uvm_vnode.c revision 1.27 1 1.27 chs /* $NetBSD: uvm_vnode.c,v 1.27 1999/10/19 16:04:45 chs Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 mrg * Copyright (c) 1991, 1993
6 1.1 mrg * The Regents of the University of California.
7 1.1 mrg * Copyright (c) 1990 University of Utah.
8 1.1 mrg *
9 1.1 mrg * All rights reserved.
10 1.1 mrg *
11 1.1 mrg * This code is derived from software contributed to Berkeley by
12 1.1 mrg * the Systems Programming Group of the University of Utah Computer
13 1.1 mrg * Science Department.
14 1.1 mrg *
15 1.1 mrg * Redistribution and use in source and binary forms, with or without
16 1.1 mrg * modification, are permitted provided that the following conditions
17 1.1 mrg * are met:
18 1.1 mrg * 1. Redistributions of source code must retain the above copyright
19 1.1 mrg * notice, this list of conditions and the following disclaimer.
20 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
21 1.1 mrg * notice, this list of conditions and the following disclaimer in the
22 1.1 mrg * documentation and/or other materials provided with the distribution.
23 1.1 mrg * 3. All advertising materials mentioning features or use of this software
24 1.1 mrg * must display the following acknowledgement:
25 1.1 mrg * This product includes software developed by Charles D. Cranor,
26 1.1 mrg * Washington University, the University of California, Berkeley and
27 1.1 mrg * its contributors.
28 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
29 1.1 mrg * may be used to endorse or promote products derived from this software
30 1.1 mrg * without specific prior written permission.
31 1.1 mrg *
32 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 1.1 mrg * SUCH DAMAGE.
43 1.1 mrg *
44 1.1 mrg * @(#)vnode_pager.c 8.8 (Berkeley) 2/13/94
45 1.3 mrg * from: Id: uvm_vnode.c,v 1.1.2.26 1998/02/02 20:38:07 chuck Exp
46 1.1 mrg */
47 1.1 mrg
48 1.6 thorpej #include "fs_nfs.h"
49 1.4 mrg #include "opt_uvmhist.h"
50 1.4 mrg
51 1.1 mrg /*
52 1.1 mrg * uvm_vnode.c: the vnode pager.
53 1.1 mrg */
54 1.1 mrg
55 1.1 mrg #include <sys/param.h>
56 1.1 mrg #include <sys/systm.h>
57 1.1 mrg #include <sys/proc.h>
58 1.1 mrg #include <sys/malloc.h>
59 1.1 mrg #include <sys/vnode.h>
60 1.13 thorpej #include <sys/disklabel.h>
61 1.13 thorpej #include <sys/ioctl.h>
62 1.13 thorpej #include <sys/fcntl.h>
63 1.13 thorpej #include <sys/conf.h>
64 1.13 thorpej
65 1.13 thorpej #include <miscfs/specfs/specdev.h>
66 1.1 mrg
67 1.1 mrg #include <vm/vm.h>
68 1.1 mrg #include <vm/vm_page.h>
69 1.1 mrg #include <vm/vm_kern.h>
70 1.1 mrg
71 1.1 mrg #include <uvm/uvm.h>
72 1.1 mrg #include <uvm/uvm_vnode.h>
73 1.1 mrg
74 1.1 mrg /*
75 1.1 mrg * private global data structure
76 1.1 mrg *
77 1.1 mrg * we keep a list of writeable active vnode-backed VM objects for sync op.
78 1.1 mrg * we keep a simpleq of vnodes that are currently being sync'd.
79 1.1 mrg */
80 1.1 mrg
81 1.1 mrg LIST_HEAD(uvn_list_struct, uvm_vnode);
82 1.1 mrg static struct uvn_list_struct uvn_wlist; /* writeable uvns */
83 1.1 mrg static simple_lock_data_t uvn_wl_lock; /* locks uvn_wlist */
84 1.1 mrg
85 1.1 mrg SIMPLEQ_HEAD(uvn_sq_struct, uvm_vnode);
86 1.1 mrg static struct uvn_sq_struct uvn_sync_q; /* sync'ing uvns */
87 1.1 mrg lock_data_t uvn_sync_lock; /* locks sync operation */
88 1.1 mrg
89 1.1 mrg /*
90 1.1 mrg * functions
91 1.1 mrg */
92 1.1 mrg
93 1.15 eeh static int uvn_asyncget __P((struct uvm_object *, vaddr_t,
94 1.1 mrg int));
95 1.1 mrg struct uvm_object *uvn_attach __P((void *, vm_prot_t));
96 1.15 eeh static void uvn_cluster __P((struct uvm_object *, vaddr_t,
97 1.15 eeh vaddr_t *, vaddr_t *));
98 1.1 mrg static void uvn_detach __P((struct uvm_object *));
99 1.15 eeh static boolean_t uvn_flush __P((struct uvm_object *, vaddr_t,
100 1.15 eeh vaddr_t, int));
101 1.15 eeh static int uvn_get __P((struct uvm_object *, vaddr_t,
102 1.1 mrg vm_page_t *, int *, int,
103 1.1 mrg vm_prot_t, int, int));
104 1.1 mrg static void uvn_init __P((void));
105 1.1 mrg static int uvn_io __P((struct uvm_vnode *, vm_page_t *,
106 1.1 mrg int, int, int));
107 1.1 mrg static int uvn_put __P((struct uvm_object *, vm_page_t *,
108 1.1 mrg int, boolean_t));
109 1.1 mrg static void uvn_reference __P((struct uvm_object *));
110 1.1 mrg static boolean_t uvn_releasepg __P((struct vm_page *,
111 1.1 mrg struct vm_page **));
112 1.1 mrg
113 1.1 mrg /*
114 1.1 mrg * master pager structure
115 1.1 mrg */
116 1.1 mrg
117 1.1 mrg struct uvm_pagerops uvm_vnodeops = {
118 1.8 mrg uvn_init,
119 1.8 mrg uvn_reference,
120 1.8 mrg uvn_detach,
121 1.8 mrg NULL, /* no specialized fault routine required */
122 1.8 mrg uvn_flush,
123 1.8 mrg uvn_get,
124 1.8 mrg uvn_asyncget,
125 1.8 mrg uvn_put,
126 1.8 mrg uvn_cluster,
127 1.8 mrg uvm_mk_pcluster, /* use generic version of this: see uvm_pager.c */
128 1.8 mrg uvm_shareprot, /* !NULL: allow us in share maps */
129 1.8 mrg NULL, /* AIO-DONE function (not until we have asyncio) */
130 1.8 mrg uvn_releasepg,
131 1.1 mrg };
132 1.1 mrg
133 1.1 mrg /*
134 1.1 mrg * the ops!
135 1.1 mrg */
136 1.1 mrg
137 1.1 mrg /*
138 1.1 mrg * uvn_init
139 1.1 mrg *
140 1.1 mrg * init pager private data structures.
141 1.1 mrg */
142 1.1 mrg
143 1.8 mrg static void
144 1.8 mrg uvn_init()
145 1.8 mrg {
146 1.1 mrg
147 1.8 mrg LIST_INIT(&uvn_wlist);
148 1.8 mrg simple_lock_init(&uvn_wl_lock);
149 1.8 mrg /* note: uvn_sync_q init'd in uvm_vnp_sync() */
150 1.8 mrg lockinit(&uvn_sync_lock, PVM, "uvnsync", 0, 0);
151 1.1 mrg }
152 1.1 mrg
153 1.1 mrg /*
154 1.1 mrg * uvn_attach
155 1.1 mrg *
156 1.1 mrg * attach a vnode structure to a VM object. if the vnode is already
157 1.1 mrg * attached, then just bump the reference count by one and return the
158 1.1 mrg * VM object. if not already attached, attach and return the new VM obj.
159 1.1 mrg * the "accessprot" tells the max access the attaching thread wants to
160 1.1 mrg * our pages.
161 1.1 mrg *
162 1.1 mrg * => caller must _not_ already be holding the lock on the uvm_object.
163 1.1 mrg * => in fact, nothing should be locked so that we can sleep here.
164 1.1 mrg * => note that uvm_object is first thing in vnode structure, so their
165 1.1 mrg * pointers are equiv.
166 1.1 mrg */
167 1.1 mrg
168 1.8 mrg struct uvm_object *
169 1.8 mrg uvn_attach(arg, accessprot)
170 1.8 mrg void *arg;
171 1.8 mrg vm_prot_t accessprot;
172 1.8 mrg {
173 1.8 mrg struct vnode *vp = arg;
174 1.8 mrg struct uvm_vnode *uvn = &vp->v_uvm;
175 1.8 mrg struct vattr vattr;
176 1.8 mrg int oldflags, result;
177 1.13 thorpej struct partinfo pi;
178 1.8 mrg u_quad_t used_vnode_size;
179 1.8 mrg UVMHIST_FUNC("uvn_attach"); UVMHIST_CALLED(maphist);
180 1.8 mrg
181 1.8 mrg UVMHIST_LOG(maphist, "(vn=0x%x)", arg,0,0,0);
182 1.8 mrg
183 1.13 thorpej used_vnode_size = (u_quad_t)0; /* XXX gcc -Wuninitialized */
184 1.13 thorpej
185 1.8 mrg /*
186 1.8 mrg * first get a lock on the uvn.
187 1.8 mrg */
188 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
189 1.8 mrg while (uvn->u_flags & UVM_VNODE_BLOCKED) {
190 1.8 mrg uvn->u_flags |= UVM_VNODE_WANTED;
191 1.8 mrg UVMHIST_LOG(maphist, " SLEEPING on blocked vn",0,0,0,0);
192 1.8 mrg UVM_UNLOCK_AND_WAIT(uvn, &uvn->u_obj.vmobjlock, FALSE,
193 1.8 mrg "uvn_attach", 0);
194 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
195 1.8 mrg UVMHIST_LOG(maphist," WOKE UP",0,0,0,0);
196 1.8 mrg }
197 1.1 mrg
198 1.8 mrg /*
199 1.18 bouyer * if we're mapping a BLK device, make sure it is a disk.
200 1.13 thorpej */
201 1.13 thorpej if (vp->v_type == VBLK && bdevsw[major(vp->v_rdev)].d_type != D_DISK) {
202 1.13 thorpej simple_unlock(&uvn->u_obj.vmobjlock); /* drop lock */
203 1.13 thorpej UVMHIST_LOG(maphist,"<- done (VBLK not D_DISK!)", 0,0,0,0);
204 1.13 thorpej return(NULL);
205 1.13 thorpej }
206 1.13 thorpej
207 1.13 thorpej /*
208 1.8 mrg * now we have lock and uvn must not be in a blocked state.
209 1.8 mrg * first check to see if it is already active, in which case
210 1.8 mrg * we can bump the reference count, check to see if we need to
211 1.8 mrg * add it to the writeable list, and then return.
212 1.8 mrg */
213 1.8 mrg if (uvn->u_flags & UVM_VNODE_VALID) { /* already active? */
214 1.1 mrg
215 1.8 mrg /* regain VREF if we were persisting */
216 1.8 mrg if (uvn->u_obj.uo_refs == 0) {
217 1.8 mrg VREF(vp);
218 1.8 mrg UVMHIST_LOG(maphist," VREF (reclaim persisting vnode)",
219 1.8 mrg 0,0,0,0);
220 1.8 mrg }
221 1.8 mrg uvn->u_obj.uo_refs++; /* bump uvn ref! */
222 1.8 mrg
223 1.8 mrg /* check for new writeable uvn */
224 1.8 mrg if ((accessprot & VM_PROT_WRITE) != 0 &&
225 1.8 mrg (uvn->u_flags & UVM_VNODE_WRITEABLE) == 0) {
226 1.8 mrg simple_lock(&uvn_wl_lock);
227 1.8 mrg LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist);
228 1.8 mrg simple_unlock(&uvn_wl_lock);
229 1.8 mrg /* we are now on wlist! */
230 1.8 mrg uvn->u_flags |= UVM_VNODE_WRITEABLE;
231 1.8 mrg }
232 1.8 mrg
233 1.8 mrg /* unlock and return */
234 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
235 1.8 mrg UVMHIST_LOG(maphist,"<- done, refcnt=%d", uvn->u_obj.uo_refs,
236 1.8 mrg 0, 0, 0);
237 1.8 mrg return (&uvn->u_obj);
238 1.8 mrg }
239 1.8 mrg
240 1.8 mrg /*
241 1.8 mrg * need to call VOP_GETATTR() to get the attributes, but that could
242 1.8 mrg * block (due to I/O), so we want to unlock the object before calling.
243 1.8 mrg * however, we want to keep anyone else from playing with the object
244 1.8 mrg * while it is unlocked. to do this we set UVM_VNODE_ALOCK which
245 1.8 mrg * prevents anyone from attaching to the vnode until we are done with
246 1.8 mrg * it.
247 1.8 mrg */
248 1.8 mrg uvn->u_flags = UVM_VNODE_ALOCK;
249 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock); /* drop lock in case we sleep */
250 1.8 mrg /* XXX: curproc? */
251 1.8 mrg
252 1.13 thorpej if (vp->v_type == VBLK) {
253 1.13 thorpej /*
254 1.13 thorpej * We could implement this as a specfs getattr call, but:
255 1.13 thorpej *
256 1.13 thorpej * (1) VOP_GETATTR() would get the file system
257 1.13 thorpej * vnode operation, not the specfs operation.
258 1.13 thorpej *
259 1.13 thorpej * (2) All we want is the size, anyhow.
260 1.13 thorpej */
261 1.13 thorpej result = (*bdevsw[major(vp->v_rdev)].d_ioctl)(vp->v_rdev,
262 1.13 thorpej DIOCGPART, (caddr_t)&pi, FREAD, curproc);
263 1.13 thorpej if (result == 0) {
264 1.13 thorpej /* XXX should remember blocksize */
265 1.13 thorpej used_vnode_size = (u_quad_t)pi.disklab->d_secsize *
266 1.13 thorpej (u_quad_t)pi.part->p_size;
267 1.13 thorpej }
268 1.13 thorpej } else {
269 1.13 thorpej result = VOP_GETATTR(vp, &vattr, curproc->p_ucred, curproc);
270 1.13 thorpej if (result == 0)
271 1.13 thorpej used_vnode_size = vattr.va_size;
272 1.8 mrg }
273 1.1 mrg
274 1.8 mrg /* relock object */
275 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
276 1.1 mrg
277 1.8 mrg if (result != 0) {
278 1.8 mrg if (uvn->u_flags & UVM_VNODE_WANTED)
279 1.8 mrg wakeup(uvn);
280 1.8 mrg uvn->u_flags = 0;
281 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock); /* drop lock */
282 1.8 mrg UVMHIST_LOG(maphist,"<- done (VOP_GETATTR FAILED!)", 0,0,0,0);
283 1.8 mrg return(NULL);
284 1.8 mrg }
285 1.13 thorpej
286 1.13 thorpej /*
287 1.15 eeh * make sure that the newsize fits within a vaddr_t
288 1.13 thorpej * XXX: need to revise addressing data types
289 1.13 thorpej */
290 1.18 bouyer #ifdef DEBUG
291 1.18 bouyer if (vp->v_type == VBLK)
292 1.19 chs printf("used_vnode_size = %qu\n", (long long)used_vnode_size);
293 1.18 bouyer #endif
294 1.15 eeh if (used_vnode_size > (vaddr_t) -PAGE_SIZE) {
295 1.13 thorpej #ifdef DEBUG
296 1.13 thorpej printf("uvn_attach: vn %p size truncated %qx->%x\n", vp,
297 1.19 chs (long long)used_vnode_size, -PAGE_SIZE);
298 1.13 thorpej #endif
299 1.15 eeh used_vnode_size = (vaddr_t) -PAGE_SIZE;
300 1.13 thorpej }
301 1.13 thorpej
302 1.8 mrg /*
303 1.8 mrg * now set up the uvn.
304 1.8 mrg */
305 1.8 mrg uvn->u_obj.pgops = &uvm_vnodeops;
306 1.8 mrg TAILQ_INIT(&uvn->u_obj.memq);
307 1.8 mrg uvn->u_obj.uo_npages = 0;
308 1.8 mrg uvn->u_obj.uo_refs = 1; /* just us... */
309 1.8 mrg oldflags = uvn->u_flags;
310 1.8 mrg uvn->u_flags = UVM_VNODE_VALID|UVM_VNODE_CANPERSIST;
311 1.8 mrg uvn->u_nio = 0;
312 1.8 mrg uvn->u_size = used_vnode_size;
313 1.8 mrg
314 1.8 mrg /* if write access, we need to add it to the wlist */
315 1.8 mrg if (accessprot & VM_PROT_WRITE) {
316 1.8 mrg simple_lock(&uvn_wl_lock);
317 1.8 mrg LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist);
318 1.8 mrg simple_unlock(&uvn_wl_lock);
319 1.8 mrg uvn->u_flags |= UVM_VNODE_WRITEABLE; /* we are on wlist! */
320 1.8 mrg }
321 1.8 mrg
322 1.8 mrg /*
323 1.8 mrg * add a reference to the vnode. this reference will stay as long
324 1.8 mrg * as there is a valid mapping of the vnode. dropped when the
325 1.8 mrg * reference count goes to zero [and we either free or persist].
326 1.8 mrg */
327 1.8 mrg VREF(vp);
328 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
329 1.8 mrg if (oldflags & UVM_VNODE_WANTED)
330 1.8 mrg wakeup(uvn);
331 1.1 mrg
332 1.8 mrg UVMHIST_LOG(maphist,"<- done/VREF, ret 0x%x", &uvn->u_obj,0,0,0);
333 1.8 mrg return(&uvn->u_obj);
334 1.1 mrg }
335 1.1 mrg
336 1.1 mrg
337 1.1 mrg /*
338 1.1 mrg * uvn_reference
339 1.1 mrg *
340 1.1 mrg * duplicate a reference to a VM object. Note that the reference
341 1.1 mrg * count must already be at least one (the passed in reference) so
342 1.1 mrg * there is no chance of the uvn being killed or locked out here.
343 1.1 mrg *
344 1.1 mrg * => caller must call with object unlocked.
345 1.1 mrg * => caller must be using the same accessprot as was used at attach time
346 1.1 mrg */
347 1.1 mrg
348 1.1 mrg
349 1.8 mrg static void
350 1.8 mrg uvn_reference(uobj)
351 1.8 mrg struct uvm_object *uobj;
352 1.1 mrg {
353 1.27 chs #ifdef DEBUG
354 1.8 mrg struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
355 1.1 mrg #endif
356 1.8 mrg UVMHIST_FUNC("uvn_reference"); UVMHIST_CALLED(maphist);
357 1.1 mrg
358 1.8 mrg simple_lock(&uobj->vmobjlock);
359 1.27 chs #ifdef DEBUG
360 1.8 mrg if ((uvn->u_flags & UVM_VNODE_VALID) == 0) {
361 1.8 mrg printf("uvn_reference: ref=%d, flags=0x%x\n", uvn->u_flags,
362 1.8 mrg uobj->uo_refs);
363 1.8 mrg panic("uvn_reference: invalid state");
364 1.8 mrg }
365 1.1 mrg #endif
366 1.8 mrg uobj->uo_refs++;
367 1.8 mrg UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
368 1.1 mrg uobj, uobj->uo_refs,0,0);
369 1.8 mrg simple_unlock(&uobj->vmobjlock);
370 1.1 mrg }
371 1.1 mrg
372 1.1 mrg /*
373 1.1 mrg * uvn_detach
374 1.1 mrg *
375 1.1 mrg * remove a reference to a VM object.
376 1.1 mrg *
377 1.1 mrg * => caller must call with object unlocked and map locked.
378 1.1 mrg * => this starts the detach process, but doesn't have to finish it
379 1.1 mrg * (async i/o could still be pending).
380 1.1 mrg */
381 1.8 mrg static void
382 1.8 mrg uvn_detach(uobj)
383 1.8 mrg struct uvm_object *uobj;
384 1.8 mrg {
385 1.8 mrg struct uvm_vnode *uvn;
386 1.8 mrg struct vnode *vp;
387 1.8 mrg int oldflags;
388 1.8 mrg UVMHIST_FUNC("uvn_detach"); UVMHIST_CALLED(maphist);
389 1.8 mrg
390 1.8 mrg simple_lock(&uobj->vmobjlock);
391 1.8 mrg
392 1.8 mrg UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
393 1.8 mrg uobj->uo_refs--; /* drop ref! */
394 1.8 mrg if (uobj->uo_refs) { /* still more refs */
395 1.8 mrg simple_unlock(&uobj->vmobjlock);
396 1.8 mrg UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
397 1.8 mrg return;
398 1.8 mrg }
399 1.1 mrg
400 1.8 mrg /*
401 1.8 mrg * get other pointers ...
402 1.8 mrg */
403 1.8 mrg
404 1.8 mrg uvn = (struct uvm_vnode *) uobj;
405 1.8 mrg vp = (struct vnode *) uobj;
406 1.8 mrg
407 1.8 mrg /*
408 1.8 mrg * clear VTEXT flag now that there are no mappings left (VTEXT is used
409 1.8 mrg * to keep an active text file from being overwritten).
410 1.8 mrg */
411 1.8 mrg vp->v_flag &= ~VTEXT;
412 1.8 mrg
413 1.8 mrg /*
414 1.8 mrg * we just dropped the last reference to the uvn. see if we can
415 1.8 mrg * let it "stick around".
416 1.8 mrg */
417 1.8 mrg
418 1.8 mrg if (uvn->u_flags & UVM_VNODE_CANPERSIST) {
419 1.8 mrg /* won't block */
420 1.8 mrg uvn_flush(uobj, 0, 0, PGO_DEACTIVATE|PGO_ALLPAGES);
421 1.17 chs simple_unlock(&uobj->vmobjlock);
422 1.8 mrg vrele(vp); /* drop vnode reference */
423 1.8 mrg UVMHIST_LOG(maphist,"<- done/vrele! (persist)", 0,0,0,0);
424 1.8 mrg return;
425 1.8 mrg }
426 1.8 mrg
427 1.8 mrg /*
428 1.8 mrg * its a goner!
429 1.8 mrg */
430 1.8 mrg
431 1.8 mrg UVMHIST_LOG(maphist," its a goner (flushing)!", 0,0,0,0);
432 1.8 mrg
433 1.8 mrg uvn->u_flags |= UVM_VNODE_DYING;
434 1.8 mrg
435 1.8 mrg /*
436 1.8 mrg * even though we may unlock in flush, no one can gain a reference
437 1.8 mrg * to us until we clear the "dying" flag [because it blocks
438 1.8 mrg * attaches]. we will not do that until after we've disposed of all
439 1.8 mrg * the pages with uvn_flush(). note that before the flush the only
440 1.8 mrg * pages that could be marked PG_BUSY are ones that are in async
441 1.8 mrg * pageout by the daemon. (there can't be any pending "get"'s
442 1.8 mrg * because there are no references to the object).
443 1.8 mrg */
444 1.1 mrg
445 1.8 mrg (void) uvn_flush(uobj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES);
446 1.1 mrg
447 1.8 mrg UVMHIST_LOG(maphist," its a goner (done flush)!", 0,0,0,0);
448 1.8 mrg
449 1.8 mrg /*
450 1.8 mrg * given the structure of this pager, the above flush request will
451 1.8 mrg * create the following state: all the pages that were in the object
452 1.8 mrg * have either been free'd or they are marked PG_BUSY|PG_RELEASED.
453 1.8 mrg * the PG_BUSY bit was set either by us or the daemon for async I/O.
454 1.8 mrg * in either case, if we have pages left we can't kill the object
455 1.8 mrg * yet because i/o is pending. in this case we set the "relkill"
456 1.8 mrg * flag which will cause pgo_releasepg to kill the object once all
457 1.8 mrg * the I/O's are done [pgo_releasepg will be called from the aiodone
458 1.8 mrg * routine or from the page daemon].
459 1.8 mrg */
460 1.1 mrg
461 1.8 mrg if (uobj->uo_npages) { /* I/O pending. iodone will free */
462 1.27 chs #ifdef DEBUG
463 1.8 mrg /*
464 1.8 mrg * XXXCDC: very unlikely to happen until we have async i/o
465 1.8 mrg * so print a little info message in case it does.
466 1.8 mrg */
467 1.8 mrg printf("uvn_detach: vn %p has pages left after flush - "
468 1.8 mrg "relkill mode\n", uobj);
469 1.1 mrg #endif
470 1.8 mrg uvn->u_flags |= UVM_VNODE_RELKILL;
471 1.8 mrg simple_unlock(&uobj->vmobjlock);
472 1.8 mrg UVMHIST_LOG(maphist,"<- done! (releasepg will kill obj)", 0, 0,
473 1.8 mrg 0, 0);
474 1.8 mrg return;
475 1.8 mrg }
476 1.8 mrg
477 1.8 mrg /*
478 1.8 mrg * kill object now. note that we can't be on the sync q because
479 1.8 mrg * all references are gone.
480 1.8 mrg */
481 1.8 mrg if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
482 1.8 mrg simple_lock(&uvn_wl_lock); /* protect uvn_wlist */
483 1.8 mrg LIST_REMOVE(uvn, u_wlist);
484 1.8 mrg simple_unlock(&uvn_wl_lock);
485 1.8 mrg }
486 1.1 mrg #ifdef DIAGNOSTIC
487 1.8 mrg if (uobj->memq.tqh_first != NULL)
488 1.8 mrg panic("uvn_deref: vnode VM object still has pages afer "
489 1.8 mrg "syncio/free flush");
490 1.1 mrg #endif
491 1.8 mrg oldflags = uvn->u_flags;
492 1.8 mrg uvn->u_flags = 0;
493 1.8 mrg simple_unlock(&uobj->vmobjlock);
494 1.8 mrg
495 1.8 mrg /* wake up any sleepers */
496 1.8 mrg if (oldflags & UVM_VNODE_WANTED)
497 1.8 mrg wakeup(uvn);
498 1.8 mrg
499 1.8 mrg /*
500 1.8 mrg * drop our reference to the vnode.
501 1.8 mrg */
502 1.8 mrg vrele(vp);
503 1.8 mrg UVMHIST_LOG(maphist,"<- done (vrele) final", 0,0,0,0);
504 1.1 mrg
505 1.8 mrg return;
506 1.1 mrg }
507 1.1 mrg
508 1.1 mrg /*
509 1.1 mrg * uvm_vnp_terminate: external hook to clear out a vnode's VM
510 1.1 mrg *
511 1.5 mrg * called in two cases:
512 1.5 mrg * [1] when a persisting vnode vm object (i.e. one with a zero reference
513 1.5 mrg * count) needs to be freed so that a vnode can be reused. this
514 1.5 mrg * happens under "getnewvnode" in vfs_subr.c. if the vnode from
515 1.5 mrg * the free list is still attached (i.e. not VBAD) then vgone is
516 1.5 mrg * called. as part of the vgone trace this should get called to
517 1.5 mrg * free the vm object. this is the common case.
518 1.5 mrg * [2] when a filesystem is being unmounted by force (MNT_FORCE,
519 1.5 mrg * "umount -f") the vgone() function is called on active vnodes
520 1.5 mrg * on the mounted file systems to kill their data (the vnodes become
521 1.5 mrg * "dead" ones [see src/sys/miscfs/deadfs/...]). that results in a
522 1.5 mrg * call here (even if the uvn is still in use -- i.e. has a non-zero
523 1.5 mrg * reference count). this case happens at "umount -f" and during a
524 1.5 mrg * "reboot/halt" operation.
525 1.5 mrg *
526 1.5 mrg * => the caller must XLOCK and VOP_LOCK the vnode before calling us
527 1.5 mrg * [protects us from getting a vnode that is already in the DYING
528 1.5 mrg * state...]
529 1.5 mrg * => unlike uvn_detach, this function must not return until all the
530 1.5 mrg * uvn's pages are disposed of.
531 1.5 mrg * => in case [2] the uvn is still alive after this call, but all I/O
532 1.5 mrg * ops will fail (due to the backing vnode now being "dead"). this
533 1.5 mrg * will prob. kill any process using the uvn due to pgo_get failing.
534 1.1 mrg */
535 1.1 mrg
536 1.8 mrg void
537 1.8 mrg uvm_vnp_terminate(vp)
538 1.8 mrg struct vnode *vp;
539 1.8 mrg {
540 1.8 mrg struct uvm_vnode *uvn = &vp->v_uvm;
541 1.8 mrg int oldflags;
542 1.8 mrg UVMHIST_FUNC("uvm_vnp_terminate"); UVMHIST_CALLED(maphist);
543 1.1 mrg
544 1.8 mrg /*
545 1.8 mrg * lock object and check if it is valid
546 1.8 mrg */
547 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
548 1.8 mrg UVMHIST_LOG(maphist, " vp=0x%x, ref=%d, flag=0x%x", vp,
549 1.8 mrg uvn->u_obj.uo_refs, uvn->u_flags, 0);
550 1.8 mrg if ((uvn->u_flags & UVM_VNODE_VALID) == 0) {
551 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
552 1.8 mrg UVMHIST_LOG(maphist, "<- done (not active)", 0, 0, 0, 0);
553 1.8 mrg return;
554 1.8 mrg }
555 1.1 mrg
556 1.8 mrg /*
557 1.8 mrg * must be a valid uvn that is not already dying (because XLOCK
558 1.8 mrg * protects us from that). the uvn can't in the the ALOCK state
559 1.8 mrg * because it is valid, and uvn's that are in the ALOCK state haven't
560 1.8 mrg * been marked valid yet.
561 1.8 mrg */
562 1.1 mrg
563 1.5 mrg #ifdef DEBUG
564 1.8 mrg /*
565 1.8 mrg * debug check: are we yanking the vnode out from under our uvn?
566 1.8 mrg */
567 1.8 mrg if (uvn->u_obj.uo_refs) {
568 1.8 mrg printf("uvm_vnp_terminate(%p): terminating active vnode "
569 1.8 mrg "(refs=%d)\n", uvn, uvn->u_obj.uo_refs);
570 1.8 mrg }
571 1.1 mrg #endif
572 1.8 mrg
573 1.8 mrg /*
574 1.8 mrg * it is possible that the uvn was detached and is in the relkill
575 1.8 mrg * state [i.e. waiting for async i/o to finish so that releasepg can
576 1.8 mrg * kill object]. we take over the vnode now and cancel the relkill.
577 1.8 mrg * we want to know when the i/o is done so we can recycle right
578 1.8 mrg * away. note that a uvn can only be in the RELKILL state if it
579 1.8 mrg * has a zero reference count.
580 1.8 mrg */
581 1.8 mrg
582 1.8 mrg if (uvn->u_flags & UVM_VNODE_RELKILL)
583 1.8 mrg uvn->u_flags &= ~UVM_VNODE_RELKILL; /* cancel RELKILL */
584 1.8 mrg
585 1.8 mrg /*
586 1.8 mrg * block the uvn by setting the dying flag, and then flush the
587 1.8 mrg * pages. (note that flush may unlock object while doing I/O, but
588 1.8 mrg * it will re-lock it before it returns control here).
589 1.8 mrg *
590 1.8 mrg * also, note that we tell I/O that we are already VOP_LOCK'd so
591 1.8 mrg * that uvn_io doesn't attempt to VOP_LOCK again.
592 1.8 mrg *
593 1.8 mrg * XXXCDC: setting VNISLOCKED on an active uvn which is being terminated
594 1.8 mrg * due to a forceful unmount might not be a good idea. maybe we
595 1.8 mrg * need a way to pass in this info to uvn_flush through a
596 1.8 mrg * pager-defined PGO_ constant [currently there are none].
597 1.8 mrg */
598 1.8 mrg uvn->u_flags |= UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED;
599 1.8 mrg
600 1.8 mrg (void) uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES);
601 1.8 mrg
602 1.8 mrg /*
603 1.8 mrg * as we just did a flush we expect all the pages to be gone or in
604 1.8 mrg * the process of going. sleep to wait for the rest to go [via iosync].
605 1.8 mrg */
606 1.1 mrg
607 1.8 mrg while (uvn->u_obj.uo_npages) {
608 1.27 chs #ifdef DEBUG
609 1.8 mrg struct vm_page *pp;
610 1.8 mrg for (pp = uvn->u_obj.memq.tqh_first ; pp != NULL ;
611 1.8 mrg pp = pp->listq.tqe_next) {
612 1.8 mrg if ((pp->flags & PG_BUSY) == 0)
613 1.8 mrg panic("uvm_vnp_terminate: detected unbusy pg");
614 1.8 mrg }
615 1.8 mrg if (uvn->u_nio == 0)
616 1.8 mrg panic("uvm_vnp_terminate: no I/O to wait for?");
617 1.8 mrg printf("uvm_vnp_terminate: waiting for I/O to fin.\n");
618 1.8 mrg /*
619 1.8 mrg * XXXCDC: this is unlikely to happen without async i/o so we
620 1.8 mrg * put a printf in just to keep an eye on it.
621 1.8 mrg */
622 1.1 mrg #endif
623 1.8 mrg uvn->u_flags |= UVM_VNODE_IOSYNC;
624 1.8 mrg UVM_UNLOCK_AND_WAIT(&uvn->u_nio, &uvn->u_obj.vmobjlock, FALSE,
625 1.8 mrg "uvn_term",0);
626 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
627 1.8 mrg }
628 1.8 mrg
629 1.8 mrg /*
630 1.8 mrg * done. now we free the uvn if its reference count is zero
631 1.8 mrg * (true if we are zapping a persisting uvn). however, if we are
632 1.8 mrg * terminating a uvn with active mappings we let it live ... future
633 1.8 mrg * calls down to the vnode layer will fail.
634 1.8 mrg */
635 1.5 mrg
636 1.8 mrg oldflags = uvn->u_flags;
637 1.8 mrg if (uvn->u_obj.uo_refs) {
638 1.8 mrg
639 1.8 mrg /*
640 1.8 mrg * uvn must live on it is dead-vnode state until all references
641 1.8 mrg * are gone. restore flags. clear CANPERSIST state.
642 1.8 mrg */
643 1.8 mrg
644 1.8 mrg uvn->u_flags &= ~(UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED|
645 1.5 mrg UVM_VNODE_WANTED|UVM_VNODE_CANPERSIST);
646 1.8 mrg
647 1.8 mrg } else {
648 1.5 mrg
649 1.8 mrg /*
650 1.8 mrg * free the uvn now. note that the VREF reference is already
651 1.8 mrg * gone [it is dropped when we enter the persist state].
652 1.8 mrg */
653 1.8 mrg if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED)
654 1.8 mrg panic("uvm_vnp_terminate: io sync wanted bit set");
655 1.8 mrg
656 1.8 mrg if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
657 1.8 mrg simple_lock(&uvn_wl_lock);
658 1.8 mrg LIST_REMOVE(uvn, u_wlist);
659 1.8 mrg simple_unlock(&uvn_wl_lock);
660 1.8 mrg }
661 1.8 mrg uvn->u_flags = 0; /* uvn is history, clear all bits */
662 1.8 mrg }
663 1.5 mrg
664 1.8 mrg if (oldflags & UVM_VNODE_WANTED)
665 1.8 mrg wakeup(uvn); /* object lock still held */
666 1.5 mrg
667 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
668 1.8 mrg UVMHIST_LOG(maphist, "<- done", 0, 0, 0, 0);
669 1.1 mrg
670 1.1 mrg }
671 1.1 mrg
672 1.1 mrg /*
673 1.1 mrg * uvn_releasepg: handled a released page in a uvn
674 1.1 mrg *
675 1.1 mrg * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
676 1.1 mrg * to dispose of.
677 1.1 mrg * => caller must handled PG_WANTED case
678 1.1 mrg * => called with page's object locked, pageq's unlocked
679 1.1 mrg * => returns TRUE if page's object is still alive, FALSE if we
680 1.1 mrg * killed the page's object. if we return TRUE, then we
681 1.1 mrg * return with the object locked.
682 1.1 mrg * => if (nextpgp != NULL) => we return pageq.tqe_next here, and return
683 1.1 mrg * with the page queues locked [for pagedaemon]
684 1.1 mrg * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
685 1.1 mrg * => we kill the uvn if it is not referenced and we are suppose to
686 1.1 mrg * kill it ("relkill").
687 1.1 mrg */
688 1.1 mrg
689 1.8 mrg boolean_t
690 1.8 mrg uvn_releasepg(pg, nextpgp)
691 1.8 mrg struct vm_page *pg;
692 1.8 mrg struct vm_page **nextpgp; /* OUT */
693 1.1 mrg {
694 1.8 mrg struct uvm_vnode *uvn = (struct uvm_vnode *) pg->uobject;
695 1.1 mrg #ifdef DIAGNOSTIC
696 1.8 mrg if ((pg->flags & PG_RELEASED) == 0)
697 1.8 mrg panic("uvn_releasepg: page not released!");
698 1.1 mrg #endif
699 1.8 mrg
700 1.8 mrg /*
701 1.8 mrg * dispose of the page [caller handles PG_WANTED]
702 1.8 mrg */
703 1.26 chs pmap_page_protect(pg, VM_PROT_NONE);
704 1.8 mrg uvm_lock_pageq();
705 1.8 mrg if (nextpgp)
706 1.8 mrg *nextpgp = pg->pageq.tqe_next; /* next page for daemon */
707 1.8 mrg uvm_pagefree(pg);
708 1.8 mrg if (!nextpgp)
709 1.8 mrg uvm_unlock_pageq();
710 1.8 mrg
711 1.8 mrg /*
712 1.8 mrg * now see if we need to kill the object
713 1.8 mrg */
714 1.8 mrg if (uvn->u_flags & UVM_VNODE_RELKILL) {
715 1.8 mrg if (uvn->u_obj.uo_refs)
716 1.8 mrg panic("uvn_releasepg: kill flag set on referenced "
717 1.8 mrg "object!");
718 1.8 mrg if (uvn->u_obj.uo_npages == 0) {
719 1.8 mrg if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
720 1.8 mrg simple_lock(&uvn_wl_lock);
721 1.8 mrg LIST_REMOVE(uvn, u_wlist);
722 1.8 mrg simple_unlock(&uvn_wl_lock);
723 1.8 mrg }
724 1.1 mrg #ifdef DIAGNOSTIC
725 1.8 mrg if (uvn->u_obj.memq.tqh_first)
726 1.1 mrg panic("uvn_releasepg: pages in object with npages == 0");
727 1.1 mrg #endif
728 1.8 mrg if (uvn->u_flags & UVM_VNODE_WANTED)
729 1.8 mrg /* still holding object lock */
730 1.8 mrg wakeup(uvn);
731 1.8 mrg
732 1.8 mrg uvn->u_flags = 0; /* DEAD! */
733 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
734 1.8 mrg return (FALSE);
735 1.8 mrg }
736 1.8 mrg }
737 1.8 mrg return (TRUE);
738 1.1 mrg }
739 1.1 mrg
740 1.1 mrg /*
741 1.1 mrg * NOTE: currently we have to use VOP_READ/VOP_WRITE because they go
742 1.1 mrg * through the buffer cache and allow I/O in any size. These VOPs use
743 1.1 mrg * synchronous i/o. [vs. VOP_STRATEGY which can be async, but doesn't
744 1.1 mrg * go through the buffer cache or allow I/O sizes larger than a
745 1.1 mrg * block]. we will eventually want to change this.
746 1.1 mrg *
747 1.1 mrg * issues to consider:
748 1.1 mrg * uvm provides the uvm_aiodesc structure for async i/o management.
749 1.1 mrg * there are two tailq's in the uvm. structure... one for pending async
750 1.1 mrg * i/o and one for "done" async i/o. to do an async i/o one puts
751 1.1 mrg * an aiodesc on the "pending" list (protected by splbio()), starts the
752 1.1 mrg * i/o and returns VM_PAGER_PEND. when the i/o is done, we expect
753 1.1 mrg * some sort of "i/o done" function to be called (at splbio(), interrupt
754 1.1 mrg * time). this function should remove the aiodesc from the pending list
755 1.1 mrg * and place it on the "done" list and wakeup the daemon. the daemon
756 1.1 mrg * will run at normal spl() and will remove all items from the "done"
757 1.1 mrg * list and call the "aiodone" hook for each done request (see uvm_pager.c).
758 1.1 mrg * [in the old vm code, this was done by calling the "put" routine with
759 1.1 mrg * null arguments which made the code harder to read and understand because
760 1.1 mrg * you had one function ("put") doing two things.]
761 1.1 mrg *
762 1.1 mrg * so the current pager needs:
763 1.1 mrg * int uvn_aiodone(struct uvm_aiodesc *)
764 1.1 mrg *
765 1.1 mrg * => return KERN_SUCCESS (aio finished, free it). otherwise requeue for
766 1.1 mrg * later collection.
767 1.1 mrg * => called with pageq's locked by the daemon.
768 1.1 mrg *
769 1.1 mrg * general outline:
770 1.1 mrg * - "try" to lock object. if fail, just return (will try again later)
771 1.1 mrg * - drop "u_nio" (this req is done!)
772 1.1 mrg * - if (object->iosync && u_naio == 0) { wakeup &uvn->u_naio }
773 1.1 mrg * - get "page" structures (atop?).
774 1.1 mrg * - handle "wanted" pages
775 1.1 mrg * - handle "released" pages [using pgo_releasepg]
776 1.1 mrg * >>> pgo_releasepg may kill the object
777 1.1 mrg * dont forget to look at "object" wanted flag in all cases.
778 1.1 mrg */
779 1.1 mrg
780 1.1 mrg
781 1.1 mrg /*
782 1.1 mrg * uvn_flush: flush pages out of a uvm object.
783 1.1 mrg *
784 1.1 mrg * => object should be locked by caller. we may _unlock_ the object
785 1.1 mrg * if (and only if) we need to clean a page (PGO_CLEANIT).
786 1.1 mrg * we return with the object locked.
787 1.1 mrg * => if PGO_CLEANIT is set, we may block (due to I/O). thus, a caller
788 1.1 mrg * might want to unlock higher level resources (e.g. vm_map)
789 1.1 mrg * before calling flush.
790 1.1 mrg * => if PGO_CLEANIT is not set, then we will neither unlock the object
791 1.1 mrg * or block.
792 1.1 mrg * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
793 1.1 mrg * for flushing.
794 1.1 mrg * => NOTE: we rely on the fact that the object's memq is a TAILQ and
795 1.1 mrg * that new pages are inserted on the tail end of the list. thus,
796 1.1 mrg * we can make a complete pass through the object in one go by starting
797 1.1 mrg * at the head and working towards the tail (new pages are put in
798 1.1 mrg * front of us).
799 1.1 mrg * => NOTE: we are allowed to lock the page queues, so the caller
800 1.1 mrg * must not be holding the lock on them [e.g. pagedaemon had
801 1.1 mrg * better not call us with the queues locked]
802 1.1 mrg * => we return TRUE unless we encountered some sort of I/O error
803 1.1 mrg *
804 1.1 mrg * comment on "cleaning" object and PG_BUSY pages:
805 1.1 mrg * this routine is holding the lock on the object. the only time
806 1.1 mrg * that it can run into a PG_BUSY page that it does not own is if
807 1.1 mrg * some other process has started I/O on the page (e.g. either
808 1.1 mrg * a pagein, or a pageout). if the PG_BUSY page is being paged
809 1.1 mrg * in, then it can not be dirty (!PG_CLEAN) because no one has
810 1.1 mrg * had a chance to modify it yet. if the PG_BUSY page is being
811 1.1 mrg * paged out then it means that someone else has already started
812 1.1 mrg * cleaning the page for us (how nice!). in this case, if we
813 1.1 mrg * have syncio specified, then after we make our pass through the
814 1.1 mrg * object we need to wait for the other PG_BUSY pages to clear
815 1.1 mrg * off (i.e. we need to do an iosync). also note that once a
816 1.1 mrg * page is PG_BUSY it must stay in its object until it is un-busyed.
817 1.1 mrg *
818 1.1 mrg * note on page traversal:
819 1.1 mrg * we can traverse the pages in an object either by going down the
820 1.1 mrg * linked list in "uobj->memq", or we can go over the address range
821 1.1 mrg * by page doing hash table lookups for each address. depending
822 1.1 mrg * on how many pages are in the object it may be cheaper to do one
823 1.1 mrg * or the other. we set "by_list" to true if we are using memq.
824 1.1 mrg * if the cost of a hash lookup was equal to the cost of the list
825 1.1 mrg * traversal we could compare the number of pages in the start->stop
826 1.1 mrg * range to the total number of pages in the object. however, it
827 1.1 mrg * seems that a hash table lookup is more expensive than the linked
828 1.1 mrg * list traversal, so we multiply the number of pages in the
829 1.1 mrg * start->stop range by a penalty which we define below.
830 1.1 mrg */
831 1.1 mrg
832 1.8 mrg #define UVN_HASH_PENALTY 4 /* XXX: a guess */
833 1.1 mrg
834 1.8 mrg static boolean_t
835 1.8 mrg uvn_flush(uobj, start, stop, flags)
836 1.8 mrg struct uvm_object *uobj;
837 1.15 eeh vaddr_t start, stop;
838 1.8 mrg int flags;
839 1.8 mrg {
840 1.8 mrg struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
841 1.8 mrg struct vm_page *pp, *ppnext, *ptmp;
842 1.16 chs struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
843 1.8 mrg int npages, result, lcv;
844 1.8 mrg boolean_t retval, need_iosync, by_list, needs_clean;
845 1.15 eeh vaddr_t curoff;
846 1.8 mrg u_short pp_version;
847 1.8 mrg UVMHIST_FUNC("uvn_flush"); UVMHIST_CALLED(maphist);
848 1.8 mrg
849 1.8 mrg curoff = 0; /* XXX: shut up gcc */
850 1.8 mrg /*
851 1.8 mrg * get init vals and determine how we are going to traverse object
852 1.8 mrg */
853 1.1 mrg
854 1.8 mrg need_iosync = FALSE;
855 1.8 mrg retval = TRUE; /* return value */
856 1.8 mrg if (flags & PGO_ALLPAGES) {
857 1.8 mrg start = 0;
858 1.8 mrg stop = round_page(uvn->u_size);
859 1.8 mrg by_list = TRUE; /* always go by the list */
860 1.8 mrg } else {
861 1.8 mrg start = trunc_page(start);
862 1.8 mrg stop = round_page(stop);
863 1.27 chs #ifdef DEBUG
864 1.8 mrg if (stop > round_page(uvn->u_size))
865 1.8 mrg printf("uvn_flush: strange, got an out of range "
866 1.8 mrg "flush (fixed)\n");
867 1.27 chs #endif
868 1.8 mrg by_list = (uobj->uo_npages <=
869 1.16 chs ((stop - start) >> PAGE_SHIFT) * UVN_HASH_PENALTY);
870 1.8 mrg }
871 1.8 mrg
872 1.8 mrg UVMHIST_LOG(maphist,
873 1.8 mrg " flush start=0x%x, stop=0x%x, by_list=%d, flags=0x%x",
874 1.8 mrg start, stop, by_list, flags);
875 1.8 mrg
876 1.8 mrg /*
877 1.8 mrg * PG_CLEANCHK: this bit is used by the pgo_mk_pcluster function as
878 1.8 mrg * a _hint_ as to how up to date the PG_CLEAN bit is. if the hint
879 1.8 mrg * is wrong it will only prevent us from clustering... it won't break
880 1.8 mrg * anything. we clear all PG_CLEANCHK bits here, and pgo_mk_pcluster
881 1.8 mrg * will set them as it syncs PG_CLEAN. This is only an issue if we
882 1.8 mrg * are looking at non-inactive pages (because inactive page's PG_CLEAN
883 1.8 mrg * bit is always up to date since there are no mappings).
884 1.8 mrg * [borrowed PG_CLEANCHK idea from FreeBSD VM]
885 1.8 mrg */
886 1.1 mrg
887 1.8 mrg if ((flags & PGO_CLEANIT) != 0 &&
888 1.8 mrg uobj->pgops->pgo_mk_pcluster != NULL) {
889 1.8 mrg if (by_list) {
890 1.8 mrg for (pp = uobj->memq.tqh_first ; pp != NULL ;
891 1.8 mrg pp = pp->listq.tqe_next) {
892 1.8 mrg if (pp->offset < start || pp->offset >= stop)
893 1.8 mrg continue;
894 1.8 mrg pp->flags &= ~PG_CLEANCHK;
895 1.8 mrg }
896 1.8 mrg
897 1.8 mrg } else { /* by hash */
898 1.8 mrg for (curoff = start ; curoff < stop;
899 1.8 mrg curoff += PAGE_SIZE) {
900 1.8 mrg pp = uvm_pagelookup(uobj, curoff);
901 1.8 mrg if (pp)
902 1.8 mrg pp->flags &= ~PG_CLEANCHK;
903 1.8 mrg }
904 1.8 mrg }
905 1.8 mrg }
906 1.1 mrg
907 1.8 mrg /*
908 1.8 mrg * now do it. note: we must update ppnext in body of loop or we
909 1.8 mrg * will get stuck. we need to use ppnext because we may free "pp"
910 1.8 mrg * before doing the next loop.
911 1.8 mrg */
912 1.1 mrg
913 1.8 mrg if (by_list) {
914 1.8 mrg pp = uobj->memq.tqh_first;
915 1.1 mrg } else {
916 1.8 mrg curoff = start;
917 1.8 mrg pp = uvm_pagelookup(uobj, curoff);
918 1.1 mrg }
919 1.8 mrg
920 1.8 mrg ppnext = NULL; /* XXX: shut up gcc */
921 1.8 mrg ppsp = NULL; /* XXX: shut up gcc */
922 1.8 mrg uvm_lock_pageq(); /* page queues locked */
923 1.8 mrg
924 1.8 mrg /* locked: both page queues and uobj */
925 1.8 mrg for ( ; (by_list && pp != NULL) ||
926 1.8 mrg (!by_list && curoff < stop) ; pp = ppnext) {
927 1.8 mrg
928 1.8 mrg if (by_list) {
929 1.8 mrg
930 1.8 mrg /*
931 1.8 mrg * range check
932 1.8 mrg */
933 1.8 mrg
934 1.8 mrg if (pp->offset < start || pp->offset >= stop) {
935 1.8 mrg ppnext = pp->listq.tqe_next;
936 1.8 mrg continue;
937 1.8 mrg }
938 1.8 mrg
939 1.8 mrg } else {
940 1.8 mrg
941 1.8 mrg /*
942 1.8 mrg * null check
943 1.8 mrg */
944 1.8 mrg
945 1.8 mrg curoff += PAGE_SIZE;
946 1.8 mrg if (pp == NULL) {
947 1.8 mrg if (curoff < stop)
948 1.8 mrg ppnext = uvm_pagelookup(uobj, curoff);
949 1.8 mrg continue;
950 1.8 mrg }
951 1.8 mrg
952 1.8 mrg }
953 1.8 mrg
954 1.8 mrg /*
955 1.8 mrg * handle case where we do not need to clean page (either
956 1.8 mrg * because we are not clean or because page is not dirty or
957 1.8 mrg * is busy):
958 1.8 mrg *
959 1.8 mrg * NOTE: we are allowed to deactivate a non-wired active
960 1.8 mrg * PG_BUSY page, but once a PG_BUSY page is on the inactive
961 1.8 mrg * queue it must stay put until it is !PG_BUSY (so as not to
962 1.8 mrg * confuse pagedaemon).
963 1.8 mrg */
964 1.8 mrg
965 1.8 mrg if ((flags & PGO_CLEANIT) == 0 || (pp->flags & PG_BUSY) != 0) {
966 1.8 mrg needs_clean = FALSE;
967 1.8 mrg if ((pp->flags & PG_BUSY) != 0 &&
968 1.8 mrg (flags & (PGO_CLEANIT|PGO_SYNCIO)) ==
969 1.8 mrg (PGO_CLEANIT|PGO_SYNCIO))
970 1.8 mrg need_iosync = TRUE;
971 1.8 mrg } else {
972 1.8 mrg /*
973 1.8 mrg * freeing: nuke all mappings so we can sync
974 1.8 mrg * PG_CLEAN bit with no race
975 1.8 mrg */
976 1.8 mrg if ((pp->flags & PG_CLEAN) != 0 &&
977 1.8 mrg (flags & PGO_FREE) != 0 &&
978 1.8 mrg (pp->pqflags & PQ_ACTIVE) != 0)
979 1.26 chs pmap_page_protect(pp, VM_PROT_NONE);
980 1.8 mrg if ((pp->flags & PG_CLEAN) != 0 &&
981 1.26 chs pmap_is_modified(pp))
982 1.8 mrg pp->flags &= ~(PG_CLEAN);
983 1.8 mrg pp->flags |= PG_CLEANCHK; /* update "hint" */
984 1.8 mrg
985 1.8 mrg needs_clean = ((pp->flags & PG_CLEAN) == 0);
986 1.8 mrg }
987 1.8 mrg
988 1.8 mrg /*
989 1.8 mrg * if we don't need a clean... load ppnext and dispose of pp
990 1.8 mrg */
991 1.8 mrg if (!needs_clean) {
992 1.8 mrg /* load ppnext */
993 1.8 mrg if (by_list)
994 1.8 mrg ppnext = pp->listq.tqe_next;
995 1.8 mrg else {
996 1.8 mrg if (curoff < stop)
997 1.8 mrg ppnext = uvm_pagelookup(uobj, curoff);
998 1.8 mrg }
999 1.8 mrg
1000 1.8 mrg /* now dispose of pp */
1001 1.8 mrg if (flags & PGO_DEACTIVATE) {
1002 1.8 mrg if ((pp->pqflags & PQ_INACTIVE) == 0 &&
1003 1.8 mrg pp->wire_count == 0) {
1004 1.26 chs pmap_page_protect(pp, VM_PROT_NONE);
1005 1.8 mrg uvm_pagedeactivate(pp);
1006 1.8 mrg }
1007 1.8 mrg
1008 1.8 mrg } else if (flags & PGO_FREE) {
1009 1.8 mrg if (pp->flags & PG_BUSY) {
1010 1.8 mrg /* release busy pages */
1011 1.8 mrg pp->flags |= PG_RELEASED;
1012 1.8 mrg } else {
1013 1.26 chs pmap_page_protect(pp, VM_PROT_NONE);
1014 1.8 mrg /* removed page from object */
1015 1.8 mrg uvm_pagefree(pp);
1016 1.8 mrg }
1017 1.8 mrg }
1018 1.8 mrg /* ppnext is valid so we can continue... */
1019 1.8 mrg continue;
1020 1.8 mrg }
1021 1.8 mrg
1022 1.8 mrg /*
1023 1.8 mrg * pp points to a page in the locked object that we are
1024 1.8 mrg * working on. if it is !PG_CLEAN,!PG_BUSY and we asked
1025 1.8 mrg * for cleaning (PGO_CLEANIT). we clean it now.
1026 1.8 mrg *
1027 1.8 mrg * let uvm_pager_put attempted a clustered page out.
1028 1.8 mrg * note: locked: uobj and page queues.
1029 1.8 mrg */
1030 1.8 mrg
1031 1.8 mrg pp->flags |= PG_BUSY; /* we 'own' page now */
1032 1.8 mrg UVM_PAGE_OWN(pp, "uvn_flush");
1033 1.26 chs pmap_page_protect(pp, VM_PROT_READ);
1034 1.8 mrg pp_version = pp->version;
1035 1.1 mrg ReTry:
1036 1.8 mrg ppsp = pps;
1037 1.8 mrg npages = sizeof(pps) / sizeof(struct vm_page *);
1038 1.1 mrg
1039 1.8 mrg /* locked: page queues, uobj */
1040 1.8 mrg result = uvm_pager_put(uobj, pp, &ppsp, &npages,
1041 1.1 mrg flags | PGO_DOACTCLUST, start, stop);
1042 1.8 mrg /* unlocked: page queues, uobj */
1043 1.1 mrg
1044 1.8 mrg /*
1045 1.8 mrg * at this point nothing is locked. if we did an async I/O
1046 1.8 mrg * it is remotely possible for the async i/o to complete and
1047 1.8 mrg * the page "pp" be freed or what not before we get a chance
1048 1.8 mrg * to relock the object. in order to detect this, we have
1049 1.8 mrg * saved the version number of the page in "pp_version".
1050 1.8 mrg */
1051 1.8 mrg
1052 1.8 mrg /* relock! */
1053 1.8 mrg simple_lock(&uobj->vmobjlock);
1054 1.8 mrg uvm_lock_pageq();
1055 1.8 mrg
1056 1.8 mrg /*
1057 1.8 mrg * VM_PAGER_AGAIN: given the structure of this pager, this
1058 1.8 mrg * can only happen when we are doing async I/O and can't
1059 1.8 mrg * map the pages into kernel memory (pager_map) due to lack
1060 1.8 mrg * of vm space. if this happens we drop back to sync I/O.
1061 1.8 mrg */
1062 1.8 mrg
1063 1.8 mrg if (result == VM_PAGER_AGAIN) {
1064 1.8 mrg /*
1065 1.8 mrg * it is unlikely, but page could have been released
1066 1.8 mrg * while we had the object lock dropped. we ignore
1067 1.8 mrg * this now and retry the I/O. we will detect and
1068 1.8 mrg * handle the released page after the syncio I/O
1069 1.8 mrg * completes.
1070 1.8 mrg */
1071 1.1 mrg #ifdef DIAGNOSTIC
1072 1.8 mrg if (flags & PGO_SYNCIO)
1073 1.1 mrg panic("uvn_flush: PGO_SYNCIO return 'try again' error (impossible)");
1074 1.1 mrg #endif
1075 1.8 mrg flags |= PGO_SYNCIO;
1076 1.8 mrg goto ReTry;
1077 1.8 mrg }
1078 1.8 mrg
1079 1.8 mrg /*
1080 1.8 mrg * the cleaning operation is now done. finish up. note that
1081 1.8 mrg * on error (!OK, !PEND) uvm_pager_put drops the cluster for us.
1082 1.8 mrg * if success (OK, PEND) then uvm_pager_put returns the cluster
1083 1.8 mrg * to us in ppsp/npages.
1084 1.8 mrg */
1085 1.8 mrg
1086 1.8 mrg /*
1087 1.8 mrg * for pending async i/o if we are not deactivating/freeing
1088 1.8 mrg * we can move on to the next page.
1089 1.8 mrg */
1090 1.8 mrg
1091 1.8 mrg if (result == VM_PAGER_PEND) {
1092 1.8 mrg
1093 1.8 mrg if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
1094 1.8 mrg /*
1095 1.8 mrg * no per-page ops: refresh ppnext and continue
1096 1.8 mrg */
1097 1.8 mrg if (by_list) {
1098 1.8 mrg if (pp->version == pp_version)
1099 1.8 mrg ppnext = pp->listq.tqe_next;
1100 1.8 mrg else
1101 1.8 mrg /* reset */
1102 1.8 mrg ppnext = uobj->memq.tqh_first;
1103 1.8 mrg } else {
1104 1.8 mrg if (curoff < stop)
1105 1.8 mrg ppnext = uvm_pagelookup(uobj,
1106 1.8 mrg curoff);
1107 1.8 mrg }
1108 1.8 mrg continue;
1109 1.8 mrg }
1110 1.8 mrg
1111 1.8 mrg /* need to do anything here? */
1112 1.8 mrg }
1113 1.8 mrg
1114 1.8 mrg /*
1115 1.8 mrg * need to look at each page of the I/O operation. we defer
1116 1.8 mrg * processing "pp" until the last trip through this "for" loop
1117 1.8 mrg * so that we can load "ppnext" for the main loop after we
1118 1.8 mrg * play with the cluster pages [thus the "npages + 1" in the
1119 1.8 mrg * loop below].
1120 1.8 mrg */
1121 1.8 mrg
1122 1.8 mrg for (lcv = 0 ; lcv < npages + 1 ; lcv++) {
1123 1.8 mrg
1124 1.8 mrg /*
1125 1.8 mrg * handle ppnext for outside loop, and saving pp
1126 1.8 mrg * until the end.
1127 1.8 mrg */
1128 1.8 mrg if (lcv < npages) {
1129 1.8 mrg if (ppsp[lcv] == pp)
1130 1.8 mrg continue; /* skip pp until the end */
1131 1.8 mrg ptmp = ppsp[lcv];
1132 1.8 mrg } else {
1133 1.8 mrg ptmp = pp;
1134 1.8 mrg
1135 1.8 mrg /* set up next page for outer loop */
1136 1.8 mrg if (by_list) {
1137 1.8 mrg if (pp->version == pp_version)
1138 1.8 mrg ppnext = pp->listq.tqe_next;
1139 1.8 mrg else
1140 1.8 mrg /* reset */
1141 1.8 mrg ppnext = uobj->memq.tqh_first;
1142 1.8 mrg } else {
1143 1.8 mrg if (curoff < stop)
1144 1.8 mrg ppnext = uvm_pagelookup(uobj, curoff);
1145 1.8 mrg }
1146 1.8 mrg }
1147 1.8 mrg
1148 1.8 mrg /*
1149 1.8 mrg * verify the page didn't get moved while obj was
1150 1.8 mrg * unlocked
1151 1.8 mrg */
1152 1.8 mrg if (result == VM_PAGER_PEND && ptmp->uobject != uobj)
1153 1.8 mrg continue;
1154 1.8 mrg
1155 1.8 mrg /*
1156 1.8 mrg * unbusy the page if I/O is done. note that for
1157 1.8 mrg * pending I/O it is possible that the I/O op
1158 1.8 mrg * finished before we relocked the object (in
1159 1.8 mrg * which case the page is no longer busy).
1160 1.8 mrg */
1161 1.8 mrg
1162 1.8 mrg if (result != VM_PAGER_PEND) {
1163 1.8 mrg if (ptmp->flags & PG_WANTED)
1164 1.8 mrg /* still holding object lock */
1165 1.25 thorpej wakeup(ptmp);
1166 1.8 mrg
1167 1.8 mrg ptmp->flags &= ~(PG_WANTED|PG_BUSY);
1168 1.8 mrg UVM_PAGE_OWN(ptmp, NULL);
1169 1.8 mrg if (ptmp->flags & PG_RELEASED) {
1170 1.8 mrg
1171 1.8 mrg /* pgo_releasepg wants this */
1172 1.8 mrg uvm_unlock_pageq();
1173 1.8 mrg if (!uvn_releasepg(ptmp, NULL))
1174 1.8 mrg return (TRUE);
1175 1.8 mrg
1176 1.8 mrg uvm_lock_pageq(); /* relock */
1177 1.8 mrg continue; /* next page */
1178 1.8 mrg
1179 1.8 mrg } else {
1180 1.8 mrg ptmp->flags |= (PG_CLEAN|PG_CLEANCHK);
1181 1.8 mrg if ((flags & PGO_FREE) == 0)
1182 1.26 chs pmap_clear_modify(ptmp);
1183 1.8 mrg }
1184 1.8 mrg }
1185 1.8 mrg
1186 1.8 mrg /*
1187 1.8 mrg * dispose of page
1188 1.8 mrg */
1189 1.8 mrg
1190 1.8 mrg if (flags & PGO_DEACTIVATE) {
1191 1.8 mrg if ((pp->pqflags & PQ_INACTIVE) == 0 &&
1192 1.8 mrg pp->wire_count == 0) {
1193 1.26 chs pmap_page_protect(ptmp, VM_PROT_NONE);
1194 1.8 mrg uvm_pagedeactivate(ptmp);
1195 1.8 mrg }
1196 1.8 mrg
1197 1.8 mrg } else if (flags & PGO_FREE) {
1198 1.8 mrg if (result == VM_PAGER_PEND) {
1199 1.8 mrg if ((ptmp->flags & PG_BUSY) != 0)
1200 1.8 mrg /* signal for i/o done */
1201 1.8 mrg ptmp->flags |= PG_RELEASED;
1202 1.8 mrg } else {
1203 1.8 mrg if (result != VM_PAGER_OK) {
1204 1.8 mrg printf("uvn_flush: obj=%p, "
1205 1.8 mrg "offset=0x%lx. error "
1206 1.8 mrg "during pageout.\n",
1207 1.8 mrg pp->uobject, pp->offset);
1208 1.8 mrg printf("uvn_flush: WARNING: "
1209 1.8 mrg "changes to page may be "
1210 1.8 mrg "lost!\n");
1211 1.8 mrg retval = FALSE;
1212 1.8 mrg }
1213 1.26 chs pmap_page_protect(ptmp, VM_PROT_NONE);
1214 1.8 mrg uvm_pagefree(ptmp);
1215 1.8 mrg }
1216 1.8 mrg }
1217 1.1 mrg
1218 1.8 mrg } /* end of "lcv" for loop */
1219 1.1 mrg
1220 1.8 mrg } /* end of "pp" for loop */
1221 1.1 mrg
1222 1.8 mrg /*
1223 1.8 mrg * done with pagequeues: unlock
1224 1.8 mrg */
1225 1.8 mrg uvm_unlock_pageq();
1226 1.1 mrg
1227 1.8 mrg /*
1228 1.8 mrg * now wait for all I/O if required.
1229 1.8 mrg */
1230 1.8 mrg if (need_iosync) {
1231 1.1 mrg
1232 1.8 mrg UVMHIST_LOG(maphist," <<DOING IOSYNC>>",0,0,0,0);
1233 1.8 mrg while (uvn->u_nio != 0) {
1234 1.8 mrg uvn->u_flags |= UVM_VNODE_IOSYNC;
1235 1.8 mrg UVM_UNLOCK_AND_WAIT(&uvn->u_nio, &uvn->u_obj.vmobjlock,
1236 1.8 mrg FALSE, "uvn_flush",0);
1237 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
1238 1.8 mrg }
1239 1.8 mrg if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED)
1240 1.8 mrg wakeup(&uvn->u_flags);
1241 1.8 mrg uvn->u_flags &= ~(UVM_VNODE_IOSYNC|UVM_VNODE_IOSYNCWANTED);
1242 1.1 mrg }
1243 1.1 mrg
1244 1.8 mrg /* return, with object locked! */
1245 1.8 mrg UVMHIST_LOG(maphist,"<- done (retval=0x%x)",retval,0,0,0);
1246 1.8 mrg return(retval);
1247 1.1 mrg }
1248 1.1 mrg
1249 1.1 mrg /*
1250 1.1 mrg * uvn_cluster
1251 1.1 mrg *
1252 1.1 mrg * we are about to do I/O in an object at offset. this function is called
1253 1.1 mrg * to establish a range of offsets around "offset" in which we can cluster
1254 1.1 mrg * I/O.
1255 1.1 mrg *
1256 1.1 mrg * - currently doesn't matter if obj locked or not.
1257 1.1 mrg */
1258 1.1 mrg
1259 1.8 mrg static void
1260 1.8 mrg uvn_cluster(uobj, offset, loffset, hoffset)
1261 1.8 mrg struct uvm_object *uobj;
1262 1.15 eeh vaddr_t offset;
1263 1.15 eeh vaddr_t *loffset, *hoffset; /* OUT */
1264 1.1 mrg {
1265 1.8 mrg struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
1266 1.8 mrg *loffset = offset;
1267 1.1 mrg
1268 1.8 mrg if (*loffset >= uvn->u_size)
1269 1.8 mrg panic("uvn_cluster: offset out of range");
1270 1.1 mrg
1271 1.8 mrg /*
1272 1.8 mrg * XXX: old pager claims we could use VOP_BMAP to get maxcontig value.
1273 1.8 mrg */
1274 1.8 mrg *hoffset = *loffset + MAXBSIZE;
1275 1.8 mrg if (*hoffset > round_page(uvn->u_size)) /* past end? */
1276 1.8 mrg *hoffset = round_page(uvn->u_size);
1277 1.1 mrg
1278 1.8 mrg return;
1279 1.1 mrg }
1280 1.1 mrg
1281 1.1 mrg /*
1282 1.1 mrg * uvn_put: flush page data to backing store.
1283 1.1 mrg *
1284 1.1 mrg * => prefer map unlocked (not required)
1285 1.1 mrg * => object must be locked! we will _unlock_ it before starting I/O.
1286 1.1 mrg * => flags: PGO_SYNCIO -- use sync. I/O
1287 1.1 mrg * => note: caller must set PG_CLEAN and pmap_clear_modify (if needed)
1288 1.1 mrg * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync.
1289 1.1 mrg * [thus we never do async i/o! see iodone comment]
1290 1.1 mrg */
1291 1.1 mrg
1292 1.8 mrg static int
1293 1.8 mrg uvn_put(uobj, pps, npages, flags)
1294 1.8 mrg struct uvm_object *uobj;
1295 1.8 mrg struct vm_page **pps;
1296 1.8 mrg int npages, flags;
1297 1.1 mrg {
1298 1.8 mrg int retval;
1299 1.1 mrg
1300 1.8 mrg /* note: object locked */
1301 1.8 mrg retval = uvn_io((struct uvm_vnode*)uobj, pps, npages, flags, UIO_WRITE);
1302 1.8 mrg /* note: object unlocked */
1303 1.1 mrg
1304 1.8 mrg return(retval);
1305 1.1 mrg }
1306 1.1 mrg
1307 1.1 mrg
1308 1.1 mrg /*
1309 1.1 mrg * uvn_get: get pages (synchronously) from backing store
1310 1.1 mrg *
1311 1.1 mrg * => prefer map unlocked (not required)
1312 1.1 mrg * => object must be locked! we will _unlock_ it before starting any I/O.
1313 1.1 mrg * => flags: PGO_ALLPAGES: get all of the pages
1314 1.1 mrg * PGO_LOCKED: fault data structures are locked
1315 1.1 mrg * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
1316 1.1 mrg * => NOTE: caller must check for released pages!!
1317 1.1 mrg */
1318 1.1 mrg
1319 1.8 mrg static int
1320 1.8 mrg uvn_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
1321 1.8 mrg struct uvm_object *uobj;
1322 1.15 eeh vaddr_t offset;
1323 1.8 mrg struct vm_page **pps; /* IN/OUT */
1324 1.8 mrg int *npagesp; /* IN (OUT if PGO_LOCKED) */
1325 1.8 mrg int centeridx, advice, flags;
1326 1.8 mrg vm_prot_t access_type;
1327 1.8 mrg {
1328 1.15 eeh vaddr_t current_offset;
1329 1.8 mrg struct vm_page *ptmp;
1330 1.8 mrg int lcv, result, gotpages;
1331 1.8 mrg boolean_t done;
1332 1.8 mrg UVMHIST_FUNC("uvn_get"); UVMHIST_CALLED(maphist);
1333 1.8 mrg UVMHIST_LOG(maphist, "flags=%d", flags,0,0,0);
1334 1.8 mrg
1335 1.8 mrg /*
1336 1.8 mrg * step 1: handled the case where fault data structures are locked.
1337 1.8 mrg */
1338 1.8 mrg
1339 1.8 mrg if (flags & PGO_LOCKED) {
1340 1.1 mrg
1341 1.8 mrg /*
1342 1.8 mrg * gotpages is the current number of pages we've gotten (which
1343 1.8 mrg * we pass back up to caller via *npagesp.
1344 1.8 mrg */
1345 1.8 mrg
1346 1.8 mrg gotpages = 0;
1347 1.8 mrg
1348 1.8 mrg /*
1349 1.8 mrg * step 1a: get pages that are already resident. only do this
1350 1.8 mrg * if the data structures are locked (i.e. the first time
1351 1.8 mrg * through).
1352 1.8 mrg */
1353 1.8 mrg
1354 1.8 mrg done = TRUE; /* be optimistic */
1355 1.8 mrg
1356 1.8 mrg for (lcv = 0, current_offset = offset ; lcv < *npagesp ;
1357 1.8 mrg lcv++, current_offset += PAGE_SIZE) {
1358 1.8 mrg
1359 1.8 mrg /* do we care about this page? if not, skip it */
1360 1.8 mrg if (pps[lcv] == PGO_DONTCARE)
1361 1.8 mrg continue;
1362 1.8 mrg
1363 1.8 mrg /* lookup page */
1364 1.8 mrg ptmp = uvm_pagelookup(uobj, current_offset);
1365 1.8 mrg
1366 1.8 mrg /* to be useful must get a non-busy, non-released pg */
1367 1.8 mrg if (ptmp == NULL ||
1368 1.8 mrg (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1369 1.8 mrg if (lcv == centeridx || (flags & PGO_ALLPAGES)
1370 1.8 mrg != 0)
1371 1.8 mrg done = FALSE; /* need to do a wait or I/O! */
1372 1.8 mrg continue;
1373 1.8 mrg }
1374 1.8 mrg
1375 1.8 mrg /*
1376 1.8 mrg * useful page: busy/lock it and plug it in our
1377 1.8 mrg * result array
1378 1.8 mrg */
1379 1.8 mrg ptmp->flags |= PG_BUSY; /* loan up to caller */
1380 1.8 mrg UVM_PAGE_OWN(ptmp, "uvn_get1");
1381 1.8 mrg pps[lcv] = ptmp;
1382 1.8 mrg gotpages++;
1383 1.8 mrg
1384 1.8 mrg } /* "for" lcv loop */
1385 1.8 mrg
1386 1.8 mrg /*
1387 1.8 mrg * XXX: given the "advice", should we consider async read-ahead?
1388 1.8 mrg * XXX: fault current does deactive of pages behind us. is
1389 1.8 mrg * this good (other callers might now).
1390 1.8 mrg */
1391 1.8 mrg /*
1392 1.8 mrg * XXX: read-ahead currently handled by buffer cache (bread)
1393 1.8 mrg * level.
1394 1.8 mrg * XXX: no async i/o available.
1395 1.8 mrg * XXX: so we don't do anything now.
1396 1.8 mrg */
1397 1.8 mrg
1398 1.8 mrg /*
1399 1.8 mrg * step 1c: now we've either done everything needed or we to
1400 1.8 mrg * unlock and do some waiting or I/O.
1401 1.8 mrg */
1402 1.8 mrg
1403 1.8 mrg *npagesp = gotpages; /* let caller know */
1404 1.8 mrg if (done)
1405 1.8 mrg return(VM_PAGER_OK); /* bingo! */
1406 1.8 mrg else
1407 1.8 mrg /* EEK! Need to unlock and I/O */
1408 1.8 mrg return(VM_PAGER_UNLOCK);
1409 1.8 mrg }
1410 1.8 mrg
1411 1.8 mrg /*
1412 1.8 mrg * step 2: get non-resident or busy pages.
1413 1.8 mrg * object is locked. data structures are unlocked.
1414 1.8 mrg *
1415 1.8 mrg * XXX: because we can't do async I/O at this level we get things
1416 1.8 mrg * page at a time (otherwise we'd chunk). the VOP_READ() will do
1417 1.8 mrg * async-read-ahead for us at a lower level.
1418 1.8 mrg */
1419 1.1 mrg
1420 1.8 mrg for (lcv = 0, current_offset = offset ;
1421 1.8 mrg lcv < *npagesp ; lcv++, current_offset += PAGE_SIZE) {
1422 1.8 mrg
1423 1.8 mrg /* skip over pages we've already gotten or don't want */
1424 1.8 mrg /* skip over pages we don't _have_ to get */
1425 1.8 mrg if (pps[lcv] != NULL || (lcv != centeridx &&
1426 1.8 mrg (flags & PGO_ALLPAGES) == 0))
1427 1.8 mrg continue;
1428 1.8 mrg
1429 1.8 mrg /*
1430 1.8 mrg * we have yet to locate the current page (pps[lcv]). we first
1431 1.8 mrg * look for a page that is already at the current offset. if
1432 1.8 mrg * we fine a page, we check to see if it is busy or released.
1433 1.8 mrg * if that is the case, then we sleep on the page until it is
1434 1.8 mrg * no longer busy or released and repeat the lookup. if the
1435 1.8 mrg * page we found is neither busy nor released, then we busy it
1436 1.8 mrg * (so we own it) and plug it into pps[lcv]. this breaks the
1437 1.8 mrg * following while loop and indicates we are ready to move on
1438 1.8 mrg * to the next page in the "lcv" loop above.
1439 1.8 mrg *
1440 1.8 mrg * if we exit the while loop with pps[lcv] still set to NULL,
1441 1.8 mrg * then it means that we allocated a new busy/fake/clean page
1442 1.8 mrg * ptmp in the object and we need to do I/O to fill in the data.
1443 1.8 mrg */
1444 1.8 mrg
1445 1.8 mrg while (pps[lcv] == NULL) { /* top of "pps" while loop */
1446 1.8 mrg
1447 1.8 mrg /* look for a current page */
1448 1.8 mrg ptmp = uvm_pagelookup(uobj, current_offset);
1449 1.8 mrg
1450 1.8 mrg /* nope? allocate one now (if we can) */
1451 1.8 mrg if (ptmp == NULL) {
1452 1.8 mrg
1453 1.8 mrg ptmp = uvm_pagealloc(uobj, current_offset,
1454 1.23 chs NULL, 0);
1455 1.8 mrg
1456 1.8 mrg /* out of RAM? */
1457 1.8 mrg if (ptmp == NULL) {
1458 1.8 mrg simple_unlock(&uobj->vmobjlock);
1459 1.8 mrg uvm_wait("uvn_getpage");
1460 1.8 mrg simple_lock(&uobj->vmobjlock);
1461 1.8 mrg
1462 1.8 mrg /* goto top of pps while loop */
1463 1.8 mrg continue;
1464 1.8 mrg }
1465 1.8 mrg
1466 1.8 mrg /*
1467 1.8 mrg * got new page ready for I/O. break pps
1468 1.8 mrg * while loop. pps[lcv] is still NULL.
1469 1.8 mrg */
1470 1.8 mrg break;
1471 1.8 mrg }
1472 1.8 mrg
1473 1.8 mrg /* page is there, see if we need to wait on it */
1474 1.8 mrg if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1475 1.8 mrg ptmp->flags |= PG_WANTED;
1476 1.8 mrg UVM_UNLOCK_AND_WAIT(ptmp,
1477 1.24 thorpej &uobj->vmobjlock, FALSE, "uvn_get",0);
1478 1.8 mrg simple_lock(&uobj->vmobjlock);
1479 1.8 mrg continue; /* goto top of pps while loop */
1480 1.8 mrg }
1481 1.8 mrg
1482 1.8 mrg /*
1483 1.8 mrg * if we get here then the page has become resident
1484 1.8 mrg * and unbusy between steps 1 and 2. we busy it
1485 1.8 mrg * now (so we own it) and set pps[lcv] (so that we
1486 1.8 mrg * exit the while loop).
1487 1.8 mrg */
1488 1.8 mrg ptmp->flags |= PG_BUSY;
1489 1.8 mrg UVM_PAGE_OWN(ptmp, "uvn_get2");
1490 1.8 mrg pps[lcv] = ptmp;
1491 1.8 mrg }
1492 1.8 mrg
1493 1.8 mrg /*
1494 1.8 mrg * if we own the a valid page at the correct offset, pps[lcv]
1495 1.8 mrg * will point to it. nothing more to do except go to the
1496 1.8 mrg * next page.
1497 1.8 mrg */
1498 1.8 mrg
1499 1.8 mrg if (pps[lcv])
1500 1.8 mrg continue; /* next lcv */
1501 1.8 mrg
1502 1.8 mrg /*
1503 1.8 mrg * we have a "fake/busy/clean" page that we just allocated. do
1504 1.8 mrg * I/O to fill it with valid data. note that object must be
1505 1.8 mrg * locked going into uvn_io, but will be unlocked afterwards.
1506 1.8 mrg */
1507 1.8 mrg
1508 1.8 mrg result = uvn_io((struct uvm_vnode *) uobj, &ptmp, 1,
1509 1.8 mrg PGO_SYNCIO, UIO_READ);
1510 1.8 mrg
1511 1.8 mrg /*
1512 1.8 mrg * I/O done. object is unlocked (by uvn_io). because we used
1513 1.8 mrg * syncio the result can not be PEND or AGAIN. we must relock
1514 1.8 mrg * and check for errors.
1515 1.8 mrg */
1516 1.8 mrg
1517 1.8 mrg /* lock object. check for errors. */
1518 1.8 mrg simple_lock(&uobj->vmobjlock);
1519 1.8 mrg if (result != VM_PAGER_OK) {
1520 1.8 mrg if (ptmp->flags & PG_WANTED)
1521 1.8 mrg /* object lock still held */
1522 1.25 thorpej wakeup(ptmp);
1523 1.8 mrg
1524 1.8 mrg ptmp->flags &= ~(PG_WANTED|PG_BUSY);
1525 1.8 mrg UVM_PAGE_OWN(ptmp, NULL);
1526 1.8 mrg uvm_lock_pageq();
1527 1.8 mrg uvm_pagefree(ptmp);
1528 1.8 mrg uvm_unlock_pageq();
1529 1.8 mrg simple_unlock(&uobj->vmobjlock);
1530 1.8 mrg return(result);
1531 1.8 mrg }
1532 1.8 mrg
1533 1.8 mrg /*
1534 1.8 mrg * we got the page! clear the fake flag (indicates valid
1535 1.8 mrg * data now in page) and plug into our result array. note
1536 1.8 mrg * that page is still busy.
1537 1.8 mrg *
1538 1.8 mrg * it is the callers job to:
1539 1.8 mrg * => check if the page is released
1540 1.8 mrg * => unbusy the page
1541 1.8 mrg * => activate the page
1542 1.8 mrg */
1543 1.8 mrg
1544 1.8 mrg ptmp->flags &= ~PG_FAKE; /* data is valid ... */
1545 1.26 chs pmap_clear_modify(ptmp); /* ... and clean */
1546 1.8 mrg pps[lcv] = ptmp;
1547 1.8 mrg
1548 1.8 mrg } /* lcv loop */
1549 1.8 mrg
1550 1.8 mrg /*
1551 1.8 mrg * finally, unlock object and return.
1552 1.8 mrg */
1553 1.1 mrg
1554 1.8 mrg simple_unlock(&uobj->vmobjlock);
1555 1.8 mrg return (VM_PAGER_OK);
1556 1.1 mrg }
1557 1.1 mrg
1558 1.1 mrg /*
1559 1.1 mrg * uvn_asyncget: start async I/O to bring pages into ram
1560 1.1 mrg *
1561 1.1 mrg * => caller must lock object(???XXX: see if this is best)
1562 1.1 mrg * => could be called from uvn_get or a madvise() fault-ahead.
1563 1.1 mrg * => if it fails, it doesn't matter.
1564 1.1 mrg */
1565 1.1 mrg
1566 1.8 mrg static int
1567 1.8 mrg uvn_asyncget(uobj, offset, npages)
1568 1.8 mrg struct uvm_object *uobj;
1569 1.15 eeh vaddr_t offset;
1570 1.8 mrg int npages;
1571 1.8 mrg {
1572 1.1 mrg
1573 1.8 mrg /*
1574 1.8 mrg * XXXCDC: we can't do async I/O yet
1575 1.8 mrg */
1576 1.8 mrg printf("uvn_asyncget called\n");
1577 1.8 mrg return (KERN_SUCCESS);
1578 1.1 mrg }
1579 1.1 mrg
1580 1.1 mrg /*
1581 1.1 mrg * uvn_io: do I/O to a vnode
1582 1.1 mrg *
1583 1.1 mrg * => prefer map unlocked (not required)
1584 1.1 mrg * => object must be locked! we will _unlock_ it before starting I/O.
1585 1.1 mrg * => flags: PGO_SYNCIO -- use sync. I/O
1586 1.1 mrg * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync.
1587 1.1 mrg * [thus we never do async i/o! see iodone comment]
1588 1.1 mrg */
1589 1.1 mrg
1590 1.8 mrg static int
1591 1.8 mrg uvn_io(uvn, pps, npages, flags, rw)
1592 1.8 mrg struct uvm_vnode *uvn;
1593 1.8 mrg vm_page_t *pps;
1594 1.8 mrg int npages, flags, rw;
1595 1.8 mrg {
1596 1.8 mrg struct vnode *vn;
1597 1.8 mrg struct uio uio;
1598 1.8 mrg struct iovec iov;
1599 1.15 eeh vaddr_t kva, file_offset;
1600 1.8 mrg int waitf, result, got, wanted;
1601 1.8 mrg UVMHIST_FUNC("uvn_io"); UVMHIST_CALLED(maphist);
1602 1.1 mrg
1603 1.8 mrg UVMHIST_LOG(maphist, "rw=%d", rw,0,0,0);
1604 1.8 mrg
1605 1.8 mrg /*
1606 1.8 mrg * init values
1607 1.8 mrg */
1608 1.1 mrg
1609 1.8 mrg waitf = (flags & PGO_SYNCIO) ? M_WAITOK : M_NOWAIT;
1610 1.8 mrg vn = (struct vnode *) uvn;
1611 1.8 mrg file_offset = pps[0]->offset;
1612 1.8 mrg
1613 1.8 mrg /*
1614 1.8 mrg * check for sync'ing I/O.
1615 1.8 mrg */
1616 1.8 mrg
1617 1.8 mrg while (uvn->u_flags & UVM_VNODE_IOSYNC) {
1618 1.8 mrg if (waitf == M_NOWAIT) {
1619 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
1620 1.8 mrg UVMHIST_LOG(maphist,"<- try again (iosync)",0,0,0,0);
1621 1.8 mrg return(VM_PAGER_AGAIN);
1622 1.8 mrg }
1623 1.8 mrg uvn->u_flags |= UVM_VNODE_IOSYNCWANTED;
1624 1.8 mrg UVM_UNLOCK_AND_WAIT(&uvn->u_flags, &uvn->u_obj.vmobjlock,
1625 1.1 mrg FALSE, "uvn_iosync",0);
1626 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
1627 1.8 mrg }
1628 1.1 mrg
1629 1.8 mrg /*
1630 1.8 mrg * check size
1631 1.8 mrg */
1632 1.8 mrg
1633 1.8 mrg if (file_offset >= uvn->u_size) {
1634 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
1635 1.8 mrg UVMHIST_LOG(maphist,"<- BAD (size check)",0,0,0,0);
1636 1.27 chs #ifdef DEBUG
1637 1.8 mrg printf("uvn_io: note: size check fired\n");
1638 1.1 mrg #endif
1639 1.8 mrg return(VM_PAGER_BAD);
1640 1.8 mrg }
1641 1.8 mrg
1642 1.8 mrg /*
1643 1.8 mrg * first try and map the pages in (without waiting)
1644 1.8 mrg */
1645 1.8 mrg
1646 1.8 mrg kva = uvm_pagermapin(pps, npages, NULL, M_NOWAIT);
1647 1.8 mrg if (kva == NULL && waitf == M_NOWAIT) {
1648 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
1649 1.8 mrg UVMHIST_LOG(maphist,"<- mapin failed (try again)",0,0,0,0);
1650 1.8 mrg return(VM_PAGER_AGAIN);
1651 1.8 mrg }
1652 1.8 mrg
1653 1.8 mrg /*
1654 1.8 mrg * ok, now bump u_nio up. at this point we are done with uvn
1655 1.8 mrg * and can unlock it. if we still don't have a kva, try again
1656 1.8 mrg * (this time with sleep ok).
1657 1.8 mrg */
1658 1.8 mrg
1659 1.8 mrg uvn->u_nio++; /* we have an I/O in progress! */
1660 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
1661 1.8 mrg /* NOTE: object now unlocked */
1662 1.8 mrg if (kva == NULL) {
1663 1.8 mrg kva = uvm_pagermapin(pps, npages, NULL, M_WAITOK);
1664 1.8 mrg }
1665 1.8 mrg
1666 1.8 mrg /*
1667 1.8 mrg * ok, mapped in. our pages are PG_BUSY so they are not going to
1668 1.8 mrg * get touched (so we can look at "offset" without having to lock
1669 1.8 mrg * the object). set up for I/O.
1670 1.8 mrg */
1671 1.8 mrg
1672 1.8 mrg /*
1673 1.8 mrg * fill out uio/iov
1674 1.8 mrg */
1675 1.8 mrg
1676 1.8 mrg iov.iov_base = (caddr_t) kva;
1677 1.16 chs wanted = npages << PAGE_SHIFT;
1678 1.8 mrg if (file_offset + wanted > uvn->u_size)
1679 1.8 mrg wanted = uvn->u_size - file_offset; /* XXX: needed? */
1680 1.8 mrg iov.iov_len = wanted;
1681 1.8 mrg uio.uio_iov = &iov;
1682 1.8 mrg uio.uio_iovcnt = 1;
1683 1.8 mrg uio.uio_offset = file_offset;
1684 1.8 mrg uio.uio_segflg = UIO_SYSSPACE;
1685 1.8 mrg uio.uio_rw = rw;
1686 1.8 mrg uio.uio_resid = wanted;
1687 1.8 mrg uio.uio_procp = NULL;
1688 1.1 mrg
1689 1.8 mrg /*
1690 1.8 mrg * do the I/O! (XXX: curproc?)
1691 1.8 mrg */
1692 1.8 mrg
1693 1.8 mrg UVMHIST_LOG(maphist, "calling VOP",0,0,0,0);
1694 1.8 mrg
1695 1.21 sommerfe /*
1696 1.21 sommerfe * This process may already have this vnode locked, if we faulted in
1697 1.21 sommerfe * copyin() or copyout() on a region backed by this vnode
1698 1.21 sommerfe * while doing I/O to the vnode. If this is the case, don't
1699 1.21 sommerfe * panic.. instead, return the error to the user.
1700 1.21 sommerfe *
1701 1.21 sommerfe * XXX this is a stopgap to prevent a panic.
1702 1.21 sommerfe * Ideally, this kind of operation *should* work.
1703 1.21 sommerfe */
1704 1.21 sommerfe result = 0;
1705 1.8 mrg if ((uvn->u_flags & UVM_VNODE_VNISLOCKED) == 0)
1706 1.21 sommerfe result = vn_lock(vn, LK_EXCLUSIVE | LK_RETRY | LK_RECURSEFAIL);
1707 1.21 sommerfe
1708 1.21 sommerfe if (result == 0) {
1709 1.21 sommerfe /* NOTE: vnode now locked! */
1710 1.8 mrg
1711 1.21 sommerfe if (rw == UIO_READ)
1712 1.21 sommerfe result = VOP_READ(vn, &uio, 0, curproc->p_ucred);
1713 1.21 sommerfe else
1714 1.21 sommerfe result = VOP_WRITE(vn, &uio, 0, curproc->p_ucred);
1715 1.8 mrg
1716 1.21 sommerfe if ((uvn->u_flags & UVM_VNODE_VNISLOCKED) == 0)
1717 1.21 sommerfe VOP_UNLOCK(vn, 0);
1718 1.21 sommerfe }
1719 1.21 sommerfe
1720 1.8 mrg /* NOTE: vnode now unlocked (unless vnislocked) */
1721 1.8 mrg
1722 1.8 mrg UVMHIST_LOG(maphist, "done calling VOP",0,0,0,0);
1723 1.8 mrg
1724 1.8 mrg /*
1725 1.8 mrg * result == unix style errno (0 == OK!)
1726 1.8 mrg *
1727 1.8 mrg * zero out rest of buffer (if needed)
1728 1.8 mrg */
1729 1.8 mrg
1730 1.8 mrg if (result == 0) {
1731 1.8 mrg got = wanted - uio.uio_resid;
1732 1.8 mrg
1733 1.8 mrg if (wanted && got == 0) {
1734 1.8 mrg result = EIO; /* XXX: error? */
1735 1.8 mrg } else if (got < PAGE_SIZE * npages && rw == UIO_READ) {
1736 1.16 chs memset((void *) (kva + got), 0,
1737 1.16 chs (npages << PAGE_SHIFT) - got);
1738 1.8 mrg }
1739 1.8 mrg }
1740 1.8 mrg
1741 1.8 mrg /*
1742 1.8 mrg * now remove pager mapping
1743 1.8 mrg */
1744 1.8 mrg uvm_pagermapout(kva, npages);
1745 1.8 mrg
1746 1.8 mrg /*
1747 1.8 mrg * now clean up the object (i.e. drop I/O count)
1748 1.8 mrg */
1749 1.8 mrg
1750 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
1751 1.8 mrg /* NOTE: object now locked! */
1752 1.8 mrg
1753 1.8 mrg uvn->u_nio--; /* I/O DONE! */
1754 1.8 mrg if ((uvn->u_flags & UVM_VNODE_IOSYNC) != 0 && uvn->u_nio == 0) {
1755 1.8 mrg wakeup(&uvn->u_nio);
1756 1.8 mrg }
1757 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
1758 1.8 mrg /* NOTE: object now unlocked! */
1759 1.8 mrg
1760 1.8 mrg /*
1761 1.8 mrg * done!
1762 1.8 mrg */
1763 1.8 mrg
1764 1.8 mrg UVMHIST_LOG(maphist, "<- done (result %d)", result,0,0,0);
1765 1.8 mrg if (result == 0)
1766 1.8 mrg return(VM_PAGER_OK);
1767 1.8 mrg else
1768 1.8 mrg return(VM_PAGER_ERROR);
1769 1.1 mrg }
1770 1.1 mrg
1771 1.1 mrg /*
1772 1.1 mrg * uvm_vnp_uncache: disable "persisting" in a vnode... when last reference
1773 1.1 mrg * is gone we will kill the object (flushing dirty pages back to the vnode
1774 1.1 mrg * if needed).
1775 1.1 mrg *
1776 1.1 mrg * => returns TRUE if there was no uvm_object attached or if there was
1777 1.1 mrg * one and we killed it [i.e. if there is no active uvn]
1778 1.1 mrg * => called with the vnode VOP_LOCK'd [we will unlock it for I/O, if
1779 1.1 mrg * needed]
1780 1.1 mrg *
1781 1.1 mrg * => XXX: given that we now kill uvn's when a vnode is recycled (without
1782 1.1 mrg * having to hold a reference on the vnode) and given a working
1783 1.1 mrg * uvm_vnp_sync(), how does that effect the need for this function?
1784 1.1 mrg * [XXXCDC: seems like it can die?]
1785 1.1 mrg *
1786 1.1 mrg * => XXX: this function should DIE once we merge the VM and buffer
1787 1.1 mrg * cache.
1788 1.1 mrg *
1789 1.1 mrg * research shows that this is called in the following places:
1790 1.1 mrg * ext2fs_truncate, ffs_truncate, detrunc[msdosfs]: called when vnode
1791 1.1 mrg * changes sizes
1792 1.1 mrg * ext2fs_write, WRITE [ufs_readwrite], msdosfs_write: called when we
1793 1.1 mrg * are written to
1794 1.1 mrg * ex2fs_chmod, ufs_chmod: called if VTEXT vnode and the sticky bit
1795 1.1 mrg * is off
1796 1.1 mrg * ffs_realloccg: when we can't extend the current block and have
1797 1.1 mrg * to allocate a new one we call this [XXX: why?]
1798 1.1 mrg * nfsrv_rename, rename_files: called when the target filename is there
1799 1.1 mrg * and we want to remove it
1800 1.1 mrg * nfsrv_remove, sys_unlink: called on file we are removing
1801 1.1 mrg * nfsrv_access: if VTEXT and we want WRITE access and we don't uncache
1802 1.1 mrg * then return "text busy"
1803 1.1 mrg * nfs_open: seems to uncache any file opened with nfs
1804 1.1 mrg * vn_writechk: if VTEXT vnode and can't uncache return "text busy"
1805 1.1 mrg */
1806 1.1 mrg
1807 1.8 mrg boolean_t
1808 1.8 mrg uvm_vnp_uncache(vp)
1809 1.8 mrg struct vnode *vp;
1810 1.8 mrg {
1811 1.8 mrg struct uvm_vnode *uvn = &vp->v_uvm;
1812 1.1 mrg
1813 1.8 mrg /*
1814 1.8 mrg * lock uvn part of the vnode and check to see if we need to do anything
1815 1.8 mrg */
1816 1.1 mrg
1817 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
1818 1.8 mrg if ((uvn->u_flags & UVM_VNODE_VALID) == 0 ||
1819 1.8 mrg (uvn->u_flags & UVM_VNODE_BLOCKED) != 0) {
1820 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
1821 1.8 mrg return(TRUE);
1822 1.8 mrg }
1823 1.8 mrg
1824 1.8 mrg /*
1825 1.8 mrg * we have a valid, non-blocked uvn. clear persist flag.
1826 1.8 mrg * if uvn is currently active we can return now.
1827 1.8 mrg */
1828 1.8 mrg
1829 1.8 mrg uvn->u_flags &= ~UVM_VNODE_CANPERSIST;
1830 1.8 mrg if (uvn->u_obj.uo_refs) {
1831 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
1832 1.8 mrg return(FALSE);
1833 1.8 mrg }
1834 1.8 mrg
1835 1.8 mrg /*
1836 1.8 mrg * uvn is currently persisting! we have to gain a reference to
1837 1.8 mrg * it so that we can call uvn_detach to kill the uvn.
1838 1.8 mrg */
1839 1.1 mrg
1840 1.8 mrg VREF(vp); /* seems ok, even with VOP_LOCK */
1841 1.8 mrg uvn->u_obj.uo_refs++; /* value is now 1 */
1842 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
1843 1.1 mrg
1844 1.1 mrg
1845 1.1 mrg #ifdef DEBUG
1846 1.8 mrg /*
1847 1.8 mrg * carry over sanity check from old vnode pager: the vnode should
1848 1.8 mrg * be VOP_LOCK'd, and we confirm it here.
1849 1.8 mrg */
1850 1.8 mrg if (!VOP_ISLOCKED(vp)) {
1851 1.8 mrg boolean_t is_ok_anyway = FALSE;
1852 1.1 mrg #ifdef NFS
1853 1.8 mrg extern int (**nfsv2_vnodeop_p) __P((void *));
1854 1.8 mrg extern int (**spec_nfsv2nodeop_p) __P((void *));
1855 1.8 mrg extern int (**fifo_nfsv2nodeop_p) __P((void *));
1856 1.1 mrg
1857 1.8 mrg /* vnode is NOT VOP_LOCKed: some vnode types _never_ lock */
1858 1.8 mrg if (vp->v_op == nfsv2_vnodeop_p ||
1859 1.8 mrg vp->v_op == spec_nfsv2nodeop_p) {
1860 1.8 mrg is_ok_anyway = TRUE;
1861 1.8 mrg }
1862 1.8 mrg if (vp->v_op == fifo_nfsv2nodeop_p) {
1863 1.8 mrg is_ok_anyway = TRUE;
1864 1.8 mrg }
1865 1.1 mrg #endif /* NFS */
1866 1.8 mrg if (!is_ok_anyway)
1867 1.8 mrg panic("uvm_vnp_uncache: vnode not locked!");
1868 1.8 mrg }
1869 1.1 mrg #endif /* DEBUG */
1870 1.1 mrg
1871 1.8 mrg /*
1872 1.8 mrg * now drop our reference to the vnode. if we have the sole
1873 1.8 mrg * reference to the vnode then this will cause it to die [as we
1874 1.8 mrg * just cleared the persist flag]. we have to unlock the vnode
1875 1.8 mrg * while we are doing this as it may trigger I/O.
1876 1.8 mrg *
1877 1.8 mrg * XXX: it might be possible for uvn to get reclaimed while we are
1878 1.8 mrg * unlocked causing us to return TRUE when we should not. we ignore
1879 1.8 mrg * this as a false-positive return value doesn't hurt us.
1880 1.8 mrg */
1881 1.8 mrg VOP_UNLOCK(vp, 0);
1882 1.8 mrg uvn_detach(&uvn->u_obj);
1883 1.8 mrg vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1884 1.8 mrg
1885 1.8 mrg /*
1886 1.8 mrg * and return...
1887 1.8 mrg */
1888 1.8 mrg
1889 1.8 mrg return(TRUE);
1890 1.1 mrg }
1891 1.1 mrg
1892 1.1 mrg /*
1893 1.1 mrg * uvm_vnp_setsize: grow or shrink a vnode uvn
1894 1.1 mrg *
1895 1.1 mrg * grow => just update size value
1896 1.1 mrg * shrink => toss un-needed pages
1897 1.1 mrg *
1898 1.1 mrg * => we assume that the caller has a reference of some sort to the
1899 1.1 mrg * vnode in question so that it will not be yanked out from under
1900 1.1 mrg * us.
1901 1.1 mrg *
1902 1.1 mrg * called from:
1903 1.1 mrg * => truncate fns (ext2fs_truncate, ffs_truncate, detrunc[msdos])
1904 1.1 mrg * => "write" fns (ext2fs_write, WRITE [ufs/ufs], msdosfs_write, nfs_write)
1905 1.1 mrg * => ffs_balloc [XXX: why? doesn't WRITE handle?]
1906 1.1 mrg * => NFS: nfs_loadattrcache, nfs_getattrcache, nfs_setattr
1907 1.1 mrg * => union fs: union_newsize
1908 1.1 mrg */
1909 1.1 mrg
1910 1.8 mrg void
1911 1.8 mrg uvm_vnp_setsize(vp, newsize)
1912 1.8 mrg struct vnode *vp;
1913 1.8 mrg u_quad_t newsize;
1914 1.8 mrg {
1915 1.8 mrg struct uvm_vnode *uvn = &vp->v_uvm;
1916 1.1 mrg
1917 1.8 mrg /*
1918 1.8 mrg * lock uvn and check for valid object, and if valid: do it!
1919 1.8 mrg */
1920 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
1921 1.8 mrg if (uvn->u_flags & UVM_VNODE_VALID) {
1922 1.1 mrg
1923 1.8 mrg /*
1924 1.15 eeh * make sure that the newsize fits within a vaddr_t
1925 1.8 mrg * XXX: need to revise addressing data types
1926 1.8 mrg */
1927 1.1 mrg
1928 1.15 eeh if (newsize > (vaddr_t) -PAGE_SIZE) {
1929 1.1 mrg #ifdef DEBUG
1930 1.8 mrg printf("uvm_vnp_setsize: vn %p size truncated "
1931 1.19 chs "%qx->%lx\n", vp, (long long)newsize,
1932 1.19 chs (vaddr_t)-PAGE_SIZE);
1933 1.1 mrg #endif
1934 1.15 eeh newsize = (vaddr_t)-PAGE_SIZE;
1935 1.8 mrg }
1936 1.8 mrg
1937 1.8 mrg /*
1938 1.8 mrg * now check if the size has changed: if we shrink we had better
1939 1.8 mrg * toss some pages...
1940 1.8 mrg */
1941 1.8 mrg
1942 1.8 mrg if (uvn->u_size > newsize) {
1943 1.15 eeh (void)uvn_flush(&uvn->u_obj, (vaddr_t) newsize,
1944 1.8 mrg uvn->u_size, PGO_FREE);
1945 1.8 mrg }
1946 1.15 eeh uvn->u_size = (vaddr_t)newsize;
1947 1.8 mrg }
1948 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
1949 1.1 mrg
1950 1.8 mrg /*
1951 1.8 mrg * done
1952 1.8 mrg */
1953 1.8 mrg return;
1954 1.1 mrg }
1955 1.1 mrg
1956 1.1 mrg /*
1957 1.1 mrg * uvm_vnp_sync: flush all dirty VM pages back to their backing vnodes.
1958 1.1 mrg *
1959 1.1 mrg * => called from sys_sync with no VM structures locked
1960 1.1 mrg * => only one process can do a sync at a time (because the uvn
1961 1.1 mrg * structure only has one queue for sync'ing). we ensure this
1962 1.1 mrg * by holding the uvn_sync_lock while the sync is in progress.
1963 1.1 mrg * other processes attempting a sync will sleep on this lock
1964 1.1 mrg * until we are done.
1965 1.1 mrg */
1966 1.1 mrg
1967 1.8 mrg void
1968 1.8 mrg uvm_vnp_sync(mp)
1969 1.8 mrg struct mount *mp;
1970 1.8 mrg {
1971 1.8 mrg struct uvm_vnode *uvn;
1972 1.8 mrg struct vnode *vp;
1973 1.8 mrg boolean_t got_lock;
1974 1.8 mrg
1975 1.8 mrg /*
1976 1.8 mrg * step 1: ensure we are only ones using the uvn_sync_q by locking
1977 1.8 mrg * our lock...
1978 1.8 mrg */
1979 1.8 mrg lockmgr(&uvn_sync_lock, LK_EXCLUSIVE, (void *)0);
1980 1.8 mrg
1981 1.8 mrg /*
1982 1.8 mrg * step 2: build up a simpleq of uvns of interest based on the
1983 1.8 mrg * write list. we gain a reference to uvns of interest. must
1984 1.8 mrg * be careful about locking uvn's since we will be holding uvn_wl_lock
1985 1.8 mrg * in the body of the loop.
1986 1.8 mrg */
1987 1.8 mrg SIMPLEQ_INIT(&uvn_sync_q);
1988 1.8 mrg simple_lock(&uvn_wl_lock);
1989 1.8 mrg for (uvn = uvn_wlist.lh_first ; uvn != NULL ;
1990 1.8 mrg uvn = uvn->u_wlist.le_next) {
1991 1.1 mrg
1992 1.8 mrg vp = (struct vnode *) uvn;
1993 1.8 mrg if (mp && vp->v_mount != mp)
1994 1.8 mrg continue;
1995 1.8 mrg
1996 1.8 mrg /* attempt to gain reference */
1997 1.8 mrg while ((got_lock = simple_lock_try(&uvn->u_obj.vmobjlock)) ==
1998 1.9 chuck FALSE &&
1999 1.9 chuck (uvn->u_flags & UVM_VNODE_BLOCKED) == 0)
2000 1.8 mrg /* spin */ ;
2001 1.8 mrg
2002 1.8 mrg /*
2003 1.9 chuck * we will exit the loop if either if the following are true:
2004 1.9 chuck * - we got the lock [always true if NCPU == 1]
2005 1.9 chuck * - we failed to get the lock but noticed the vnode was
2006 1.9 chuck * "blocked" -- in this case the vnode must be a dying
2007 1.9 chuck * vnode, and since dying vnodes are in the process of
2008 1.9 chuck * being flushed out, we can safely skip this one
2009 1.9 chuck *
2010 1.9 chuck * we want to skip over the vnode if we did not get the lock,
2011 1.9 chuck * or if the vnode is already dying (due to the above logic).
2012 1.8 mrg *
2013 1.8 mrg * note that uvn must already be valid because we found it on
2014 1.8 mrg * the wlist (this also means it can't be ALOCK'd).
2015 1.8 mrg */
2016 1.9 chuck if (!got_lock || (uvn->u_flags & UVM_VNODE_BLOCKED) != 0) {
2017 1.9 chuck if (got_lock)
2018 1.9 chuck simple_unlock(&uvn->u_obj.vmobjlock);
2019 1.9 chuck continue; /* skip it */
2020 1.9 chuck }
2021 1.8 mrg
2022 1.8 mrg /*
2023 1.8 mrg * gain reference. watch out for persisting uvns (need to
2024 1.8 mrg * regain vnode REF).
2025 1.8 mrg */
2026 1.8 mrg if (uvn->u_obj.uo_refs == 0)
2027 1.8 mrg VREF(vp);
2028 1.8 mrg uvn->u_obj.uo_refs++;
2029 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
2030 1.8 mrg
2031 1.8 mrg /*
2032 1.8 mrg * got it!
2033 1.8 mrg */
2034 1.8 mrg SIMPLEQ_INSERT_HEAD(&uvn_sync_q, uvn, u_syncq);
2035 1.8 mrg }
2036 1.8 mrg simple_unlock(&uvn_wl_lock);
2037 1.1 mrg
2038 1.8 mrg /*
2039 1.8 mrg * step 3: we now have a list of uvn's that may need cleaning.
2040 1.8 mrg * we are holding the uvn_sync_lock, but have dropped the uvn_wl_lock
2041 1.8 mrg * (so we can now safely lock uvn's again).
2042 1.8 mrg */
2043 1.1 mrg
2044 1.8 mrg for (uvn = uvn_sync_q.sqh_first ; uvn ; uvn = uvn->u_syncq.sqe_next) {
2045 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
2046 1.27 chs #ifdef DEBUG
2047 1.8 mrg if (uvn->u_flags & UVM_VNODE_DYING) {
2048 1.8 mrg printf("uvm_vnp_sync: dying vnode on sync list\n");
2049 1.8 mrg }
2050 1.1 mrg #endif
2051 1.8 mrg uvn_flush(&uvn->u_obj, 0, 0,
2052 1.8 mrg PGO_CLEANIT|PGO_ALLPAGES|PGO_DOACTCLUST);
2053 1.8 mrg
2054 1.8 mrg /*
2055 1.8 mrg * if we have the only reference and we just cleaned the uvn,
2056 1.8 mrg * then we can pull it out of the UVM_VNODE_WRITEABLE state
2057 1.8 mrg * thus allowing us to avoid thinking about flushing it again
2058 1.8 mrg * on later sync ops.
2059 1.8 mrg */
2060 1.8 mrg if (uvn->u_obj.uo_refs == 1 &&
2061 1.8 mrg (uvn->u_flags & UVM_VNODE_WRITEABLE)) {
2062 1.8 mrg LIST_REMOVE(uvn, u_wlist);
2063 1.8 mrg uvn->u_flags &= ~UVM_VNODE_WRITEABLE;
2064 1.8 mrg }
2065 1.8 mrg
2066 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
2067 1.1 mrg
2068 1.8 mrg /* now drop our reference to the uvn */
2069 1.8 mrg uvn_detach(&uvn->u_obj);
2070 1.8 mrg }
2071 1.8 mrg
2072 1.8 mrg /*
2073 1.8 mrg * done! release sync lock
2074 1.8 mrg */
2075 1.8 mrg lockmgr(&uvn_sync_lock, LK_RELEASE, (void *)0);
2076 1.1 mrg }
2077