uvm_vnode.c revision 1.51 1 1.51 chs /* $NetBSD: uvm_vnode.c,v 1.51 2001/08/17 05:53:02 chs Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 mrg * Copyright (c) 1991, 1993
6 1.49 chs * The Regents of the University of California.
7 1.1 mrg * Copyright (c) 1990 University of Utah.
8 1.1 mrg *
9 1.1 mrg * All rights reserved.
10 1.1 mrg *
11 1.1 mrg * This code is derived from software contributed to Berkeley by
12 1.1 mrg * the Systems Programming Group of the University of Utah Computer
13 1.1 mrg * Science Department.
14 1.1 mrg *
15 1.1 mrg * Redistribution and use in source and binary forms, with or without
16 1.1 mrg * modification, are permitted provided that the following conditions
17 1.1 mrg * are met:
18 1.1 mrg * 1. Redistributions of source code must retain the above copyright
19 1.1 mrg * notice, this list of conditions and the following disclaimer.
20 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
21 1.1 mrg * notice, this list of conditions and the following disclaimer in the
22 1.1 mrg * documentation and/or other materials provided with the distribution.
23 1.1 mrg * 3. All advertising materials mentioning features or use of this software
24 1.1 mrg * must display the following acknowledgement:
25 1.1 mrg * This product includes software developed by Charles D. Cranor,
26 1.49 chs * Washington University, the University of California, Berkeley and
27 1.1 mrg * its contributors.
28 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
29 1.1 mrg * may be used to endorse or promote products derived from this software
30 1.1 mrg * without specific prior written permission.
31 1.1 mrg *
32 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 1.1 mrg * SUCH DAMAGE.
43 1.1 mrg *
44 1.1 mrg * @(#)vnode_pager.c 8.8 (Berkeley) 2/13/94
45 1.3 mrg * from: Id: uvm_vnode.c,v 1.1.2.26 1998/02/02 20:38:07 chuck Exp
46 1.1 mrg */
47 1.1 mrg
48 1.6 thorpej #include "fs_nfs.h"
49 1.4 mrg #include "opt_uvmhist.h"
50 1.37 chs #include "opt_ddb.h"
51 1.4 mrg
52 1.1 mrg /*
53 1.1 mrg * uvm_vnode.c: the vnode pager.
54 1.1 mrg */
55 1.1 mrg
56 1.1 mrg #include <sys/param.h>
57 1.1 mrg #include <sys/systm.h>
58 1.37 chs #include <sys/kernel.h>
59 1.1 mrg #include <sys/proc.h>
60 1.1 mrg #include <sys/malloc.h>
61 1.1 mrg #include <sys/vnode.h>
62 1.13 thorpej #include <sys/disklabel.h>
63 1.13 thorpej #include <sys/ioctl.h>
64 1.13 thorpej #include <sys/fcntl.h>
65 1.13 thorpej #include <sys/conf.h>
66 1.37 chs #include <sys/pool.h>
67 1.37 chs #include <sys/mount.h>
68 1.13 thorpej
69 1.13 thorpej #include <miscfs/specfs/specdev.h>
70 1.1 mrg
71 1.1 mrg #include <uvm/uvm.h>
72 1.1 mrg #include <uvm/uvm_vnode.h>
73 1.1 mrg
74 1.1 mrg /*
75 1.1 mrg * functions
76 1.1 mrg */
77 1.1 mrg
78 1.37 chs static void uvn_cluster __P((struct uvm_object *, voff_t, voff_t *,
79 1.37 chs voff_t *));
80 1.37 chs static void uvn_detach __P((struct uvm_object *));
81 1.37 chs static int uvn_findpage __P((struct uvm_object *, voff_t,
82 1.37 chs struct vm_page **, int));
83 1.37 chs static boolean_t uvn_flush __P((struct uvm_object *, voff_t, voff_t,
84 1.37 chs int));
85 1.50 chs static int uvn_get __P((struct uvm_object *, voff_t,
86 1.50 chs struct vm_page **, int *, int, vm_prot_t,
87 1.50 chs int, int));
88 1.50 chs static int uvn_put __P((struct uvm_object *, struct vm_page **,
89 1.50 chs int, boolean_t));
90 1.37 chs static void uvn_reference __P((struct uvm_object *));
91 1.37 chs static boolean_t uvn_releasepg __P((struct vm_page *,
92 1.37 chs struct vm_page **));
93 1.1 mrg
94 1.1 mrg /*
95 1.1 mrg * master pager structure
96 1.1 mrg */
97 1.1 mrg
98 1.1 mrg struct uvm_pagerops uvm_vnodeops = {
99 1.37 chs NULL,
100 1.8 mrg uvn_reference,
101 1.8 mrg uvn_detach,
102 1.37 chs NULL,
103 1.8 mrg uvn_flush,
104 1.8 mrg uvn_get,
105 1.8 mrg uvn_put,
106 1.8 mrg uvn_cluster,
107 1.37 chs uvm_mk_pcluster,
108 1.8 mrg uvn_releasepg,
109 1.1 mrg };
110 1.1 mrg
111 1.1 mrg /*
112 1.1 mrg * the ops!
113 1.1 mrg */
114 1.1 mrg
115 1.1 mrg /*
116 1.1 mrg * uvn_attach
117 1.1 mrg *
118 1.1 mrg * attach a vnode structure to a VM object. if the vnode is already
119 1.1 mrg * attached, then just bump the reference count by one and return the
120 1.1 mrg * VM object. if not already attached, attach and return the new VM obj.
121 1.1 mrg * the "accessprot" tells the max access the attaching thread wants to
122 1.1 mrg * our pages.
123 1.1 mrg *
124 1.1 mrg * => caller must _not_ already be holding the lock on the uvm_object.
125 1.1 mrg * => in fact, nothing should be locked so that we can sleep here.
126 1.1 mrg * => note that uvm_object is first thing in vnode structure, so their
127 1.1 mrg * pointers are equiv.
128 1.1 mrg */
129 1.1 mrg
130 1.8 mrg struct uvm_object *
131 1.8 mrg uvn_attach(arg, accessprot)
132 1.8 mrg void *arg;
133 1.8 mrg vm_prot_t accessprot;
134 1.8 mrg {
135 1.8 mrg struct vnode *vp = arg;
136 1.8 mrg struct uvm_vnode *uvn = &vp->v_uvm;
137 1.8 mrg struct vattr vattr;
138 1.37 chs int result;
139 1.13 thorpej struct partinfo pi;
140 1.37 chs voff_t used_vnode_size;
141 1.8 mrg UVMHIST_FUNC("uvn_attach"); UVMHIST_CALLED(maphist);
142 1.8 mrg
143 1.8 mrg UVMHIST_LOG(maphist, "(vn=0x%x)", arg,0,0,0);
144 1.37 chs used_vnode_size = (voff_t)0;
145 1.13 thorpej
146 1.8 mrg /*
147 1.8 mrg * first get a lock on the uvn.
148 1.8 mrg */
149 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
150 1.37 chs while (uvn->u_flags & VXLOCK) {
151 1.37 chs uvn->u_flags |= VXWANT;
152 1.8 mrg UVMHIST_LOG(maphist, " SLEEPING on blocked vn",0,0,0,0);
153 1.8 mrg UVM_UNLOCK_AND_WAIT(uvn, &uvn->u_obj.vmobjlock, FALSE,
154 1.8 mrg "uvn_attach", 0);
155 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
156 1.8 mrg UVMHIST_LOG(maphist," WOKE UP",0,0,0,0);
157 1.8 mrg }
158 1.1 mrg
159 1.8 mrg /*
160 1.18 bouyer * if we're mapping a BLK device, make sure it is a disk.
161 1.13 thorpej */
162 1.13 thorpej if (vp->v_type == VBLK && bdevsw[major(vp->v_rdev)].d_type != D_DISK) {
163 1.37 chs simple_unlock(&uvn->u_obj.vmobjlock);
164 1.13 thorpej UVMHIST_LOG(maphist,"<- done (VBLK not D_DISK!)", 0,0,0,0);
165 1.13 thorpej return(NULL);
166 1.13 thorpej }
167 1.51 chs KASSERT(vp->v_type == VREG || vp->v_type == VBLK);
168 1.37 chs
169 1.13 thorpej /*
170 1.37 chs * set up our idea of the size
171 1.37 chs * if this hasn't been done already.
172 1.8 mrg */
173 1.37 chs if (uvn->u_size == VSIZENOTSET) {
174 1.8 mrg
175 1.37 chs uvn->u_flags |= VXLOCK;
176 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock); /* drop lock in case we sleep */
177 1.8 mrg /* XXX: curproc? */
178 1.13 thorpej if (vp->v_type == VBLK) {
179 1.13 thorpej /*
180 1.13 thorpej * We could implement this as a specfs getattr call, but:
181 1.13 thorpej *
182 1.13 thorpej * (1) VOP_GETATTR() would get the file system
183 1.13 thorpej * vnode operation, not the specfs operation.
184 1.13 thorpej *
185 1.13 thorpej * (2) All we want is the size, anyhow.
186 1.13 thorpej */
187 1.13 thorpej result = (*bdevsw[major(vp->v_rdev)].d_ioctl)(vp->v_rdev,
188 1.13 thorpej DIOCGPART, (caddr_t)&pi, FREAD, curproc);
189 1.13 thorpej if (result == 0) {
190 1.13 thorpej /* XXX should remember blocksize */
191 1.37 chs used_vnode_size = (voff_t)pi.disklab->d_secsize *
192 1.37 chs (voff_t)pi.part->p_size;
193 1.13 thorpej }
194 1.13 thorpej } else {
195 1.13 thorpej result = VOP_GETATTR(vp, &vattr, curproc->p_ucred, curproc);
196 1.13 thorpej if (result == 0)
197 1.13 thorpej used_vnode_size = vattr.va_size;
198 1.8 mrg }
199 1.1 mrg
200 1.8 mrg /* relock object */
201 1.37 chs simple_lock(&uvn->u_obj.vmobjlock);
202 1.37 chs
203 1.37 chs if (uvn->u_flags & VXWANT)
204 1.37 chs wakeup(uvn);
205 1.37 chs uvn->u_flags &= ~(VXLOCK|VXWANT);
206 1.1 mrg
207 1.8 mrg if (result != 0) {
208 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock); /* drop lock */
209 1.8 mrg UVMHIST_LOG(maphist,"<- done (VOP_GETATTR FAILED!)", 0,0,0,0);
210 1.8 mrg return(NULL);
211 1.8 mrg }
212 1.8 mrg uvn->u_size = used_vnode_size;
213 1.8 mrg
214 1.8 mrg }
215 1.8 mrg
216 1.37 chs /* unlock and return */
217 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
218 1.37 chs UVMHIST_LOG(maphist,"<- done, refcnt=%d", uvn->u_obj.uo_refs,
219 1.37 chs 0, 0, 0);
220 1.37 chs return (&uvn->u_obj);
221 1.1 mrg }
222 1.1 mrg
223 1.1 mrg
224 1.1 mrg /*
225 1.1 mrg * uvn_reference
226 1.1 mrg *
227 1.1 mrg * duplicate a reference to a VM object. Note that the reference
228 1.49 chs * count must already be at least one (the passed in reference) so
229 1.1 mrg * there is no chance of the uvn being killed or locked out here.
230 1.1 mrg *
231 1.49 chs * => caller must call with object unlocked.
232 1.1 mrg * => caller must be using the same accessprot as was used at attach time
233 1.1 mrg */
234 1.1 mrg
235 1.1 mrg
236 1.8 mrg static void
237 1.8 mrg uvn_reference(uobj)
238 1.8 mrg struct uvm_object *uobj;
239 1.1 mrg {
240 1.37 chs VREF((struct vnode *)uobj);
241 1.1 mrg }
242 1.1 mrg
243 1.1 mrg /*
244 1.1 mrg * uvn_detach
245 1.1 mrg *
246 1.1 mrg * remove a reference to a VM object.
247 1.1 mrg *
248 1.1 mrg * => caller must call with object unlocked and map locked.
249 1.1 mrg */
250 1.8 mrg static void
251 1.8 mrg uvn_detach(uobj)
252 1.8 mrg struct uvm_object *uobj;
253 1.8 mrg {
254 1.37 chs vrele((struct vnode *)uobj);
255 1.1 mrg }
256 1.1 mrg
257 1.1 mrg /*
258 1.1 mrg * uvn_releasepg: handled a released page in a uvn
259 1.1 mrg *
260 1.1 mrg * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
261 1.1 mrg * to dispose of.
262 1.1 mrg * => caller must handled PG_WANTED case
263 1.1 mrg * => called with page's object locked, pageq's unlocked
264 1.1 mrg * => returns TRUE if page's object is still alive, FALSE if we
265 1.1 mrg * killed the page's object. if we return TRUE, then we
266 1.1 mrg * return with the object locked.
267 1.37 chs * => if (nextpgp != NULL) => we return the next page on the queue, and return
268 1.1 mrg * with the page queues locked [for pagedaemon]
269 1.1 mrg * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
270 1.1 mrg * => we kill the uvn if it is not referenced and we are suppose to
271 1.1 mrg * kill it ("relkill").
272 1.1 mrg */
273 1.1 mrg
274 1.8 mrg boolean_t
275 1.8 mrg uvn_releasepg(pg, nextpgp)
276 1.8 mrg struct vm_page *pg;
277 1.8 mrg struct vm_page **nextpgp; /* OUT */
278 1.1 mrg {
279 1.37 chs KASSERT(pg->flags & PG_RELEASED);
280 1.49 chs
281 1.8 mrg /*
282 1.8 mrg * dispose of the page [caller handles PG_WANTED]
283 1.8 mrg */
284 1.26 chs pmap_page_protect(pg, VM_PROT_NONE);
285 1.8 mrg uvm_lock_pageq();
286 1.8 mrg if (nextpgp)
287 1.37 chs *nextpgp = TAILQ_NEXT(pg, pageq);
288 1.8 mrg uvm_pagefree(pg);
289 1.8 mrg if (!nextpgp)
290 1.8 mrg uvm_unlock_pageq();
291 1.8 mrg
292 1.8 mrg return (TRUE);
293 1.1 mrg }
294 1.1 mrg
295 1.1 mrg /*
296 1.1 mrg * issues to consider:
297 1.1 mrg * there are two tailq's in the uvm. structure... one for pending async
298 1.1 mrg * i/o and one for "done" async i/o. to do an async i/o one puts
299 1.45 chs * a buf on the "pending" list (protected by splbio()), starts the
300 1.48 chs * i/o and returns 0. when the i/o is done, we expect
301 1.1 mrg * some sort of "i/o done" function to be called (at splbio(), interrupt
302 1.45 chs * time). this function should remove the buf from the pending list
303 1.1 mrg * and place it on the "done" list and wakeup the daemon. the daemon
304 1.1 mrg * will run at normal spl() and will remove all items from the "done"
305 1.45 chs * list and call the iodone hook for each done request (see uvm_pager.c).
306 1.1 mrg *
307 1.1 mrg * => return KERN_SUCCESS (aio finished, free it). otherwise requeue for
308 1.1 mrg * later collection.
309 1.1 mrg * => called with pageq's locked by the daemon.
310 1.1 mrg *
311 1.1 mrg * general outline:
312 1.1 mrg * - "try" to lock object. if fail, just return (will try again later)
313 1.1 mrg * - drop "u_nio" (this req is done!)
314 1.1 mrg * - if (object->iosync && u_naio == 0) { wakeup &uvn->u_naio }
315 1.1 mrg * - get "page" structures (atop?).
316 1.1 mrg * - handle "wanted" pages
317 1.1 mrg * - handle "released" pages [using pgo_releasepg]
318 1.1 mrg * >>> pgo_releasepg may kill the object
319 1.1 mrg * dont forget to look at "object" wanted flag in all cases.
320 1.1 mrg */
321 1.1 mrg
322 1.1 mrg
323 1.1 mrg /*
324 1.1 mrg * uvn_flush: flush pages out of a uvm object.
325 1.1 mrg *
326 1.43 chs * => "stop == 0" means flush all pages at or after "start".
327 1.1 mrg * => object should be locked by caller. we may _unlock_ the object
328 1.41 chs * if (and only if) we need to clean a page (PGO_CLEANIT), or
329 1.41 chs * if PGO_SYNCIO is set and there are pages busy.
330 1.1 mrg * we return with the object locked.
331 1.41 chs * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
332 1.41 chs * thus, a caller might want to unlock higher level resources
333 1.41 chs * (e.g. vm_map) before calling flush.
334 1.41 chs * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
335 1.41 chs * unlock the object nor block.
336 1.41 chs * => if PGO_ALLPAGES is set, then all pages in the object are valid targets
337 1.1 mrg * for flushing.
338 1.1 mrg * => NOTE: we rely on the fact that the object's memq is a TAILQ and
339 1.1 mrg * that new pages are inserted on the tail end of the list. thus,
340 1.1 mrg * we can make a complete pass through the object in one go by starting
341 1.1 mrg * at the head and working towards the tail (new pages are put in
342 1.1 mrg * front of us).
343 1.1 mrg * => NOTE: we are allowed to lock the page queues, so the caller
344 1.1 mrg * must not be holding the lock on them [e.g. pagedaemon had
345 1.1 mrg * better not call us with the queues locked]
346 1.1 mrg * => we return TRUE unless we encountered some sort of I/O error
347 1.1 mrg *
348 1.1 mrg * comment on "cleaning" object and PG_BUSY pages:
349 1.1 mrg * this routine is holding the lock on the object. the only time
350 1.1 mrg * that it can run into a PG_BUSY page that it does not own is if
351 1.1 mrg * some other process has started I/O on the page (e.g. either
352 1.1 mrg * a pagein, or a pageout). if the PG_BUSY page is being paged
353 1.1 mrg * in, then it can not be dirty (!PG_CLEAN) because no one has
354 1.1 mrg * had a chance to modify it yet. if the PG_BUSY page is being
355 1.1 mrg * paged out then it means that someone else has already started
356 1.49 chs * cleaning the page for us (how nice!). in this case, if we
357 1.1 mrg * have syncio specified, then after we make our pass through the
358 1.49 chs * object we need to wait for the other PG_BUSY pages to clear
359 1.1 mrg * off (i.e. we need to do an iosync). also note that once a
360 1.1 mrg * page is PG_BUSY it must stay in its object until it is un-busyed.
361 1.1 mrg *
362 1.1 mrg * note on page traversal:
363 1.1 mrg * we can traverse the pages in an object either by going down the
364 1.1 mrg * linked list in "uobj->memq", or we can go over the address range
365 1.1 mrg * by page doing hash table lookups for each address. depending
366 1.49 chs * on how many pages are in the object it may be cheaper to do one
367 1.1 mrg * or the other. we set "by_list" to true if we are using memq.
368 1.1 mrg * if the cost of a hash lookup was equal to the cost of the list
369 1.1 mrg * traversal we could compare the number of pages in the start->stop
370 1.1 mrg * range to the total number of pages in the object. however, it
371 1.1 mrg * seems that a hash table lookup is more expensive than the linked
372 1.49 chs * list traversal, so we multiply the number of pages in the
373 1.1 mrg * start->stop range by a penalty which we define below.
374 1.1 mrg */
375 1.1 mrg
376 1.8 mrg #define UVN_HASH_PENALTY 4 /* XXX: a guess */
377 1.1 mrg
378 1.8 mrg static boolean_t
379 1.8 mrg uvn_flush(uobj, start, stop, flags)
380 1.8 mrg struct uvm_object *uobj;
381 1.30 kleink voff_t start, stop;
382 1.8 mrg int flags;
383 1.8 mrg {
384 1.37 chs struct uvm_vnode *uvn = (struct uvm_vnode *)uobj;
385 1.37 chs struct vnode *vp = (struct vnode *)uobj;
386 1.8 mrg struct vm_page *pp, *ppnext, *ptmp;
387 1.37 chs struct vm_page *pps[256], **ppsp;
388 1.37 chs int s;
389 1.8 mrg int npages, result, lcv;
390 1.37 chs boolean_t retval, need_iosync, by_list, needs_clean, all, wasclean;
391 1.48 chs boolean_t async = (flags & PGO_SYNCIO) == 0;
392 1.30 kleink voff_t curoff;
393 1.8 mrg u_short pp_version;
394 1.8 mrg UVMHIST_FUNC("uvn_flush"); UVMHIST_CALLED(maphist);
395 1.37 chs UVMHIST_LOG(maphist, "uobj %p start 0x%x stop 0x%x flags 0x%x",
396 1.37 chs uobj, start, stop, flags);
397 1.37 chs KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
398 1.45 chs
399 1.45 chs if (uobj->uo_npages == 0) {
400 1.45 chs if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
401 1.45 chs (vp->v_flag & VONWORKLST)) {
402 1.45 chs vp->v_flag &= ~VONWORKLST;
403 1.45 chs LIST_REMOVE(vp, v_synclist);
404 1.45 chs }
405 1.45 chs return TRUE;
406 1.45 chs }
407 1.37 chs
408 1.37 chs #ifdef DEBUG
409 1.37 chs if (uvn->u_size == VSIZENOTSET) {
410 1.37 chs printf("uvn_flush: size not set vp %p\n", uvn);
411 1.37 chs vprint("uvn_flush VSIZENOTSET", vp);
412 1.37 chs flags |= PGO_ALLPAGES;
413 1.37 chs }
414 1.37 chs #endif
415 1.8 mrg
416 1.8 mrg /*
417 1.8 mrg * get init vals and determine how we are going to traverse object
418 1.8 mrg */
419 1.1 mrg
420 1.43 chs if (stop == 0) {
421 1.43 chs stop = trunc_page(LLONG_MAX);
422 1.43 chs }
423 1.37 chs curoff = 0;
424 1.8 mrg need_iosync = FALSE;
425 1.37 chs retval = TRUE;
426 1.37 chs wasclean = TRUE;
427 1.8 mrg if (flags & PGO_ALLPAGES) {
428 1.30 kleink all = TRUE;
429 1.37 chs by_list = TRUE;
430 1.8 mrg } else {
431 1.8 mrg start = trunc_page(start);
432 1.8 mrg stop = round_page(stop);
433 1.30 kleink all = FALSE;
434 1.49 chs by_list = (uobj->uo_npages <=
435 1.16 chs ((stop - start) >> PAGE_SHIFT) * UVN_HASH_PENALTY);
436 1.8 mrg }
437 1.8 mrg
438 1.8 mrg UVMHIST_LOG(maphist,
439 1.8 mrg " flush start=0x%x, stop=0x%x, by_list=%d, flags=0x%x",
440 1.8 mrg start, stop, by_list, flags);
441 1.8 mrg
442 1.8 mrg /*
443 1.8 mrg * PG_CLEANCHK: this bit is used by the pgo_mk_pcluster function as
444 1.8 mrg * a _hint_ as to how up to date the PG_CLEAN bit is. if the hint
445 1.8 mrg * is wrong it will only prevent us from clustering... it won't break
446 1.8 mrg * anything. we clear all PG_CLEANCHK bits here, and pgo_mk_pcluster
447 1.8 mrg * will set them as it syncs PG_CLEAN. This is only an issue if we
448 1.8 mrg * are looking at non-inactive pages (because inactive page's PG_CLEAN
449 1.8 mrg * bit is always up to date since there are no mappings).
450 1.8 mrg * [borrowed PG_CLEANCHK idea from FreeBSD VM]
451 1.8 mrg */
452 1.1 mrg
453 1.8 mrg if ((flags & PGO_CLEANIT) != 0 &&
454 1.8 mrg uobj->pgops->pgo_mk_pcluster != NULL) {
455 1.8 mrg if (by_list) {
456 1.37 chs TAILQ_FOREACH(pp, &uobj->memq, listq) {
457 1.30 kleink if (!all &&
458 1.30 kleink (pp->offset < start || pp->offset >= stop))
459 1.8 mrg continue;
460 1.8 mrg pp->flags &= ~PG_CLEANCHK;
461 1.8 mrg }
462 1.8 mrg
463 1.8 mrg } else { /* by hash */
464 1.8 mrg for (curoff = start ; curoff < stop;
465 1.8 mrg curoff += PAGE_SIZE) {
466 1.8 mrg pp = uvm_pagelookup(uobj, curoff);
467 1.8 mrg if (pp)
468 1.8 mrg pp->flags &= ~PG_CLEANCHK;
469 1.8 mrg }
470 1.8 mrg }
471 1.8 mrg }
472 1.1 mrg
473 1.8 mrg /*
474 1.8 mrg * now do it. note: we must update ppnext in body of loop or we
475 1.8 mrg * will get stuck. we need to use ppnext because we may free "pp"
476 1.8 mrg * before doing the next loop.
477 1.8 mrg */
478 1.1 mrg
479 1.8 mrg if (by_list) {
480 1.37 chs pp = TAILQ_FIRST(&uobj->memq);
481 1.1 mrg } else {
482 1.8 mrg curoff = start;
483 1.8 mrg pp = uvm_pagelookup(uobj, curoff);
484 1.1 mrg }
485 1.8 mrg
486 1.37 chs ppnext = NULL;
487 1.37 chs ppsp = NULL;
488 1.37 chs uvm_lock_pageq();
489 1.8 mrg
490 1.8 mrg /* locked: both page queues and uobj */
491 1.49 chs for ( ; (by_list && pp != NULL) ||
492 1.37 chs (!by_list && curoff < stop) ; pp = ppnext) {
493 1.8 mrg if (by_list) {
494 1.30 kleink if (!all &&
495 1.30 kleink (pp->offset < start || pp->offset >= stop)) {
496 1.37 chs ppnext = TAILQ_NEXT(pp, listq);
497 1.8 mrg continue;
498 1.8 mrg }
499 1.8 mrg } else {
500 1.8 mrg curoff += PAGE_SIZE;
501 1.8 mrg if (pp == NULL) {
502 1.8 mrg if (curoff < stop)
503 1.8 mrg ppnext = uvm_pagelookup(uobj, curoff);
504 1.8 mrg continue;
505 1.8 mrg }
506 1.8 mrg }
507 1.8 mrg
508 1.8 mrg /*
509 1.8 mrg * handle case where we do not need to clean page (either
510 1.8 mrg * because we are not clean or because page is not dirty or
511 1.8 mrg * is busy):
512 1.49 chs *
513 1.8 mrg * NOTE: we are allowed to deactivate a non-wired active
514 1.8 mrg * PG_BUSY page, but once a PG_BUSY page is on the inactive
515 1.8 mrg * queue it must stay put until it is !PG_BUSY (so as not to
516 1.8 mrg * confuse pagedaemon).
517 1.8 mrg */
518 1.8 mrg
519 1.8 mrg if ((flags & PGO_CLEANIT) == 0 || (pp->flags & PG_BUSY) != 0) {
520 1.8 mrg needs_clean = FALSE;
521 1.48 chs if (!async)
522 1.8 mrg need_iosync = TRUE;
523 1.8 mrg } else {
524 1.37 chs
525 1.8 mrg /*
526 1.8 mrg * freeing: nuke all mappings so we can sync
527 1.8 mrg * PG_CLEAN bit with no race
528 1.8 mrg */
529 1.49 chs if ((pp->flags & PG_CLEAN) != 0 &&
530 1.8 mrg (flags & PGO_FREE) != 0 &&
531 1.42 thorpej /* XXX ACTIVE|INACTIVE test unnecessary? */
532 1.42 thorpej (pp->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) != 0)
533 1.26 chs pmap_page_protect(pp, VM_PROT_NONE);
534 1.8 mrg if ((pp->flags & PG_CLEAN) != 0 &&
535 1.26 chs pmap_is_modified(pp))
536 1.8 mrg pp->flags &= ~(PG_CLEAN);
537 1.37 chs pp->flags |= PG_CLEANCHK;
538 1.8 mrg needs_clean = ((pp->flags & PG_CLEAN) == 0);
539 1.8 mrg }
540 1.8 mrg
541 1.8 mrg /*
542 1.8 mrg * if we don't need a clean... load ppnext and dispose of pp
543 1.8 mrg */
544 1.8 mrg if (!needs_clean) {
545 1.8 mrg if (by_list)
546 1.37 chs ppnext = TAILQ_NEXT(pp, listq);
547 1.8 mrg else {
548 1.8 mrg if (curoff < stop)
549 1.8 mrg ppnext = uvm_pagelookup(uobj, curoff);
550 1.8 mrg }
551 1.8 mrg
552 1.8 mrg if (flags & PGO_DEACTIVATE) {
553 1.8 mrg if ((pp->pqflags & PQ_INACTIVE) == 0 &&
554 1.40 chs (pp->flags & PG_BUSY) == 0 &&
555 1.8 mrg pp->wire_count == 0) {
556 1.42 thorpej pmap_clear_reference(pp);
557 1.8 mrg uvm_pagedeactivate(pp);
558 1.8 mrg }
559 1.8 mrg
560 1.8 mrg } else if (flags & PGO_FREE) {
561 1.8 mrg if (pp->flags & PG_BUSY) {
562 1.8 mrg pp->flags |= PG_RELEASED;
563 1.8 mrg } else {
564 1.26 chs pmap_page_protect(pp, VM_PROT_NONE);
565 1.8 mrg uvm_pagefree(pp);
566 1.8 mrg }
567 1.8 mrg }
568 1.8 mrg /* ppnext is valid so we can continue... */
569 1.8 mrg continue;
570 1.8 mrg }
571 1.8 mrg
572 1.8 mrg /*
573 1.8 mrg * pp points to a page in the locked object that we are
574 1.8 mrg * working on. if it is !PG_CLEAN,!PG_BUSY and we asked
575 1.8 mrg * for cleaning (PGO_CLEANIT). we clean it now.
576 1.8 mrg *
577 1.8 mrg * let uvm_pager_put attempted a clustered page out.
578 1.8 mrg * note: locked: uobj and page queues.
579 1.8 mrg */
580 1.8 mrg
581 1.37 chs wasclean = FALSE;
582 1.8 mrg pp->flags |= PG_BUSY; /* we 'own' page now */
583 1.8 mrg UVM_PAGE_OWN(pp, "uvn_flush");
584 1.26 chs pmap_page_protect(pp, VM_PROT_READ);
585 1.8 mrg pp_version = pp->version;
586 1.8 mrg ppsp = pps;
587 1.8 mrg npages = sizeof(pps) / sizeof(struct vm_page *);
588 1.1 mrg
589 1.8 mrg /* locked: page queues, uobj */
590 1.49 chs result = uvm_pager_put(uobj, pp, &ppsp, &npages,
591 1.37 chs flags | PGO_DOACTCLUST, start, stop);
592 1.8 mrg /* unlocked: page queues, uobj */
593 1.1 mrg
594 1.8 mrg /*
595 1.8 mrg * at this point nothing is locked. if we did an async I/O
596 1.49 chs * it is remotely possible for the async i/o to complete and
597 1.49 chs * the page "pp" be freed or what not before we get a chance
598 1.8 mrg * to relock the object. in order to detect this, we have
599 1.8 mrg * saved the version number of the page in "pp_version".
600 1.8 mrg */
601 1.8 mrg
602 1.8 mrg /* relock! */
603 1.8 mrg simple_lock(&uobj->vmobjlock);
604 1.8 mrg uvm_lock_pageq();
605 1.8 mrg
606 1.8 mrg /*
607 1.48 chs * the cleaning operation is now done. finish up. note that
608 1.48 chs * on error uvm_pager_put drops the cluster for us.
609 1.48 chs * on success uvm_pager_put returns the cluster to us in
610 1.48 chs * ppsp/npages.
611 1.8 mrg */
612 1.8 mrg
613 1.8 mrg /*
614 1.8 mrg * for pending async i/o if we are not deactivating/freeing
615 1.8 mrg * we can move on to the next page.
616 1.8 mrg */
617 1.8 mrg
618 1.48 chs if (result == 0 && async &&
619 1.37 chs (flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
620 1.8 mrg
621 1.37 chs /*
622 1.37 chs * no per-page ops: refresh ppnext and continue
623 1.37 chs */
624 1.37 chs if (by_list) {
625 1.37 chs if (pp->version == pp_version)
626 1.37 chs ppnext = TAILQ_NEXT(pp, listq);
627 1.37 chs else
628 1.37 chs ppnext = TAILQ_FIRST(&uobj->memq);
629 1.37 chs } else {
630 1.37 chs if (curoff < stop)
631 1.37 chs ppnext = uvm_pagelookup(uobj, curoff);
632 1.8 mrg }
633 1.37 chs continue;
634 1.8 mrg }
635 1.8 mrg
636 1.8 mrg /*
637 1.49 chs * need to look at each page of the I/O operation. we defer
638 1.49 chs * processing "pp" until the last trip through this "for" loop
639 1.8 mrg * so that we can load "ppnext" for the main loop after we
640 1.49 chs * play with the cluster pages [thus the "npages + 1" in the
641 1.8 mrg * loop below].
642 1.8 mrg */
643 1.8 mrg
644 1.8 mrg for (lcv = 0 ; lcv < npages + 1 ; lcv++) {
645 1.8 mrg
646 1.8 mrg /*
647 1.8 mrg * handle ppnext for outside loop, and saving pp
648 1.8 mrg * until the end.
649 1.8 mrg */
650 1.8 mrg if (lcv < npages) {
651 1.8 mrg if (ppsp[lcv] == pp)
652 1.8 mrg continue; /* skip pp until the end */
653 1.8 mrg ptmp = ppsp[lcv];
654 1.8 mrg } else {
655 1.8 mrg ptmp = pp;
656 1.8 mrg
657 1.8 mrg /* set up next page for outer loop */
658 1.8 mrg if (by_list) {
659 1.8 mrg if (pp->version == pp_version)
660 1.37 chs ppnext = TAILQ_NEXT(pp, listq);
661 1.8 mrg else
662 1.37 chs ppnext = TAILQ_FIRST(
663 1.37 chs &uobj->memq);
664 1.8 mrg } else {
665 1.8 mrg if (curoff < stop)
666 1.37 chs ppnext = uvm_pagelookup(uobj,
667 1.37 chs curoff);
668 1.8 mrg }
669 1.8 mrg }
670 1.8 mrg
671 1.8 mrg /*
672 1.37 chs * verify the page wasn't moved while obj was
673 1.8 mrg * unlocked
674 1.8 mrg */
675 1.48 chs if (result == 0 && async && ptmp->uobject != uobj)
676 1.8 mrg continue;
677 1.8 mrg
678 1.8 mrg /*
679 1.8 mrg * unbusy the page if I/O is done. note that for
680 1.48 chs * async I/O it is possible that the I/O op
681 1.8 mrg * finished before we relocked the object (in
682 1.8 mrg * which case the page is no longer busy).
683 1.8 mrg */
684 1.8 mrg
685 1.48 chs if (result != 0 || !async) {
686 1.37 chs if (ptmp->flags & PG_WANTED) {
687 1.8 mrg /* still holding object lock */
688 1.25 thorpej wakeup(ptmp);
689 1.37 chs }
690 1.8 mrg ptmp->flags &= ~(PG_WANTED|PG_BUSY);
691 1.8 mrg UVM_PAGE_OWN(ptmp, NULL);
692 1.8 mrg if (ptmp->flags & PG_RELEASED) {
693 1.8 mrg uvm_unlock_pageq();
694 1.37 chs if (!uvn_releasepg(ptmp, NULL)) {
695 1.37 chs UVMHIST_LOG(maphist,
696 1.37 chs "released %p",
697 1.37 chs ptmp, 0,0,0);
698 1.8 mrg return (TRUE);
699 1.37 chs }
700 1.37 chs uvm_lock_pageq();
701 1.37 chs continue;
702 1.8 mrg } else {
703 1.37 chs if ((flags & PGO_WEAK) == 0 &&
704 1.48 chs !(result == EIO &&
705 1.37 chs curproc == uvm.pagedaemon_proc)) {
706 1.37 chs ptmp->flags |=
707 1.37 chs (PG_CLEAN|PG_CLEANCHK);
708 1.37 chs if ((flags & PGO_FREE) == 0) {
709 1.37 chs pmap_clear_modify(ptmp);
710 1.37 chs }
711 1.37 chs }
712 1.8 mrg }
713 1.8 mrg }
714 1.49 chs
715 1.8 mrg /*
716 1.8 mrg * dispose of page
717 1.8 mrg */
718 1.8 mrg
719 1.8 mrg if (flags & PGO_DEACTIVATE) {
720 1.8 mrg if ((pp->pqflags & PQ_INACTIVE) == 0 &&
721 1.40 chs (pp->flags & PG_BUSY) == 0 &&
722 1.8 mrg pp->wire_count == 0) {
723 1.42 thorpej pmap_clear_reference(ptmp);
724 1.8 mrg uvm_pagedeactivate(ptmp);
725 1.8 mrg }
726 1.8 mrg } else if (flags & PGO_FREE) {
727 1.48 chs if (result == 0 && async) {
728 1.8 mrg if ((ptmp->flags & PG_BUSY) != 0)
729 1.8 mrg /* signal for i/o done */
730 1.8 mrg ptmp->flags |= PG_RELEASED;
731 1.8 mrg } else {
732 1.48 chs if (result != 0) {
733 1.8 mrg printf("uvn_flush: obj=%p, "
734 1.37 chs "offset=0x%llx. error %d\n",
735 1.30 kleink pp->uobject,
736 1.37 chs (long long)pp->offset,
737 1.37 chs result);
738 1.8 mrg printf("uvn_flush: WARNING: "
739 1.8 mrg "changes to page may be "
740 1.8 mrg "lost!\n");
741 1.8 mrg retval = FALSE;
742 1.8 mrg }
743 1.26 chs pmap_page_protect(ptmp, VM_PROT_NONE);
744 1.8 mrg uvm_pagefree(ptmp);
745 1.8 mrg }
746 1.8 mrg }
747 1.8 mrg } /* end of "lcv" for loop */
748 1.8 mrg } /* end of "pp" for loop */
749 1.1 mrg
750 1.8 mrg uvm_unlock_pageq();
751 1.37 chs if ((flags & PGO_CLEANIT) && all && wasclean &&
752 1.37 chs LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
753 1.37 chs (vp->v_flag & VONWORKLST)) {
754 1.37 chs vp->v_flag &= ~VONWORKLST;
755 1.37 chs LIST_REMOVE(vp, v_synclist);
756 1.37 chs }
757 1.37 chs if (need_iosync) {
758 1.37 chs UVMHIST_LOG(maphist," <<DOING IOSYNC>>",0,0,0,0);
759 1.1 mrg
760 1.37 chs /*
761 1.37 chs * XXX this doesn't use the new two-flag scheme,
762 1.37 chs * but to use that, all i/o initiators will have to change.
763 1.37 chs */
764 1.1 mrg
765 1.37 chs s = splbio();
766 1.37 chs while (vp->v_numoutput != 0) {
767 1.37 chs UVMHIST_LOG(ubchist, "waiting for vp %p num %d",
768 1.37 chs vp, vp->v_numoutput,0,0);
769 1.37 chs
770 1.37 chs vp->v_flag |= VBWAIT;
771 1.37 chs UVM_UNLOCK_AND_WAIT(&vp->v_numoutput,
772 1.49 chs &uvn->u_obj.vmobjlock,
773 1.37 chs FALSE, "uvn_flush",0);
774 1.8 mrg simple_lock(&uvn->u_obj.vmobjlock);
775 1.8 mrg }
776 1.37 chs splx(s);
777 1.1 mrg }
778 1.1 mrg
779 1.8 mrg /* return, with object locked! */
780 1.8 mrg UVMHIST_LOG(maphist,"<- done (retval=0x%x)",retval,0,0,0);
781 1.8 mrg return(retval);
782 1.1 mrg }
783 1.1 mrg
784 1.1 mrg /*
785 1.1 mrg * uvn_cluster
786 1.1 mrg *
787 1.1 mrg * we are about to do I/O in an object at offset. this function is called
788 1.1 mrg * to establish a range of offsets around "offset" in which we can cluster
789 1.1 mrg * I/O.
790 1.1 mrg *
791 1.1 mrg * - currently doesn't matter if obj locked or not.
792 1.1 mrg */
793 1.1 mrg
794 1.8 mrg static void
795 1.8 mrg uvn_cluster(uobj, offset, loffset, hoffset)
796 1.8 mrg struct uvm_object *uobj;
797 1.30 kleink voff_t offset;
798 1.30 kleink voff_t *loffset, *hoffset; /* OUT */
799 1.1 mrg {
800 1.37 chs struct uvm_vnode *uvn = (struct uvm_vnode *)uobj;
801 1.37 chs
802 1.8 mrg *loffset = offset;
803 1.47 chs *hoffset = MIN(offset + MAXBSIZE, round_page(uvn->u_size));
804 1.1 mrg }
805 1.1 mrg
806 1.1 mrg /*
807 1.1 mrg * uvn_put: flush page data to backing store.
808 1.1 mrg *
809 1.1 mrg * => object must be locked! we will _unlock_ it before starting I/O.
810 1.1 mrg * => flags: PGO_SYNCIO -- use sync. I/O
811 1.1 mrg * => note: caller must set PG_CLEAN and pmap_clear_modify (if needed)
812 1.1 mrg */
813 1.1 mrg
814 1.8 mrg static int
815 1.8 mrg uvn_put(uobj, pps, npages, flags)
816 1.8 mrg struct uvm_object *uobj;
817 1.8 mrg struct vm_page **pps;
818 1.8 mrg int npages, flags;
819 1.1 mrg {
820 1.37 chs struct vnode *vp = (struct vnode *)uobj;
821 1.37 chs int error;
822 1.1 mrg
823 1.37 chs error = VOP_PUTPAGES(vp, pps, npages, flags, NULL);
824 1.48 chs return error;
825 1.1 mrg }
826 1.1 mrg
827 1.1 mrg
828 1.1 mrg /*
829 1.1 mrg * uvn_get: get pages (synchronously) from backing store
830 1.1 mrg *
831 1.1 mrg * => prefer map unlocked (not required)
832 1.1 mrg * => object must be locked! we will _unlock_ it before starting any I/O.
833 1.1 mrg * => flags: PGO_ALLPAGES: get all of the pages
834 1.1 mrg * PGO_LOCKED: fault data structures are locked
835 1.1 mrg * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
836 1.1 mrg * => NOTE: caller must check for released pages!!
837 1.1 mrg */
838 1.49 chs
839 1.8 mrg static int
840 1.8 mrg uvn_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
841 1.8 mrg struct uvm_object *uobj;
842 1.30 kleink voff_t offset;
843 1.8 mrg struct vm_page **pps; /* IN/OUT */
844 1.8 mrg int *npagesp; /* IN (OUT if PGO_LOCKED) */
845 1.37 chs int centeridx;
846 1.8 mrg vm_prot_t access_type;
847 1.37 chs int advice, flags;
848 1.8 mrg {
849 1.37 chs struct vnode *vp = (struct vnode *)uobj;
850 1.37 chs int error;
851 1.37 chs UVMHIST_FUNC("uvn_get"); UVMHIST_CALLED(ubchist);
852 1.37 chs
853 1.37 chs UVMHIST_LOG(ubchist, "vp %p off 0x%x", vp, (int)offset, 0,0);
854 1.37 chs error = VOP_GETPAGES(vp, offset, pps, npagesp, centeridx,
855 1.37 chs access_type, advice, flags);
856 1.48 chs return error;
857 1.37 chs }
858 1.8 mrg
859 1.8 mrg
860 1.37 chs /*
861 1.37 chs * uvn_findpages:
862 1.37 chs * return the page for the uobj and offset requested, allocating if needed.
863 1.37 chs * => uobj must be locked.
864 1.37 chs * => returned page will be BUSY.
865 1.37 chs */
866 1.1 mrg
867 1.37 chs void
868 1.37 chs uvn_findpages(uobj, offset, npagesp, pps, flags)
869 1.37 chs struct uvm_object *uobj;
870 1.37 chs voff_t offset;
871 1.37 chs int *npagesp;
872 1.37 chs struct vm_page **pps;
873 1.37 chs int flags;
874 1.37 chs {
875 1.37 chs int i, rv, npages;
876 1.8 mrg
877 1.37 chs rv = 0;
878 1.37 chs npages = *npagesp;
879 1.37 chs for (i = 0; i < npages; i++, offset += PAGE_SIZE) {
880 1.37 chs rv += uvn_findpage(uobj, offset, &pps[i], flags);
881 1.37 chs }
882 1.37 chs *npagesp = rv;
883 1.37 chs }
884 1.8 mrg
885 1.37 chs static int
886 1.37 chs uvn_findpage(uobj, offset, pgp, flags)
887 1.37 chs struct uvm_object *uobj;
888 1.37 chs voff_t offset;
889 1.37 chs struct vm_page **pgp;
890 1.37 chs int flags;
891 1.37 chs {
892 1.37 chs struct vm_page *pg;
893 1.37 chs UVMHIST_FUNC("uvn_findpage"); UVMHIST_CALLED(ubchist);
894 1.37 chs UVMHIST_LOG(ubchist, "vp %p off 0x%lx", uobj, offset,0,0);
895 1.8 mrg
896 1.37 chs if (*pgp != NULL) {
897 1.37 chs UVMHIST_LOG(ubchist, "dontcare", 0,0,0,0);
898 1.37 chs return 0;
899 1.37 chs }
900 1.37 chs for (;;) {
901 1.37 chs /* look for an existing page */
902 1.37 chs pg = uvm_pagelookup(uobj, offset);
903 1.37 chs
904 1.37 chs /* nope? allocate one now */
905 1.37 chs if (pg == NULL) {
906 1.37 chs if (flags & UFP_NOALLOC) {
907 1.37 chs UVMHIST_LOG(ubchist, "noalloc", 0,0,0,0);
908 1.37 chs return 0;
909 1.37 chs }
910 1.47 chs pg = uvm_pagealloc(uobj, offset, NULL, 0);
911 1.37 chs if (pg == NULL) {
912 1.37 chs if (flags & UFP_NOWAIT) {
913 1.37 chs UVMHIST_LOG(ubchist, "nowait",0,0,0,0);
914 1.37 chs return 0;
915 1.8 mrg }
916 1.37 chs simple_unlock(&uobj->vmobjlock);
917 1.37 chs uvm_wait("uvn_fp1");
918 1.8 mrg simple_lock(&uobj->vmobjlock);
919 1.37 chs continue;
920 1.8 mrg }
921 1.47 chs if (UVM_OBJ_IS_VTEXT(uobj)) {
922 1.47 chs uvmexp.vtextpages++;
923 1.47 chs } else {
924 1.47 chs uvmexp.vnodepages++;
925 1.47 chs }
926 1.37 chs UVMHIST_LOG(ubchist, "alloced",0,0,0,0);
927 1.37 chs break;
928 1.37 chs } else if (flags & UFP_NOCACHE) {
929 1.37 chs UVMHIST_LOG(ubchist, "nocache",0,0,0,0);
930 1.37 chs return 0;
931 1.8 mrg }
932 1.8 mrg
933 1.37 chs /* page is there, see if we need to wait on it */
934 1.37 chs if ((pg->flags & (PG_BUSY|PG_RELEASED)) != 0) {
935 1.37 chs if (flags & UFP_NOWAIT) {
936 1.37 chs UVMHIST_LOG(ubchist, "nowait",0,0,0,0);
937 1.37 chs return 0;
938 1.37 chs }
939 1.37 chs pg->flags |= PG_WANTED;
940 1.37 chs UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
941 1.37 chs "uvn_fp2", 0);
942 1.37 chs simple_lock(&uobj->vmobjlock);
943 1.37 chs continue;
944 1.8 mrg }
945 1.49 chs
946 1.37 chs /* skip PG_RDONLY pages if requested */
947 1.37 chs if ((flags & UFP_NORDONLY) && (pg->flags & PG_RDONLY)) {
948 1.37 chs UVMHIST_LOG(ubchist, "nordonly",0,0,0,0);
949 1.37 chs return 0;
950 1.8 mrg }
951 1.8 mrg
952 1.37 chs /* mark the page BUSY and we're done. */
953 1.37 chs pg->flags |= PG_BUSY;
954 1.37 chs UVM_PAGE_OWN(pg, "uvn_findpage");
955 1.37 chs UVMHIST_LOG(ubchist, "found",0,0,0,0);
956 1.37 chs break;
957 1.8 mrg }
958 1.37 chs *pgp = pg;
959 1.37 chs return 1;
960 1.1 mrg }
961 1.1 mrg
962 1.1 mrg /*
963 1.1 mrg * uvm_vnp_setsize: grow or shrink a vnode uvn
964 1.1 mrg *
965 1.1 mrg * grow => just update size value
966 1.1 mrg * shrink => toss un-needed pages
967 1.1 mrg *
968 1.49 chs * => we assume that the caller has a reference of some sort to the
969 1.1 mrg * vnode in question so that it will not be yanked out from under
970 1.1 mrg * us.
971 1.1 mrg *
972 1.1 mrg * called from:
973 1.1 mrg * => truncate fns (ext2fs_truncate, ffs_truncate, detrunc[msdos])
974 1.1 mrg * => "write" fns (ext2fs_write, WRITE [ufs/ufs], msdosfs_write, nfs_write)
975 1.1 mrg * => ffs_balloc [XXX: why? doesn't WRITE handle?]
976 1.1 mrg * => NFS: nfs_loadattrcache, nfs_getattrcache, nfs_setattr
977 1.1 mrg * => union fs: union_newsize
978 1.1 mrg */
979 1.1 mrg
980 1.8 mrg void
981 1.8 mrg uvm_vnp_setsize(vp, newsize)
982 1.8 mrg struct vnode *vp;
983 1.30 kleink voff_t newsize;
984 1.8 mrg {
985 1.8 mrg struct uvm_vnode *uvn = &vp->v_uvm;
986 1.46 enami voff_t pgend = round_page(newsize);
987 1.37 chs UVMHIST_FUNC("uvm_vnp_setsize"); UVMHIST_CALLED(ubchist);
988 1.37 chs
989 1.37 chs simple_lock(&uvn->u_obj.vmobjlock);
990 1.37 chs
991 1.37 chs UVMHIST_LOG(ubchist, "old 0x%x new 0x%x", uvn->u_size, newsize, 0,0);
992 1.1 mrg
993 1.8 mrg /*
994 1.37 chs * now check if the size has changed: if we shrink we had better
995 1.37 chs * toss some pages...
996 1.8 mrg */
997 1.1 mrg
998 1.46 enami if (uvn->u_size > pgend && uvn->u_size != VSIZENOTSET) {
999 1.46 enami (void) uvn_flush(&uvn->u_obj, pgend, 0, PGO_FREE);
1000 1.8 mrg }
1001 1.37 chs uvn->u_size = newsize;
1002 1.8 mrg simple_unlock(&uvn->u_obj.vmobjlock);
1003 1.1 mrg }
1004 1.1 mrg
1005 1.1 mrg /*
1006 1.37 chs * uvm_vnp_zerorange: set a range of bytes in a file to zero.
1007 1.1 mrg */
1008 1.1 mrg
1009 1.8 mrg void
1010 1.37 chs uvm_vnp_zerorange(vp, off, len)
1011 1.37 chs struct vnode *vp;
1012 1.37 chs off_t off;
1013 1.37 chs size_t len;
1014 1.8 mrg {
1015 1.37 chs void *win;
1016 1.8 mrg
1017 1.37 chs /*
1018 1.37 chs * XXXUBC invent kzero() and use it
1019 1.37 chs */
1020 1.37 chs
1021 1.37 chs while (len) {
1022 1.37 chs vsize_t bytelen = len;
1023 1.37 chs
1024 1.37 chs win = ubc_alloc(&vp->v_uvm.u_obj, off, &bytelen, UBC_WRITE);
1025 1.37 chs memset(win, 0, bytelen);
1026 1.37 chs ubc_release(win, 0);
1027 1.37 chs
1028 1.37 chs off += bytelen;
1029 1.37 chs len -= bytelen;
1030 1.37 chs }
1031 1.1 mrg }
1032