uvm_vnode.c revision 1.46.2.4 1 1.46.2.4 nathanw /* $NetBSD: uvm_vnode.c,v 1.46.2.4 2001/08/24 00:13:45 nathanw Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 mrg * Copyright (c) 1991, 1993
6 1.46.2.3 nathanw * The Regents of the University of California.
7 1.1 mrg * Copyright (c) 1990 University of Utah.
8 1.1 mrg *
9 1.1 mrg * All rights reserved.
10 1.1 mrg *
11 1.1 mrg * This code is derived from software contributed to Berkeley by
12 1.1 mrg * the Systems Programming Group of the University of Utah Computer
13 1.1 mrg * Science Department.
14 1.1 mrg *
15 1.1 mrg * Redistribution and use in source and binary forms, with or without
16 1.1 mrg * modification, are permitted provided that the following conditions
17 1.1 mrg * are met:
18 1.1 mrg * 1. Redistributions of source code must retain the above copyright
19 1.1 mrg * notice, this list of conditions and the following disclaimer.
20 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
21 1.1 mrg * notice, this list of conditions and the following disclaimer in the
22 1.1 mrg * documentation and/or other materials provided with the distribution.
23 1.1 mrg * 3. All advertising materials mentioning features or use of this software
24 1.1 mrg * must display the following acknowledgement:
25 1.1 mrg * This product includes software developed by Charles D. Cranor,
26 1.46.2.3 nathanw * Washington University, the University of California, Berkeley and
27 1.1 mrg * its contributors.
28 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
29 1.1 mrg * may be used to endorse or promote products derived from this software
30 1.1 mrg * without specific prior written permission.
31 1.1 mrg *
32 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 1.1 mrg * SUCH DAMAGE.
43 1.1 mrg *
44 1.1 mrg * @(#)vnode_pager.c 8.8 (Berkeley) 2/13/94
45 1.3 mrg * from: Id: uvm_vnode.c,v 1.1.2.26 1998/02/02 20:38:07 chuck Exp
46 1.1 mrg */
47 1.1 mrg
48 1.6 thorpej #include "fs_nfs.h"
49 1.4 mrg #include "opt_uvmhist.h"
50 1.37 chs #include "opt_ddb.h"
51 1.4 mrg
52 1.1 mrg /*
53 1.1 mrg * uvm_vnode.c: the vnode pager.
54 1.1 mrg */
55 1.1 mrg
56 1.1 mrg #include <sys/param.h>
57 1.1 mrg #include <sys/systm.h>
58 1.46.2.1 nathanw #include <sys/lwp.h>
59 1.37 chs #include <sys/kernel.h>
60 1.1 mrg #include <sys/proc.h>
61 1.1 mrg #include <sys/malloc.h>
62 1.1 mrg #include <sys/vnode.h>
63 1.13 thorpej #include <sys/disklabel.h>
64 1.13 thorpej #include <sys/ioctl.h>
65 1.13 thorpej #include <sys/fcntl.h>
66 1.13 thorpej #include <sys/conf.h>
67 1.37 chs #include <sys/pool.h>
68 1.37 chs #include <sys/mount.h>
69 1.13 thorpej
70 1.13 thorpej #include <miscfs/specfs/specdev.h>
71 1.1 mrg
72 1.1 mrg #include <uvm/uvm.h>
73 1.1 mrg #include <uvm/uvm_vnode.h>
74 1.1 mrg
75 1.1 mrg /*
76 1.1 mrg * functions
77 1.1 mrg */
78 1.1 mrg
79 1.37 chs static void uvn_cluster __P((struct uvm_object *, voff_t, voff_t *,
80 1.37 chs voff_t *));
81 1.37 chs static void uvn_detach __P((struct uvm_object *));
82 1.37 chs static int uvn_findpage __P((struct uvm_object *, voff_t,
83 1.37 chs struct vm_page **, int));
84 1.37 chs static boolean_t uvn_flush __P((struct uvm_object *, voff_t, voff_t,
85 1.37 chs int));
86 1.46.2.3 nathanw static int uvn_get __P((struct uvm_object *, voff_t,
87 1.46.2.3 nathanw struct vm_page **, int *, int, vm_prot_t,
88 1.46.2.3 nathanw int, int));
89 1.46.2.3 nathanw static int uvn_put __P((struct uvm_object *, struct vm_page **,
90 1.46.2.3 nathanw int, boolean_t));
91 1.37 chs static void uvn_reference __P((struct uvm_object *));
92 1.37 chs static boolean_t uvn_releasepg __P((struct vm_page *,
93 1.37 chs struct vm_page **));
94 1.1 mrg
95 1.1 mrg /*
96 1.1 mrg * master pager structure
97 1.1 mrg */
98 1.1 mrg
99 1.1 mrg struct uvm_pagerops uvm_vnodeops = {
100 1.37 chs NULL,
101 1.8 mrg uvn_reference,
102 1.8 mrg uvn_detach,
103 1.37 chs NULL,
104 1.8 mrg uvn_flush,
105 1.8 mrg uvn_get,
106 1.8 mrg uvn_put,
107 1.8 mrg uvn_cluster,
108 1.37 chs uvm_mk_pcluster,
109 1.8 mrg uvn_releasepg,
110 1.1 mrg };
111 1.1 mrg
112 1.1 mrg /*
113 1.1 mrg * the ops!
114 1.1 mrg */
115 1.1 mrg
116 1.1 mrg /*
117 1.1 mrg * uvn_attach
118 1.1 mrg *
119 1.1 mrg * attach a vnode structure to a VM object. if the vnode is already
120 1.1 mrg * attached, then just bump the reference count by one and return the
121 1.1 mrg * VM object. if not already attached, attach and return the new VM obj.
122 1.1 mrg * the "accessprot" tells the max access the attaching thread wants to
123 1.1 mrg * our pages.
124 1.1 mrg *
125 1.1 mrg * => caller must _not_ already be holding the lock on the uvm_object.
126 1.1 mrg * => in fact, nothing should be locked so that we can sleep here.
127 1.1 mrg * => note that uvm_object is first thing in vnode structure, so their
128 1.1 mrg * pointers are equiv.
129 1.1 mrg */
130 1.1 mrg
131 1.8 mrg struct uvm_object *
132 1.8 mrg uvn_attach(arg, accessprot)
133 1.8 mrg void *arg;
134 1.8 mrg vm_prot_t accessprot;
135 1.8 mrg {
136 1.8 mrg struct vnode *vp = arg;
137 1.8 mrg struct uvm_vnode *uvn = &vp->v_uvm;
138 1.8 mrg struct vattr vattr;
139 1.37 chs int result;
140 1.13 thorpej struct partinfo pi;
141 1.37 chs voff_t used_vnode_size;
142 1.8 mrg UVMHIST_FUNC("uvn_attach"); UVMHIST_CALLED(maphist);
143 1.8 mrg
144 1.8 mrg UVMHIST_LOG(maphist, "(vn=0x%x)", arg,0,0,0);
145 1.37 chs used_vnode_size = (voff_t)0;
146 1.13 thorpej
147 1.8 mrg /*
148 1.8 mrg * first get a lock on the uvn.
149 1.8 mrg */
150 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
151 1.37 chs while (uvn->u_flags & VXLOCK) {
152 1.37 chs uvn->u_flags |= VXWANT;
153 1.8 mrg UVMHIST_LOG(maphist, " SLEEPING on blocked vn",0,0,0,0);
154 1.8 mrg UVM_UNLOCK_AND_WAIT(uvn, &uvn->u_obj.vmobjlock, FALSE,
155 1.8 mrg "uvn_attach", 0);
156 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
157 1.8 mrg UVMHIST_LOG(maphist," WOKE UP",0,0,0,0);
158 1.8 mrg }
159 1.1 mrg
160 1.8 mrg /*
161 1.18 bouyer * if we're mapping a BLK device, make sure it is a disk.
162 1.13 thorpej */
163 1.13 thorpej if (vp->v_type == VBLK && bdevsw[major(vp->v_rdev)].d_type != D_DISK) {
164 1.37 chs simple_unlock(&uvn->u_obj.vmobjlock);
165 1.13 thorpej UVMHIST_LOG(maphist,"<- done (VBLK not D_DISK!)", 0,0,0,0);
166 1.13 thorpej return(NULL);
167 1.13 thorpej }
168 1.46.2.4 nathanw KASSERT(vp->v_type == VREG || vp->v_type == VBLK);
169 1.37 chs
170 1.13 thorpej /*
171 1.37 chs * set up our idea of the size
172 1.37 chs * if this hasn't been done already.
173 1.8 mrg */
174 1.37 chs if (uvn->u_size == VSIZENOTSET) {
175 1.8 mrg
176 1.37 chs uvn->u_flags |= VXLOCK;
177 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock); /* drop lock in case we sleep */
178 1.8 mrg /* XXX: curproc? */
179 1.13 thorpej if (vp->v_type == VBLK) {
180 1.13 thorpej /*
181 1.13 thorpej * We could implement this as a specfs getattr call, but:
182 1.13 thorpej *
183 1.13 thorpej * (1) VOP_GETATTR() would get the file system
184 1.13 thorpej * vnode operation, not the specfs operation.
185 1.13 thorpej *
186 1.13 thorpej * (2) All we want is the size, anyhow.
187 1.13 thorpej */
188 1.13 thorpej result = (*bdevsw[major(vp->v_rdev)].d_ioctl)(vp->v_rdev,
189 1.46.2.1 nathanw DIOCGPART, (caddr_t)&pi, FREAD, curproc->l_proc);
190 1.13 thorpej if (result == 0) {
191 1.13 thorpej /* XXX should remember blocksize */
192 1.37 chs used_vnode_size = (voff_t)pi.disklab->d_secsize *
193 1.37 chs (voff_t)pi.part->p_size;
194 1.13 thorpej }
195 1.13 thorpej } else {
196 1.46.2.1 nathanw result = VOP_GETATTR(vp, &vattr, curproc->l_proc->p_ucred,
197 1.46.2.1 nathanw curproc->l_proc);
198 1.13 thorpej if (result == 0)
199 1.13 thorpej used_vnode_size = vattr.va_size;
200 1.8 mrg }
201 1.1 mrg
202 1.8 mrg /* relock object */
203 1.37 chs simple_lock(&uvn->u_obj.vmobjlock);
204 1.37 chs
205 1.37 chs if (uvn->u_flags & VXWANT)
206 1.37 chs wakeup(uvn);
207 1.37 chs uvn->u_flags &= ~(VXLOCK|VXWANT);
208 1.1 mrg
209 1.8 mrg if (result != 0) {
210 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock); /* drop lock */
211 1.8 mrg UVMHIST_LOG(maphist,"<- done (VOP_GETATTR FAILED!)", 0,0,0,0);
212 1.8 mrg return(NULL);
213 1.8 mrg }
214 1.8 mrg uvn->u_size = used_vnode_size;
215 1.8 mrg
216 1.8 mrg }
217 1.8 mrg
218 1.37 chs /* unlock and return */
219 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
220 1.37 chs UVMHIST_LOG(maphist,"<- done, refcnt=%d", uvn->u_obj.uo_refs,
221 1.37 chs 0, 0, 0);
222 1.37 chs return (&uvn->u_obj);
223 1.1 mrg }
224 1.1 mrg
225 1.1 mrg
226 1.1 mrg /*
227 1.1 mrg * uvn_reference
228 1.1 mrg *
229 1.1 mrg * duplicate a reference to a VM object. Note that the reference
230 1.46.2.3 nathanw * count must already be at least one (the passed in reference) so
231 1.1 mrg * there is no chance of the uvn being killed or locked out here.
232 1.1 mrg *
233 1.46.2.3 nathanw * => caller must call with object unlocked.
234 1.1 mrg * => caller must be using the same accessprot as was used at attach time
235 1.1 mrg */
236 1.1 mrg
237 1.1 mrg
238 1.8 mrg static void
239 1.8 mrg uvn_reference(uobj)
240 1.8 mrg struct uvm_object *uobj;
241 1.1 mrg {
242 1.37 chs VREF((struct vnode *)uobj);
243 1.1 mrg }
244 1.1 mrg
245 1.1 mrg /*
246 1.1 mrg * uvn_detach
247 1.1 mrg *
248 1.1 mrg * remove a reference to a VM object.
249 1.1 mrg *
250 1.1 mrg * => caller must call with object unlocked and map locked.
251 1.1 mrg */
252 1.8 mrg static void
253 1.8 mrg uvn_detach(uobj)
254 1.8 mrg struct uvm_object *uobj;
255 1.8 mrg {
256 1.37 chs vrele((struct vnode *)uobj);
257 1.1 mrg }
258 1.1 mrg
259 1.1 mrg /*
260 1.1 mrg * uvn_releasepg: handled a released page in a uvn
261 1.1 mrg *
262 1.1 mrg * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
263 1.1 mrg * to dispose of.
264 1.1 mrg * => caller must handled PG_WANTED case
265 1.1 mrg * => called with page's object locked, pageq's unlocked
266 1.1 mrg * => returns TRUE if page's object is still alive, FALSE if we
267 1.1 mrg * killed the page's object. if we return TRUE, then we
268 1.1 mrg * return with the object locked.
269 1.37 chs * => if (nextpgp != NULL) => we return the next page on the queue, and return
270 1.1 mrg * with the page queues locked [for pagedaemon]
271 1.1 mrg * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
272 1.1 mrg * => we kill the uvn if it is not referenced and we are suppose to
273 1.1 mrg * kill it ("relkill").
274 1.1 mrg */
275 1.1 mrg
276 1.8 mrg boolean_t
277 1.8 mrg uvn_releasepg(pg, nextpgp)
278 1.8 mrg struct vm_page *pg;
279 1.8 mrg struct vm_page **nextpgp; /* OUT */
280 1.1 mrg {
281 1.37 chs KASSERT(pg->flags & PG_RELEASED);
282 1.46.2.3 nathanw
283 1.8 mrg /*
284 1.8 mrg * dispose of the page [caller handles PG_WANTED]
285 1.8 mrg */
286 1.26 chs pmap_page_protect(pg, VM_PROT_NONE);
287 1.8 mrg uvm_lock_pageq();
288 1.8 mrg if (nextpgp)
289 1.37 chs *nextpgp = TAILQ_NEXT(pg, pageq);
290 1.8 mrg uvm_pagefree(pg);
291 1.8 mrg if (!nextpgp)
292 1.8 mrg uvm_unlock_pageq();
293 1.8 mrg
294 1.8 mrg return (TRUE);
295 1.1 mrg }
296 1.1 mrg
297 1.1 mrg /*
298 1.1 mrg * issues to consider:
299 1.1 mrg * there are two tailq's in the uvm. structure... one for pending async
300 1.1 mrg * i/o and one for "done" async i/o. to do an async i/o one puts
301 1.45 chs * a buf on the "pending" list (protected by splbio()), starts the
302 1.46.2.2 nathanw * i/o and returns 0. when the i/o is done, we expect
303 1.1 mrg * some sort of "i/o done" function to be called (at splbio(), interrupt
304 1.45 chs * time). this function should remove the buf from the pending list
305 1.1 mrg * and place it on the "done" list and wakeup the daemon. the daemon
306 1.1 mrg * will run at normal spl() and will remove all items from the "done"
307 1.45 chs * list and call the iodone hook for each done request (see uvm_pager.c).
308 1.1 mrg *
309 1.1 mrg * => return KERN_SUCCESS (aio finished, free it). otherwise requeue for
310 1.1 mrg * later collection.
311 1.1 mrg * => called with pageq's locked by the daemon.
312 1.1 mrg *
313 1.1 mrg * general outline:
314 1.1 mrg * - "try" to lock object. if fail, just return (will try again later)
315 1.1 mrg * - drop "u_nio" (this req is done!)
316 1.1 mrg * - if (object->iosync && u_naio == 0) { wakeup &uvn->u_naio }
317 1.1 mrg * - get "page" structures (atop?).
318 1.1 mrg * - handle "wanted" pages
319 1.1 mrg * - handle "released" pages [using pgo_releasepg]
320 1.1 mrg * >>> pgo_releasepg may kill the object
321 1.1 mrg * dont forget to look at "object" wanted flag in all cases.
322 1.1 mrg */
323 1.1 mrg
324 1.1 mrg
325 1.1 mrg /*
326 1.1 mrg * uvn_flush: flush pages out of a uvm object.
327 1.1 mrg *
328 1.43 chs * => "stop == 0" means flush all pages at or after "start".
329 1.1 mrg * => object should be locked by caller. we may _unlock_ the object
330 1.41 chs * if (and only if) we need to clean a page (PGO_CLEANIT), or
331 1.41 chs * if PGO_SYNCIO is set and there are pages busy.
332 1.1 mrg * we return with the object locked.
333 1.41 chs * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
334 1.41 chs * thus, a caller might want to unlock higher level resources
335 1.41 chs * (e.g. vm_map) before calling flush.
336 1.41 chs * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
337 1.41 chs * unlock the object nor block.
338 1.41 chs * => if PGO_ALLPAGES is set, then all pages in the object are valid targets
339 1.1 mrg * for flushing.
340 1.1 mrg * => NOTE: we rely on the fact that the object's memq is a TAILQ and
341 1.1 mrg * that new pages are inserted on the tail end of the list. thus,
342 1.1 mrg * we can make a complete pass through the object in one go by starting
343 1.1 mrg * at the head and working towards the tail (new pages are put in
344 1.1 mrg * front of us).
345 1.1 mrg * => NOTE: we are allowed to lock the page queues, so the caller
346 1.1 mrg * must not be holding the lock on them [e.g. pagedaemon had
347 1.1 mrg * better not call us with the queues locked]
348 1.1 mrg * => we return TRUE unless we encountered some sort of I/O error
349 1.1 mrg *
350 1.1 mrg * comment on "cleaning" object and PG_BUSY pages:
351 1.1 mrg * this routine is holding the lock on the object. the only time
352 1.1 mrg * that it can run into a PG_BUSY page that it does not own is if
353 1.1 mrg * some other process has started I/O on the page (e.g. either
354 1.1 mrg * a pagein, or a pageout). if the PG_BUSY page is being paged
355 1.1 mrg * in, then it can not be dirty (!PG_CLEAN) because no one has
356 1.1 mrg * had a chance to modify it yet. if the PG_BUSY page is being
357 1.1 mrg * paged out then it means that someone else has already started
358 1.46.2.3 nathanw * cleaning the page for us (how nice!). in this case, if we
359 1.1 mrg * have syncio specified, then after we make our pass through the
360 1.46.2.3 nathanw * object we need to wait for the other PG_BUSY pages to clear
361 1.1 mrg * off (i.e. we need to do an iosync). also note that once a
362 1.1 mrg * page is PG_BUSY it must stay in its object until it is un-busyed.
363 1.1 mrg *
364 1.1 mrg * note on page traversal:
365 1.1 mrg * we can traverse the pages in an object either by going down the
366 1.1 mrg * linked list in "uobj->memq", or we can go over the address range
367 1.1 mrg * by page doing hash table lookups for each address. depending
368 1.46.2.3 nathanw * on how many pages are in the object it may be cheaper to do one
369 1.1 mrg * or the other. we set "by_list" to true if we are using memq.
370 1.1 mrg * if the cost of a hash lookup was equal to the cost of the list
371 1.1 mrg * traversal we could compare the number of pages in the start->stop
372 1.1 mrg * range to the total number of pages in the object. however, it
373 1.1 mrg * seems that a hash table lookup is more expensive than the linked
374 1.46.2.3 nathanw * list traversal, so we multiply the number of pages in the
375 1.1 mrg * start->stop range by a penalty which we define below.
376 1.1 mrg */
377 1.1 mrg
378 1.8 mrg #define UVN_HASH_PENALTY 4 /* XXX: a guess */
379 1.1 mrg
380 1.8 mrg static boolean_t
381 1.8 mrg uvn_flush(uobj, start, stop, flags)
382 1.8 mrg struct uvm_object *uobj;
383 1.30 kleink voff_t start, stop;
384 1.8 mrg int flags;
385 1.8 mrg {
386 1.37 chs struct uvm_vnode *uvn = (struct uvm_vnode *)uobj;
387 1.37 chs struct vnode *vp = (struct vnode *)uobj;
388 1.8 mrg struct vm_page *pp, *ppnext, *ptmp;
389 1.37 chs struct vm_page *pps[256], **ppsp;
390 1.37 chs int s;
391 1.8 mrg int npages, result, lcv;
392 1.37 chs boolean_t retval, need_iosync, by_list, needs_clean, all, wasclean;
393 1.46.2.2 nathanw boolean_t async = (flags & PGO_SYNCIO) == 0;
394 1.30 kleink voff_t curoff;
395 1.8 mrg u_short pp_version;
396 1.8 mrg UVMHIST_FUNC("uvn_flush"); UVMHIST_CALLED(maphist);
397 1.37 chs UVMHIST_LOG(maphist, "uobj %p start 0x%x stop 0x%x flags 0x%x",
398 1.37 chs uobj, start, stop, flags);
399 1.37 chs KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
400 1.45 chs
401 1.45 chs if (uobj->uo_npages == 0) {
402 1.45 chs if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
403 1.45 chs (vp->v_flag & VONWORKLST)) {
404 1.45 chs vp->v_flag &= ~VONWORKLST;
405 1.45 chs LIST_REMOVE(vp, v_synclist);
406 1.45 chs }
407 1.45 chs return TRUE;
408 1.45 chs }
409 1.37 chs
410 1.37 chs #ifdef DEBUG
411 1.37 chs if (uvn->u_size == VSIZENOTSET) {
412 1.37 chs printf("uvn_flush: size not set vp %p\n", uvn);
413 1.37 chs vprint("uvn_flush VSIZENOTSET", vp);
414 1.37 chs flags |= PGO_ALLPAGES;
415 1.37 chs }
416 1.37 chs #endif
417 1.8 mrg
418 1.8 mrg /*
419 1.8 mrg * get init vals and determine how we are going to traverse object
420 1.8 mrg */
421 1.1 mrg
422 1.43 chs if (stop == 0) {
423 1.43 chs stop = trunc_page(LLONG_MAX);
424 1.43 chs }
425 1.37 chs curoff = 0;
426 1.8 mrg need_iosync = FALSE;
427 1.37 chs retval = TRUE;
428 1.37 chs wasclean = TRUE;
429 1.8 mrg if (flags & PGO_ALLPAGES) {
430 1.30 kleink all = TRUE;
431 1.37 chs by_list = TRUE;
432 1.8 mrg } else {
433 1.8 mrg start = trunc_page(start);
434 1.8 mrg stop = round_page(stop);
435 1.30 kleink all = FALSE;
436 1.46.2.3 nathanw by_list = (uobj->uo_npages <=
437 1.16 chs ((stop - start) >> PAGE_SHIFT) * UVN_HASH_PENALTY);
438 1.8 mrg }
439 1.8 mrg
440 1.8 mrg UVMHIST_LOG(maphist,
441 1.8 mrg " flush start=0x%x, stop=0x%x, by_list=%d, flags=0x%x",
442 1.8 mrg start, stop, by_list, flags);
443 1.8 mrg
444 1.8 mrg /*
445 1.8 mrg * PG_CLEANCHK: this bit is used by the pgo_mk_pcluster function as
446 1.8 mrg * a _hint_ as to how up to date the PG_CLEAN bit is. if the hint
447 1.8 mrg * is wrong it will only prevent us from clustering... it won't break
448 1.8 mrg * anything. we clear all PG_CLEANCHK bits here, and pgo_mk_pcluster
449 1.8 mrg * will set them as it syncs PG_CLEAN. This is only an issue if we
450 1.8 mrg * are looking at non-inactive pages (because inactive page's PG_CLEAN
451 1.8 mrg * bit is always up to date since there are no mappings).
452 1.8 mrg * [borrowed PG_CLEANCHK idea from FreeBSD VM]
453 1.8 mrg */
454 1.1 mrg
455 1.8 mrg if ((flags & PGO_CLEANIT) != 0 &&
456 1.8 mrg uobj->pgops->pgo_mk_pcluster != NULL) {
457 1.8 mrg if (by_list) {
458 1.37 chs TAILQ_FOREACH(pp, &uobj->memq, listq) {
459 1.30 kleink if (!all &&
460 1.30 kleink (pp->offset < start || pp->offset >= stop))
461 1.8 mrg continue;
462 1.8 mrg pp->flags &= ~PG_CLEANCHK;
463 1.8 mrg }
464 1.8 mrg
465 1.8 mrg } else { /* by hash */
466 1.8 mrg for (curoff = start ; curoff < stop;
467 1.8 mrg curoff += PAGE_SIZE) {
468 1.8 mrg pp = uvm_pagelookup(uobj, curoff);
469 1.8 mrg if (pp)
470 1.8 mrg pp->flags &= ~PG_CLEANCHK;
471 1.8 mrg }
472 1.8 mrg }
473 1.8 mrg }
474 1.1 mrg
475 1.8 mrg /*
476 1.8 mrg * now do it. note: we must update ppnext in body of loop or we
477 1.8 mrg * will get stuck. we need to use ppnext because we may free "pp"
478 1.8 mrg * before doing the next loop.
479 1.8 mrg */
480 1.1 mrg
481 1.8 mrg if (by_list) {
482 1.37 chs pp = TAILQ_FIRST(&uobj->memq);
483 1.1 mrg } else {
484 1.8 mrg curoff = start;
485 1.8 mrg pp = uvm_pagelookup(uobj, curoff);
486 1.1 mrg }
487 1.8 mrg
488 1.37 chs ppnext = NULL;
489 1.37 chs ppsp = NULL;
490 1.37 chs uvm_lock_pageq();
491 1.8 mrg
492 1.8 mrg /* locked: both page queues and uobj */
493 1.46.2.3 nathanw for ( ; (by_list && pp != NULL) ||
494 1.37 chs (!by_list && curoff < stop) ; pp = ppnext) {
495 1.8 mrg if (by_list) {
496 1.30 kleink if (!all &&
497 1.30 kleink (pp->offset < start || pp->offset >= stop)) {
498 1.37 chs ppnext = TAILQ_NEXT(pp, listq);
499 1.8 mrg continue;
500 1.8 mrg }
501 1.8 mrg } else {
502 1.8 mrg curoff += PAGE_SIZE;
503 1.8 mrg if (pp == NULL) {
504 1.8 mrg if (curoff < stop)
505 1.8 mrg ppnext = uvm_pagelookup(uobj, curoff);
506 1.8 mrg continue;
507 1.8 mrg }
508 1.8 mrg }
509 1.8 mrg
510 1.8 mrg /*
511 1.8 mrg * handle case where we do not need to clean page (either
512 1.8 mrg * because we are not clean or because page is not dirty or
513 1.8 mrg * is busy):
514 1.46.2.3 nathanw *
515 1.8 mrg * NOTE: we are allowed to deactivate a non-wired active
516 1.8 mrg * PG_BUSY page, but once a PG_BUSY page is on the inactive
517 1.8 mrg * queue it must stay put until it is !PG_BUSY (so as not to
518 1.8 mrg * confuse pagedaemon).
519 1.8 mrg */
520 1.8 mrg
521 1.8 mrg if ((flags & PGO_CLEANIT) == 0 || (pp->flags & PG_BUSY) != 0) {
522 1.8 mrg needs_clean = FALSE;
523 1.46.2.2 nathanw if (!async)
524 1.8 mrg need_iosync = TRUE;
525 1.8 mrg } else {
526 1.37 chs
527 1.8 mrg /*
528 1.8 mrg * freeing: nuke all mappings so we can sync
529 1.8 mrg * PG_CLEAN bit with no race
530 1.8 mrg */
531 1.46.2.3 nathanw if ((pp->flags & PG_CLEAN) != 0 &&
532 1.8 mrg (flags & PGO_FREE) != 0 &&
533 1.42 thorpej /* XXX ACTIVE|INACTIVE test unnecessary? */
534 1.42 thorpej (pp->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) != 0)
535 1.26 chs pmap_page_protect(pp, VM_PROT_NONE);
536 1.8 mrg if ((pp->flags & PG_CLEAN) != 0 &&
537 1.26 chs pmap_is_modified(pp))
538 1.8 mrg pp->flags &= ~(PG_CLEAN);
539 1.37 chs pp->flags |= PG_CLEANCHK;
540 1.8 mrg needs_clean = ((pp->flags & PG_CLEAN) == 0);
541 1.8 mrg }
542 1.8 mrg
543 1.8 mrg /*
544 1.8 mrg * if we don't need a clean... load ppnext and dispose of pp
545 1.8 mrg */
546 1.8 mrg if (!needs_clean) {
547 1.8 mrg if (by_list)
548 1.37 chs ppnext = TAILQ_NEXT(pp, listq);
549 1.8 mrg else {
550 1.8 mrg if (curoff < stop)
551 1.8 mrg ppnext = uvm_pagelookup(uobj, curoff);
552 1.8 mrg }
553 1.8 mrg
554 1.8 mrg if (flags & PGO_DEACTIVATE) {
555 1.8 mrg if ((pp->pqflags & PQ_INACTIVE) == 0 &&
556 1.40 chs (pp->flags & PG_BUSY) == 0 &&
557 1.8 mrg pp->wire_count == 0) {
558 1.42 thorpej pmap_clear_reference(pp);
559 1.8 mrg uvm_pagedeactivate(pp);
560 1.8 mrg }
561 1.8 mrg
562 1.8 mrg } else if (flags & PGO_FREE) {
563 1.8 mrg if (pp->flags & PG_BUSY) {
564 1.8 mrg pp->flags |= PG_RELEASED;
565 1.8 mrg } else {
566 1.26 chs pmap_page_protect(pp, VM_PROT_NONE);
567 1.8 mrg uvm_pagefree(pp);
568 1.8 mrg }
569 1.8 mrg }
570 1.8 mrg /* ppnext is valid so we can continue... */
571 1.8 mrg continue;
572 1.8 mrg }
573 1.8 mrg
574 1.8 mrg /*
575 1.8 mrg * pp points to a page in the locked object that we are
576 1.8 mrg * working on. if it is !PG_CLEAN,!PG_BUSY and we asked
577 1.8 mrg * for cleaning (PGO_CLEANIT). we clean it now.
578 1.8 mrg *
579 1.8 mrg * let uvm_pager_put attempted a clustered page out.
580 1.8 mrg * note: locked: uobj and page queues.
581 1.8 mrg */
582 1.8 mrg
583 1.37 chs wasclean = FALSE;
584 1.8 mrg pp->flags |= PG_BUSY; /* we 'own' page now */
585 1.8 mrg UVM_PAGE_OWN(pp, "uvn_flush");
586 1.26 chs pmap_page_protect(pp, VM_PROT_READ);
587 1.8 mrg pp_version = pp->version;
588 1.8 mrg ppsp = pps;
589 1.8 mrg npages = sizeof(pps) / sizeof(struct vm_page *);
590 1.1 mrg
591 1.8 mrg /* locked: page queues, uobj */
592 1.46.2.3 nathanw result = uvm_pager_put(uobj, pp, &ppsp, &npages,
593 1.37 chs flags | PGO_DOACTCLUST, start, stop);
594 1.8 mrg /* unlocked: page queues, uobj */
595 1.1 mrg
596 1.8 mrg /*
597 1.8 mrg * at this point nothing is locked. if we did an async I/O
598 1.46.2.3 nathanw * it is remotely possible for the async i/o to complete and
599 1.46.2.3 nathanw * the page "pp" be freed or what not before we get a chance
600 1.8 mrg * to relock the object. in order to detect this, we have
601 1.8 mrg * saved the version number of the page in "pp_version".
602 1.8 mrg */
603 1.8 mrg
604 1.8 mrg /* relock! */
605 1.8 mrg simple_lock(&uobj->vmobjlock);
606 1.8 mrg uvm_lock_pageq();
607 1.8 mrg
608 1.8 mrg /*
609 1.46.2.2 nathanw * the cleaning operation is now done. finish up. note that
610 1.46.2.2 nathanw * on error uvm_pager_put drops the cluster for us.
611 1.46.2.2 nathanw * on success uvm_pager_put returns the cluster to us in
612 1.46.2.2 nathanw * ppsp/npages.
613 1.8 mrg */
614 1.8 mrg
615 1.8 mrg /*
616 1.8 mrg * for pending async i/o if we are not deactivating/freeing
617 1.8 mrg * we can move on to the next page.
618 1.8 mrg */
619 1.8 mrg
620 1.46.2.2 nathanw if (result == 0 && async &&
621 1.37 chs (flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
622 1.8 mrg
623 1.37 chs /*
624 1.37 chs * no per-page ops: refresh ppnext and continue
625 1.37 chs */
626 1.37 chs if (by_list) {
627 1.37 chs if (pp->version == pp_version)
628 1.37 chs ppnext = TAILQ_NEXT(pp, listq);
629 1.37 chs else
630 1.37 chs ppnext = TAILQ_FIRST(&uobj->memq);
631 1.37 chs } else {
632 1.37 chs if (curoff < stop)
633 1.37 chs ppnext = uvm_pagelookup(uobj, curoff);
634 1.8 mrg }
635 1.37 chs continue;
636 1.8 mrg }
637 1.8 mrg
638 1.8 mrg /*
639 1.46.2.3 nathanw * need to look at each page of the I/O operation. we defer
640 1.46.2.3 nathanw * processing "pp" until the last trip through this "for" loop
641 1.8 mrg * so that we can load "ppnext" for the main loop after we
642 1.46.2.3 nathanw * play with the cluster pages [thus the "npages + 1" in the
643 1.8 mrg * loop below].
644 1.8 mrg */
645 1.8 mrg
646 1.8 mrg for (lcv = 0 ; lcv < npages + 1 ; lcv++) {
647 1.8 mrg
648 1.8 mrg /*
649 1.8 mrg * handle ppnext for outside loop, and saving pp
650 1.8 mrg * until the end.
651 1.8 mrg */
652 1.8 mrg if (lcv < npages) {
653 1.8 mrg if (ppsp[lcv] == pp)
654 1.8 mrg continue; /* skip pp until the end */
655 1.8 mrg ptmp = ppsp[lcv];
656 1.8 mrg } else {
657 1.8 mrg ptmp = pp;
658 1.8 mrg
659 1.8 mrg /* set up next page for outer loop */
660 1.8 mrg if (by_list) {
661 1.8 mrg if (pp->version == pp_version)
662 1.37 chs ppnext = TAILQ_NEXT(pp, listq);
663 1.8 mrg else
664 1.37 chs ppnext = TAILQ_FIRST(
665 1.37 chs &uobj->memq);
666 1.8 mrg } else {
667 1.8 mrg if (curoff < stop)
668 1.37 chs ppnext = uvm_pagelookup(uobj,
669 1.37 chs curoff);
670 1.8 mrg }
671 1.8 mrg }
672 1.8 mrg
673 1.8 mrg /*
674 1.37 chs * verify the page wasn't moved while obj was
675 1.8 mrg * unlocked
676 1.8 mrg */
677 1.46.2.2 nathanw if (result == 0 && async && ptmp->uobject != uobj)
678 1.8 mrg continue;
679 1.8 mrg
680 1.8 mrg /*
681 1.8 mrg * unbusy the page if I/O is done. note that for
682 1.46.2.2 nathanw * async I/O it is possible that the I/O op
683 1.8 mrg * finished before we relocked the object (in
684 1.8 mrg * which case the page is no longer busy).
685 1.8 mrg */
686 1.8 mrg
687 1.46.2.2 nathanw if (result != 0 || !async) {
688 1.37 chs if (ptmp->flags & PG_WANTED) {
689 1.8 mrg /* still holding object lock */
690 1.25 thorpej wakeup(ptmp);
691 1.37 chs }
692 1.8 mrg ptmp->flags &= ~(PG_WANTED|PG_BUSY);
693 1.8 mrg UVM_PAGE_OWN(ptmp, NULL);
694 1.8 mrg if (ptmp->flags & PG_RELEASED) {
695 1.8 mrg uvm_unlock_pageq();
696 1.37 chs if (!uvn_releasepg(ptmp, NULL)) {
697 1.37 chs UVMHIST_LOG(maphist,
698 1.37 chs "released %p",
699 1.37 chs ptmp, 0,0,0);
700 1.8 mrg return (TRUE);
701 1.37 chs }
702 1.37 chs uvm_lock_pageq();
703 1.37 chs continue;
704 1.8 mrg } else {
705 1.37 chs if ((flags & PGO_WEAK) == 0 &&
706 1.46.2.2 nathanw !(result == EIO &&
707 1.37 chs curproc == uvm.pagedaemon_proc)) {
708 1.37 chs ptmp->flags |=
709 1.37 chs (PG_CLEAN|PG_CLEANCHK);
710 1.37 chs if ((flags & PGO_FREE) == 0) {
711 1.37 chs pmap_clear_modify(ptmp);
712 1.37 chs }
713 1.37 chs }
714 1.8 mrg }
715 1.8 mrg }
716 1.46.2.3 nathanw
717 1.8 mrg /*
718 1.8 mrg * dispose of page
719 1.8 mrg */
720 1.8 mrg
721 1.8 mrg if (flags & PGO_DEACTIVATE) {
722 1.8 mrg if ((pp->pqflags & PQ_INACTIVE) == 0 &&
723 1.40 chs (pp->flags & PG_BUSY) == 0 &&
724 1.8 mrg pp->wire_count == 0) {
725 1.42 thorpej pmap_clear_reference(ptmp);
726 1.8 mrg uvm_pagedeactivate(ptmp);
727 1.8 mrg }
728 1.8 mrg } else if (flags & PGO_FREE) {
729 1.46.2.2 nathanw if (result == 0 && async) {
730 1.8 mrg if ((ptmp->flags & PG_BUSY) != 0)
731 1.8 mrg /* signal for i/o done */
732 1.8 mrg ptmp->flags |= PG_RELEASED;
733 1.8 mrg } else {
734 1.46.2.2 nathanw if (result != 0) {
735 1.8 mrg printf("uvn_flush: obj=%p, "
736 1.37 chs "offset=0x%llx. error %d\n",
737 1.30 kleink pp->uobject,
738 1.37 chs (long long)pp->offset,
739 1.37 chs result);
740 1.8 mrg printf("uvn_flush: WARNING: "
741 1.8 mrg "changes to page may be "
742 1.8 mrg "lost!\n");
743 1.8 mrg retval = FALSE;
744 1.8 mrg }
745 1.26 chs pmap_page_protect(ptmp, VM_PROT_NONE);
746 1.8 mrg uvm_pagefree(ptmp);
747 1.8 mrg }
748 1.8 mrg }
749 1.8 mrg } /* end of "lcv" for loop */
750 1.8 mrg } /* end of "pp" for loop */
751 1.1 mrg
752 1.8 mrg uvm_unlock_pageq();
753 1.37 chs if ((flags & PGO_CLEANIT) && all && wasclean &&
754 1.37 chs LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
755 1.37 chs (vp->v_flag & VONWORKLST)) {
756 1.37 chs vp->v_flag &= ~VONWORKLST;
757 1.37 chs LIST_REMOVE(vp, v_synclist);
758 1.37 chs }
759 1.37 chs if (need_iosync) {
760 1.37 chs UVMHIST_LOG(maphist," <<DOING IOSYNC>>",0,0,0,0);
761 1.1 mrg
762 1.37 chs /*
763 1.37 chs * XXX this doesn't use the new two-flag scheme,
764 1.37 chs * but to use that, all i/o initiators will have to change.
765 1.37 chs */
766 1.1 mrg
767 1.37 chs s = splbio();
768 1.37 chs while (vp->v_numoutput != 0) {
769 1.37 chs UVMHIST_LOG(ubchist, "waiting for vp %p num %d",
770 1.37 chs vp, vp->v_numoutput,0,0);
771 1.37 chs
772 1.37 chs vp->v_flag |= VBWAIT;
773 1.37 chs UVM_UNLOCK_AND_WAIT(&vp->v_numoutput,
774 1.46.2.3 nathanw &uvn->u_obj.vmobjlock,
775 1.37 chs FALSE, "uvn_flush",0);
776 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
777 1.8 mrg }
778 1.37 chs splx(s);
779 1.1 mrg }
780 1.1 mrg
781 1.8 mrg /* return, with object locked! */
782 1.8 mrg UVMHIST_LOG(maphist,"<- done (retval=0x%x)",retval,0,0,0);
783 1.8 mrg return(retval);
784 1.1 mrg }
785 1.1 mrg
786 1.1 mrg /*
787 1.1 mrg * uvn_cluster
788 1.1 mrg *
789 1.1 mrg * we are about to do I/O in an object at offset. this function is called
790 1.1 mrg * to establish a range of offsets around "offset" in which we can cluster
791 1.1 mrg * I/O.
792 1.1 mrg *
793 1.1 mrg * - currently doesn't matter if obj locked or not.
794 1.1 mrg */
795 1.1 mrg
796 1.8 mrg static void
797 1.8 mrg uvn_cluster(uobj, offset, loffset, hoffset)
798 1.8 mrg struct uvm_object *uobj;
799 1.30 kleink voff_t offset;
800 1.30 kleink voff_t *loffset, *hoffset; /* OUT */
801 1.1 mrg {
802 1.37 chs struct uvm_vnode *uvn = (struct uvm_vnode *)uobj;
803 1.37 chs
804 1.8 mrg *loffset = offset;
805 1.46.2.2 nathanw *hoffset = MIN(offset + MAXBSIZE, round_page(uvn->u_size));
806 1.1 mrg }
807 1.1 mrg
808 1.1 mrg /*
809 1.1 mrg * uvn_put: flush page data to backing store.
810 1.1 mrg *
811 1.1 mrg * => object must be locked! we will _unlock_ it before starting I/O.
812 1.1 mrg * => flags: PGO_SYNCIO -- use sync. I/O
813 1.1 mrg * => note: caller must set PG_CLEAN and pmap_clear_modify (if needed)
814 1.1 mrg */
815 1.1 mrg
816 1.8 mrg static int
817 1.8 mrg uvn_put(uobj, pps, npages, flags)
818 1.8 mrg struct uvm_object *uobj;
819 1.8 mrg struct vm_page **pps;
820 1.8 mrg int npages, flags;
821 1.1 mrg {
822 1.37 chs struct vnode *vp = (struct vnode *)uobj;
823 1.37 chs int error;
824 1.1 mrg
825 1.37 chs error = VOP_PUTPAGES(vp, pps, npages, flags, NULL);
826 1.46.2.2 nathanw return error;
827 1.1 mrg }
828 1.1 mrg
829 1.1 mrg
830 1.1 mrg /*
831 1.1 mrg * uvn_get: get pages (synchronously) from backing store
832 1.1 mrg *
833 1.1 mrg * => prefer map unlocked (not required)
834 1.1 mrg * => object must be locked! we will _unlock_ it before starting any I/O.
835 1.1 mrg * => flags: PGO_ALLPAGES: get all of the pages
836 1.1 mrg * PGO_LOCKED: fault data structures are locked
837 1.1 mrg * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
838 1.1 mrg * => NOTE: caller must check for released pages!!
839 1.1 mrg */
840 1.46.2.3 nathanw
841 1.8 mrg static int
842 1.8 mrg uvn_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
843 1.8 mrg struct uvm_object *uobj;
844 1.30 kleink voff_t offset;
845 1.8 mrg struct vm_page **pps; /* IN/OUT */
846 1.8 mrg int *npagesp; /* IN (OUT if PGO_LOCKED) */
847 1.37 chs int centeridx;
848 1.8 mrg vm_prot_t access_type;
849 1.37 chs int advice, flags;
850 1.8 mrg {
851 1.37 chs struct vnode *vp = (struct vnode *)uobj;
852 1.37 chs int error;
853 1.37 chs UVMHIST_FUNC("uvn_get"); UVMHIST_CALLED(ubchist);
854 1.37 chs
855 1.37 chs UVMHIST_LOG(ubchist, "vp %p off 0x%x", vp, (int)offset, 0,0);
856 1.37 chs error = VOP_GETPAGES(vp, offset, pps, npagesp, centeridx,
857 1.37 chs access_type, advice, flags);
858 1.46.2.2 nathanw return error;
859 1.37 chs }
860 1.8 mrg
861 1.8 mrg
862 1.37 chs /*
863 1.37 chs * uvn_findpages:
864 1.37 chs * return the page for the uobj and offset requested, allocating if needed.
865 1.37 chs * => uobj must be locked.
866 1.37 chs * => returned page will be BUSY.
867 1.37 chs */
868 1.1 mrg
869 1.37 chs void
870 1.37 chs uvn_findpages(uobj, offset, npagesp, pps, flags)
871 1.37 chs struct uvm_object *uobj;
872 1.37 chs voff_t offset;
873 1.37 chs int *npagesp;
874 1.37 chs struct vm_page **pps;
875 1.37 chs int flags;
876 1.37 chs {
877 1.37 chs int i, rv, npages;
878 1.8 mrg
879 1.37 chs rv = 0;
880 1.37 chs npages = *npagesp;
881 1.37 chs for (i = 0; i < npages; i++, offset += PAGE_SIZE) {
882 1.37 chs rv += uvn_findpage(uobj, offset, &pps[i], flags);
883 1.37 chs }
884 1.37 chs *npagesp = rv;
885 1.37 chs }
886 1.8 mrg
887 1.37 chs static int
888 1.37 chs uvn_findpage(uobj, offset, pgp, flags)
889 1.37 chs struct uvm_object *uobj;
890 1.37 chs voff_t offset;
891 1.37 chs struct vm_page **pgp;
892 1.37 chs int flags;
893 1.37 chs {
894 1.37 chs struct vm_page *pg;
895 1.37 chs UVMHIST_FUNC("uvn_findpage"); UVMHIST_CALLED(ubchist);
896 1.37 chs UVMHIST_LOG(ubchist, "vp %p off 0x%lx", uobj, offset,0,0);
897 1.8 mrg
898 1.37 chs if (*pgp != NULL) {
899 1.37 chs UVMHIST_LOG(ubchist, "dontcare", 0,0,0,0);
900 1.37 chs return 0;
901 1.37 chs }
902 1.37 chs for (;;) {
903 1.37 chs /* look for an existing page */
904 1.37 chs pg = uvm_pagelookup(uobj, offset);
905 1.37 chs
906 1.37 chs /* nope? allocate one now */
907 1.37 chs if (pg == NULL) {
908 1.37 chs if (flags & UFP_NOALLOC) {
909 1.37 chs UVMHIST_LOG(ubchist, "noalloc", 0,0,0,0);
910 1.37 chs return 0;
911 1.37 chs }
912 1.46.2.2 nathanw pg = uvm_pagealloc(uobj, offset, NULL, 0);
913 1.37 chs if (pg == NULL) {
914 1.37 chs if (flags & UFP_NOWAIT) {
915 1.37 chs UVMHIST_LOG(ubchist, "nowait",0,0,0,0);
916 1.37 chs return 0;
917 1.8 mrg }
918 1.37 chs simple_unlock(&uobj->vmobjlock);
919 1.37 chs uvm_wait("uvn_fp1");
920 1.8 mrg simple_lock(&uobj->vmobjlock);
921 1.37 chs continue;
922 1.8 mrg }
923 1.46.2.2 nathanw if (UVM_OBJ_IS_VTEXT(uobj)) {
924 1.46.2.2 nathanw uvmexp.vtextpages++;
925 1.46.2.2 nathanw } else {
926 1.46.2.2 nathanw uvmexp.vnodepages++;
927 1.46.2.2 nathanw }
928 1.37 chs UVMHIST_LOG(ubchist, "alloced",0,0,0,0);
929 1.37 chs break;
930 1.37 chs } else if (flags & UFP_NOCACHE) {
931 1.37 chs UVMHIST_LOG(ubchist, "nocache",0,0,0,0);
932 1.37 chs return 0;
933 1.8 mrg }
934 1.8 mrg
935 1.37 chs /* page is there, see if we need to wait on it */
936 1.37 chs if ((pg->flags & (PG_BUSY|PG_RELEASED)) != 0) {
937 1.37 chs if (flags & UFP_NOWAIT) {
938 1.37 chs UVMHIST_LOG(ubchist, "nowait",0,0,0,0);
939 1.37 chs return 0;
940 1.37 chs }
941 1.37 chs pg->flags |= PG_WANTED;
942 1.37 chs UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
943 1.37 chs "uvn_fp2", 0);
944 1.37 chs simple_lock(&uobj->vmobjlock);
945 1.37 chs continue;
946 1.8 mrg }
947 1.46.2.3 nathanw
948 1.37 chs /* skip PG_RDONLY pages if requested */
949 1.37 chs if ((flags & UFP_NORDONLY) && (pg->flags & PG_RDONLY)) {
950 1.37 chs UVMHIST_LOG(ubchist, "nordonly",0,0,0,0);
951 1.37 chs return 0;
952 1.8 mrg }
953 1.8 mrg
954 1.37 chs /* mark the page BUSY and we're done. */
955 1.37 chs pg->flags |= PG_BUSY;
956 1.37 chs UVM_PAGE_OWN(pg, "uvn_findpage");
957 1.37 chs UVMHIST_LOG(ubchist, "found",0,0,0,0);
958 1.37 chs break;
959 1.8 mrg }
960 1.37 chs *pgp = pg;
961 1.37 chs return 1;
962 1.1 mrg }
963 1.1 mrg
964 1.1 mrg /*
965 1.1 mrg * uvm_vnp_setsize: grow or shrink a vnode uvn
966 1.1 mrg *
967 1.1 mrg * grow => just update size value
968 1.1 mrg * shrink => toss un-needed pages
969 1.1 mrg *
970 1.46.2.3 nathanw * => we assume that the caller has a reference of some sort to the
971 1.1 mrg * vnode in question so that it will not be yanked out from under
972 1.1 mrg * us.
973 1.1 mrg *
974 1.1 mrg * called from:
975 1.1 mrg * => truncate fns (ext2fs_truncate, ffs_truncate, detrunc[msdos])
976 1.1 mrg * => "write" fns (ext2fs_write, WRITE [ufs/ufs], msdosfs_write, nfs_write)
977 1.1 mrg * => ffs_balloc [XXX: why? doesn't WRITE handle?]
978 1.1 mrg * => NFS: nfs_loadattrcache, nfs_getattrcache, nfs_setattr
979 1.1 mrg * => union fs: union_newsize
980 1.1 mrg */
981 1.1 mrg
982 1.8 mrg void
983 1.8 mrg uvm_vnp_setsize(vp, newsize)
984 1.8 mrg struct vnode *vp;
985 1.30 kleink voff_t newsize;
986 1.8 mrg {
987 1.8 mrg struct uvm_vnode *uvn = &vp->v_uvm;
988 1.46 enami voff_t pgend = round_page(newsize);
989 1.37 chs UVMHIST_FUNC("uvm_vnp_setsize"); UVMHIST_CALLED(ubchist);
990 1.37 chs
991 1.37 chs simple_lock(&uvn->u_obj.vmobjlock);
992 1.37 chs
993 1.37 chs UVMHIST_LOG(ubchist, "old 0x%x new 0x%x", uvn->u_size, newsize, 0,0);
994 1.1 mrg
995 1.8 mrg /*
996 1.37 chs * now check if the size has changed: if we shrink we had better
997 1.37 chs * toss some pages...
998 1.8 mrg */
999 1.1 mrg
1000 1.46 enami if (uvn->u_size > pgend && uvn->u_size != VSIZENOTSET) {
1001 1.46 enami (void) uvn_flush(&uvn->u_obj, pgend, 0, PGO_FREE);
1002 1.8 mrg }
1003 1.37 chs uvn->u_size = newsize;
1004 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
1005 1.1 mrg }
1006 1.1 mrg
1007 1.1 mrg /*
1008 1.37 chs * uvm_vnp_zerorange: set a range of bytes in a file to zero.
1009 1.1 mrg */
1010 1.1 mrg
1011 1.8 mrg void
1012 1.37 chs uvm_vnp_zerorange(vp, off, len)
1013 1.37 chs struct vnode *vp;
1014 1.37 chs off_t off;
1015 1.37 chs size_t len;
1016 1.8 mrg {
1017 1.37 chs void *win;
1018 1.8 mrg
1019 1.37 chs /*
1020 1.37 chs * XXXUBC invent kzero() and use it
1021 1.37 chs */
1022 1.37 chs
1023 1.37 chs while (len) {
1024 1.37 chs vsize_t bytelen = len;
1025 1.37 chs
1026 1.37 chs win = ubc_alloc(&vp->v_uvm.u_obj, off, &bytelen, UBC_WRITE);
1027 1.37 chs memset(win, 0, bytelen);
1028 1.37 chs ubc_release(win, 0);
1029 1.37 chs
1030 1.37 chs off += bytelen;
1031 1.37 chs len -= bytelen;
1032 1.37 chs }
1033 1.1 mrg }
1034