mrg *
387 1.1 mrg * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
388 1.1 mrg * to dispose of.
389 1.1 mrg * => caller must handled PG_WANTED case
390 1.1 mrg * => called with page's object locked, pageq's unlocked
391 1.1 mrg * => returns TRUE if page's object is still alive, FALSE if we
392 1.1 mrg * killed the page's object. if we return TRUE, then we
393 1.1 mrg * return with the object locked.
394 1.1 mrg * => if (nextpgp != NULL) => we return pageq.tqe_next here, and return
395 1.1 mrg * with the page queues locked [for pagedaemon]
396 1.1 mrg * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
397 1.1 mrg * => we kill the uvn if it is not referenced and we are suppose to
398 1.1 mrg * kill it ("relkill").
399 1.1 mrg */
400 1.1 mrg
401 1.8 mrg boolean_t
402 1.8 mrg uvn_releasepg(pg, nextpgp)
403 1.8 mrg struct vm_page *pg;
404 1.8 mrg struct vm_page **nextpgp; /* OUT */
405 1.1 mrg {
406 1.8 mrg struct uvm_vnode *uvn = (struct uvm_vnode *) pg->uobject;
407 1.1 mrg #ifdef DIAGNOSTIC
408 1.8 mrg if ((pg->flags & PG_RELEASED) == 0)
409 1.8 mrg panic("uvn_releasepg: page not released!");
410 1.1 mrg #endif
411 1.8 mrg
412 1.8 mrg /*
413 1.8 mrg * dispose of the page [caller handles PG_WANTED]
414 1.8 mrg */
415 1.8 mrg pmap_page_protect(PMAP_PGARG(pg), VM_PROT_NONE);
416 1.8 mrg uvm_lock_pageq();
417 1.8 mrg if (nextpgp)
418 1.8 mrg *nextpgp = pg->pageq.tqe_next; /* next page for daemon */
419 1.8 mrg uvm_pagefree(pg);
420 1.8 mrg if (!nextpgp)
421 1.8 mrg uvm_unlock_pageq();
422 1.8 mrg
423 1.17.2.1 chs #ifdef UBC
424 1.17.2.1 chs /* XXX I'm sure we need to do something here. */
425 1.17.2.1 chs uvn = uvn;
426 1.17.2.1 chs #else
427 1.8 mrg /*
428 1.8 mrg * now see if we need to kill the object
429 1.8 mrg */
430 1.8 mrg if (uvn->u_flags & UVM_VNODE_RELKILL) {
431 1.8 mrg if (uvn->u_obj.uo_refs)
432 1.8 mrg panic("uvn_releasepg: kill flag set on referenced "
433 1.8 mrg "object!");
434 1.8 mrg if (uvn->u_obj.uo_npages == 0) {
435 1.8 mrg if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
436 1.8 mrg simple_lock(&uvn_wl_lock);
437 1.8 mrg LIST_REMOVE(uvn, u_wlist);
438 1.8 mrg simple_unlock(&uvn_wl_lock);
439 1.8 mrg }
440 1.1 mrg #ifdef DIAGNOSTIC
441 1.8 mrg if (uvn->u_obj.memq.tqh_first)
442 1.1 mrg panic("uvn_releasepg: pages in object with npages == 0");
443 1.1 mrg #endif
444 1.8 mrg if (uvn->u_flags & UVM_VNODE_WANTED)
445 1.8 mrg /* still holding object lock */
446 1.8 mrg wakeup(uvn);
447 1.8 mrg
448 1.8 mrg uvn->u_flags = 0; /* DEAD! */
449 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
450 1.8 mrg return (FALSE);
451 1.8 mrg }
452 1.8 mrg }
453 1.17.2.1 chs #endif
454 1.8 mrg return (TRUE);
455 1.1 mrg }
456 1.1 mrg
457 1.1 mrg /*
458 1.1 mrg * NOTE: currently we have to use VOP_READ/VOP_WRITE because they go
459 1.1 mrg * through the buffer cache and allow I/O in any size. These VOPs use
460 1.1 mrg * synchronous i/o. [vs. VOP_STRATEGY which can be async, but doesn't
461 1.1 mrg * go through the buffer cache or allow I/O sizes larger than a
462 1.1 mrg * block]. we will eventually want to change this.
463 1.1 mrg *
464 1.1 mrg * issues to consider:
465 1.1 mrg * uvm provides the uvm_aiodesc structure for async i/o management.
466 1.1 mrg * there are two tailq's in the uvm. structure... one for pending async
467 1.1 mrg * i/o and one for "done" async i/o. to do an async i/o one puts
468 1.1 mrg * an aiodesc on the "pending" list (protected by splbio()), starts the
469 1.1 mrg * i/o and returns VM_PAGER_PEND. when the i/o is done, we expect
470 1.1 mrg * some sort of "i/o done" function to be called (at splbio(), interrupt
471 1.1 mrg * time). this function should remove the aiodesc from the pending list
472 1.1 mrg * and place it on the "done" list and wakeup the daemon. the daemon
473 1.1 mrg * will run at normal spl() and will remove all items from the "done"
474 1.1 mrg * list and call the "aiodone" hook for each done request (see uvm_pager.c).
475 1.1 mrg * [in the old vm code, this was done by calling the "put" routine with
476 1.1 mrg * null arguments which made the code harder to read and understand because
477 1.1 mrg * you had one function ("put") doing two things.]
478 1.1 mrg *
479 1.1 mrg * so the current pager needs:
480 1.1 mrg * int uvn_aiodone(struct uvm_aiodesc *)
481 1.1 mrg *
482 1.1 mrg * => return KERN_SUCCESS (aio finished, free it). otherwise requeue for
483 1.1 mrg * later collection.
484 1.1 mrg * => called with pageq's locked by the daemon.
485 1.1 mrg *
486 1.1 mrg * general outline:
487 1.1 mrg * - "try" to lock object. if fail, just return (will try again later)
488 1.1 mrg * - drop "u_nio" (this req is done!)
489 1.1 mrg * - if (object->iosync && u_naio == 0) { wakeup &uvn->u_naio }
490 1.1 mrg * - get "page" structures (atop?).
491 1.1 mrg * - handle "wanted" pages
492 1.1 mrg * - handle "released" pages [using pgo_releasepg]
493 1.1 mrg * >>> pgo_releasepg may kill the object
494 1.1 mrg * dont forget to look at "object" wanted flag in all cases.
495 1.1 mrg */
496 1.1 mrg
497 1.1 mrg
498 1.1 mrg /*
499 1.1 mrg * uvn_flush: flush pages out of a uvm object.
500 1.1 mrg *
501 1.1 mrg * => object should be locked by caller. we may _unlock_ the object
502 1.1 mrg * if (and only if) we need to clean a page (PGO_CLEANIT).
503 1.1 mrg * we return with the object locked.
504 1.1 mrg * => if PGO_CLEANIT is set, we may block (due to I/O). thus, a caller
505 1.1 mrg * might want to unlock higher level resources (e.g. vm_map)
506 1.1 mrg * before calling flush.
507 1.1 mrg * => if PGO_CLEANIT is not set, then we will neither unlock the object
508 1.1 mrg * or block.
509 1.1 mrg * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
510 1.1 mrg * for flushing.
511 1.1 mrg * => NOTE: we rely on the fact that the object's memq is a TAILQ and
512 1.1 mrg * that new pages are inserted on the tail end of the list. thus,
513 1.1 mrg * we can make a complete pass through the object in one go by starting
514 1.1 mrg * at the head and working towards the tail (new pages are put in
515 1.1 mrg * front of us).
516 1.1 mrg * => NOTE: we are allowed to lock the page queues, so the caller
517 1.1 mrg * must not be holding the lock on them [e.g. pagedaemon had
518 1.1 mrg * better not call us with the queues locked]
519 1.1 mrg * => we return TRUE unless we encountered some sort of I/O error
520 1.1 mrg *
521 1.1 mrg * comment on "cleaning" object and PG_BUSY pages:
522 1.1 mrg * this routine is holding the lock on the object. the only time
523 1.1 mrg * that it can run into a PG_BUSY page that it does not own is if
524 1.1 mrg * some other process has started I/O on the page (e.g. either
525 1.1 mrg * a pagein, or a pageout). if the PG_BUSY page is being paged
526 1.1 mrg * in, then it can not be dirty (!PG_CLEAN) because no one has
527 1.1 mrg * had a chance to modify it yet. if the PG_BUSY page is being
528 1.1 mrg * paged out then it means that someone else has already started
529 1.1 mrg * cleaning the page for us (how nice!). in this case, if we
530 1.1 mrg * have syncio specified, then after we make our pass through the
531 1.1 mrg * object we need to wait for the other PG_BUSY pages to clear
532 1.1 mrg * off (i.e. we need to do an iosync). also note that once a
533 1.1 mrg * page is PG_BUSY it must stay in its object until it is un-busyed.
534 1.1 mrg *
535 1.1 mrg * note on page traversal:
536 1.1 mrg * we can traverse the pages in an object either by going down the
537 1.1 mrg * linked list in "uobj->memq", or we can go over the address range
538 1.1 mrg * by page doing hash table lookups for each address. depending
539 1.1 mrg * on how many pages are in the object it may be cheaper to do one
540 1.1 mrg * or the other. we set "by_list" to true if we are using memq.
541 1.1 mrg * if the cost of a hash lookup was equal to the cost of the list
542 1.1 mrg * traversal we could compare the number of pages in the start->stop
543 1.1 mrg * range to the total number of pages in the object. however, it
544 1.1 mrg * seems that a hash table lookup is more expensive than the linked
545 1.1 mrg * list traversal, so we multiply the number of pages in the
546 1.1 mrg * start->stop range by a penalty which we define below.
547 1.1 mrg */
548 1.1 mrg
549 1.8 mrg #define UVN_HASH_PENALTY 4 /* XXX: a guess */
550 1.1 mrg
551 1.8 mrg static boolean_t
552 1.8 mrg uvn_flush(uobj, start, stop, flags)
553 1.8 mrg struct uvm_object *uobj;
554 1.15 eeh vaddr_t start, stop;
555 1.8 mrg int flags;
556 1.8 mrg {
557 1.8 mrg struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
558 1.17.2.6 chs struct vnode *vp = (struct vnode *)uobj;
559 1.8 mrg struct vm_page *pp, *ppnext, *ptmp;
560 1.16 chs struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
561 1.8 mrg int npages, result, lcv;
562 1.8 mrg boolean_t retval, need_iosync, by_list, needs_clean;
563 1.15 eeh vaddr_t curoff;
564 1.8 mrg u_short pp_version;
565 1.8 mrg UVMHIST_FUNC("uvn_flush"); UVMHIST_CALLED(maphist);
566 1.8 mrg
567 1.17.2.1 chs #ifdef UBC
568 1.17.2.1 chs if (uvn->u_size == VSIZENOTSET) {
569 1.17.2.1 chs void vp_name(void *);
570 1.17.2.1 chs
571 1.17.2.5 chs #ifdef DEBUG
572 1.17.2.1 chs printf("uvn_flush: size not set vp %p\n", uvn);
573 1.17.2.1 chs if ((flags & PGO_ALLPAGES) == 0)
574 1.17.2.1 chs printf("... and PGO_ALLPAGES not set: "
575 1.17.2.1 chs "start 0x%lx end 0x%lx flags 0x%x\n",
576 1.17.2.1 chs start, stop, flags);
577 1.17.2.7 chs vprint("uvn_flush VSIZENOTSET", vp);
578 1.17.2.1 chs vp_name(uvn);
579 1.17.2.5 chs #endif
580 1.17.2.1 chs flags |= PGO_ALLPAGES;
581 1.17.2.1 chs }
582 1.17.2.1 chs #if 0
583 1.17.2.1 chs /* XXX unfortunately this is legitimate */
584 1.17.2.4 chs if ((flags & PGO_FREE) && uobj->uo_refs) {
585 1.17.2.1 chs printf("uvn_flush: PGO_FREE on ref'd vp %p\n", uobj);
586 1.17.2.1 chs Debugger();
587 1.17.2.1 chs }
588 1.17.2.1 chs #endif
589 1.17.2.1 chs #endif
590 1.17.2.1 chs
591 1.8 mrg curoff = 0; /* XXX: shut up gcc */
592 1.8 mrg /*
593 1.8 mrg * get init vals and determine how we are going to traverse object
594 1.8 mrg */
595 1.1 mrg
596 1.8 mrg need_iosync = FALSE;
597 1.8 mrg retval = TRUE; /* return value */
598 1.8 mrg if (flags & PGO_ALLPAGES) {
599 1.8 mrg start = 0;
600 1.17.2.1 chs #ifdef UBC
601 1.17.2.1 chs stop = -1;
602 1.17.2.1 chs #else
603 1.8 mrg stop = round_page(uvn->u_size);
604 1.17.2.1 chs #endif
605 1.8 mrg by_list = TRUE; /* always go by the list */
606 1.8 mrg } else {
607 1.8 mrg start = trunc_page(start);
608 1.8 mrg stop = round_page(stop);
609 1.17.2.1 chs if (stop > round_page(uvn->u_size)) {
610 1.17.2.2 chs printf("uvn_flush: oor vp %p start 0x%x stop 0x%x size 0x%x\n", uvn, (int)start, (int)stop, (int)round_page(uvn->u_size));
611 1.17.2.1 chs }
612 1.1 mrg
613 1.8 mrg by_list = (uobj->uo_npages <=
614 1.16 chs ((stop - start) >> PAGE_SHIFT) * UVN_HASH_PENALTY);
615 1.8 mrg }
616 1.8 mrg
617 1.8 mrg UVMHIST_LOG(maphist,
618 1.8 mrg " flush start=0x%x, stop=0x%x, by_list=%d, flags=0x%x",
619 1.8 mrg start, stop, by_list, flags);
620 1.8 mrg
621 1.8 mrg /*
622 1.8 mrg * PG_CLEANCHK: this bit is used by the pgo_mk_pcluster function as
623 1.8 mrg * a _hint_ as to how up to date the PG_CLEAN bit is. if the hint
624 1.8 mrg * is wrong it will only prevent us from clustering... it won't break
625 1.8 mrg * anything. we clear all PG_CLEANCHK bits here, and pgo_mk_pcluster
626 1.8 mrg * will set them as it syncs PG_CLEAN. This is only an issue if we
627 1.8 mrg * are looking at non-inactive pages (because inactive page's PG_CLEAN
628 1.8 mrg * bit is always up to date since there are no mappings).
629 1.8 mrg * [borrowed PG_CLEANCHK idea from FreeBSD VM]
630 1.8 mrg */
631 1.1 mrg
632 1.8 mrg if ((flags & PGO_CLEANIT) != 0 &&
633 1.8 mrg uobj->pgops->pgo_mk_pcluster != NULL) {
634 1.8 mrg if (by_list) {
635 1.17.2.1 chs for (pp = TAILQ_FIRST(&uobj->memq);
636 1.17.2.1 chs pp != NULL ;
637 1.17.2.1 chs pp = TAILQ_NEXT(pp, listq)) {
638 1.17.2.1 chs if (pp->offset < start ||
639 1.17.2.1 chs (pp->offset >= stop && stop != -1))
640 1.8 mrg continue;
641 1.8 mrg pp->flags &= ~PG_CLEANCHK;
642 1.8 mrg }
643 1.8 mrg
644 1.8 mrg } else { /* by hash */
645 1.8 mrg for (curoff = start ; curoff < stop;
646 1.8 mrg curoff += PAGE_SIZE) {
647 1.8 mrg pp = uvm_pagelookup(uobj, curoff);
648 1.8 mrg if (pp)
649 1.8 mrg pp->flags &= ~PG_CLEANCHK;
650 1.8 mrg }
651 1.8 mrg }
652 1.8 mrg }
653 1.1 mrg
654 1.8 mrg /*
655 1.8 mrg * now do it. note: we must update ppnext in body of loop or we
656 1.8 mrg * will get stuck. we need to use ppnext because we may free "pp"
657 1.8 mrg * before doing the next loop.
658 1.8 mrg */
659 1.1 mrg
660 1.8 mrg if (by_list) {
661 1.17.2.1 chs pp = TAILQ_FIRST(&uobj->memq);
662 1.1 mrg } else {
663 1.8 mrg curoff = start;
664 1.8 mrg pp = uvm_pagelookup(uobj, curoff);
665 1.1 mrg }
666 1.8 mrg
667 1.8 mrg ppnext = NULL; /* XXX: shut up gcc */
668 1.8 mrg ppsp = NULL; /* XXX: shut up gcc */
669 1.8 mrg uvm_lock_pageq(); /* page queues locked */
670 1.8 mrg
671 1.8 mrg /* locked: both page queues and uobj */
672 1.8 mrg for ( ; (by_list && pp != NULL) ||
673 1.8 mrg (!by_list && curoff < stop) ; pp = ppnext) {
674 1.8 mrg
675 1.8 mrg if (by_list) {
676 1.8 mrg
677 1.8 mrg /*
678 1.8 mrg * range check
679 1.8 mrg */
680 1.8 mrg
681 1.8 mrg if (pp->offset < start || pp->offset >= stop) {
682 1.17.2.1 chs ppnext = TAILQ_NEXT(pp, listq);
683 1.8 mrg continue;
684 1.8 mrg }
685 1.8 mrg
686 1.8 mrg } else {
687 1.8 mrg
688 1.8 mrg /*
689 1.8 mrg * null check
690 1.8 mrg */
691 1.8 mrg
692 1.8 mrg curoff += PAGE_SIZE;
693 1.8 mrg if (pp == NULL) {
694 1.8 mrg if (curoff < stop)
695 1.8 mrg ppnext = uvm_pagelookup(uobj, curoff);
696 1.8 mrg continue;
697 1.8 mrg }
698 1.8 mrg
699 1.8 mrg }
700 1.8 mrg
701 1.8 mrg /*
702 1.8 mrg * handle case where we do not need to clean page (either
703 1.8 mrg * because we are not clean or because page is not dirty or
704 1.8 mrg * is busy):
705 1.8 mrg *
706 1.8 mrg * NOTE: we are allowed to deactivate a non-wired active
707 1.8 mrg * PG_BUSY page, but once a PG_BUSY page is on the inactive
708 1.8 mrg * queue it must stay put until it is !PG_BUSY (so as not to
709 1.8 mrg * confuse pagedaemon).
710 1.8 mrg */
711 1.8 mrg
712 1.8 mrg if ((flags & PGO_CLEANIT) == 0 || (pp->flags & PG_BUSY) != 0) {
713 1.8 mrg needs_clean = FALSE;
714 1.8 mrg if ((pp->flags & PG_BUSY) != 0 &&
715 1.8 mrg (flags & (PGO_CLEANIT|PGO_SYNCIO)) ==
716 1.8 mrg (PGO_CLEANIT|PGO_SYNCIO))
717 1.8 mrg need_iosync = TRUE;
718 1.8 mrg } else {
719 1.8 mrg /*
720 1.8 mrg * freeing: nuke all mappings so we can sync
721 1.8 mrg * PG_CLEAN bit with no race
722 1.8 mrg */
723 1.8 mrg if ((pp->flags & PG_CLEAN) != 0 &&
724 1.8 mrg (flags & PGO_FREE) != 0 &&
725 1.8 mrg (pp->pqflags & PQ_ACTIVE) != 0)
726 1.8 mrg pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
727 1.8 mrg if ((pp->flags & PG_CLEAN) != 0 &&
728 1.8 mrg pmap_is_modified(PMAP_PGARG(pp)))
729 1.8 mrg pp->flags &= ~(PG_CLEAN);
730 1.8 mrg pp->flags |= PG_CLEANCHK; /* update "hint" */
731 1.8 mrg
732 1.8 mrg needs_clean = ((pp->flags & PG_CLEAN) == 0);
733 1.8 mrg }
734 1.8 mrg
735 1.8 mrg /*
736 1.8 mrg * if we don't need a clean... load ppnext and dispose of pp
737 1.8 mrg */
738 1.8 mrg if (!needs_clean) {
739 1.8 mrg /* load ppnext */
740 1.8 mrg if (by_list)
741 1.8 mrg ppnext = pp->listq.tqe_next;
742 1.8 mrg else {
743 1.8 mrg if (curoff < stop)
744 1.8 mrg ppnext = uvm_pagelookup(uobj, curoff);
745 1.8 mrg }
746 1.8 mrg
747 1.8 mrg /* now dispose of pp */
748 1.8 mrg if (flags & PGO_DEACTIVATE) {
749 1.8 mrg if ((pp->pqflags & PQ_INACTIVE) == 0 &&
750 1.8 mrg pp->wire_count == 0) {
751 1.8 mrg pmap_page_protect(PMAP_PGARG(pp),
752 1.8 mrg VM_PROT_NONE);
753 1.8 mrg uvm_pagedeactivate(pp);
754 1.8 mrg }
755 1.8 mrg
756 1.8 mrg } else if (flags & PGO_FREE) {
757 1.8 mrg if (pp->flags & PG_BUSY) {
758 1.8 mrg /* release busy pages */
759 1.8 mrg pp->flags |= PG_RELEASED;
760 1.8 mrg } else {
761 1.8 mrg pmap_page_protect(PMAP_PGARG(pp),
762 1.8 mrg VM_PROT_NONE);
763 1.8 mrg /* removed page from object */
764 1.8 mrg uvm_pagefree(pp);
765 1.8 mrg }
766 1.8 mrg }
767 1.8 mrg /* ppnext is valid so we can continue... */
768 1.8 mrg continue;
769 1.8 mrg }
770 1.8 mrg
771 1.8 mrg /*
772 1.8 mrg * pp points to a page in the locked object that we are
773 1.8 mrg * working on. if it is !PG_CLEAN,!PG_BUSY and we asked
774 1.8 mrg * for cleaning (PGO_CLEANIT). we clean it now.
775 1.8 mrg *
776 1.8 mrg * let uvm_pager_put attempted a clustered page out.
777 1.8 mrg * note: locked: uobj and page queues.
778 1.8 mrg */
779 1.8 mrg
780 1.8 mrg pp->flags |= PG_BUSY; /* we 'own' page now */
781 1.8 mrg UVM_PAGE_OWN(pp, "uvn_flush");
782 1.8 mrg pmap_page_protect(PMAP_PGARG(pp), VM_PROT_READ);
783 1.8 mrg pp_version = pp->version;
784 1.1 mrg ReTry:
785 1.8 mrg ppsp = pps;
786 1.8 mrg npages = sizeof(pps) / sizeof(struct vm_page *);
787 1.1 mrg
788 1.8 mrg /* locked: page queues, uobj */
789 1.8 mrg result = uvm_pager_put(uobj, pp, &ppsp, &npages,
790 1.17.2.3 chs flags | PGO_DOACTCLUST, start, stop);
791 1.8 mrg /* unlocked: page queues, uobj */
792 1.1 mrg
793 1.8 mrg /*
794 1.8 mrg * at this point nothing is locked. if we did an async I/O
795 1.8 mrg * it is remotely possible for the async i/o to complete and
796 1.8 mrg * the page "pp" be freed or what not before we get a chance
797 1.8 mrg * to relock the object. in order to detect this, we have
798 1.8 mrg * saved the version number of the page in "pp_version".
799 1.8 mrg */
800 1.8 mrg
801 1.8 mrg /* relock! */
802 1.8 mrg simple_lock(&uobj->vmobjlock);
803 1.8 mrg uvm_lock_pageq();
804 1.8 mrg
805 1.8 mrg /*
806 1.8 mrg * VM_PAGER_AGAIN: given the structure of this pager, this
807 1.8 mrg * can only happen when we are doing async I/O and can't
808 1.8 mrg * map the pages into kernel memory (pager_map) due to lack
809 1.8 mrg * of vm space. if this happens we drop back to sync I/O.
810 1.8 mrg */
811 1.8 mrg
812 1.8 mrg if (result == VM_PAGER_AGAIN) {
813 1.8 mrg /*
814 1.8 mrg * it is unlikely, but page could have been released
815 1.8 mrg * while we had the object lock dropped. we ignore
816 1.8 mrg * this now and retry the I/O. we will detect and
817 1.8 mrg * handle the released page after the syncio I/O
818 1.8 mrg * completes.
819 1.8 mrg */
820 1.1 mrg #ifdef DIAGNOSTIC
821 1.8 mrg if (flags & PGO_SYNCIO)
822 1.1 mrg panic("uvn_flush: PGO_SYNCIO return 'try again' error (impossible)");
823 1.1 mrg #endif
824 1.8 mrg flags |= PGO_SYNCIO;
825 1.8 mrg goto ReTry;
826 1.8 mrg }
827 1.8 mrg
828 1.8 mrg /*
829 1.8 mrg * the cleaning operation is now done. finish up. note that
830 1.8 mrg * on error (!OK, !PEND) uvm_pager_put drops the cluster for us.
831 1.8 mrg * if success (OK, PEND) then uvm_pager_put returns the cluster
832 1.8 mrg * to us in ppsp/npages.
833 1.8 mrg */
834 1.8 mrg
835 1.8 mrg /*
836 1.8 mrg * for pending async i/o if we are not deactivating/freeing
837 1.8 mrg * we can move on to the next page.
838 1.8 mrg */
839 1.8 mrg
840 1.8 mrg if (result == VM_PAGER_PEND) {
841 1.8 mrg
842 1.8 mrg if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
843 1.8 mrg /*
844 1.8 mrg * no per-page ops: refresh ppnext and continue
845 1.8 mrg */
846 1.8 mrg if (by_list) {
847 1.8 mrg if (pp->version == pp_version)
848 1.8 mrg ppnext = pp->listq.tqe_next;
849 1.8 mrg else
850 1.8 mrg /* reset */
851 1.8 mrg ppnext = uobj->memq.tqh_first;
852 1.8 mrg } else {
853 1.8 mrg if (curoff < stop)
854 1.8 mrg ppnext = uvm_pagelookup(uobj,
855 1.8 mrg curoff);
856 1.8 mrg }
857 1.8 mrg continue;
858 1.8 mrg }
859 1.8 mrg
860 1.8 mrg /* need to do anything here? */
861 1.8 mrg }
862 1.8 mrg
863 1.8 mrg /*
864 1.8 mrg * need to look at each page of the I/O operation. we defer
865 1.8 mrg * processing "pp" until the last trip through this "for" loop
866 1.8 mrg * so that we can load "ppnext" for the main loop after we
867 1.8 mrg * play with the cluster pages [thus the "npages + 1" in the
868 1.8 mrg * loop below].
869 1.8 mrg */
870 1.8 mrg
871 1.8 mrg for (lcv = 0 ; lcv < npages + 1 ; lcv++) {
872 1.8 mrg
873 1.8 mrg /*
874 1.8 mrg * handle ppnext for outside loop, and saving pp
875 1.8 mrg * until the end.
876 1.8 mrg */
877 1.8 mrg if (lcv < npages) {
878 1.8 mrg if (ppsp[lcv] == pp)
879 1.8 mrg continue; /* skip pp until the end */
880 1.8 mrg ptmp = ppsp[lcv];
881 1.8 mrg } else {
882 1.8 mrg ptmp = pp;
883 1.8 mrg
884 1.8 mrg /* set up next page for outer loop */
885 1.8 mrg if (by_list) {
886 1.8 mrg if (pp->version == pp_version)
887 1.8 mrg ppnext = pp->listq.tqe_next;
888 1.8 mrg else
889 1.8 mrg /* reset */
890 1.8 mrg ppnext = uobj->memq.tqh_first;
891 1.8 mrg } else {
892 1.8 mrg if (curoff < stop)
893 1.8 mrg ppnext = uvm_pagelookup(uobj, curoff);
894 1.8 mrg }
895 1.8 mrg }
896 1.8 mrg
897 1.8 mrg /*
898 1.8 mrg * verify the page didn't get moved while obj was
899 1.8 mrg * unlocked
900 1.8 mrg */
901 1.8 mrg if (result == VM_PAGER_PEND && ptmp->uobject != uobj)
902 1.8 mrg continue;
903 1.8 mrg
904 1.8 mrg /*
905 1.8 mrg * unbusy the page if I/O is done. note that for
906 1.8 mrg * pending I/O it is possible that the I/O op
907 1.8 mrg * finished before we relocked the object (in
908 1.8 mrg * which case the page is no longer busy).
909 1.8 mrg */
910 1.8 mrg
911 1.8 mrg if (result != VM_PAGER_PEND) {
912 1.8 mrg if (ptmp->flags & PG_WANTED)
913 1.8 mrg /* still holding object lock */
914 1.17.2.3 chs wakeup(ptmp);
915 1.8 mrg
916 1.8 mrg ptmp->flags &= ~(PG_WANTED|PG_BUSY);
917 1.8 mrg UVM_PAGE_OWN(ptmp, NULL);
918 1.8 mrg if (ptmp->flags & PG_RELEASED) {
919 1.8 mrg
920 1.8 mrg /* pgo_releasepg wants this */
921 1.8 mrg uvm_unlock_pageq();
922 1.8 mrg if (!uvn_releasepg(ptmp, NULL))
923 1.8 mrg return (TRUE);
924 1.8 mrg
925 1.8 mrg uvm_lock_pageq(); /* relock */
926 1.8 mrg continue; /* next page */
927 1.8 mrg
928 1.8 mrg } else {
929 1.8 mrg ptmp->flags |= (PG_CLEAN|PG_CLEANCHK);
930 1.8 mrg if ((flags & PGO_FREE) == 0)
931 1.8 mrg pmap_clear_modify(
932 1.8 mrg PMAP_PGARG(ptmp));
933 1.8 mrg }
934 1.8 mrg }
935 1.8 mrg
936 1.8 mrg /*
937 1.8 mrg * dispose of page
938 1.8 mrg */
939 1.8 mrg
940 1.8 mrg if (flags & PGO_DEACTIVATE) {
941 1.8 mrg if ((pp->pqflags & PQ_INACTIVE) == 0 &&
942 1.8 mrg pp->wire_count == 0) {
943 1.8 mrg pmap_page_protect(PMAP_PGARG(ptmp),
944 1.8 mrg VM_PROT_NONE);
945 1.8 mrg uvm_pagedeactivate(ptmp);
946 1.8 mrg }
947 1.8 mrg
948 1.8 mrg } else if (flags & PGO_FREE) {
949 1.8 mrg if (result == VM_PAGER_PEND) {
950 1.8 mrg if ((ptmp->flags & PG_BUSY) != 0)
951 1.8 mrg /* signal for i/o done */
952 1.8 mrg ptmp->flags |= PG_RELEASED;
953 1.8 mrg } else {
954 1.8 mrg if (result != VM_PAGER_OK) {
955 1.8 mrg printf("uvn_flush: obj=%p, "
956 1.17.2.1 chs "offset=0x%lx. error %d\n",
957 1.17.2.1 chs pp->uobject, pp->offset,
958 1.17.2.1 chs result);
959 1.8 mrg printf("uvn_flush: WARNING: "
960 1.8 mrg "changes to page may be "
961 1.8 mrg "lost!\n");
962 1.8 mrg retval = FALSE;
963 1.8 mrg }
964 1.8 mrg pmap_page_protect(PMAP_PGARG(ptmp),
965 1.8 mrg VM_PROT_NONE);
966 1.8 mrg uvm_pagefree(ptmp);
967 1.8 mrg }
968 1.8 mrg }
969 1.1 mrg
970 1.8 mrg } /* end of "lcv" for loop */
971 1.1 mrg
972 1.8 mrg } /* end of "pp" for loop */
973 1.1 mrg
974 1.8 mrg /*
975 1.8 mrg * done with pagequeues: unlock
976 1.8 mrg */
977 1.8 mrg uvm_unlock_pageq();
978 1.1 mrg
979 1.8 mrg /*
980 1.8 mrg * now wait for all I/O if required.
981 1.8 mrg */
982 1.8 mrg if (need_iosync) {
983 1.1 mrg
984 1.8 mrg UVMHIST_LOG(maphist," <<DOING IOSYNC>>",0,0,0,0);
985 1.17.2.6 chs #ifdef UBC
986 1.17.2.6 chs /*
987 1.17.2.6 chs * XXX this doesn't use the new two-flag scheme,
988 1.17.2.6 chs * but to use that, all i/o initiators will have to change.
989 1.17.2.6 chs */
990 1.17.2.6 chs
991 1.17.2.6 chs while (vp->v_numoutput != 0) {
992 1.17.2.6 chs vp->v_flag |= VBWAIT;
993 1.17.2.6 chs UVM_UNLOCK_AND_WAIT(&vp->v_numoutput,
994 1.17.2.6 chs &uvn->u_obj.vmobjlock,
995 1.17.2.6 chs FALSE, "uvn_flush",0);
996 1.17.2.6 chs simple_lock(&uvn->u_obj.vmobjlock);
997 1.17.2.6 chs }
998 1.17.2.6 chs #else
999 1.8 mrg while (uvn->u_nio != 0) {
1000 1.8 mrg uvn->u_flags |= UVM_VNODE_IOSYNC;
1001 1.8 mrg UVM_UNLOCK_AND_WAIT(&uvn->u_nio, &uvn->u_obj.vmobjlock,
1002 1.8 mrg FALSE, "uvn_flush",0);
1003 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
1004 1.8 mrg }
1005 1.8 mrg if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED)
1006 1.8 mrg wakeup(&uvn->u_flags);
1007 1.8 mrg uvn->u_flags &= ~(UVM_VNODE_IOSYNC|UVM_VNODE_IOSYNCWANTED);
1008 1.17.2.1 chs #endif
1009 1.17.2.6 chs }
1010 1.1 mrg
1011 1.8 mrg /* return, with object locked! */
1012 1.8 mrg UVMHIST_LOG(maphist,"<- done (retval=0x%x)",retval,0,0,0);
1013 1.8 mrg return(retval);
1014 1.1 mrg }
1015 1.1 mrg
1016 1.1 mrg /*
1017 1.1 mrg * uvn_cluster
1018 1.1 mrg *
1019 1.1 mrg * we are about to do I/O in an object at offset. this function is called
1020 1.1 mrg * to establish a range of offsets around "offset" in which we can cluster
1021 1.1 mrg * I/O.
1022 1.1 mrg *
1023 1.1 mrg * - currently doesn't matter if obj locked or not.
1024 1.1 mrg */
1025 1.1 mrg
1026 1.8 mrg static void
1027 1.8 mrg uvn_cluster(uobj, offset, loffset, hoffset)
1028 1.8 mrg struct uvm_object *uobj;
1029 1.15 eeh vaddr_t offset;
1030 1.15 eeh vaddr_t *loffset, *hoffset; /* OUT */
1031 1.1 mrg {
1032 1.8 mrg struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
1033 1.17.2.2 chs UVMHIST_FUNC("uvn_cluster"); UVMHIST_CALLED(ubchist);
1034 1.17.2.2 chs
1035 1.8 mrg *loffset = offset;
1036 1.1 mrg
1037 1.8 mrg if (*loffset >= uvn->u_size)
1038 1.17.2.1 chs #ifdef UBC
1039 1.17.2.1 chs {
1040 1.17.2.1 chs /* XXX nfs writes cause trouble with this */
1041 1.17.2.1 chs *loffset = *hoffset = offset;
1042 1.17.2.2 chs UVMHIST_LOG(ubchist, "uvn_cluster: offset out of range: vp %p loffset 0x%x",
1043 1.17.2.2 chs uobj, (int)*loffset, 0,0);
1044 1.17.2.2 chs Debugger();
1045 1.17.2.1 chs return;
1046 1.17.2.1 chs }
1047 1.17.2.1 chs #else
1048 1.17.2.1 chs panic("uvn_cluster: offset out of range: vp %p loffset 0x%x",
1049 1.17.2.1 chs uobj, (int) *loffset);
1050 1.17.2.1 chs #endif
1051 1.1 mrg
1052 1.8 mrg /*
1053 1.8 mrg * XXX: old pager claims we could use VOP_BMAP to get maxcontig value.
1054 1.8 mrg */
1055 1.8 mrg *hoffset = *loffset + MAXBSIZE;
1056 1.8 mrg if (*hoffset > round_page(uvn->u_size)) /* past end? */
1057 1.8 mrg *hoffset = round_page(uvn->u_size);
1058 1.1 mrg
1059 1.8 mrg return;
1060 1.1 mrg }
1061 1.1 mrg
1062 1.1 mrg /*
1063 1.1 mrg * uvn_put: flush page data to backing store.
1064 1.1 mrg *
1065 1.1 mrg * => prefer map unlocked (not required)
1066 1.1 mrg * => object must be locked! we will _unlock_ it before starting I/O.
1067 1.1 mrg * => flags: PGO_SYNCIO -- use sync. I/O
1068 1.1 mrg * => note: caller must set PG_CLEAN and pmap_clear_modify (if needed)
1069 1.1 mrg * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync.
1070 1.1 mrg * [thus we never do async i/o! see iodone comment]
1071 1.1 mrg */
1072 1.1 mrg
1073 1.8 mrg static int
1074 1.8 mrg uvn_put(uobj, pps, npages, flags)
1075 1.8 mrg struct uvm_object *uobj;
1076 1.8 mrg struct vm_page **pps;
1077 1.8 mrg int npages, flags;
1078 1.1 mrg {
1079 1.17.2.3 chs int retval, sync;
1080 1.17.2.3 chs
1081 1.17.2.3 chs sync = (flags & PGO_SYNCIO) ? 1 : 0;
1082 1.1 mrg
1083 1.8 mrg /* note: object locked */
1084 1.17.2.3 chs simple_lock_assert(&uobj->vmobjlock, SLOCK_LOCKED);
1085 1.17.2.2 chs
1086 1.17.2.2 chs /* XXX why would the VOP need it locked? */
1087 1.17.2.3 chs /* currently, just to increment vp->v_numoutput (aka uvn->u_nio) */
1088 1.17.2.2 chs simple_unlock(&uobj->vmobjlock);
1089 1.17.2.3 chs retval = VOP_PUTPAGES((struct vnode *)uobj, pps, npages, sync, &retval);
1090 1.8 mrg /* note: object unlocked */
1091 1.17.2.3 chs simple_lock_assert(&uobj->vmobjlock, SLOCK_UNLOCKED);
1092 1.1 mrg
1093 1.8 mrg return(retval);
1094 1.1 mrg }
1095 1.1 mrg
1096 1.1 mrg
1097 1.1 mrg /*
1098 1.1 mrg * uvn_get: get pages (synchronously) from backing store
1099 1.1 mrg *
1100 1.1 mrg * => prefer map unlocked (not required)
1101 1.1 mrg * => object must be locked! we will _unlock_ it before starting any I/O.
1102 1.1 mrg * => flags: PGO_ALLPAGES: get all of the pages
1103 1.1 mrg * PGO_LOCKED: fault data structures are locked
1104 1.1 mrg * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
1105 1.1 mrg * => NOTE: caller must check for released pages!!
1106 1.1 mrg */
1107 1.1 mrg
1108 1.8 mrg static int
1109 1.8 mrg uvn_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
1110 1.8 mrg struct uvm_object *uobj;
1111 1.15 eeh vaddr_t offset;
1112 1.8 mrg struct vm_page **pps; /* IN/OUT */
1113 1.8 mrg int *npagesp; /* IN (OUT if PGO_LOCKED) */
1114 1.8 mrg int centeridx, advice, flags;
1115 1.8 mrg vm_prot_t access_type;
1116 1.8 mrg {
1117 1.17.2.1 chs struct vnode *vp = (struct vnode *)uobj;
1118 1.17.2.1 chs int error;
1119 1.8 mrg
1120 1.17.2.3 chs simple_lock_assert(&uobj->vmobjlock, SLOCK_LOCKED);
1121 1.17.2.1 chs error = VOP_GETPAGES(vp, offset, pps, npagesp, centeridx,
1122 1.17.2.1 chs access_type, advice, flags);
1123 1.17.2.3 chs simple_lock_assert(&uobj->vmobjlock, flags & PGO_LOCKED ?
1124 1.17.2.3 chs SLOCK_LOCKED : SLOCK_UNLOCKED);
1125 1.8 mrg
1126 1.17.2.1 chs return error ? VM_PAGER_ERROR : VM_PAGER_OK;
1127 1.17.2.1 chs }
1128 1.8 mrg
1129 1.17.2.1 chs /*
1130 1.17.2.3 chs * uvn_findpages:
1131 1.17.2.1 chs * return the page for the uobj and offset requested, allocating if needed.
1132 1.17.2.1 chs * => uobj must be locked.
1133 1.17.2.1 chs * => returned page will be BUSY.
1134 1.17.2.1 chs */
1135 1.8 mrg
1136 1.17.2.1 chs void
1137 1.17.2.3 chs uvn_findpages(uobj, offset, npagesp, pps, flags)
1138 1.17.2.3 chs struct uvm_object *uobj;
1139 1.17.2.3 chs vaddr_t offset;
1140 1.17.2.3 chs int *npagesp;
1141 1.17.2.3 chs struct vm_page **pps;
1142 1.17.2.3 chs int flags;
1143 1.17.2.3 chs {
1144 1.17.2.3 chs int i, rv, npages;
1145 1.17.2.3 chs
1146 1.17.2.3 chs rv = 0;
1147 1.17.2.3 chs npages = *npagesp;
1148 1.17.2.3 chs for (i = 0; i < npages; i++, offset += PAGE_SIZE) {
1149 1.17.2.3 chs rv += uvn_findpage(uobj, offset, &pps[i], flags);
1150 1.17.2.3 chs }
1151 1.17.2.3 chs *npagesp = rv;
1152 1.17.2.3 chs }
1153 1.17.2.3 chs
1154 1.17.2.3 chs
1155 1.17.2.3 chs static int
1156 1.17.2.3 chs uvn_findpage(uobj, offset, pps, flags)
1157 1.17.2.1 chs struct uvm_object *uobj;
1158 1.17.2.1 chs vaddr_t offset;
1159 1.17.2.1 chs struct vm_page **pps;
1160 1.17.2.3 chs int flags;
1161 1.17.2.1 chs {
1162 1.17.2.1 chs struct vm_page *ptmp;
1163 1.17.2.3 chs UVMHIST_FUNC("uvn_findpage"); UVMHIST_CALLED(ubchist);
1164 1.17.2.3 chs UVMHIST_LOG(ubchist, "vp %p off 0x%lx", uobj, offset,0,0);
1165 1.17.2.3 chs
1166 1.17.2.3 chs simple_lock_assert(&uobj->vmobjlock, SLOCK_LOCKED);
1167 1.17.2.3 chs
1168 1.17.2.3 chs if (*pps == PGO_DONTCARE) {
1169 1.17.2.3 chs UVMHIST_LOG(ubchist, "dontcare", 0,0,0,0);
1170 1.17.2.3 chs return 0;
1171 1.17.2.3 chs }
1172 1.17.2.3 chs #ifdef DIAGNOTISTIC
1173 1.17.2.3 chs if (*pps != NULL) {
1174 1.17.2.3 chs panic("uvn_findpage: *pps not NULL");
1175 1.17.2.3 chs }
1176 1.17.2.3 chs #endif
1177 1.8 mrg
1178 1.17.2.1 chs for (;;) {
1179 1.17.2.3 chs /* look for an existing page */
1180 1.17.2.1 chs ptmp = uvm_pagelookup(uobj, offset);
1181 1.17.2.1 chs
1182 1.17.2.1 chs /* nope? allocate one now */
1183 1.17.2.1 chs if (ptmp == NULL) {
1184 1.17.2.3 chs if (flags & UFP_NOALLOC) {
1185 1.17.2.3 chs UVMHIST_LOG(ubchist, "noalloc", 0,0,0,0);
1186 1.17.2.3 chs return 0;
1187 1.17.2.3 chs }
1188 1.17.2.1 chs ptmp = uvm_pagealloc(uobj, offset, NULL);
1189 1.17.2.1 chs if (ptmp == NULL) {
1190 1.17.2.3 chs if (flags & UFP_NOWAIT) {
1191 1.17.2.3 chs UVMHIST_LOG(ubchist, "nowait",0,0,0,0);
1192 1.17.2.3 chs return 0;
1193 1.17.2.3 chs }
1194 1.17.2.1 chs simple_unlock(&uobj->vmobjlock);
1195 1.17.2.1 chs uvm_wait("uvn_fp1");
1196 1.17.2.1 chs simple_lock(&uobj->vmobjlock);
1197 1.8 mrg continue;
1198 1.8 mrg }
1199 1.17.2.3 chs UVMHIST_LOG(ubchist, "alloced",0,0,0,0);
1200 1.17.2.1 chs break;
1201 1.17.2.3 chs } else if (flags & UFP_NOCACHE) {
1202 1.17.2.3 chs UVMHIST_LOG(ubchist, "nocache",0,0,0,0);
1203 1.17.2.3 chs return 0;
1204 1.8 mrg }
1205 1.8 mrg
1206 1.17.2.1 chs /* page is there, see if we need to wait on it */
1207 1.17.2.1 chs if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1208 1.17.2.3 chs if (flags & UFP_NOWAIT) {
1209 1.17.2.3 chs UVMHIST_LOG(ubchist, "nowait",0,0,0,0);
1210 1.17.2.3 chs return 0;
1211 1.17.2.3 chs }
1212 1.17.2.1 chs ptmp->flags |= PG_WANTED;
1213 1.17.2.1 chs UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock, 0,
1214 1.17.2.1 chs "uvn_fp2",0);
1215 1.17.2.1 chs simple_lock(&uobj->vmobjlock);
1216 1.17.2.1 chs continue;
1217 1.8 mrg }
1218 1.17.2.1 chs
1219 1.17.2.1 chs /* BUSY the page and we're done. */
1220 1.17.2.1 chs ptmp->flags |= PG_BUSY;
1221 1.17.2.1 chs UVM_PAGE_OWN(ptmp, "uvn_findpage");
1222 1.17.2.3 chs UVMHIST_LOG(ubchist, "found",0,0,0,0);
1223 1.17.2.1 chs break;
1224 1.17.2.1 chs }
1225 1.17.2.1 chs *pps = ptmp;
1226 1.17.2.3 chs return 1;
1227 1.1 mrg }
1228 1.1 mrg
1229 1.1 mrg /*
1230 1.1 mrg * uvn_asyncget: start async I/O to bring pages into ram
1231 1.1 mrg *
1232 1.1 mrg * => caller must lock object(???XXX: see if this is best)
1233 1.1 mrg * => could be called from uvn_get or a madvise() fault-ahead.
1234 1.1 mrg * => if it fails, it doesn't matter.
1235 1.1 mrg */
1236 1.1 mrg
1237 1.8 mrg static int
1238 1.8 mrg uvn_asyncget(uobj, offset, npages)
1239 1.8 mrg struct uvm_object *uobj;
1240 1.15 eeh vaddr_t offset;
1241 1.8 mrg int npages;
1242 1.8 mrg {
1243 1.1 mrg
1244 1.8 mrg /*
1245 1.8 mrg * XXXCDC: we can't do async I/O yet
1246 1.8 mrg */
1247 1.8 mrg printf("uvn_asyncget called\n");
1248 1.8 mrg return (KERN_SUCCESS);
1249 1.1 mrg }
1250 1.1 mrg
1251 1.1 mrg /*
1252 1.1 mrg * uvm_vnp_uncache: disable "persisting" in a vnode... when last reference
1253 1.1 mrg * is gone we will kill the object (flushing dirty pages back to the vnode
1254 1.1 mrg * if needed).
1255 1.1 mrg *
1256 1.1 mrg * => returns TRUE if there was no uvm_object attached or if there was
1257 1.1 mrg * one and we killed it [i.e. if there is no active uvn]
1258 1.1 mrg * => called with the vnode VOP_LOCK'd [we will unlock it for I/O, if
1259 1.1 mrg * needed]
1260 1.1 mrg *
1261 1.1 mrg * => XXX: given that we now kill uvn's when a vnode is recycled (without
1262 1.1 mrg * having to hold a reference on the vnode) and given a working
1263 1.1 mrg * uvm_vnp_sync(), how does that effect the need for this function?
1264 1.1 mrg * [XXXCDC: seems like it can die?]
1265 1.1 mrg *
1266 1.1 mrg * => XXX: this function should DIE once we merge the VM and buffer
1267 1.1 mrg * cache.
1268 1.1 mrg *
1269 1.1 mrg * research shows that this is called in the following places:
1270 1.1 mrg * ext2fs_truncate, ffs_truncate, detrunc[msdosfs]: called when vnode
1271 1.1 mrg * changes sizes
1272 1.1 mrg * ext2fs_write, WRITE [ufs_readwrite], msdosfs_write: called when we
1273 1.1 mrg * are written to
1274 1.1 mrg * ex2fs_chmod, ufs_chmod: called if VTEXT vnode and the sticky bit
1275 1.1 mrg * is off
1276 1.1 mrg * ffs_realloccg: when we can't extend the current block and have
1277 1.1 mrg * to allocate a new one we call this [XXX: why?]
1278 1.1 mrg * nfsrv_rename, rename_files: called when the target filename is there
1279 1.1 mrg * and we want to remove it
1280 1.1 mrg * nfsrv_remove, sys_unlink: called on file we are removing
1281 1.1 mrg * nfsrv_access: if VTEXT and we want WRITE access and we don't uncache
1282 1.1 mrg * then return "text busy"
1283 1.1 mrg * nfs_open: seems to uncache any file opened with nfs
1284 1.1 mrg * vn_writechk: if VTEXT vnode and can't uncache return "text busy"
1285 1.1 mrg */
1286 1.1 mrg
1287 1.8 mrg boolean_t
1288 1.8 mrg uvm_vnp_uncache(vp)
1289 1.8 mrg struct vnode *vp;
1290 1.8 mrg {
1291 1.8 mrg return(TRUE);
1292 1.1 mrg }
1293 1.1 mrg
1294 1.1 mrg /*
1295 1.1 mrg * uvm_vnp_setsize: grow or shrink a vnode uvn
1296 1.1 mrg *
1297 1.1 mrg * grow => just update size value
1298 1.1 mrg * shrink => toss un-needed pages
1299 1.1 mrg *
1300 1.1 mrg * => we assume that the caller has a reference of some sort to the
1301 1.1 mrg * vnode in question so that it will not be yanked out from under
1302 1.1 mrg * us.
1303 1.1 mrg *
1304 1.1 mrg * called from:
1305 1.1 mrg * => truncate fns (ext2fs_truncate, ffs_truncate, detrunc[msdos])
1306 1.1 mrg * => "write" fns (ext2fs_write, WRITE [ufs/ufs], msdosfs_write, nfs_write)
1307 1.1 mrg * => ffs_balloc [XXX: why? doesn't WRITE handle?]
1308 1.1 mrg * => NFS: nfs_loadattrcache, nfs_getattrcache, nfs_setattr
1309 1.1 mrg * => union fs: union_newsize
1310 1.1 mrg */
1311 1.1 mrg
1312 1.8 mrg void
1313 1.8 mrg uvm_vnp_setsize(vp, newsize)
1314 1.8 mrg struct vnode *vp;
1315 1.8 mrg u_quad_t newsize;
1316 1.8 mrg {
1317 1.8 mrg struct uvm_vnode *uvn = &vp->v_uvm;
1318 1.1 mrg
1319 1.8 mrg /*
1320 1.8 mrg * lock uvn and check for valid object, and if valid: do it!
1321 1.8 mrg */
1322 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
1323 1.17.2.1 chs #ifdef UBC
1324 1.17.2.1 chs #else
1325 1.8 mrg if (uvn->u_flags & UVM_VNODE_VALID) {
1326 1.17.2.1 chs #endif
1327 1.8 mrg /*
1328 1.15 eeh * make sure that the newsize fits within a vaddr_t
1329 1.8 mrg * XXX: need to revise addressing data types
1330 1.8 mrg */
1331 1.1 mrg
1332 1.15 eeh if (newsize > (vaddr_t) -PAGE_SIZE) {
1333 1.1 mrg #ifdef DEBUG
1334 1.8 mrg printf("uvm_vnp_setsize: vn %p size truncated "
1335 1.15 eeh "%qx->%lx\n", vp, newsize, (vaddr_t)-PAGE_SIZE);
1336 1.1 mrg #endif
1337 1.15 eeh newsize = (vaddr_t)-PAGE_SIZE;
1338 1.8 mrg }
1339 1.8 mrg
1340 1.8 mrg /*
1341 1.8 mrg * now check if the size has changed: if we shrink we had better
1342 1.8 mrg * toss some pages...
1343 1.8 mrg */
1344 1.8 mrg
1345 1.17.2.1 chs #ifdef UBC
1346 1.17.2.1 chs if (uvn->u_size > newsize && uvn->u_size != VSIZENOTSET) {
1347 1.17.2.1 chs #else
1348 1.17.2.1 chs /*
1349 1.8 mrg if (uvn->u_size > newsize) {
1350 1.17.2.1 chs */
1351 1.17.2.1 chs #endif
1352 1.17.2.1 chs (void)uvn_flush(&uvn->u_obj, (vaddr_t)newsize,
1353 1.17.2.1 chs uvn->u_size, PGO_FREE);
1354 1.8 mrg }
1355 1.17.2.1 chs #ifdef DEBUGxx
1356 1.17.2.1 chs printf("uvm_vnp_setsize: vp %p newsize 0x%x\n", vp, (int)newsize);
1357 1.17.2.1 chs #endif
1358 1.17.2.2 chs uvn->u_size = (vaddr_t)newsize;
1359 1.17.2.1 chs #ifdef UBC
1360 1.17.2.1 chs #else
1361 1.8 mrg }
1362 1.17.2.1 chs #endif
1363 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
1364 1.1 mrg }
1365 1.1 mrg
1366 1.1 mrg /*
1367 1.1 mrg * uvm_vnp_sync: flush all dirty VM pages back to their backing vnodes.
1368 1.1 mrg *
1369 1.1 mrg * => called from sys_sync with no VM structures locked
1370 1.1 mrg * => only one process can do a sync at a time (because the uvn
1371 1.1 mrg * structure only has one queue for sync'ing). we ensure this
1372 1.1 mrg * by holding the uvn_sync_lock while the sync is in progress.
1373 1.1 mrg * other processes attempting a sync will sleep on this lock
1374 1.1 mrg * until we are done.
1375 1.1 mrg */
1376 1.1 mrg
1377 1.8 mrg void
1378 1.8 mrg uvm_vnp_sync(mp)
1379 1.8 mrg struct mount *mp;
1380 1.8 mrg {
1381 1.8 mrg struct uvm_vnode *uvn;
1382 1.8 mrg struct vnode *vp;
1383 1.8 mrg boolean_t got_lock;
1384 1.8 mrg
1385 1.8 mrg /*
1386 1.8 mrg * step 1: ensure we are only ones using the uvn_sync_q by locking
1387 1.8 mrg * our lock...
1388 1.8 mrg */
1389 1.8 mrg lockmgr(&uvn_sync_lock, LK_EXCLUSIVE, (void *)0);
1390 1.8 mrg
1391 1.8 mrg /*
1392 1.8 mrg * step 2: build up a simpleq of uvns of interest based on the
1393 1.8 mrg * write list. we gain a reference to uvns of interest. must
1394 1.8 mrg * be careful about locking uvn's since we will be holding uvn_wl_lock
1395 1.8 mrg * in the body of the loop.
1396 1.8 mrg */
1397 1.8 mrg SIMPLEQ_INIT(&uvn_sync_q);
1398 1.8 mrg simple_lock(&uvn_wl_lock);
1399 1.17.2.3 chs for (uvn = LIST_FIRST(&uvn_wlist); uvn != NULL;
1400 1.17.2.3 chs uvn = LIST_NEXT(uvn, u_wlist)) {
1401 1.1 mrg
1402 1.8 mrg vp = (struct vnode *) uvn;
1403 1.8 mrg if (mp && vp->v_mount != mp)
1404 1.8 mrg continue;
1405 1.8 mrg
1406 1.8 mrg /* attempt to gain reference */
1407 1.8 mrg while ((got_lock = simple_lock_try(&uvn->u_obj.vmobjlock)) ==
1408 1.9 chuck FALSE &&
1409 1.17.2.1 chs (uvn->u_flags & UVM_VNODE_BLOCKED) == 0)
1410 1.8 mrg /* spin */ ;
1411 1.8 mrg
1412 1.8 mrg /*
1413 1.9 chuck * we will exit the loop if either if the following are true:
1414 1.9 chuck * - we got the lock [always true if NCPU == 1]
1415 1.9 chuck * - we failed to get the lock but noticed the vnode was
1416 1.9 chuck * "blocked" -- in this case the vnode must be a dying
1417 1.9 chuck * vnode, and since dying vnodes are in the process of
1418 1.9 chuck * being flushed out, we can safely skip this one
1419 1.9 chuck *
1420 1.9 chuck * we want to skip over the vnode if we did not get the lock,
1421 1.9 chuck * or if the vnode is already dying (due to the above logic).
1422 1.8 mrg *
1423 1.8 mrg * note that uvn must already be valid because we found it on
1424 1.8 mrg * the wlist (this also means it can't be ALOCK'd).
1425 1.8 mrg */
1426 1.9 chuck if (!got_lock || (uvn->u_flags & UVM_VNODE_BLOCKED) != 0) {
1427 1.9 chuck if (got_lock)
1428 1.9 chuck simple_unlock(&uvn->u_obj.vmobjlock);
1429 1.9 chuck continue; /* skip it */
1430 1.9 chuck }
1431 1.8 mrg
1432 1.8 mrg /*
1433 1.8 mrg * gain reference. watch out for persisting uvns (need to
1434 1.8 mrg * regain vnode REF).
1435 1.8 mrg */
1436 1.17.2.1 chs #ifdef UBC
1437 1.17.2.4 chs vget(vp, LK_INTERLOCK);
1438 1.17.2.1 chs #else
1439 1.8 mrg if (uvn->u_obj.uo_refs == 0)
1440 1.8 mrg VREF(vp);
1441 1.8 mrg uvn->u_obj.uo_refs++;
1442 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
1443 1.17.2.4 chs #endif
1444 1.8 mrg
1445 1.8 mrg /*
1446 1.8 mrg * got it!
1447 1.8 mrg */
1448 1.8 mrg SIMPLEQ_INSERT_HEAD(&uvn_sync_q, uvn, u_syncq);
1449 1.8 mrg }
1450 1.8 mrg simple_unlock(&uvn_wl_lock);
1451 1.1 mrg
1452 1.8 mrg /*
1453 1.8 mrg * step 3: we now have a list of uvn's that may need cleaning.
1454 1.8 mrg * we are holding the uvn_sync_lock, but have dropped the uvn_wl_lock
1455 1.8 mrg * (so we can now safely lock uvn's again).
1456 1.8 mrg */
1457 1.1 mrg
1458 1.8 mrg for (uvn = uvn_sync_q.sqh_first ; uvn ; uvn = uvn->u_syncq.sqe_next) {
1459 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
1460 1.17.2.1 chs #ifdef UBC
1461 1.17.2.1 chs #else
1462 1.1 mrg #ifdef DIAGNOSTIC
1463 1.8 mrg if (uvn->u_flags & UVM_VNODE_DYING) {
1464 1.8 mrg printf("uvm_vnp_sync: dying vnode on sync list\n");
1465 1.8 mrg }
1466 1.1 mrg #endif
1467 1.17.2.1 chs #endif
1468 1.8 mrg uvn_flush(&uvn->u_obj, 0, 0,
1469 1.17.2.7 chs PGO_CLEANIT|PGO_ALLPAGES|PGO_DOACTCLUST);
1470 1.8 mrg
1471 1.8 mrg /*
1472 1.8 mrg * if we have the only reference and we just cleaned the uvn,
1473 1.8 mrg * then we can pull it out of the UVM_VNODE_WRITEABLE state
1474 1.8 mrg * thus allowing us to avoid thinking about flushing it again
1475 1.8 mrg * on later sync ops.
1476 1.8 mrg */
1477 1.8 mrg if (uvn->u_obj.uo_refs == 1 &&
1478 1.8 mrg (uvn->u_flags & UVM_VNODE_WRITEABLE)) {
1479 1.17.2.3 chs simple_lock(&uvn_wl_lock);
1480 1.8 mrg LIST_REMOVE(uvn, u_wlist);
1481 1.8 mrg uvn->u_flags &= ~UVM_VNODE_WRITEABLE;
1482 1.17.2.3 chs simple_unlock(&uvn_wl_lock);
1483 1.8 mrg }
1484 1.8 mrg
1485 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
1486 1.1 mrg
1487 1.8 mrg /* now drop our reference to the uvn */
1488 1.8 mrg uvn_detach(&uvn->u_obj);
1489 1.8 mrg }
1490 1.8 mrg
1491 1.8 mrg /*
1492 1.8 mrg * done! release sync lock
1493 1.8 mrg */
1494 1.8 mrg lockmgr(&uvn_sync_lock, LK_RELEASE, (void *)0);
1495 1.17.2.1 chs }
1496 1.17.2.1 chs
1497 1.17.2.1 chs
1498 1.17.2.1 chs /*
1499 1.17.2.3 chs * uvm_vnp_zerorange: set a range of bytes in a file to zero.
1500 1.17.2.3 chs * this is called from fs-specific code when truncating a file
1501 1.17.2.3 chs * to zero the part of last block that is past the new end-of-file.
1502 1.17.2.3 chs */
1503 1.17.2.3 chs void
1504 1.17.2.3 chs uvm_vnp_zerorange(vp, off, len)
1505 1.17.2.3 chs struct vnode *vp;
1506 1.17.2.3 chs off_t off;
1507 1.17.2.3 chs size_t len;
1508 1.17.2.3 chs {
1509 1.17.2.3 chs void *win;
1510 1.17.2.3 chs
1511 1.17.2.3 chs /*
1512 1.17.2.3 chs * XXX invent kzero() and use it
1513 1.17.2.3 chs */
1514 1.17.2.1 chs
1515 1.17.2.5 chs while (len) {
1516 1.17.2.6 chs vsize_t bytelen = len;
1517 1.17.2.5 chs
1518 1.17.2.6 chs win = ubc_alloc(&vp->v_uvm.u_obj, off, &bytelen, UBC_WRITE);
1519 1.17.2.6 chs memset(win, 0, bytelen);
1520 1.17.2.5 chs ubc_release(win, 0);
1521 1.17.2.7 chs
1522 1.17.2.7 chs off += bytelen;
1523 1.17.2.6 chs len -= bytelen;
1524 1.17.2.7 chs }
1525 1.17.2.7 chs }
1526 1.17.2.7 chs
1527 1.17.2.7 chs /*
1528 1.17.2.7 chs * uvn_doasyncget: start one readahead i/o.
1529 1.17.2.7 chs */
1530 1.17.2.7 chs
1531 1.17.2.7 chs static void
1532 1.17.2.7 chs uvn_doasyncget(pgs, bytes, blkno)
1533 1.17.2.7 chs struct vm_page **pgs;
1534 1.17.2.7 chs size_t bytes;
1535 1.17.2.7 chs daddr_t blkno;
1536 1.17.2.7 chs {
1537 1.17.2.7 chs struct uvm_aiobuf *abp;
1538 1.17.2.7 chs struct buf *bp;
1539 1.17.2.7 chs struct vnode *vp = (struct vnode *)pgs[0]->uobject;
1540 1.17.2.7 chs int pages = roundup(bytes, PAGE_SIZE) >> PAGE_SHIFT;
1541 1.17.2.7 chs UVMHIST_FUNC("uvn_doasyncget"); UVMHIST_CALLED(ubchist);
1542 1.17.2.7 chs
1543 1.17.2.7 chs UVMHIST_LOG(ubchist, "vp %p offset 0x%x bytes 0x%x blkno 0x%x",
1544 1.17.2.7 chs vp, (int)pgs[0]->offset, (int)bytes, (int)blkno);
1545 1.17.2.7 chs
1546 1.17.2.7 chs abp = pool_get(uvm_aiobuf_pool, PR_WAITOK);
1547 1.17.2.7 chs abp->aio.aiodone = uvm_aio_aiodone;
1548 1.17.2.7 chs abp->aio.kva = uvm_pagermapin(pgs, pages, NULL, M_WAITOK);
1549 1.17.2.7 chs abp->aio.npages = pages;
1550 1.17.2.7 chs abp->aio.pd_ptr = abp;
1551 1.17.2.7 chs
1552 1.17.2.7 chs bp = &abp->buf;
1553 1.17.2.7 chs bzero(bp, sizeof *bp);
1554 1.17.2.7 chs bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
1555 1.17.2.7 chs bp->b_iodone = uvm_aio_biodone;
1556 1.17.2.7 chs bp->b_lblkno = 0;
1557 1.17.2.7 chs bp->b_blkno = blkno;
1558 1.17.2.7 chs bp->b_bufsize = pages << PAGE_SHIFT;
1559 1.17.2.7 chs bp->b_bcount = bytes;
1560 1.17.2.7 chs bp->b_vp = vp;
1561 1.17.2.7 chs bp->b_data = (void *)abp->aio.kva;
1562 1.17.2.7 chs
1563 1.17.2.7 chs VOP_STRATEGY(bp);
1564 1.17.2.7 chs }
1565 1.17.2.7 chs
1566 1.17.2.7 chs #define MAXRAPAGES 16
1567 1.17.2.7 chs
1568 1.17.2.7 chs /*
1569 1.17.2.7 chs * asynchronously create pages for a vnode and read their data.
1570 1.17.2.7 chs */
1571 1.17.2.7 chs
1572 1.17.2.7 chs void
1573 1.17.2.7 chs uvm_vnp_asyncget(vp, off, len, bsize)
1574 1.17.2.7 chs struct vnode *vp;
1575 1.17.2.7 chs off_t off;
1576 1.17.2.7 chs size_t len;
1577 1.17.2.7 chs size_t bsize;
1578 1.17.2.7 chs {
1579 1.17.2.7 chs off_t filesize = vp->v_uvm.u_size;
1580 1.17.2.7 chs struct vm_page *pgs[MAXRAPAGES];
1581 1.17.2.7 chs struct uvm_object *uobj = &vp->v_uvm.u_obj;
1582 1.17.2.7 chs daddr_t lbn, blkno;
1583 1.17.2.7 chs int i, npages, npgs, startidx, run, bytes, startpage, endpage;
1584 1.17.2.7 chs int count;
1585 1.17.2.7 chs UVMHIST_FUNC("uvn_asyncget"); UVMHIST_CALLED(ubchist);
1586 1.17.2.7 chs
1587 1.17.2.7 chs if (off != trunc_page(off)) {
1588 1.17.2.7 chs panic("off 0x%x not page-aligned", (int)off);
1589 1.17.2.7 chs }
1590 1.17.2.7 chs
1591 1.17.2.7 chs UVMHIST_LOG(ubchist, "asyncget off 0x%x len 0x%x",
1592 1.17.2.7 chs (int)off, (int)len,0,0);
1593 1.17.2.7 chs
1594 1.17.2.7 chs count = round_page(len) >> PAGE_SHIFT;
1595 1.17.2.7 chs while (count > 0) {
1596 1.17.2.7 chs if (off >= filesize) {
1597 1.17.2.7 chs return;
1598 1.17.2.7 chs }
1599 1.17.2.7 chs
1600 1.17.2.7 chs lbn = off / bsize;
1601 1.17.2.7 chs if (VOP_BMAP(vp, lbn, NULL, &blkno, &run) != 0) {
1602 1.17.2.7 chs return;
1603 1.17.2.7 chs }
1604 1.17.2.7 chs
1605 1.17.2.7 chs UVMHIST_LOG(ubchist, "bmap lbn 0x%x bn 0x%x",
1606 1.17.2.7 chs (int)lbn, (int)blkno,0,0);
1607 1.17.2.7 chs
1608 1.17.2.7 chs /* don't do readahead past file holes... */
1609 1.17.2.7 chs if (blkno == (daddr_t)-1) {
1610 1.17.2.7 chs return;
1611 1.17.2.7 chs }
1612 1.17.2.7 chs
1613 1.17.2.7 chs startpage = off >> PAGE_SHIFT;
1614 1.17.2.7 chs endpage = min(roundup(off + 1 + run * bsize, bsize),
1615 1.17.2.7 chs round_page(filesize)) >> PAGE_SHIFT;
1616 1.17.2.7 chs npages = min(endpage - startpage, min(count, MAXRAPAGES));
1617 1.17.2.7 chs
1618 1.17.2.7 chs UVMHIST_LOG(ubchist, "off 0x%x run 0x%x "
1619 1.17.2.7 chs "startpage %d endpage %d",
1620 1.17.2.7 chs (int)off, run, startpage, endpage);
1621 1.17.2.7 chs UVMHIST_LOG(ubchist, "runend 0x%x fileend 0x%x sum 0x%x",
1622 1.17.2.7 chs (int)roundup(off + 1 + run * bsize, bsize),
1623 1.17.2.7 chs (int)round_page(filesize),
1624 1.17.2.7 chs (int)(off + 1 + run * bsize), 0);
1625 1.17.2.7 chs
1626 1.17.2.7 chs if (npages == 0) {
1627 1.17.2.7 chs return;
1628 1.17.2.7 chs }
1629 1.17.2.7 chs
1630 1.17.2.7 chs memset(pgs, 0, npages * sizeof(pgs[0]));
1631 1.17.2.7 chs
1632 1.17.2.7 chs simple_lock(&uobj->vmobjlock);
1633 1.17.2.7 chs npgs = npages;
1634 1.17.2.7 chs uvn_findpages(uobj, off, &npgs, pgs, UFP_NOWAIT | UFP_NOCACHE);
1635 1.17.2.7 chs simple_unlock(&uobj->vmobjlock);
1636 1.17.2.7 chs
1637 1.17.2.7 chs blkno += (off - lbn * bsize) >> DEV_BSHIFT;
1638 1.17.2.7 chs
1639 1.17.2.7 chs /*
1640 1.17.2.7 chs * activate any pages we just allocated.
1641 1.17.2.7 chs */
1642 1.17.2.7 chs
1643 1.17.2.7 chs for (i = 0; i < npages; i++) {
1644 1.17.2.7 chs if (pgs[i] == NULL) {
1645 1.17.2.7 chs continue;
1646 1.17.2.7 chs }
1647 1.17.2.7 chs uvm_pageactivate(pgs[i]);
1648 1.17.2.7 chs }
1649 1.17.2.7 chs
1650 1.17.2.7 chs /*
1651 1.17.2.7 chs * start i/os on the pages.
1652 1.17.2.7 chs */
1653 1.17.2.7 chs
1654 1.17.2.7 chs for (i = 0; i < npages; i++) {
1655 1.17.2.7 chs for (startidx = i; i < npages; i++) {
1656 1.17.2.7 chs if (pgs[i] == NULL) {
1657 1.17.2.7 chs break;
1658 1.17.2.7 chs }
1659 1.17.2.7 chs }
1660 1.17.2.7 chs if (i > startidx) {
1661 1.17.2.7 chs bytes = min((i - startidx) << PAGE_SHIFT,
1662 1.17.2.7 chs filesize - pgs[startidx]->offset);
1663 1.17.2.7 chs bytes = roundup(bytes, DEV_BSIZE);
1664 1.17.2.7 chs
1665 1.17.2.7 chs UVMHIST_LOG(ubchist, "bytes i %d startidx %d "
1666 1.17.2.7 chs "filesize 0x%x pgoff 0x%x",
1667 1.17.2.7 chs i, startidx, (int)filesize,
1668 1.17.2.7 chs (int)pgs[startidx]->offset);
1669 1.17.2.7 chs
1670 1.17.2.7 chs uvn_doasyncget(&pgs[startidx], bytes,
1671 1.17.2.7 chs blkno + startidx * (PAGE_SIZE >>
1672 1.17.2.7 chs DEV_BSHIFT));
1673 1.17.2.7 chs }
1674 1.17.2.7 chs }
1675 1.17.2.7 chs
1676 1.17.2.7 chs off += npages << PAGE_SHIFT;
1677 1.17.2.7 chs count -= npages;
1678 1.17.2.7 chs return;
1679 1.17.2.5 chs }
1680 1.1 mrg }
1681