uvm_vnode.c revision 1.39 1 1.39 chs /* $NetBSD: uvm_vnode.c,v 1.39 2000/12/06 03:37:30 chs Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 mrg * Copyright (c) 1991, 1993
6 1.1 mrg * The Regents of the University of California.
7 1.1 mrg * Copyright (c) 1990 University of Utah.
8 1.1 mrg *
9 1.1 mrg * All rights reserved.
10 1.1 mrg *
11 1.1 mrg * This code is derived from software contributed to Berkeley by
12 1.1 mrg * the Systems Programming Group of the University of Utah Computer
13 1.1 mrg * Science Department.
14 1.1 mrg *
15 1.1 mrg * Redistribution and use in source and binary forms, with or without
16 1.1 mrg * modification, are permitted provided that the following conditions
17 1.1 mrg * are met:
18 1.1 mrg * 1. Redistributions of source code must retain the above copyright
19 1.1 mrg * notice, this list of conditions and the following disclaimer.
20 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
21 1.1 mrg * notice, this list of conditions and the following disclaimer in the
22 1.1 mrg * documentation and/or other materials provided with the distribution.
23 1.1 mrg * 3. All advertising materials mentioning features or use of this software
24 1.1 mrg * must display the following acknowledgement:
25 1.1 mrg * This product includes software developed by Charles D. Cranor,
26 1.1 mrg * Washington University, the University of California, Berkeley and
27 1.1 mrg * its contributors.
28 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
29 1.1 mrg * may be used to endorse or promote products derived from this software
30 1.1 mrg * without specific prior written permission.
31 1.1 mrg *
32 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 1.1 mrg * SUCH DAMAGE.
43 1.1 mrg *
44 1.1 mrg * @(#)vnode_pager.c 8.8 (Berkeley) 2/13/94
45 1.3 mrg * from: Id: uvm_vnode.c,v 1.1.2.26 1998/02/02 20:38:07 chuck Exp
46 1.1 mrg */
47 1.1 mrg
48 1.6 thorpej #include "fs_nfs.h"
49 1.4 mrg #include "opt_uvmhist.h"
50 1.37 chs #include "opt_ddb.h"
51 1.4 mrg
52 1.1 mrg /*
53 1.1 mrg * uvm_vnode.c: the vnode pager.
54 1.1 mrg */
55 1.1 mrg
56 1.1 mrg #include <sys/param.h>
57 1.1 mrg #include <sys/systm.h>
58 1.37 chs #include <sys/kernel.h>
59 1.1 mrg #include <sys/proc.h>
60 1.1 mrg #include <sys/malloc.h>
61 1.1 mrg #include <sys/vnode.h>
62 1.13 thorpej #include <sys/disklabel.h>
63 1.13 thorpej #include <sys/ioctl.h>
64 1.13 thorpej #include <sys/fcntl.h>
65 1.13 thorpej #include <sys/conf.h>
66 1.37 chs #include <sys/pool.h>
67 1.37 chs #include <sys/mount.h>
68 1.13 thorpej
69 1.13 thorpej #include <miscfs/specfs/specdev.h>
70 1.1 mrg
71 1.1 mrg #include <uvm/uvm.h>
72 1.1 mrg #include <uvm/uvm_vnode.h>
73 1.1 mrg
74 1.1 mrg /*
75 1.1 mrg * functions
76 1.1 mrg */
77 1.1 mrg
78 1.37 chs static void uvn_cluster __P((struct uvm_object *, voff_t, voff_t *,
79 1.37 chs voff_t *));
80 1.37 chs static void uvn_detach __P((struct uvm_object *));
81 1.37 chs static int uvn_findpage __P((struct uvm_object *, voff_t,
82 1.37 chs struct vm_page **, int));
83 1.37 chs static boolean_t uvn_flush __P((struct uvm_object *, voff_t, voff_t,
84 1.37 chs int));
85 1.37 chs static int uvn_get __P((struct uvm_object *, voff_t, vm_page_t *,
86 1.37 chs int *, int, vm_prot_t, int, int));
87 1.37 chs static int uvn_put __P((struct uvm_object *, vm_page_t *, int,
88 1.37 chs boolean_t));
89 1.37 chs static void uvn_reference __P((struct uvm_object *));
90 1.37 chs static boolean_t uvn_releasepg __P((struct vm_page *,
91 1.37 chs struct vm_page **));
92 1.1 mrg
93 1.1 mrg /*
94 1.1 mrg * master pager structure
95 1.1 mrg */
96 1.1 mrg
97 1.1 mrg struct uvm_pagerops uvm_vnodeops = {
98 1.37 chs NULL,
99 1.8 mrg uvn_reference,
100 1.8 mrg uvn_detach,
101 1.37 chs NULL,
102 1.8 mrg uvn_flush,
103 1.8 mrg uvn_get,
104 1.8 mrg uvn_put,
105 1.8 mrg uvn_cluster,
106 1.37 chs uvm_mk_pcluster,
107 1.8 mrg uvn_releasepg,
108 1.1 mrg };
109 1.1 mrg
110 1.1 mrg /*
111 1.1 mrg * the ops!
112 1.1 mrg */
113 1.1 mrg
114 1.1 mrg /*
115 1.1 mrg * uvn_attach
116 1.1 mrg *
117 1.1 mrg * attach a vnode structure to a VM object. if the vnode is already
118 1.1 mrg * attached, then just bump the reference count by one and return the
119 1.1 mrg * VM object. if not already attached, attach and return the new VM obj.
120 1.1 mrg * the "accessprot" tells the max access the attaching thread wants to
121 1.1 mrg * our pages.
122 1.1 mrg *
123 1.1 mrg * => caller must _not_ already be holding the lock on the uvm_object.
124 1.1 mrg * => in fact, nothing should be locked so that we can sleep here.
125 1.1 mrg * => note that uvm_object is first thing in vnode structure, so their
126 1.1 mrg * pointers are equiv.
127 1.1 mrg */
128 1.1 mrg
129 1.8 mrg struct uvm_object *
130 1.8 mrg uvn_attach(arg, accessprot)
131 1.8 mrg void *arg;
132 1.8 mrg vm_prot_t accessprot;
133 1.8 mrg {
134 1.8 mrg struct vnode *vp = arg;
135 1.8 mrg struct uvm_vnode *uvn = &vp->v_uvm;
136 1.8 mrg struct vattr vattr;
137 1.37 chs int result;
138 1.13 thorpej struct partinfo pi;
139 1.37 chs voff_t used_vnode_size;
140 1.8 mrg UVMHIST_FUNC("uvn_attach"); UVMHIST_CALLED(maphist);
141 1.8 mrg
142 1.8 mrg UVMHIST_LOG(maphist, "(vn=0x%x)", arg,0,0,0);
143 1.37 chs used_vnode_size = (voff_t)0;
144 1.13 thorpej
145 1.8 mrg /*
146 1.8 mrg * first get a lock on the uvn.
147 1.8 mrg */
148 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
149 1.37 chs while (uvn->u_flags & VXLOCK) {
150 1.37 chs uvn->u_flags |= VXWANT;
151 1.8 mrg UVMHIST_LOG(maphist, " SLEEPING on blocked vn",0,0,0,0);
152 1.8 mrg UVM_UNLOCK_AND_WAIT(uvn, &uvn->u_obj.vmobjlock, FALSE,
153 1.8 mrg "uvn_attach", 0);
154 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
155 1.8 mrg UVMHIST_LOG(maphist," WOKE UP",0,0,0,0);
156 1.8 mrg }
157 1.1 mrg
158 1.8 mrg /*
159 1.18 bouyer * if we're mapping a BLK device, make sure it is a disk.
160 1.13 thorpej */
161 1.13 thorpej if (vp->v_type == VBLK && bdevsw[major(vp->v_rdev)].d_type != D_DISK) {
162 1.37 chs simple_unlock(&uvn->u_obj.vmobjlock);
163 1.13 thorpej UVMHIST_LOG(maphist,"<- done (VBLK not D_DISK!)", 0,0,0,0);
164 1.13 thorpej return(NULL);
165 1.13 thorpej }
166 1.13 thorpej
167 1.37 chs #ifdef DIAGNOSTIC
168 1.37 chs if (vp->v_type != VREG) {
169 1.37 chs panic("uvn_attach: vp %p not VREG", vp);
170 1.37 chs }
171 1.37 chs #endif
172 1.37 chs
173 1.13 thorpej /*
174 1.37 chs * set up our idea of the size
175 1.37 chs * if this hasn't been done already.
176 1.8 mrg */
177 1.37 chs if (uvn->u_size == VSIZENOTSET) {
178 1.8 mrg
179 1.37 chs uvn->u_flags |= VXLOCK;
180 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock); /* drop lock in case we sleep */
181 1.8 mrg /* XXX: curproc? */
182 1.13 thorpej if (vp->v_type == VBLK) {
183 1.13 thorpej /*
184 1.13 thorpej * We could implement this as a specfs getattr call, but:
185 1.13 thorpej *
186 1.13 thorpej * (1) VOP_GETATTR() would get the file system
187 1.13 thorpej * vnode operation, not the specfs operation.
188 1.13 thorpej *
189 1.13 thorpej * (2) All we want is the size, anyhow.
190 1.13 thorpej */
191 1.13 thorpej result = (*bdevsw[major(vp->v_rdev)].d_ioctl)(vp->v_rdev,
192 1.13 thorpej DIOCGPART, (caddr_t)&pi, FREAD, curproc);
193 1.13 thorpej if (result == 0) {
194 1.13 thorpej /* XXX should remember blocksize */
195 1.37 chs used_vnode_size = (voff_t)pi.disklab->d_secsize *
196 1.37 chs (voff_t)pi.part->p_size;
197 1.13 thorpej }
198 1.13 thorpej } else {
199 1.13 thorpej result = VOP_GETATTR(vp, &vattr, curproc->p_ucred, curproc);
200 1.13 thorpej if (result == 0)
201 1.13 thorpej used_vnode_size = vattr.va_size;
202 1.8 mrg }
203 1.1 mrg
204 1.8 mrg /* relock object */
205 1.37 chs simple_lock(&uvn->u_obj.vmobjlock);
206 1.37 chs
207 1.37 chs if (uvn->u_flags & VXWANT)
208 1.37 chs wakeup(uvn);
209 1.37 chs uvn->u_flags &= ~(VXLOCK|VXWANT);
210 1.1 mrg
211 1.8 mrg if (result != 0) {
212 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock); /* drop lock */
213 1.8 mrg UVMHIST_LOG(maphist,"<- done (VOP_GETATTR FAILED!)", 0,0,0,0);
214 1.8 mrg return(NULL);
215 1.8 mrg }
216 1.8 mrg uvn->u_size = used_vnode_size;
217 1.8 mrg
218 1.8 mrg }
219 1.8 mrg
220 1.37 chs /* unlock and return */
221 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
222 1.37 chs UVMHIST_LOG(maphist,"<- done, refcnt=%d", uvn->u_obj.uo_refs,
223 1.37 chs 0, 0, 0);
224 1.37 chs return (&uvn->u_obj);
225 1.1 mrg }
226 1.1 mrg
227 1.1 mrg
228 1.1 mrg /*
229 1.1 mrg * uvn_reference
230 1.1 mrg *
231 1.1 mrg * duplicate a reference to a VM object. Note that the reference
232 1.1 mrg * count must already be at least one (the passed in reference) so
233 1.1 mrg * there is no chance of the uvn being killed or locked out here.
234 1.1 mrg *
235 1.1 mrg * => caller must call with object unlocked.
236 1.1 mrg * => caller must be using the same accessprot as was used at attach time
237 1.1 mrg */
238 1.1 mrg
239 1.1 mrg
240 1.8 mrg static void
241 1.8 mrg uvn_reference(uobj)
242 1.8 mrg struct uvm_object *uobj;
243 1.1 mrg {
244 1.37 chs VREF((struct vnode *)uobj);
245 1.1 mrg }
246 1.1 mrg
247 1.1 mrg /*
248 1.1 mrg * uvn_detach
249 1.1 mrg *
250 1.1 mrg * remove a reference to a VM object.
251 1.1 mrg *
252 1.1 mrg * => caller must call with object unlocked and map locked.
253 1.1 mrg * => this starts the detach process, but doesn't have to finish it
254 1.1 mrg * (async i/o could still be pending).
255 1.1 mrg */
256 1.8 mrg static void
257 1.8 mrg uvn_detach(uobj)
258 1.8 mrg struct uvm_object *uobj;
259 1.8 mrg {
260 1.37 chs vrele((struct vnode *)uobj);
261 1.1 mrg }
262 1.1 mrg
263 1.1 mrg /*
264 1.1 mrg * uvn_releasepg: handled a released page in a uvn
265 1.1 mrg *
266 1.1 mrg * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
267 1.1 mrg * to dispose of.
268 1.1 mrg * => caller must handled PG_WANTED case
269 1.1 mrg * => called with page's object locked, pageq's unlocked
270 1.1 mrg * => returns TRUE if page's object is still alive, FALSE if we
271 1.1 mrg * killed the page's object. if we return TRUE, then we
272 1.1 mrg * return with the object locked.
273 1.37 chs * => if (nextpgp != NULL) => we return the next page on the queue, and return
274 1.1 mrg * with the page queues locked [for pagedaemon]
275 1.1 mrg * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
276 1.1 mrg * => we kill the uvn if it is not referenced and we are suppose to
277 1.1 mrg * kill it ("relkill").
278 1.1 mrg */
279 1.1 mrg
280 1.8 mrg boolean_t
281 1.8 mrg uvn_releasepg(pg, nextpgp)
282 1.8 mrg struct vm_page *pg;
283 1.8 mrg struct vm_page **nextpgp; /* OUT */
284 1.1 mrg {
285 1.37 chs KASSERT(pg->flags & PG_RELEASED);
286 1.8 mrg
287 1.8 mrg /*
288 1.8 mrg * dispose of the page [caller handles PG_WANTED]
289 1.8 mrg */
290 1.26 chs pmap_page_protect(pg, VM_PROT_NONE);
291 1.8 mrg uvm_lock_pageq();
292 1.8 mrg if (nextpgp)
293 1.37 chs *nextpgp = TAILQ_NEXT(pg, pageq);
294 1.8 mrg uvm_pagefree(pg);
295 1.8 mrg if (!nextpgp)
296 1.8 mrg uvm_unlock_pageq();
297 1.8 mrg
298 1.8 mrg return (TRUE);
299 1.1 mrg }
300 1.1 mrg
301 1.1 mrg /*
302 1.1 mrg * NOTE: currently we have to use VOP_READ/VOP_WRITE because they go
303 1.1 mrg * through the buffer cache and allow I/O in any size. These VOPs use
304 1.1 mrg * synchronous i/o. [vs. VOP_STRATEGY which can be async, but doesn't
305 1.1 mrg * go through the buffer cache or allow I/O sizes larger than a
306 1.1 mrg * block]. we will eventually want to change this.
307 1.1 mrg *
308 1.1 mrg * issues to consider:
309 1.1 mrg * uvm provides the uvm_aiodesc structure for async i/o management.
310 1.1 mrg * there are two tailq's in the uvm. structure... one for pending async
311 1.1 mrg * i/o and one for "done" async i/o. to do an async i/o one puts
312 1.1 mrg * an aiodesc on the "pending" list (protected by splbio()), starts the
313 1.1 mrg * i/o and returns VM_PAGER_PEND. when the i/o is done, we expect
314 1.1 mrg * some sort of "i/o done" function to be called (at splbio(), interrupt
315 1.1 mrg * time). this function should remove the aiodesc from the pending list
316 1.1 mrg * and place it on the "done" list and wakeup the daemon. the daemon
317 1.1 mrg * will run at normal spl() and will remove all items from the "done"
318 1.1 mrg * list and call the "aiodone" hook for each done request (see uvm_pager.c).
319 1.1 mrg * [in the old vm code, this was done by calling the "put" routine with
320 1.1 mrg * null arguments which made the code harder to read and understand because
321 1.1 mrg * you had one function ("put") doing two things.]
322 1.1 mrg *
323 1.1 mrg * so the current pager needs:
324 1.1 mrg * int uvn_aiodone(struct uvm_aiodesc *)
325 1.1 mrg *
326 1.1 mrg * => return KERN_SUCCESS (aio finished, free it). otherwise requeue for
327 1.1 mrg * later collection.
328 1.1 mrg * => called with pageq's locked by the daemon.
329 1.1 mrg *
330 1.1 mrg * general outline:
331 1.1 mrg * - "try" to lock object. if fail, just return (will try again later)
332 1.1 mrg * - drop "u_nio" (this req is done!)
333 1.1 mrg * - if (object->iosync && u_naio == 0) { wakeup &uvn->u_naio }
334 1.1 mrg * - get "page" structures (atop?).
335 1.1 mrg * - handle "wanted" pages
336 1.1 mrg * - handle "released" pages [using pgo_releasepg]
337 1.1 mrg * >>> pgo_releasepg may kill the object
338 1.1 mrg * dont forget to look at "object" wanted flag in all cases.
339 1.1 mrg */
340 1.1 mrg
341 1.1 mrg
342 1.1 mrg /*
343 1.1 mrg * uvn_flush: flush pages out of a uvm object.
344 1.1 mrg *
345 1.1 mrg * => object should be locked by caller. we may _unlock_ the object
346 1.1 mrg * if (and only if) we need to clean a page (PGO_CLEANIT).
347 1.1 mrg * we return with the object locked.
348 1.1 mrg * => if PGO_CLEANIT is set, we may block (due to I/O). thus, a caller
349 1.1 mrg * might want to unlock higher level resources (e.g. vm_map)
350 1.1 mrg * before calling flush.
351 1.1 mrg * => if PGO_CLEANIT is not set, then we will neither unlock the object
352 1.1 mrg * or block.
353 1.1 mrg * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
354 1.1 mrg * for flushing.
355 1.1 mrg * => NOTE: we rely on the fact that the object's memq is a TAILQ and
356 1.1 mrg * that new pages are inserted on the tail end of the list. thus,
357 1.1 mrg * we can make a complete pass through the object in one go by starting
358 1.1 mrg * at the head and working towards the tail (new pages are put in
359 1.1 mrg * front of us).
360 1.1 mrg * => NOTE: we are allowed to lock the page queues, so the caller
361 1.1 mrg * must not be holding the lock on them [e.g. pagedaemon had
362 1.1 mrg * better not call us with the queues locked]
363 1.1 mrg * => we return TRUE unless we encountered some sort of I/O error
364 1.1 mrg *
365 1.1 mrg * comment on "cleaning" object and PG_BUSY pages:
366 1.1 mrg * this routine is holding the lock on the object. the only time
367 1.1 mrg * that it can run into a PG_BUSY page that it does not own is if
368 1.1 mrg * some other process has started I/O on the page (e.g. either
369 1.1 mrg * a pagein, or a pageout). if the PG_BUSY page is being paged
370 1.1 mrg * in, then it can not be dirty (!PG_CLEAN) because no one has
371 1.1 mrg * had a chance to modify it yet. if the PG_BUSY page is being
372 1.1 mrg * paged out then it means that someone else has already started
373 1.1 mrg * cleaning the page for us (how nice!). in this case, if we
374 1.1 mrg * have syncio specified, then after we make our pass through the
375 1.1 mrg * object we need to wait for the other PG_BUSY pages to clear
376 1.1 mrg * off (i.e. we need to do an iosync). also note that once a
377 1.1 mrg * page is PG_BUSY it must stay in its object until it is un-busyed.
378 1.1 mrg *
379 1.1 mrg * note on page traversal:
380 1.1 mrg * we can traverse the pages in an object either by going down the
381 1.1 mrg * linked list in "uobj->memq", or we can go over the address range
382 1.1 mrg * by page doing hash table lookups for each address. depending
383 1.1 mrg * on how many pages are in the object it may be cheaper to do one
384 1.1 mrg * or the other. we set "by_list" to true if we are using memq.
385 1.1 mrg * if the cost of a hash lookup was equal to the cost of the list
386 1.1 mrg * traversal we could compare the number of pages in the start->stop
387 1.1 mrg * range to the total number of pages in the object. however, it
388 1.1 mrg * seems that a hash table lookup is more expensive than the linked
389 1.1 mrg * list traversal, so we multiply the number of pages in the
390 1.1 mrg * start->stop range by a penalty which we define below.
391 1.1 mrg */
392 1.1 mrg
393 1.8 mrg #define UVN_HASH_PENALTY 4 /* XXX: a guess */
394 1.1 mrg
395 1.8 mrg static boolean_t
396 1.8 mrg uvn_flush(uobj, start, stop, flags)
397 1.8 mrg struct uvm_object *uobj;
398 1.30 kleink voff_t start, stop;
399 1.8 mrg int flags;
400 1.8 mrg {
401 1.37 chs struct uvm_vnode *uvn = (struct uvm_vnode *)uobj;
402 1.37 chs struct vnode *vp = (struct vnode *)uobj;
403 1.8 mrg struct vm_page *pp, *ppnext, *ptmp;
404 1.37 chs struct vm_page *pps[256], **ppsp;
405 1.37 chs int s;
406 1.8 mrg int npages, result, lcv;
407 1.37 chs boolean_t retval, need_iosync, by_list, needs_clean, all, wasclean;
408 1.30 kleink voff_t curoff;
409 1.8 mrg u_short pp_version;
410 1.8 mrg UVMHIST_FUNC("uvn_flush"); UVMHIST_CALLED(maphist);
411 1.37 chs UVMHIST_LOG(maphist, "uobj %p start 0x%x stop 0x%x flags 0x%x",
412 1.37 chs uobj, start, stop, flags);
413 1.37 chs KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
414 1.37 chs
415 1.37 chs #ifdef DEBUG
416 1.37 chs if (uvn->u_size == VSIZENOTSET) {
417 1.37 chs printf("uvn_flush: size not set vp %p\n", uvn);
418 1.37 chs vprint("uvn_flush VSIZENOTSET", vp);
419 1.37 chs flags |= PGO_ALLPAGES;
420 1.37 chs }
421 1.37 chs #endif
422 1.8 mrg
423 1.8 mrg /*
424 1.8 mrg * get init vals and determine how we are going to traverse object
425 1.8 mrg */
426 1.1 mrg
427 1.37 chs curoff = 0;
428 1.8 mrg need_iosync = FALSE;
429 1.37 chs retval = TRUE;
430 1.37 chs wasclean = TRUE;
431 1.8 mrg if (flags & PGO_ALLPAGES) {
432 1.30 kleink all = TRUE;
433 1.37 chs by_list = TRUE;
434 1.8 mrg } else {
435 1.8 mrg start = trunc_page(start);
436 1.8 mrg stop = round_page(stop);
437 1.27 chs #ifdef DEBUG
438 1.37 chs if (stop > round_page(uvn->u_size)) {
439 1.37 chs printf("uvn_flush: oor vp %p start 0x%x stop 0x%x "
440 1.37 chs "size 0x%x\n", uvn, (int)start, (int)stop,
441 1.37 chs (int)round_page(uvn->u_size));
442 1.37 chs }
443 1.27 chs #endif
444 1.30 kleink all = FALSE;
445 1.8 mrg by_list = (uobj->uo_npages <=
446 1.16 chs ((stop - start) >> PAGE_SHIFT) * UVN_HASH_PENALTY);
447 1.8 mrg }
448 1.8 mrg
449 1.8 mrg UVMHIST_LOG(maphist,
450 1.8 mrg " flush start=0x%x, stop=0x%x, by_list=%d, flags=0x%x",
451 1.8 mrg start, stop, by_list, flags);
452 1.8 mrg
453 1.8 mrg /*
454 1.8 mrg * PG_CLEANCHK: this bit is used by the pgo_mk_pcluster function as
455 1.8 mrg * a _hint_ as to how up to date the PG_CLEAN bit is. if the hint
456 1.8 mrg * is wrong it will only prevent us from clustering... it won't break
457 1.8 mrg * anything. we clear all PG_CLEANCHK bits here, and pgo_mk_pcluster
458 1.8 mrg * will set them as it syncs PG_CLEAN. This is only an issue if we
459 1.8 mrg * are looking at non-inactive pages (because inactive page's PG_CLEAN
460 1.8 mrg * bit is always up to date since there are no mappings).
461 1.8 mrg * [borrowed PG_CLEANCHK idea from FreeBSD VM]
462 1.8 mrg */
463 1.1 mrg
464 1.8 mrg if ((flags & PGO_CLEANIT) != 0 &&
465 1.8 mrg uobj->pgops->pgo_mk_pcluster != NULL) {
466 1.8 mrg if (by_list) {
467 1.37 chs TAILQ_FOREACH(pp, &uobj->memq, listq) {
468 1.30 kleink if (!all &&
469 1.30 kleink (pp->offset < start || pp->offset >= stop))
470 1.8 mrg continue;
471 1.8 mrg pp->flags &= ~PG_CLEANCHK;
472 1.8 mrg }
473 1.8 mrg
474 1.8 mrg } else { /* by hash */
475 1.8 mrg for (curoff = start ; curoff < stop;
476 1.8 mrg curoff += PAGE_SIZE) {
477 1.8 mrg pp = uvm_pagelookup(uobj, curoff);
478 1.8 mrg if (pp)
479 1.8 mrg pp->flags &= ~PG_CLEANCHK;
480 1.8 mrg }
481 1.8 mrg }
482 1.8 mrg }
483 1.1 mrg
484 1.8 mrg /*
485 1.8 mrg * now do it. note: we must update ppnext in body of loop or we
486 1.8 mrg * will get stuck. we need to use ppnext because we may free "pp"
487 1.8 mrg * before doing the next loop.
488 1.8 mrg */
489 1.1 mrg
490 1.8 mrg if (by_list) {
491 1.37 chs pp = TAILQ_FIRST(&uobj->memq);
492 1.1 mrg } else {
493 1.8 mrg curoff = start;
494 1.8 mrg pp = uvm_pagelookup(uobj, curoff);
495 1.1 mrg }
496 1.8 mrg
497 1.37 chs ppnext = NULL;
498 1.37 chs ppsp = NULL;
499 1.37 chs uvm_lock_pageq();
500 1.8 mrg
501 1.8 mrg /* locked: both page queues and uobj */
502 1.8 mrg for ( ; (by_list && pp != NULL) ||
503 1.37 chs (!by_list && curoff < stop) ; pp = ppnext) {
504 1.8 mrg if (by_list) {
505 1.30 kleink if (!all &&
506 1.30 kleink (pp->offset < start || pp->offset >= stop)) {
507 1.37 chs ppnext = TAILQ_NEXT(pp, listq);
508 1.8 mrg continue;
509 1.8 mrg }
510 1.8 mrg } else {
511 1.8 mrg curoff += PAGE_SIZE;
512 1.8 mrg if (pp == NULL) {
513 1.8 mrg if (curoff < stop)
514 1.8 mrg ppnext = uvm_pagelookup(uobj, curoff);
515 1.8 mrg continue;
516 1.8 mrg }
517 1.8 mrg }
518 1.8 mrg
519 1.8 mrg /*
520 1.8 mrg * handle case where we do not need to clean page (either
521 1.8 mrg * because we are not clean or because page is not dirty or
522 1.8 mrg * is busy):
523 1.8 mrg *
524 1.8 mrg * NOTE: we are allowed to deactivate a non-wired active
525 1.8 mrg * PG_BUSY page, but once a PG_BUSY page is on the inactive
526 1.8 mrg * queue it must stay put until it is !PG_BUSY (so as not to
527 1.8 mrg * confuse pagedaemon).
528 1.8 mrg */
529 1.8 mrg
530 1.8 mrg if ((flags & PGO_CLEANIT) == 0 || (pp->flags & PG_BUSY) != 0) {
531 1.8 mrg needs_clean = FALSE;
532 1.37 chs if ((flags & (PGO_CLEANIT|PGO_SYNCIO)) ==
533 1.8 mrg (PGO_CLEANIT|PGO_SYNCIO))
534 1.8 mrg need_iosync = TRUE;
535 1.8 mrg } else {
536 1.37 chs
537 1.8 mrg /*
538 1.8 mrg * freeing: nuke all mappings so we can sync
539 1.8 mrg * PG_CLEAN bit with no race
540 1.8 mrg */
541 1.8 mrg if ((pp->flags & PG_CLEAN) != 0 &&
542 1.8 mrg (flags & PGO_FREE) != 0 &&
543 1.8 mrg (pp->pqflags & PQ_ACTIVE) != 0)
544 1.26 chs pmap_page_protect(pp, VM_PROT_NONE);
545 1.8 mrg if ((pp->flags & PG_CLEAN) != 0 &&
546 1.26 chs pmap_is_modified(pp))
547 1.8 mrg pp->flags &= ~(PG_CLEAN);
548 1.37 chs pp->flags |= PG_CLEANCHK;
549 1.8 mrg needs_clean = ((pp->flags & PG_CLEAN) == 0);
550 1.8 mrg }
551 1.8 mrg
552 1.8 mrg /*
553 1.8 mrg * if we don't need a clean... load ppnext and dispose of pp
554 1.8 mrg */
555 1.8 mrg if (!needs_clean) {
556 1.8 mrg if (by_list)
557 1.37 chs ppnext = TAILQ_NEXT(pp, listq);
558 1.8 mrg else {
559 1.8 mrg if (curoff < stop)
560 1.8 mrg ppnext = uvm_pagelookup(uobj, curoff);
561 1.8 mrg }
562 1.8 mrg
563 1.8 mrg if (flags & PGO_DEACTIVATE) {
564 1.8 mrg if ((pp->pqflags & PQ_INACTIVE) == 0 &&
565 1.8 mrg pp->wire_count == 0) {
566 1.26 chs pmap_page_protect(pp, VM_PROT_NONE);
567 1.8 mrg uvm_pagedeactivate(pp);
568 1.8 mrg }
569 1.8 mrg
570 1.8 mrg } else if (flags & PGO_FREE) {
571 1.8 mrg if (pp->flags & PG_BUSY) {
572 1.8 mrg pp->flags |= PG_RELEASED;
573 1.8 mrg } else {
574 1.26 chs pmap_page_protect(pp, VM_PROT_NONE);
575 1.8 mrg uvm_pagefree(pp);
576 1.8 mrg }
577 1.8 mrg }
578 1.8 mrg /* ppnext is valid so we can continue... */
579 1.8 mrg continue;
580 1.8 mrg }
581 1.8 mrg
582 1.8 mrg /*
583 1.8 mrg * pp points to a page in the locked object that we are
584 1.8 mrg * working on. if it is !PG_CLEAN,!PG_BUSY and we asked
585 1.8 mrg * for cleaning (PGO_CLEANIT). we clean it now.
586 1.8 mrg *
587 1.8 mrg * let uvm_pager_put attempted a clustered page out.
588 1.8 mrg * note: locked: uobj and page queues.
589 1.8 mrg */
590 1.8 mrg
591 1.37 chs wasclean = FALSE;
592 1.8 mrg pp->flags |= PG_BUSY; /* we 'own' page now */
593 1.8 mrg UVM_PAGE_OWN(pp, "uvn_flush");
594 1.26 chs pmap_page_protect(pp, VM_PROT_READ);
595 1.8 mrg pp_version = pp->version;
596 1.1 mrg ReTry:
597 1.8 mrg ppsp = pps;
598 1.8 mrg npages = sizeof(pps) / sizeof(struct vm_page *);
599 1.1 mrg
600 1.8 mrg /* locked: page queues, uobj */
601 1.8 mrg result = uvm_pager_put(uobj, pp, &ppsp, &npages,
602 1.37 chs flags | PGO_DOACTCLUST, start, stop);
603 1.8 mrg /* unlocked: page queues, uobj */
604 1.1 mrg
605 1.8 mrg /*
606 1.8 mrg * at this point nothing is locked. if we did an async I/O
607 1.8 mrg * it is remotely possible for the async i/o to complete and
608 1.8 mrg * the page "pp" be freed or what not before we get a chance
609 1.8 mrg * to relock the object. in order to detect this, we have
610 1.8 mrg * saved the version number of the page in "pp_version".
611 1.8 mrg */
612 1.8 mrg
613 1.8 mrg /* relock! */
614 1.8 mrg simple_lock(&uobj->vmobjlock);
615 1.8 mrg uvm_lock_pageq();
616 1.8 mrg
617 1.8 mrg /*
618 1.8 mrg * VM_PAGER_AGAIN: given the structure of this pager, this
619 1.8 mrg * can only happen when we are doing async I/O and can't
620 1.8 mrg * map the pages into kernel memory (pager_map) due to lack
621 1.8 mrg * of vm space. if this happens we drop back to sync I/O.
622 1.8 mrg */
623 1.8 mrg
624 1.8 mrg if (result == VM_PAGER_AGAIN) {
625 1.37 chs
626 1.37 chs /*
627 1.8 mrg * it is unlikely, but page could have been released
628 1.8 mrg * while we had the object lock dropped. we ignore
629 1.8 mrg * this now and retry the I/O. we will detect and
630 1.8 mrg * handle the released page after the syncio I/O
631 1.8 mrg * completes.
632 1.8 mrg */
633 1.1 mrg #ifdef DIAGNOSTIC
634 1.8 mrg if (flags & PGO_SYNCIO)
635 1.1 mrg panic("uvn_flush: PGO_SYNCIO return 'try again' error (impossible)");
636 1.1 mrg #endif
637 1.8 mrg flags |= PGO_SYNCIO;
638 1.8 mrg goto ReTry;
639 1.8 mrg }
640 1.8 mrg
641 1.8 mrg /*
642 1.8 mrg * the cleaning operation is now done. finish up. note that
643 1.8 mrg * on error (!OK, !PEND) uvm_pager_put drops the cluster for us.
644 1.8 mrg * if success (OK, PEND) then uvm_pager_put returns the cluster
645 1.8 mrg * to us in ppsp/npages.
646 1.8 mrg */
647 1.8 mrg
648 1.8 mrg /*
649 1.8 mrg * for pending async i/o if we are not deactivating/freeing
650 1.8 mrg * we can move on to the next page.
651 1.8 mrg */
652 1.8 mrg
653 1.37 chs if (result == VM_PAGER_PEND &&
654 1.37 chs (flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
655 1.8 mrg
656 1.37 chs /*
657 1.37 chs * no per-page ops: refresh ppnext and continue
658 1.37 chs */
659 1.37 chs if (by_list) {
660 1.37 chs if (pp->version == pp_version)
661 1.37 chs ppnext = TAILQ_NEXT(pp, listq);
662 1.37 chs else
663 1.37 chs ppnext = TAILQ_FIRST(&uobj->memq);
664 1.37 chs } else {
665 1.37 chs if (curoff < stop)
666 1.37 chs ppnext = uvm_pagelookup(uobj, curoff);
667 1.8 mrg }
668 1.37 chs continue;
669 1.8 mrg }
670 1.8 mrg
671 1.8 mrg /*
672 1.8 mrg * need to look at each page of the I/O operation. we defer
673 1.8 mrg * processing "pp" until the last trip through this "for" loop
674 1.8 mrg * so that we can load "ppnext" for the main loop after we
675 1.8 mrg * play with the cluster pages [thus the "npages + 1" in the
676 1.8 mrg * loop below].
677 1.8 mrg */
678 1.8 mrg
679 1.8 mrg for (lcv = 0 ; lcv < npages + 1 ; lcv++) {
680 1.8 mrg
681 1.8 mrg /*
682 1.8 mrg * handle ppnext for outside loop, and saving pp
683 1.8 mrg * until the end.
684 1.8 mrg */
685 1.8 mrg if (lcv < npages) {
686 1.8 mrg if (ppsp[lcv] == pp)
687 1.8 mrg continue; /* skip pp until the end */
688 1.8 mrg ptmp = ppsp[lcv];
689 1.8 mrg } else {
690 1.8 mrg ptmp = pp;
691 1.8 mrg
692 1.8 mrg /* set up next page for outer loop */
693 1.8 mrg if (by_list) {
694 1.8 mrg if (pp->version == pp_version)
695 1.37 chs ppnext = TAILQ_NEXT(pp, listq);
696 1.8 mrg else
697 1.37 chs ppnext = TAILQ_FIRST(
698 1.37 chs &uobj->memq);
699 1.8 mrg } else {
700 1.8 mrg if (curoff < stop)
701 1.37 chs ppnext = uvm_pagelookup(uobj,
702 1.37 chs curoff);
703 1.8 mrg }
704 1.8 mrg }
705 1.8 mrg
706 1.8 mrg /*
707 1.37 chs * verify the page wasn't moved while obj was
708 1.8 mrg * unlocked
709 1.8 mrg */
710 1.8 mrg if (result == VM_PAGER_PEND && ptmp->uobject != uobj)
711 1.8 mrg continue;
712 1.8 mrg
713 1.8 mrg /*
714 1.8 mrg * unbusy the page if I/O is done. note that for
715 1.8 mrg * pending I/O it is possible that the I/O op
716 1.8 mrg * finished before we relocked the object (in
717 1.8 mrg * which case the page is no longer busy).
718 1.8 mrg */
719 1.8 mrg
720 1.8 mrg if (result != VM_PAGER_PEND) {
721 1.37 chs if (ptmp->flags & PG_WANTED) {
722 1.8 mrg /* still holding object lock */
723 1.25 thorpej wakeup(ptmp);
724 1.37 chs }
725 1.8 mrg ptmp->flags &= ~(PG_WANTED|PG_BUSY);
726 1.8 mrg UVM_PAGE_OWN(ptmp, NULL);
727 1.8 mrg if (ptmp->flags & PG_RELEASED) {
728 1.8 mrg uvm_unlock_pageq();
729 1.37 chs if (!uvn_releasepg(ptmp, NULL)) {
730 1.37 chs UVMHIST_LOG(maphist,
731 1.37 chs "released %p",
732 1.37 chs ptmp, 0,0,0);
733 1.8 mrg return (TRUE);
734 1.37 chs }
735 1.37 chs uvm_lock_pageq();
736 1.37 chs continue;
737 1.8 mrg } else {
738 1.37 chs if ((flags & PGO_WEAK) == 0 &&
739 1.37 chs !(result == VM_PAGER_ERROR &&
740 1.37 chs curproc == uvm.pagedaemon_proc)) {
741 1.37 chs ptmp->flags |=
742 1.37 chs (PG_CLEAN|PG_CLEANCHK);
743 1.37 chs if ((flags & PGO_FREE) == 0) {
744 1.37 chs pmap_clear_modify(ptmp);
745 1.37 chs }
746 1.37 chs }
747 1.8 mrg }
748 1.8 mrg }
749 1.8 mrg
750 1.8 mrg /*
751 1.8 mrg * dispose of page
752 1.8 mrg */
753 1.8 mrg
754 1.8 mrg if (flags & PGO_DEACTIVATE) {
755 1.8 mrg if ((pp->pqflags & PQ_INACTIVE) == 0 &&
756 1.8 mrg pp->wire_count == 0) {
757 1.26 chs pmap_page_protect(ptmp, VM_PROT_NONE);
758 1.8 mrg uvm_pagedeactivate(ptmp);
759 1.8 mrg }
760 1.8 mrg } else if (flags & PGO_FREE) {
761 1.8 mrg if (result == VM_PAGER_PEND) {
762 1.8 mrg if ((ptmp->flags & PG_BUSY) != 0)
763 1.8 mrg /* signal for i/o done */
764 1.8 mrg ptmp->flags |= PG_RELEASED;
765 1.8 mrg } else {
766 1.8 mrg if (result != VM_PAGER_OK) {
767 1.8 mrg printf("uvn_flush: obj=%p, "
768 1.37 chs "offset=0x%llx. error %d\n",
769 1.30 kleink pp->uobject,
770 1.37 chs (long long)pp->offset,
771 1.37 chs result);
772 1.8 mrg printf("uvn_flush: WARNING: "
773 1.8 mrg "changes to page may be "
774 1.8 mrg "lost!\n");
775 1.8 mrg retval = FALSE;
776 1.8 mrg }
777 1.26 chs pmap_page_protect(ptmp, VM_PROT_NONE);
778 1.8 mrg uvm_pagefree(ptmp);
779 1.8 mrg }
780 1.8 mrg }
781 1.8 mrg } /* end of "lcv" for loop */
782 1.8 mrg } /* end of "pp" for loop */
783 1.1 mrg
784 1.8 mrg uvm_unlock_pageq();
785 1.37 chs if ((flags & PGO_CLEANIT) && all && wasclean &&
786 1.37 chs LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
787 1.37 chs (vp->v_flag & VONWORKLST)) {
788 1.37 chs vp->v_flag &= ~VONWORKLST;
789 1.37 chs LIST_REMOVE(vp, v_synclist);
790 1.37 chs }
791 1.37 chs if (need_iosync) {
792 1.37 chs UVMHIST_LOG(maphist," <<DOING IOSYNC>>",0,0,0,0);
793 1.1 mrg
794 1.37 chs /*
795 1.37 chs * XXX this doesn't use the new two-flag scheme,
796 1.37 chs * but to use that, all i/o initiators will have to change.
797 1.37 chs */
798 1.1 mrg
799 1.37 chs s = splbio();
800 1.37 chs while (vp->v_numoutput != 0) {
801 1.37 chs UVMHIST_LOG(ubchist, "waiting for vp %p num %d",
802 1.37 chs vp, vp->v_numoutput,0,0);
803 1.37 chs
804 1.37 chs vp->v_flag |= VBWAIT;
805 1.37 chs UVM_UNLOCK_AND_WAIT(&vp->v_numoutput,
806 1.37 chs &uvn->u_obj.vmobjlock,
807 1.37 chs FALSE, "uvn_flush",0);
808 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
809 1.8 mrg }
810 1.37 chs splx(s);
811 1.1 mrg }
812 1.1 mrg
813 1.8 mrg /* return, with object locked! */
814 1.8 mrg UVMHIST_LOG(maphist,"<- done (retval=0x%x)",retval,0,0,0);
815 1.8 mrg return(retval);
816 1.1 mrg }
817 1.1 mrg
818 1.1 mrg /*
819 1.1 mrg * uvn_cluster
820 1.1 mrg *
821 1.1 mrg * we are about to do I/O in an object at offset. this function is called
822 1.1 mrg * to establish a range of offsets around "offset" in which we can cluster
823 1.1 mrg * I/O.
824 1.1 mrg *
825 1.1 mrg * - currently doesn't matter if obj locked or not.
826 1.1 mrg */
827 1.1 mrg
828 1.8 mrg static void
829 1.8 mrg uvn_cluster(uobj, offset, loffset, hoffset)
830 1.8 mrg struct uvm_object *uobj;
831 1.30 kleink voff_t offset;
832 1.30 kleink voff_t *loffset, *hoffset; /* OUT */
833 1.1 mrg {
834 1.37 chs struct uvm_vnode *uvn = (struct uvm_vnode *)uobj;
835 1.37 chs
836 1.8 mrg *loffset = offset;
837 1.37 chs *hoffset = min(offset + MAXBSIZE, round_page(uvn->u_size));
838 1.1 mrg }
839 1.1 mrg
840 1.1 mrg /*
841 1.1 mrg * uvn_put: flush page data to backing store.
842 1.1 mrg *
843 1.1 mrg * => object must be locked! we will _unlock_ it before starting I/O.
844 1.1 mrg * => flags: PGO_SYNCIO -- use sync. I/O
845 1.1 mrg * => note: caller must set PG_CLEAN and pmap_clear_modify (if needed)
846 1.1 mrg */
847 1.1 mrg
848 1.8 mrg static int
849 1.8 mrg uvn_put(uobj, pps, npages, flags)
850 1.8 mrg struct uvm_object *uobj;
851 1.8 mrg struct vm_page **pps;
852 1.8 mrg int npages, flags;
853 1.1 mrg {
854 1.37 chs struct vnode *vp = (struct vnode *)uobj;
855 1.37 chs int error;
856 1.1 mrg
857 1.37 chs error = VOP_PUTPAGES(vp, pps, npages, flags, NULL);
858 1.37 chs return uvm_errno2vmerror(error);
859 1.1 mrg }
860 1.1 mrg
861 1.1 mrg
862 1.1 mrg /*
863 1.1 mrg * uvn_get: get pages (synchronously) from backing store
864 1.1 mrg *
865 1.1 mrg * => prefer map unlocked (not required)
866 1.1 mrg * => object must be locked! we will _unlock_ it before starting any I/O.
867 1.1 mrg * => flags: PGO_ALLPAGES: get all of the pages
868 1.1 mrg * PGO_LOCKED: fault data structures are locked
869 1.1 mrg * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
870 1.1 mrg * => NOTE: caller must check for released pages!!
871 1.1 mrg */
872 1.1 mrg
873 1.8 mrg static int
874 1.8 mrg uvn_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
875 1.8 mrg struct uvm_object *uobj;
876 1.30 kleink voff_t offset;
877 1.8 mrg struct vm_page **pps; /* IN/OUT */
878 1.8 mrg int *npagesp; /* IN (OUT if PGO_LOCKED) */
879 1.37 chs int centeridx;
880 1.8 mrg vm_prot_t access_type;
881 1.37 chs int advice, flags;
882 1.8 mrg {
883 1.37 chs struct vnode *vp = (struct vnode *)uobj;
884 1.37 chs int error;
885 1.37 chs UVMHIST_FUNC("uvn_get"); UVMHIST_CALLED(ubchist);
886 1.37 chs
887 1.37 chs UVMHIST_LOG(ubchist, "vp %p off 0x%x", vp, (int)offset, 0,0);
888 1.37 chs error = VOP_GETPAGES(vp, offset, pps, npagesp, centeridx,
889 1.37 chs access_type, advice, flags);
890 1.37 chs return uvm_errno2vmerror(error);
891 1.37 chs }
892 1.8 mrg
893 1.8 mrg
894 1.37 chs /*
895 1.37 chs * uvn_findpages:
896 1.37 chs * return the page for the uobj and offset requested, allocating if needed.
897 1.37 chs * => uobj must be locked.
898 1.37 chs * => returned page will be BUSY.
899 1.37 chs */
900 1.1 mrg
901 1.37 chs void
902 1.37 chs uvn_findpages(uobj, offset, npagesp, pps, flags)
903 1.37 chs struct uvm_object *uobj;
904 1.37 chs voff_t offset;
905 1.37 chs int *npagesp;
906 1.37 chs struct vm_page **pps;
907 1.37 chs int flags;
908 1.37 chs {
909 1.37 chs int i, rv, npages;
910 1.8 mrg
911 1.37 chs rv = 0;
912 1.37 chs npages = *npagesp;
913 1.37 chs for (i = 0; i < npages; i++, offset += PAGE_SIZE) {
914 1.37 chs rv += uvn_findpage(uobj, offset, &pps[i], flags);
915 1.37 chs }
916 1.37 chs *npagesp = rv;
917 1.37 chs }
918 1.8 mrg
919 1.37 chs static int
920 1.37 chs uvn_findpage(uobj, offset, pgp, flags)
921 1.37 chs struct uvm_object *uobj;
922 1.37 chs voff_t offset;
923 1.37 chs struct vm_page **pgp;
924 1.37 chs int flags;
925 1.37 chs {
926 1.37 chs struct vm_page *pg;
927 1.37 chs UVMHIST_FUNC("uvn_findpage"); UVMHIST_CALLED(ubchist);
928 1.37 chs UVMHIST_LOG(ubchist, "vp %p off 0x%lx", uobj, offset,0,0);
929 1.8 mrg
930 1.37 chs if (*pgp != NULL) {
931 1.37 chs UVMHIST_LOG(ubchist, "dontcare", 0,0,0,0);
932 1.37 chs return 0;
933 1.37 chs }
934 1.37 chs for (;;) {
935 1.37 chs /* look for an existing page */
936 1.37 chs pg = uvm_pagelookup(uobj, offset);
937 1.37 chs
938 1.37 chs /* nope? allocate one now */
939 1.37 chs if (pg == NULL) {
940 1.37 chs if (flags & UFP_NOALLOC) {
941 1.37 chs UVMHIST_LOG(ubchist, "noalloc", 0,0,0,0);
942 1.37 chs return 0;
943 1.37 chs }
944 1.38 simonb if (uvmexp.vnodepages >
945 1.37 chs (uvmexp.active + uvmexp.inactive + uvmexp.wired +
946 1.37 chs uvmexp.free) * 7 / 8) {
947 1.37 chs pg = NULL;
948 1.37 chs } else {
949 1.37 chs pg = uvm_pagealloc(uobj, offset, NULL, 0);
950 1.8 mrg }
951 1.37 chs if (pg == NULL) {
952 1.37 chs if (flags & UFP_NOWAIT) {
953 1.37 chs UVMHIST_LOG(ubchist, "nowait",0,0,0,0);
954 1.37 chs return 0;
955 1.8 mrg }
956 1.37 chs simple_unlock(&uobj->vmobjlock);
957 1.37 chs uvm_wait("uvn_fp1");
958 1.8 mrg simple_lock(&uobj->vmobjlock);
959 1.37 chs continue;
960 1.8 mrg }
961 1.39 chs uvmexp.vnodepages++;
962 1.37 chs UVMHIST_LOG(ubchist, "alloced",0,0,0,0);
963 1.37 chs break;
964 1.37 chs } else if (flags & UFP_NOCACHE) {
965 1.37 chs UVMHIST_LOG(ubchist, "nocache",0,0,0,0);
966 1.37 chs return 0;
967 1.8 mrg }
968 1.8 mrg
969 1.37 chs /* page is there, see if we need to wait on it */
970 1.37 chs if ((pg->flags & (PG_BUSY|PG_RELEASED)) != 0) {
971 1.37 chs if (flags & UFP_NOWAIT) {
972 1.37 chs UVMHIST_LOG(ubchist, "nowait",0,0,0,0);
973 1.37 chs return 0;
974 1.37 chs }
975 1.37 chs pg->flags |= PG_WANTED;
976 1.37 chs UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
977 1.37 chs "uvn_fp2", 0);
978 1.37 chs simple_lock(&uobj->vmobjlock);
979 1.37 chs continue;
980 1.8 mrg }
981 1.37 chs
982 1.37 chs /* skip PG_RDONLY pages if requested */
983 1.37 chs if ((flags & UFP_NORDONLY) && (pg->flags & PG_RDONLY)) {
984 1.37 chs UVMHIST_LOG(ubchist, "nordonly",0,0,0,0);
985 1.37 chs return 0;
986 1.8 mrg }
987 1.8 mrg
988 1.37 chs /* mark the page BUSY and we're done. */
989 1.37 chs pg->flags |= PG_BUSY;
990 1.37 chs UVM_PAGE_OWN(pg, "uvn_findpage");
991 1.37 chs UVMHIST_LOG(ubchist, "found",0,0,0,0);
992 1.37 chs break;
993 1.8 mrg }
994 1.37 chs *pgp = pg;
995 1.37 chs return 1;
996 1.1 mrg }
997 1.1 mrg
998 1.1 mrg /*
999 1.1 mrg * uvm_vnp_setsize: grow or shrink a vnode uvn
1000 1.1 mrg *
1001 1.1 mrg * grow => just update size value
1002 1.1 mrg * shrink => toss un-needed pages
1003 1.1 mrg *
1004 1.1 mrg * => we assume that the caller has a reference of some sort to the
1005 1.1 mrg * vnode in question so that it will not be yanked out from under
1006 1.1 mrg * us.
1007 1.1 mrg *
1008 1.1 mrg * called from:
1009 1.1 mrg * => truncate fns (ext2fs_truncate, ffs_truncate, detrunc[msdos])
1010 1.1 mrg * => "write" fns (ext2fs_write, WRITE [ufs/ufs], msdosfs_write, nfs_write)
1011 1.1 mrg * => ffs_balloc [XXX: why? doesn't WRITE handle?]
1012 1.1 mrg * => NFS: nfs_loadattrcache, nfs_getattrcache, nfs_setattr
1013 1.1 mrg * => union fs: union_newsize
1014 1.1 mrg */
1015 1.1 mrg
1016 1.8 mrg void
1017 1.8 mrg uvm_vnp_setsize(vp, newsize)
1018 1.8 mrg struct vnode *vp;
1019 1.30 kleink voff_t newsize;
1020 1.8 mrg {
1021 1.8 mrg struct uvm_vnode *uvn = &vp->v_uvm;
1022 1.37 chs UVMHIST_FUNC("uvm_vnp_setsize"); UVMHIST_CALLED(ubchist);
1023 1.37 chs
1024 1.37 chs simple_lock(&uvn->u_obj.vmobjlock);
1025 1.37 chs
1026 1.37 chs UVMHIST_LOG(ubchist, "old 0x%x new 0x%x", uvn->u_size, newsize, 0,0);
1027 1.1 mrg
1028 1.8 mrg /*
1029 1.37 chs * now check if the size has changed: if we shrink we had better
1030 1.37 chs * toss some pages...
1031 1.8 mrg */
1032 1.1 mrg
1033 1.37 chs if (uvn->u_size > newsize && uvn->u_size != VSIZENOTSET) {
1034 1.37 chs (void) uvn_flush(&uvn->u_obj, newsize, uvn->u_size, PGO_FREE);
1035 1.8 mrg }
1036 1.37 chs uvn->u_size = newsize;
1037 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
1038 1.1 mrg }
1039 1.1 mrg
1040 1.1 mrg /*
1041 1.37 chs * uvm_vnp_zerorange: set a range of bytes in a file to zero.
1042 1.1 mrg */
1043 1.1 mrg
1044 1.8 mrg void
1045 1.37 chs uvm_vnp_zerorange(vp, off, len)
1046 1.37 chs struct vnode *vp;
1047 1.37 chs off_t off;
1048 1.37 chs size_t len;
1049 1.8 mrg {
1050 1.37 chs void *win;
1051 1.8 mrg
1052 1.37 chs /*
1053 1.37 chs * XXXUBC invent kzero() and use it
1054 1.37 chs */
1055 1.37 chs
1056 1.37 chs while (len) {
1057 1.37 chs vsize_t bytelen = len;
1058 1.37 chs
1059 1.37 chs win = ubc_alloc(&vp->v_uvm.u_obj, off, &bytelen, UBC_WRITE);
1060 1.37 chs memset(win, 0, bytelen);
1061 1.37 chs ubc_release(win, 0);
1062 1.37 chs
1063 1.37 chs off += bytelen;
1064 1.37 chs len -= bytelen;
1065 1.37 chs }
1066 1.1 mrg }
1067