uvm_vnode.c revision 1.17.2.6 1 /* $NetBSD: uvm_vnode.c,v 1.17.2.6 1999/04/30 04:29:15 chs Exp $ */
2
3 /*
4 * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
5 * >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
6 */
7 /*
8 * Copyright (c) 1997 Charles D. Cranor and Washington University.
9 * Copyright (c) 1991, 1993
10 * The Regents of the University of California.
11 * Copyright (c) 1990 University of Utah.
12 *
13 * All rights reserved.
14 *
15 * This code is derived from software contributed to Berkeley by
16 * the Systems Programming Group of the University of Utah Computer
17 * Science Department.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 * 1. Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution.
27 * 3. All advertising materials mentioning features or use of this software
28 * must display the following acknowledgement:
29 * This product includes software developed by Charles D. Cranor,
30 * Washington University, the University of California, Berkeley and
31 * its contributors.
32 * 4. Neither the name of the University nor the names of its contributors
33 * may be used to endorse or promote products derived from this software
34 * without specific prior written permission.
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
37 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
40 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46 * SUCH DAMAGE.
47 *
48 * @(#)vnode_pager.c 8.8 (Berkeley) 2/13/94
49 * from: Id: uvm_vnode.c,v 1.1.2.26 1998/02/02 20:38:07 chuck Exp
50 */
51
52 #include "fs_nfs.h"
53 #include "opt_uvm.h"
54 #include "opt_uvmhist.h"
55
56 /*
57 * uvm_vnode.c: the vnode pager.
58 */
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/kernel.h>
63 #include <sys/proc.h>
64 #include <sys/malloc.h>
65 #include <sys/vnode.h>
66 #include <sys/disklabel.h>
67 #include <sys/ioctl.h>
68 #include <sys/fcntl.h>
69 #include <sys/conf.h>
70
71 #include <miscfs/specfs/specdev.h>
72
73 #include <vm/vm.h>
74 #include <vm/vm_page.h>
75 #include <vm/vm_kern.h>
76
77 #include <uvm/uvm.h>
78 #include <uvm/uvm_vnode.h>
79
80 /*
81 * private global data structure
82 *
83 * we keep a list of writeable active vnode-backed VM objects for sync op.
84 * we keep a simpleq of vnodes that are currently being sync'd.
85 */
86
87 LIST_HEAD(uvn_list_struct, uvm_vnode);
88 static struct uvn_list_struct uvn_wlist; /* writeable uvns */
89 static simple_lock_data_t uvn_wl_lock; /* locks uvn_wlist */
90
91 SIMPLEQ_HEAD(uvn_sq_struct, uvm_vnode);
92 static struct uvn_sq_struct uvn_sync_q; /* sync'ing uvns */
93 lock_data_t uvn_sync_lock; /* locks sync operation */
94
95 /*
96 * functions
97 */
98
99 static int uvn_asyncget __P((struct uvm_object *, vaddr_t,
100 int));
101 struct uvm_object * uvn_attach __P((void *, vm_prot_t));
102 static void uvn_cluster __P((struct uvm_object *, vaddr_t,
103 vaddr_t *, vaddr_t *));
104 static void uvn_detach __P((struct uvm_object *));
105 static int uvn_findpage __P((struct uvm_object *, vaddr_t,
106 struct vm_page **, int));
107 static boolean_t uvn_flush __P((struct uvm_object *, vaddr_t,
108 vaddr_t, int));
109 static int uvn_get __P((struct uvm_object *, vaddr_t,
110 vm_page_t *, int *, int,
111 vm_prot_t, int, int));
112 static void uvn_init __P((void));
113 static int uvn_put __P((struct uvm_object *, vm_page_t *,
114 int, boolean_t));
115 static void uvn_reference __P((struct uvm_object *));
116 static boolean_t uvn_releasepg __P((struct vm_page *,
117 struct vm_page **));
118
119 /*
120 * master pager structure
121 */
122
123 struct uvm_pagerops uvm_vnodeops = {
124 uvn_init,
125 uvn_attach,
126 uvn_reference,
127 uvn_detach,
128 NULL, /* no specialized fault routine required */
129 uvn_flush,
130 uvn_get,
131 uvn_asyncget,
132 uvn_put,
133 uvn_cluster,
134 uvm_mk_pcluster, /* use generic version of this: see uvm_pager.c */
135 uvm_shareprot, /* !NULL: allow us in share maps */
136 NULL, /* AIO-DONE function (not until we have asyncio) */
137 uvn_releasepg,
138 };
139
140 /*
141 * the ops!
142 */
143
144 /*
145 * uvn_init
146 *
147 * init pager private data structures.
148 */
149
150 static void
151 uvn_init()
152 {
153
154 LIST_INIT(&uvn_wlist);
155 simple_lock_init(&uvn_wl_lock);
156 /* note: uvn_sync_q init'd in uvm_vnp_sync() */
157 lockinit(&uvn_sync_lock, PVM, "uvnsync", 0, 0);
158 }
159
160 /*
161 * uvn_attach
162 *
163 * attach a vnode structure to a VM object. if the vnode is already
164 * attached, then just bump the reference count by one and return the
165 * VM object. if not already attached, attach and return the new VM obj.
166 * the "accessprot" tells the max access the attaching thread wants to
167 * our pages.
168 *
169 * => caller must _not_ already be holding the lock on the uvm_object.
170 * => in fact, nothing should be locked so that we can sleep here.
171 * => note that uvm_object is first thing in vnode structure, so their
172 * pointers are equiv.
173 */
174
175 struct uvm_object *
176 uvn_attach(arg, accessprot)
177 void *arg;
178 vm_prot_t accessprot;
179 {
180 struct vnode *vp = arg;
181 struct uvm_vnode *uvn = &vp->v_uvm;
182 struct vattr vattr;
183 int oldflags, result;
184 struct partinfo pi;
185 off_t used_vnode_size;
186 UVMHIST_FUNC("uvn_attach"); UVMHIST_CALLED(maphist);
187
188 UVMHIST_LOG(maphist, "(vn=0x%x)", arg,0,0,0);
189
190 used_vnode_size = (u_quad_t)0; /* XXX gcc -Wuninitialized */
191
192 /*
193 * first get a lock on the uvn.
194 */
195 simple_lock(&uvn->u_obj.vmobjlock);
196 while (uvn->u_flags & UVM_VNODE_BLOCKED) {
197 uvn->u_flags |= UVM_VNODE_WANTED;
198 UVMHIST_LOG(maphist, " SLEEPING on blocked vn",0,0,0,0);
199 UVM_UNLOCK_AND_WAIT(uvn, &uvn->u_obj.vmobjlock, FALSE,
200 "uvn_attach", 0);
201 simple_lock(&uvn->u_obj.vmobjlock);
202 UVMHIST_LOG(maphist," WOKE UP",0,0,0,0);
203 }
204
205 /*
206 * if we're mapping a BLK device, make sure it is a disk.
207 */
208 if (vp->v_type == VBLK && bdevsw[major(vp->v_rdev)].d_type != D_DISK) {
209 simple_unlock(&uvn->u_obj.vmobjlock);
210 UVMHIST_LOG(maphist,"<- done (VBLK not D_DISK!)", 0,0,0,0);
211 return(NULL);
212 }
213
214 oldflags = 0;
215
216 #ifdef DIAGNOSTIC
217 if (vp->v_type != VREG) {
218 panic("uvn_attach: vp %p not VREG", vp);
219 }
220 #endif
221
222 /*
223 * set up our idea of the size
224 * if this hasn't been done already.
225 */
226 if (uvn->u_size == VSIZENOTSET) {
227
228 uvn->u_flags = UVM_VNODE_ALOCK;
229 simple_unlock(&uvn->u_obj.vmobjlock); /* drop lock in case we sleep */
230 /* XXX: curproc? */
231 if (vp->v_type == VBLK) {
232 /*
233 * We could implement this as a specfs getattr call, but:
234 *
235 * (1) VOP_GETATTR() would get the file system
236 * vnode operation, not the specfs operation.
237 *
238 * (2) All we want is the size, anyhow.
239 */
240 result = (*bdevsw[major(vp->v_rdev)].d_ioctl)(vp->v_rdev,
241 DIOCGPART, (caddr_t)&pi, FREAD, curproc);
242 if (result == 0) {
243 /* XXX should remember blocksize */
244 used_vnode_size = (u_quad_t)pi.disklab->d_secsize *
245 (u_quad_t)pi.part->p_size;
246 }
247 } else {
248 result = VOP_GETATTR(vp, &vattr, curproc->p_ucred, curproc);
249 if (result == 0)
250 used_vnode_size = vattr.va_size;
251 }
252
253
254 /*
255 * make sure that the newsize fits within a vaddr_t
256 * XXX: need to revise addressing data types
257 */
258 if (used_vnode_size > (vaddr_t) -PAGE_SIZE) {
259 #ifdef DEBUG
260 printf("uvn_attach: vn %p size truncated %qx->%x\n", vp,
261 used_vnode_size, -PAGE_SIZE);
262 #endif
263 used_vnode_size = (vaddr_t) -PAGE_SIZE;
264 }
265
266 /* relock object */
267 simple_lock(&uvn->u_obj.vmobjlock);
268
269 if (uvn->u_flags & UVM_VNODE_WANTED)
270 wakeup(uvn);
271 uvn->u_flags = 0;
272
273 if (result != 0) {
274 simple_unlock(&uvn->u_obj.vmobjlock); /* drop lock */
275 UVMHIST_LOG(maphist,"<- done (VOP_GETATTR FAILED!)", 0,0,0,0);
276 return(NULL);
277 }
278 uvn->u_size = used_vnode_size;
279
280 }
281
282 /* check for new writeable uvn */
283 if ((accessprot & VM_PROT_WRITE) != 0 &&
284 (uvn->u_flags & UVM_VNODE_WRITEABLE) == 0) {
285 simple_lock(&uvn_wl_lock);
286 LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist);
287 uvn->u_flags |= UVM_VNODE_WRITEABLE;
288 simple_unlock(&uvn_wl_lock);
289 /* we are now on wlist! */
290 }
291
292 /* unlock and return */
293 simple_unlock(&uvn->u_obj.vmobjlock);
294 UVMHIST_LOG(maphist,"<- done, refcnt=%d", uvn->u_obj.uo_refs,
295 0, 0, 0);
296 return (&uvn->u_obj);
297 }
298
299
300 /*
301 * uvn_reference
302 *
303 * duplicate a reference to a VM object. Note that the reference
304 * count must already be at least one (the passed in reference) so
305 * there is no chance of the uvn being killed or locked out here.
306 *
307 * => caller must call with object unlocked.
308 * => caller must be using the same accessprot as was used at attach time
309 */
310
311
312 static void
313 uvn_reference(uobj)
314 struct uvm_object *uobj;
315 {
316 UVMHIST_FUNC("uvn_reference"); UVMHIST_CALLED(maphist);
317
318 VREF((struct vnode *)uobj);
319 }
320
321 /*
322 * uvn_detach
323 *
324 * remove a reference to a VM object.
325 *
326 * => caller must call with object unlocked and map locked.
327 * => this starts the detach process, but doesn't have to finish it
328 * (async i/o could still be pending).
329 */
330 static void
331 uvn_detach(uobj)
332 struct uvm_object *uobj;
333 {
334 UVMHIST_FUNC("uvn_detach"); UVMHIST_CALLED(maphist);
335
336 vrele((struct vnode *)uobj);
337 }
338
339 /*
340 * uvm_vnp_terminate: external hook to clear out a vnode's VM
341 *
342 * called in two cases:
343 * [1] when a persisting vnode vm object (i.e. one with a zero reference
344 * count) needs to be freed so that a vnode can be reused. this
345 * happens under "getnewvnode" in vfs_subr.c. if the vnode from
346 * the free list is still attached (i.e. not VBAD) then vgone is
347 * called. as part of the vgone trace this should get called to
348 * free the vm object. this is the common case.
349 * [2] when a filesystem is being unmounted by force (MNT_FORCE,
350 * "umount -f") the vgone() function is called on active vnodes
351 * on the mounted file systems to kill their data (the vnodes become
352 * "dead" ones [see src/sys/miscfs/deadfs/...]). that results in a
353 * call here (even if the uvn is still in use -- i.e. has a non-zero
354 * reference count). this case happens at "umount -f" and during a
355 * "reboot/halt" operation.
356 *
357 * => the caller must XLOCK and VOP_LOCK the vnode before calling us
358 * [protects us from getting a vnode that is already in the DYING
359 * state...]
360 * => unlike uvn_detach, this function must not return until all the
361 * uvn's pages are disposed of.
362 * => in case [2] the uvn is still alive after this call, but all I/O
363 * ops will fail (due to the backing vnode now being "dead"). this
364 * will prob. kill any process using the uvn due to pgo_get failing.
365 */
366
367 void
368 uvm_vnp_terminate(vp)
369 struct vnode *vp;
370 {
371 struct uvm_vnode *uvn = &vp->v_uvm;
372
373 if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
374 simple_lock(&uvn_wl_lock);
375 LIST_REMOVE(uvn, u_wlist);
376 uvn->u_flags &= ~(UVM_VNODE_WRITEABLE);
377 simple_unlock(&uvn_wl_lock);
378 }
379 }
380
381 /*
382 * uvn_releasepg: handled a released page in a uvn
383 *
384 * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
385 * to dispose of.
386 * => caller must handled PG_WANTED case
387 * => called with page's object locked, pageq's unlocked
388 * => returns TRUE if page's object is still alive, FALSE if we
389 * killed the page's object. if we return TRUE, then we
390 * return with the object locked.
391 * => if (nextpgp != NULL) => we return pageq.tqe_next here, and return
392 * with the page queues locked [for pagedaemon]
393 * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
394 * => we kill the uvn if it is not referenced and we are suppose to
395 * kill it ("relkill").
396 */
397
398 boolean_t
399 uvn_releasepg(pg, nextpgp)
400 struct vm_page *pg;
401 struct vm_page **nextpgp; /* OUT */
402 {
403 struct uvm_vnode *uvn = (struct uvm_vnode *) pg->uobject;
404 #ifdef DIAGNOSTIC
405 if ((pg->flags & PG_RELEASED) == 0)
406 panic("uvn_releasepg: page not released!");
407 #endif
408
409 /*
410 * dispose of the page [caller handles PG_WANTED]
411 */
412 pmap_page_protect(PMAP_PGARG(pg), VM_PROT_NONE);
413 uvm_lock_pageq();
414 if (nextpgp)
415 *nextpgp = pg->pageq.tqe_next; /* next page for daemon */
416 uvm_pagefree(pg);
417 if (!nextpgp)
418 uvm_unlock_pageq();
419
420 #ifdef UBC
421 /* XXX I'm sure we need to do something here. */
422 uvn = uvn;
423 #else
424 /*
425 * now see if we need to kill the object
426 */
427 if (uvn->u_flags & UVM_VNODE_RELKILL) {
428 if (uvn->u_obj.uo_refs)
429 panic("uvn_releasepg: kill flag set on referenced "
430 "object!");
431 if (uvn->u_obj.uo_npages == 0) {
432 if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
433 simple_lock(&uvn_wl_lock);
434 LIST_REMOVE(uvn, u_wlist);
435 simple_unlock(&uvn_wl_lock);
436 }
437 #ifdef DIAGNOSTIC
438 if (uvn->u_obj.memq.tqh_first)
439 panic("uvn_releasepg: pages in object with npages == 0");
440 #endif
441 if (uvn->u_flags & UVM_VNODE_WANTED)
442 /* still holding object lock */
443 wakeup(uvn);
444
445 uvn->u_flags = 0; /* DEAD! */
446 simple_unlock(&uvn->u_obj.vmobjlock);
447 return (FALSE);
448 }
449 }
450 #endif
451 return (TRUE);
452 }
453
454 /*
455 * NOTE: currently we have to use VOP_READ/VOP_WRITE because they go
456 * through the buffer cache and allow I/O in any size. These VOPs use
457 * synchronous i/o. [vs. VOP_STRATEGY which can be async, but doesn't
458 * go through the buffer cache or allow I/O sizes larger than a
459 * block]. we will eventually want to change this.
460 *
461 * issues to consider:
462 * uvm provides the uvm_aiodesc structure for async i/o management.
463 * there are two tailq's in the uvm. structure... one for pending async
464 * i/o and one for "done" async i/o. to do an async i/o one puts
465 * an aiodesc on the "pending" list (protected by splbio()), starts the
466 * i/o and returns VM_PAGER_PEND. when the i/o is done, we expect
467 * some sort of "i/o done" function to be called (at splbio(), interrupt
468 * time). this function should remove the aiodesc from the pending list
469 * and place it on the "done" list and wakeup the daemon. the daemon
470 * will run at normal spl() and will remove all items from the "done"
471 * list and call the "aiodone" hook for each done request (see uvm_pager.c).
472 * [in the old vm code, this was done by calling the "put" routine with
473 * null arguments which made the code harder to read and understand because
474 * you had one function ("put") doing two things.]
475 *
476 * so the current pager needs:
477 * int uvn_aiodone(struct uvm_aiodesc *)
478 *
479 * => return KERN_SUCCESS (aio finished, free it). otherwise requeue for
480 * later collection.
481 * => called with pageq's locked by the daemon.
482 *
483 * general outline:
484 * - "try" to lock object. if fail, just return (will try again later)
485 * - drop "u_nio" (this req is done!)
486 * - if (object->iosync && u_naio == 0) { wakeup &uvn->u_naio }
487 * - get "page" structures (atop?).
488 * - handle "wanted" pages
489 * - handle "released" pages [using pgo_releasepg]
490 * >>> pgo_releasepg may kill the object
491 * dont forget to look at "object" wanted flag in all cases.
492 */
493
494
495 /*
496 * uvn_flush: flush pages out of a uvm object.
497 *
498 * => object should be locked by caller. we may _unlock_ the object
499 * if (and only if) we need to clean a page (PGO_CLEANIT).
500 * we return with the object locked.
501 * => if PGO_CLEANIT is set, we may block (due to I/O). thus, a caller
502 * might want to unlock higher level resources (e.g. vm_map)
503 * before calling flush.
504 * => if PGO_CLEANIT is not set, then we will neither unlock the object
505 * or block.
506 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
507 * for flushing.
508 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
509 * that new pages are inserted on the tail end of the list. thus,
510 * we can make a complete pass through the object in one go by starting
511 * at the head and working towards the tail (new pages are put in
512 * front of us).
513 * => NOTE: we are allowed to lock the page queues, so the caller
514 * must not be holding the lock on them [e.g. pagedaemon had
515 * better not call us with the queues locked]
516 * => we return TRUE unless we encountered some sort of I/O error
517 *
518 * comment on "cleaning" object and PG_BUSY pages:
519 * this routine is holding the lock on the object. the only time
520 * that it can run into a PG_BUSY page that it does not own is if
521 * some other process has started I/O on the page (e.g. either
522 * a pagein, or a pageout). if the PG_BUSY page is being paged
523 * in, then it can not be dirty (!PG_CLEAN) because no one has
524 * had a chance to modify it yet. if the PG_BUSY page is being
525 * paged out then it means that someone else has already started
526 * cleaning the page for us (how nice!). in this case, if we
527 * have syncio specified, then after we make our pass through the
528 * object we need to wait for the other PG_BUSY pages to clear
529 * off (i.e. we need to do an iosync). also note that once a
530 * page is PG_BUSY it must stay in its object until it is un-busyed.
531 *
532 * note on page traversal:
533 * we can traverse the pages in an object either by going down the
534 * linked list in "uobj->memq", or we can go over the address range
535 * by page doing hash table lookups for each address. depending
536 * on how many pages are in the object it may be cheaper to do one
537 * or the other. we set "by_list" to true if we are using memq.
538 * if the cost of a hash lookup was equal to the cost of the list
539 * traversal we could compare the number of pages in the start->stop
540 * range to the total number of pages in the object. however, it
541 * seems that a hash table lookup is more expensive than the linked
542 * list traversal, so we multiply the number of pages in the
543 * start->stop range by a penalty which we define below.
544 */
545
546 #define UVN_HASH_PENALTY 4 /* XXX: a guess */
547
548 static boolean_t
549 uvn_flush(uobj, start, stop, flags)
550 struct uvm_object *uobj;
551 vaddr_t start, stop;
552 int flags;
553 {
554 struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
555 struct vnode *vp = (struct vnode *)uobj;
556 struct vm_page *pp, *ppnext, *ptmp;
557 struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
558 int npages, result, lcv;
559 boolean_t retval, need_iosync, by_list, needs_clean;
560 vaddr_t curoff;
561 u_short pp_version;
562 UVMHIST_FUNC("uvn_flush"); UVMHIST_CALLED(maphist);
563
564 #ifdef UBC
565 if (uvn->u_size == VSIZENOTSET) {
566 void vp_name(void *);
567
568 #ifdef DEBUG
569 printf("uvn_flush: size not set vp %p\n", uvn);
570 if ((flags & PGO_ALLPAGES) == 0)
571 printf("... and PGO_ALLPAGES not set: "
572 "start 0x%lx end 0x%lx flags 0x%x\n",
573 start, stop, flags);
574 vp_name(uvn);
575 #endif
576 flags |= PGO_ALLPAGES;
577 }
578 #if 0
579 /* XXX unfortunately this is legitimate */
580 if ((flags & PGO_FREE) && uobj->uo_refs) {
581 printf("uvn_flush: PGO_FREE on ref'd vp %p\n", uobj);
582 Debugger();
583 }
584 #endif
585 #endif
586
587 curoff = 0; /* XXX: shut up gcc */
588 /*
589 * get init vals and determine how we are going to traverse object
590 */
591
592 need_iosync = FALSE;
593 retval = TRUE; /* return value */
594 if (flags & PGO_ALLPAGES) {
595 start = 0;
596 #ifdef UBC
597 stop = -1;
598 #else
599 stop = round_page(uvn->u_size);
600 #endif
601 by_list = TRUE; /* always go by the list */
602 } else {
603 start = trunc_page(start);
604 stop = round_page(stop);
605 if (stop > round_page(uvn->u_size)) {
606 printf("uvn_flush: oor vp %p start 0x%x stop 0x%x size 0x%x\n", uvn, (int)start, (int)stop, (int)round_page(uvn->u_size));
607 }
608
609 by_list = (uobj->uo_npages <=
610 ((stop - start) >> PAGE_SHIFT) * UVN_HASH_PENALTY);
611 }
612
613 UVMHIST_LOG(maphist,
614 " flush start=0x%x, stop=0x%x, by_list=%d, flags=0x%x",
615 start, stop, by_list, flags);
616
617 /*
618 * PG_CLEANCHK: this bit is used by the pgo_mk_pcluster function as
619 * a _hint_ as to how up to date the PG_CLEAN bit is. if the hint
620 * is wrong it will only prevent us from clustering... it won't break
621 * anything. we clear all PG_CLEANCHK bits here, and pgo_mk_pcluster
622 * will set them as it syncs PG_CLEAN. This is only an issue if we
623 * are looking at non-inactive pages (because inactive page's PG_CLEAN
624 * bit is always up to date since there are no mappings).
625 * [borrowed PG_CLEANCHK idea from FreeBSD VM]
626 */
627
628 if ((flags & PGO_CLEANIT) != 0 &&
629 uobj->pgops->pgo_mk_pcluster != NULL) {
630 if (by_list) {
631 for (pp = TAILQ_FIRST(&uobj->memq);
632 pp != NULL ;
633 pp = TAILQ_NEXT(pp, listq)) {
634 if (pp->offset < start ||
635 (pp->offset >= stop && stop != -1))
636 continue;
637 pp->flags &= ~PG_CLEANCHK;
638 }
639
640 } else { /* by hash */
641 for (curoff = start ; curoff < stop;
642 curoff += PAGE_SIZE) {
643 pp = uvm_pagelookup(uobj, curoff);
644 if (pp)
645 pp->flags &= ~PG_CLEANCHK;
646 }
647 }
648 }
649
650 /*
651 * now do it. note: we must update ppnext in body of loop or we
652 * will get stuck. we need to use ppnext because we may free "pp"
653 * before doing the next loop.
654 */
655
656 if (by_list) {
657 pp = TAILQ_FIRST(&uobj->memq);
658 } else {
659 curoff = start;
660 pp = uvm_pagelookup(uobj, curoff);
661 }
662
663 ppnext = NULL; /* XXX: shut up gcc */
664 ppsp = NULL; /* XXX: shut up gcc */
665 uvm_lock_pageq(); /* page queues locked */
666
667 /* locked: both page queues and uobj */
668 for ( ; (by_list && pp != NULL) ||
669 (!by_list && curoff < stop) ; pp = ppnext) {
670
671 if (by_list) {
672
673 /*
674 * range check
675 */
676
677 if (pp->offset < start || pp->offset >= stop) {
678 ppnext = TAILQ_NEXT(pp, listq);
679 continue;
680 }
681
682 } else {
683
684 /*
685 * null check
686 */
687
688 curoff += PAGE_SIZE;
689 if (pp == NULL) {
690 if (curoff < stop)
691 ppnext = uvm_pagelookup(uobj, curoff);
692 continue;
693 }
694
695 }
696
697 /*
698 * handle case where we do not need to clean page (either
699 * because we are not clean or because page is not dirty or
700 * is busy):
701 *
702 * NOTE: we are allowed to deactivate a non-wired active
703 * PG_BUSY page, but once a PG_BUSY page is on the inactive
704 * queue it must stay put until it is !PG_BUSY (so as not to
705 * confuse pagedaemon).
706 */
707
708 if ((flags & PGO_CLEANIT) == 0 || (pp->flags & PG_BUSY) != 0) {
709 needs_clean = FALSE;
710 if ((pp->flags & PG_BUSY) != 0 &&
711 (flags & (PGO_CLEANIT|PGO_SYNCIO)) ==
712 (PGO_CLEANIT|PGO_SYNCIO))
713 need_iosync = TRUE;
714 } else {
715 /*
716 * freeing: nuke all mappings so we can sync
717 * PG_CLEAN bit with no race
718 */
719 if ((pp->flags & PG_CLEAN) != 0 &&
720 (flags & PGO_FREE) != 0 &&
721 (pp->pqflags & PQ_ACTIVE) != 0)
722 pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
723 if ((pp->flags & PG_CLEAN) != 0 &&
724 pmap_is_modified(PMAP_PGARG(pp)))
725 pp->flags &= ~(PG_CLEAN);
726 pp->flags |= PG_CLEANCHK; /* update "hint" */
727
728 needs_clean = ((pp->flags & PG_CLEAN) == 0);
729 }
730
731 /*
732 * if we don't need a clean... load ppnext and dispose of pp
733 */
734 if (!needs_clean) {
735 /* load ppnext */
736 if (by_list)
737 ppnext = pp->listq.tqe_next;
738 else {
739 if (curoff < stop)
740 ppnext = uvm_pagelookup(uobj, curoff);
741 }
742
743 /* now dispose of pp */
744 if (flags & PGO_DEACTIVATE) {
745 if ((pp->pqflags & PQ_INACTIVE) == 0 &&
746 pp->wire_count == 0) {
747 pmap_page_protect(PMAP_PGARG(pp),
748 VM_PROT_NONE);
749 uvm_pagedeactivate(pp);
750 }
751
752 } else if (flags & PGO_FREE) {
753 if (pp->flags & PG_BUSY) {
754 /* release busy pages */
755 pp->flags |= PG_RELEASED;
756 } else {
757 pmap_page_protect(PMAP_PGARG(pp),
758 VM_PROT_NONE);
759 /* removed page from object */
760 uvm_pagefree(pp);
761 }
762 }
763 /* ppnext is valid so we can continue... */
764 continue;
765 }
766
767 /*
768 * pp points to a page in the locked object that we are
769 * working on. if it is !PG_CLEAN,!PG_BUSY and we asked
770 * for cleaning (PGO_CLEANIT). we clean it now.
771 *
772 * let uvm_pager_put attempted a clustered page out.
773 * note: locked: uobj and page queues.
774 */
775
776 pp->flags |= PG_BUSY; /* we 'own' page now */
777 UVM_PAGE_OWN(pp, "uvn_flush");
778 pmap_page_protect(PMAP_PGARG(pp), VM_PROT_READ);
779 pp_version = pp->version;
780 ReTry:
781 ppsp = pps;
782 npages = sizeof(pps) / sizeof(struct vm_page *);
783
784 /* locked: page queues, uobj */
785 result = uvm_pager_put(uobj, pp, &ppsp, &npages,
786 flags | PGO_DOACTCLUST, start, stop);
787 /* unlocked: page queues, uobj */
788
789 /*
790 * at this point nothing is locked. if we did an async I/O
791 * it is remotely possible for the async i/o to complete and
792 * the page "pp" be freed or what not before we get a chance
793 * to relock the object. in order to detect this, we have
794 * saved the version number of the page in "pp_version".
795 */
796
797 /* relock! */
798 simple_lock(&uobj->vmobjlock);
799 uvm_lock_pageq();
800
801 /*
802 * VM_PAGER_AGAIN: given the structure of this pager, this
803 * can only happen when we are doing async I/O and can't
804 * map the pages into kernel memory (pager_map) due to lack
805 * of vm space. if this happens we drop back to sync I/O.
806 */
807
808 if (result == VM_PAGER_AGAIN) {
809 /*
810 * it is unlikely, but page could have been released
811 * while we had the object lock dropped. we ignore
812 * this now and retry the I/O. we will detect and
813 * handle the released page after the syncio I/O
814 * completes.
815 */
816 #ifdef DIAGNOSTIC
817 if (flags & PGO_SYNCIO)
818 panic("uvn_flush: PGO_SYNCIO return 'try again' error (impossible)");
819 #endif
820 flags |= PGO_SYNCIO;
821 goto ReTry;
822 }
823
824 /*
825 * the cleaning operation is now done. finish up. note that
826 * on error (!OK, !PEND) uvm_pager_put drops the cluster for us.
827 * if success (OK, PEND) then uvm_pager_put returns the cluster
828 * to us in ppsp/npages.
829 */
830
831 /*
832 * for pending async i/o if we are not deactivating/freeing
833 * we can move on to the next page.
834 */
835
836 if (result == VM_PAGER_PEND) {
837
838 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
839 /*
840 * no per-page ops: refresh ppnext and continue
841 */
842 if (by_list) {
843 if (pp->version == pp_version)
844 ppnext = pp->listq.tqe_next;
845 else
846 /* reset */
847 ppnext = uobj->memq.tqh_first;
848 } else {
849 if (curoff < stop)
850 ppnext = uvm_pagelookup(uobj,
851 curoff);
852 }
853 continue;
854 }
855
856 /* need to do anything here? */
857 }
858
859 /*
860 * need to look at each page of the I/O operation. we defer
861 * processing "pp" until the last trip through this "for" loop
862 * so that we can load "ppnext" for the main loop after we
863 * play with the cluster pages [thus the "npages + 1" in the
864 * loop below].
865 */
866
867 for (lcv = 0 ; lcv < npages + 1 ; lcv++) {
868
869 /*
870 * handle ppnext for outside loop, and saving pp
871 * until the end.
872 */
873 if (lcv < npages) {
874 if (ppsp[lcv] == pp)
875 continue; /* skip pp until the end */
876 ptmp = ppsp[lcv];
877 } else {
878 ptmp = pp;
879
880 /* set up next page for outer loop */
881 if (by_list) {
882 if (pp->version == pp_version)
883 ppnext = pp->listq.tqe_next;
884 else
885 /* reset */
886 ppnext = uobj->memq.tqh_first;
887 } else {
888 if (curoff < stop)
889 ppnext = uvm_pagelookup(uobj, curoff);
890 }
891 }
892
893 /*
894 * verify the page didn't get moved while obj was
895 * unlocked
896 */
897 if (result == VM_PAGER_PEND && ptmp->uobject != uobj)
898 continue;
899
900 /*
901 * unbusy the page if I/O is done. note that for
902 * pending I/O it is possible that the I/O op
903 * finished before we relocked the object (in
904 * which case the page is no longer busy).
905 */
906
907 if (result != VM_PAGER_PEND) {
908 if (ptmp->flags & PG_WANTED)
909 /* still holding object lock */
910 wakeup(ptmp);
911
912 ptmp->flags &= ~(PG_WANTED|PG_BUSY);
913 UVM_PAGE_OWN(ptmp, NULL);
914 if (ptmp->flags & PG_RELEASED) {
915
916 /* pgo_releasepg wants this */
917 uvm_unlock_pageq();
918 if (!uvn_releasepg(ptmp, NULL))
919 return (TRUE);
920
921 uvm_lock_pageq(); /* relock */
922 continue; /* next page */
923
924 } else {
925 ptmp->flags |= (PG_CLEAN|PG_CLEANCHK);
926 if ((flags & PGO_FREE) == 0)
927 pmap_clear_modify(
928 PMAP_PGARG(ptmp));
929 }
930 }
931
932 /*
933 * dispose of page
934 */
935
936 if (flags & PGO_DEACTIVATE) {
937 if ((pp->pqflags & PQ_INACTIVE) == 0 &&
938 pp->wire_count == 0) {
939 pmap_page_protect(PMAP_PGARG(ptmp),
940 VM_PROT_NONE);
941 uvm_pagedeactivate(ptmp);
942 }
943
944 } else if (flags & PGO_FREE) {
945 if (result == VM_PAGER_PEND) {
946 if ((ptmp->flags & PG_BUSY) != 0)
947 /* signal for i/o done */
948 ptmp->flags |= PG_RELEASED;
949 } else {
950 if (result != VM_PAGER_OK) {
951 printf("uvn_flush: obj=%p, "
952 "offset=0x%lx. error %d\n",
953 pp->uobject, pp->offset,
954 result);
955 printf("uvn_flush: WARNING: "
956 "changes to page may be "
957 "lost!\n");
958 retval = FALSE;
959 }
960 pmap_page_protect(PMAP_PGARG(ptmp),
961 VM_PROT_NONE);
962 uvm_pagefree(ptmp);
963 }
964 }
965
966 } /* end of "lcv" for loop */
967
968 } /* end of "pp" for loop */
969
970 /*
971 * done with pagequeues: unlock
972 */
973 uvm_unlock_pageq();
974
975 /*
976 * now wait for all I/O if required.
977 */
978 if (need_iosync) {
979
980 UVMHIST_LOG(maphist," <<DOING IOSYNC>>",0,0,0,0);
981 #ifdef UBC
982 /*
983 * XXX this doesn't use the new two-flag scheme,
984 * but to use that, all i/o initiators will have to change.
985 */
986
987 while (vp->v_numoutput != 0) {
988 vp->v_flag |= VBWAIT;
989 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput,
990 &uvn->u_obj.vmobjlock,
991 FALSE, "uvn_flush",0);
992 simple_lock(&uvn->u_obj.vmobjlock);
993 }
994 #else
995 while (uvn->u_nio != 0) {
996 uvn->u_flags |= UVM_VNODE_IOSYNC;
997 UVM_UNLOCK_AND_WAIT(&uvn->u_nio, &uvn->u_obj.vmobjlock,
998 FALSE, "uvn_flush",0);
999 simple_lock(&uvn->u_obj.vmobjlock);
1000 }
1001 if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED)
1002 wakeup(&uvn->u_flags);
1003 uvn->u_flags &= ~(UVM_VNODE_IOSYNC|UVM_VNODE_IOSYNCWANTED);
1004 #endif
1005 }
1006
1007 /* return, with object locked! */
1008 UVMHIST_LOG(maphist,"<- done (retval=0x%x)",retval,0,0,0);
1009 return(retval);
1010 }
1011
1012 /*
1013 * uvn_cluster
1014 *
1015 * we are about to do I/O in an object at offset. this function is called
1016 * to establish a range of offsets around "offset" in which we can cluster
1017 * I/O.
1018 *
1019 * - currently doesn't matter if obj locked or not.
1020 */
1021
1022 static void
1023 uvn_cluster(uobj, offset, loffset, hoffset)
1024 struct uvm_object *uobj;
1025 vaddr_t offset;
1026 vaddr_t *loffset, *hoffset; /* OUT */
1027 {
1028 struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
1029 UVMHIST_FUNC("uvn_cluster"); UVMHIST_CALLED(ubchist);
1030
1031 *loffset = offset;
1032
1033 if (*loffset >= uvn->u_size)
1034 #ifdef UBC
1035 {
1036 /* XXX nfs writes cause trouble with this */
1037 *loffset = *hoffset = offset;
1038 UVMHIST_LOG(ubchist, "uvn_cluster: offset out of range: vp %p loffset 0x%x",
1039 uobj, (int)*loffset, 0,0);
1040 Debugger();
1041 return;
1042 }
1043 #else
1044 panic("uvn_cluster: offset out of range: vp %p loffset 0x%x",
1045 uobj, (int) *loffset);
1046 #endif
1047
1048 /*
1049 * XXX: old pager claims we could use VOP_BMAP to get maxcontig value.
1050 */
1051 *hoffset = *loffset + MAXBSIZE;
1052 if (*hoffset > round_page(uvn->u_size)) /* past end? */
1053 *hoffset = round_page(uvn->u_size);
1054
1055 return;
1056 }
1057
1058 /*
1059 * uvn_put: flush page data to backing store.
1060 *
1061 * => prefer map unlocked (not required)
1062 * => object must be locked! we will _unlock_ it before starting I/O.
1063 * => flags: PGO_SYNCIO -- use sync. I/O
1064 * => note: caller must set PG_CLEAN and pmap_clear_modify (if needed)
1065 * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync.
1066 * [thus we never do async i/o! see iodone comment]
1067 */
1068
1069 static int
1070 uvn_put(uobj, pps, npages, flags)
1071 struct uvm_object *uobj;
1072 struct vm_page **pps;
1073 int npages, flags;
1074 {
1075 int retval, sync;
1076
1077 sync = (flags & PGO_SYNCIO) ? 1 : 0;
1078
1079 /* note: object locked */
1080 simple_lock_assert(&uobj->vmobjlock, SLOCK_LOCKED);
1081
1082 /* XXX why would the VOP need it locked? */
1083 /* currently, just to increment vp->v_numoutput (aka uvn->u_nio) */
1084 simple_unlock(&uobj->vmobjlock);
1085 retval = VOP_PUTPAGES((struct vnode *)uobj, pps, npages, sync, &retval);
1086 /* note: object unlocked */
1087 simple_lock_assert(&uobj->vmobjlock, SLOCK_UNLOCKED);
1088
1089 return(retval);
1090 }
1091
1092
1093 /*
1094 * uvn_get: get pages (synchronously) from backing store
1095 *
1096 * => prefer map unlocked (not required)
1097 * => object must be locked! we will _unlock_ it before starting any I/O.
1098 * => flags: PGO_ALLPAGES: get all of the pages
1099 * PGO_LOCKED: fault data structures are locked
1100 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
1101 * => NOTE: caller must check for released pages!!
1102 */
1103
1104 static int
1105 uvn_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
1106 struct uvm_object *uobj;
1107 vaddr_t offset;
1108 struct vm_page **pps; /* IN/OUT */
1109 int *npagesp; /* IN (OUT if PGO_LOCKED) */
1110 int centeridx, advice, flags;
1111 vm_prot_t access_type;
1112 {
1113 struct vnode *vp = (struct vnode *)uobj;
1114 int error;
1115
1116 simple_lock_assert(&uobj->vmobjlock, SLOCK_LOCKED);
1117 error = VOP_GETPAGES(vp, offset, pps, npagesp, centeridx,
1118 access_type, advice, flags);
1119 simple_lock_assert(&uobj->vmobjlock, flags & PGO_LOCKED ?
1120 SLOCK_LOCKED : SLOCK_UNLOCKED);
1121
1122 return error ? VM_PAGER_ERROR : VM_PAGER_OK;
1123 }
1124
1125 /*
1126 * uvn_findpages:
1127 * return the page for the uobj and offset requested, allocating if needed.
1128 * => uobj must be locked.
1129 * => returned page will be BUSY.
1130 */
1131
1132 void
1133 uvn_findpages(uobj, offset, npagesp, pps, flags)
1134 struct uvm_object *uobj;
1135 vaddr_t offset;
1136 int *npagesp;
1137 struct vm_page **pps;
1138 int flags;
1139 {
1140 int i, rv, npages;
1141
1142 rv = 0;
1143 npages = *npagesp;
1144 for (i = 0; i < npages; i++, offset += PAGE_SIZE) {
1145 rv += uvn_findpage(uobj, offset, &pps[i], flags);
1146 }
1147 *npagesp = rv;
1148 }
1149
1150
1151 static int
1152 uvn_findpage(uobj, offset, pps, flags)
1153 struct uvm_object *uobj;
1154 vaddr_t offset;
1155 struct vm_page **pps;
1156 int flags;
1157 {
1158 struct vm_page *ptmp;
1159 UVMHIST_FUNC("uvn_findpage"); UVMHIST_CALLED(ubchist);
1160 UVMHIST_LOG(ubchist, "vp %p off 0x%lx", uobj, offset,0,0);
1161
1162 simple_lock_assert(&uobj->vmobjlock, SLOCK_LOCKED);
1163
1164 if (*pps == PGO_DONTCARE) {
1165 UVMHIST_LOG(ubchist, "dontcare", 0,0,0,0);
1166 return 0;
1167 }
1168 #ifdef DIAGNOTISTIC
1169 if (*pps != NULL) {
1170 panic("uvn_findpage: *pps not NULL");
1171 }
1172 #endif
1173
1174 for (;;) {
1175 /* look for an existing page */
1176 ptmp = uvm_pagelookup(uobj, offset);
1177
1178 /* nope? allocate one now */
1179 if (ptmp == NULL) {
1180 if (flags & UFP_NOALLOC) {
1181 UVMHIST_LOG(ubchist, "noalloc", 0,0,0,0);
1182 return 0;
1183 }
1184 ptmp = uvm_pagealloc(uobj, offset, NULL);
1185 if (ptmp == NULL) {
1186 if (flags & UFP_NOWAIT) {
1187 UVMHIST_LOG(ubchist, "nowait",0,0,0,0);
1188 return 0;
1189 }
1190 simple_unlock(&uobj->vmobjlock);
1191 uvm_wait("uvn_fp1");
1192 simple_lock(&uobj->vmobjlock);
1193 continue;
1194 }
1195 UVMHIST_LOG(ubchist, "alloced",0,0,0,0);
1196 break;
1197 } else if (flags & UFP_NOCACHE) {
1198 UVMHIST_LOG(ubchist, "nocache",0,0,0,0);
1199 return 0;
1200 }
1201
1202 /* page is there, see if we need to wait on it */
1203 if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1204 if (flags & UFP_NOWAIT) {
1205 UVMHIST_LOG(ubchist, "nowait",0,0,0,0);
1206 return 0;
1207 }
1208 ptmp->flags |= PG_WANTED;
1209 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock, 0,
1210 "uvn_fp2",0);
1211 simple_lock(&uobj->vmobjlock);
1212 continue;
1213 }
1214
1215 /* BUSY the page and we're done. */
1216 ptmp->flags |= PG_BUSY;
1217 UVM_PAGE_OWN(ptmp, "uvn_findpage");
1218 UVMHIST_LOG(ubchist, "found",0,0,0,0);
1219 break;
1220 }
1221 *pps = ptmp;
1222 return 1;
1223 }
1224
1225 /*
1226 * uvn_asyncget: start async I/O to bring pages into ram
1227 *
1228 * => caller must lock object(???XXX: see if this is best)
1229 * => could be called from uvn_get or a madvise() fault-ahead.
1230 * => if it fails, it doesn't matter.
1231 */
1232
1233 static int
1234 uvn_asyncget(uobj, offset, npages)
1235 struct uvm_object *uobj;
1236 vaddr_t offset;
1237 int npages;
1238 {
1239
1240 /*
1241 * XXXCDC: we can't do async I/O yet
1242 */
1243 printf("uvn_asyncget called\n");
1244 return (KERN_SUCCESS);
1245 }
1246
1247 /*
1248 * uvm_vnp_uncache: disable "persisting" in a vnode... when last reference
1249 * is gone we will kill the object (flushing dirty pages back to the vnode
1250 * if needed).
1251 *
1252 * => returns TRUE if there was no uvm_object attached or if there was
1253 * one and we killed it [i.e. if there is no active uvn]
1254 * => called with the vnode VOP_LOCK'd [we will unlock it for I/O, if
1255 * needed]
1256 *
1257 * => XXX: given that we now kill uvn's when a vnode is recycled (without
1258 * having to hold a reference on the vnode) and given a working
1259 * uvm_vnp_sync(), how does that effect the need for this function?
1260 * [XXXCDC: seems like it can die?]
1261 *
1262 * => XXX: this function should DIE once we merge the VM and buffer
1263 * cache.
1264 *
1265 * research shows that this is called in the following places:
1266 * ext2fs_truncate, ffs_truncate, detrunc[msdosfs]: called when vnode
1267 * changes sizes
1268 * ext2fs_write, WRITE [ufs_readwrite], msdosfs_write: called when we
1269 * are written to
1270 * ex2fs_chmod, ufs_chmod: called if VTEXT vnode and the sticky bit
1271 * is off
1272 * ffs_realloccg: when we can't extend the current block and have
1273 * to allocate a new one we call this [XXX: why?]
1274 * nfsrv_rename, rename_files: called when the target filename is there
1275 * and we want to remove it
1276 * nfsrv_remove, sys_unlink: called on file we are removing
1277 * nfsrv_access: if VTEXT and we want WRITE access and we don't uncache
1278 * then return "text busy"
1279 * nfs_open: seems to uncache any file opened with nfs
1280 * vn_writechk: if VTEXT vnode and can't uncache return "text busy"
1281 */
1282
1283 boolean_t
1284 uvm_vnp_uncache(vp)
1285 struct vnode *vp;
1286 {
1287 return(TRUE);
1288 }
1289
1290 /*
1291 * uvm_vnp_setsize: grow or shrink a vnode uvn
1292 *
1293 * grow => just update size value
1294 * shrink => toss un-needed pages
1295 *
1296 * => we assume that the caller has a reference of some sort to the
1297 * vnode in question so that it will not be yanked out from under
1298 * us.
1299 *
1300 * called from:
1301 * => truncate fns (ext2fs_truncate, ffs_truncate, detrunc[msdos])
1302 * => "write" fns (ext2fs_write, WRITE [ufs/ufs], msdosfs_write, nfs_write)
1303 * => ffs_balloc [XXX: why? doesn't WRITE handle?]
1304 * => NFS: nfs_loadattrcache, nfs_getattrcache, nfs_setattr
1305 * => union fs: union_newsize
1306 */
1307
1308 void
1309 uvm_vnp_setsize(vp, newsize)
1310 struct vnode *vp;
1311 u_quad_t newsize;
1312 {
1313 struct uvm_vnode *uvn = &vp->v_uvm;
1314
1315 /*
1316 * lock uvn and check for valid object, and if valid: do it!
1317 */
1318 simple_lock(&uvn->u_obj.vmobjlock);
1319 #ifdef UBC
1320 #else
1321 if (uvn->u_flags & UVM_VNODE_VALID) {
1322 #endif
1323 /*
1324 * make sure that the newsize fits within a vaddr_t
1325 * XXX: need to revise addressing data types
1326 */
1327
1328 if (newsize > (vaddr_t) -PAGE_SIZE) {
1329 #ifdef DEBUG
1330 printf("uvm_vnp_setsize: vn %p size truncated "
1331 "%qx->%lx\n", vp, newsize, (vaddr_t)-PAGE_SIZE);
1332 #endif
1333 newsize = (vaddr_t)-PAGE_SIZE;
1334 }
1335
1336 /*
1337 * now check if the size has changed: if we shrink we had better
1338 * toss some pages...
1339 */
1340
1341 #ifdef UBC
1342 if (uvn->u_size > newsize && uvn->u_size != VSIZENOTSET) {
1343 #else
1344 /*
1345 if (uvn->u_size > newsize) {
1346 */
1347 #endif
1348 (void)uvn_flush(&uvn->u_obj, (vaddr_t)newsize,
1349 uvn->u_size, PGO_FREE);
1350 }
1351 #ifdef DEBUGxx
1352 printf("uvm_vnp_setsize: vp %p newsize 0x%x\n", vp, (int)newsize);
1353 #endif
1354 uvn->u_size = (vaddr_t)newsize;
1355 #ifdef UBC
1356 #else
1357 }
1358 #endif
1359 simple_unlock(&uvn->u_obj.vmobjlock);
1360 }
1361
1362 /*
1363 * uvm_vnp_sync: flush all dirty VM pages back to their backing vnodes.
1364 *
1365 * => called from sys_sync with no VM structures locked
1366 * => only one process can do a sync at a time (because the uvn
1367 * structure only has one queue for sync'ing). we ensure this
1368 * by holding the uvn_sync_lock while the sync is in progress.
1369 * other processes attempting a sync will sleep on this lock
1370 * until we are done.
1371 */
1372
1373 void
1374 uvm_vnp_sync(mp)
1375 struct mount *mp;
1376 {
1377 struct uvm_vnode *uvn;
1378 struct vnode *vp;
1379 boolean_t got_lock;
1380
1381 /*
1382 * step 1: ensure we are only ones using the uvn_sync_q by locking
1383 * our lock...
1384 */
1385 lockmgr(&uvn_sync_lock, LK_EXCLUSIVE, (void *)0);
1386
1387 /*
1388 * step 2: build up a simpleq of uvns of interest based on the
1389 * write list. we gain a reference to uvns of interest. must
1390 * be careful about locking uvn's since we will be holding uvn_wl_lock
1391 * in the body of the loop.
1392 */
1393 SIMPLEQ_INIT(&uvn_sync_q);
1394 simple_lock(&uvn_wl_lock);
1395 for (uvn = LIST_FIRST(&uvn_wlist); uvn != NULL;
1396 uvn = LIST_NEXT(uvn, u_wlist)) {
1397
1398 vp = (struct vnode *) uvn;
1399 if (mp && vp->v_mount != mp)
1400 continue;
1401
1402 /* attempt to gain reference */
1403 while ((got_lock = simple_lock_try(&uvn->u_obj.vmobjlock)) ==
1404 FALSE &&
1405 (uvn->u_flags & UVM_VNODE_BLOCKED) == 0)
1406 /* spin */ ;
1407
1408 /*
1409 * we will exit the loop if either if the following are true:
1410 * - we got the lock [always true if NCPU == 1]
1411 * - we failed to get the lock but noticed the vnode was
1412 * "blocked" -- in this case the vnode must be a dying
1413 * vnode, and since dying vnodes are in the process of
1414 * being flushed out, we can safely skip this one
1415 *
1416 * we want to skip over the vnode if we did not get the lock,
1417 * or if the vnode is already dying (due to the above logic).
1418 *
1419 * note that uvn must already be valid because we found it on
1420 * the wlist (this also means it can't be ALOCK'd).
1421 */
1422 if (!got_lock || (uvn->u_flags & UVM_VNODE_BLOCKED) != 0) {
1423 if (got_lock)
1424 simple_unlock(&uvn->u_obj.vmobjlock);
1425 continue; /* skip it */
1426 }
1427
1428 /*
1429 * gain reference. watch out for persisting uvns (need to
1430 * regain vnode REF).
1431 */
1432 #ifdef UBC
1433 vget(vp, LK_INTERLOCK);
1434 #else
1435 if (uvn->u_obj.uo_refs == 0)
1436 VREF(vp);
1437 uvn->u_obj.uo_refs++;
1438 simple_unlock(&uvn->u_obj.vmobjlock);
1439 #endif
1440
1441 /*
1442 * got it!
1443 */
1444 SIMPLEQ_INSERT_HEAD(&uvn_sync_q, uvn, u_syncq);
1445 }
1446 simple_unlock(&uvn_wl_lock);
1447
1448 /*
1449 * step 3: we now have a list of uvn's that may need cleaning.
1450 * we are holding the uvn_sync_lock, but have dropped the uvn_wl_lock
1451 * (so we can now safely lock uvn's again).
1452 */
1453
1454 for (uvn = uvn_sync_q.sqh_first ; uvn ; uvn = uvn->u_syncq.sqe_next) {
1455 simple_lock(&uvn->u_obj.vmobjlock);
1456 #ifdef UBC
1457 #else
1458 #ifdef DIAGNOSTIC
1459 if (uvn->u_flags & UVM_VNODE_DYING) {
1460 printf("uvm_vnp_sync: dying vnode on sync list\n");
1461 }
1462 #endif
1463 #endif
1464 /*
1465 * XXX use PGO_SYNCIO for now to avoid problems with
1466 * uvmexp.paging.
1467 */
1468
1469 uvn_flush(&uvn->u_obj, 0, 0,
1470 PGO_CLEANIT|PGO_ALLPAGES|PGO_DOACTCLUST|PGO_SYNCIO);
1471
1472 /*
1473 * if we have the only reference and we just cleaned the uvn,
1474 * then we can pull it out of the UVM_VNODE_WRITEABLE state
1475 * thus allowing us to avoid thinking about flushing it again
1476 * on later sync ops.
1477 */
1478 if (uvn->u_obj.uo_refs == 1 &&
1479 (uvn->u_flags & UVM_VNODE_WRITEABLE)) {
1480 simple_lock(&uvn_wl_lock);
1481 LIST_REMOVE(uvn, u_wlist);
1482 uvn->u_flags &= ~UVM_VNODE_WRITEABLE;
1483 simple_unlock(&uvn_wl_lock);
1484 }
1485
1486 simple_unlock(&uvn->u_obj.vmobjlock);
1487
1488 /* now drop our reference to the uvn */
1489 uvn_detach(&uvn->u_obj);
1490 }
1491
1492 /*
1493 * done! release sync lock
1494 */
1495 lockmgr(&uvn_sync_lock, LK_RELEASE, (void *)0);
1496 }
1497
1498
1499 /*
1500 * uvm_vnp_setpageblknos: find pages and set their blknos.
1501 * this is used for two purposes: updating blknos in existing pages
1502 * when the data is relocated on disk, and preallocating pages when
1503 * those pages are about to be completely overwritten.
1504 *
1505 * => vp's uobj should not be locked, and is returned not locked.
1506 */
1507
1508 void
1509 uvm_vnp_setpageblknos(vp, off, len, blkno, ufp_flags, zero)
1510 struct vnode *vp;
1511 off_t off, len;
1512 daddr_t blkno;
1513 int ufp_flags;
1514 boolean_t zero;
1515 {
1516 int i;
1517 int npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1518 struct vm_page *pgs[16];
1519 struct uvm_object *uobj = &vp->v_uvm.u_obj;
1520
1521 simple_lock(&uobj->vmobjlock);
1522 while (npages > 0) {
1523 int pages = min(npages, 16);
1524
1525 memset(pgs, 0, pages);
1526 uvn_findpages(uobj, trunc_page(off), &pages, pgs, ufp_flags);
1527 for (i = 0; i < pages; i++) {
1528 if (pgs[i] == NULL) {
1529 continue;
1530 }
1531 pgs[i]->blkno = blkno;
1532 blkno += PAGE_SIZE >> DEV_BSHIFT;
1533 if (zero) {
1534 uvm_pagezero(pgs[i]);
1535 }
1536 }
1537 uvm_pager_dropcluster(uobj, NULL, pgs, &pages, PGO_PDFREECLUST,
1538 0);
1539
1540 off += pages << PAGE_SHIFT;
1541 npages -= pages;
1542 }
1543 simple_unlock(&uobj->vmobjlock);
1544 }
1545
1546
1547 /*
1548 * uvm_vnp_zerorange: set a range of bytes in a file to zero.
1549 * this is called from fs-specific code when truncating a file
1550 * to zero the part of last block that is past the new end-of-file.
1551 */
1552 void
1553 uvm_vnp_zerorange(vp, off, len)
1554 struct vnode *vp;
1555 off_t off;
1556 size_t len;
1557 {
1558 void *win;
1559
1560 /*
1561 * XXX invent kzero() and use it
1562 */
1563
1564 while (len) {
1565 vsize_t bytelen = len;
1566
1567 win = ubc_alloc(&vp->v_uvm.u_obj, off, &bytelen, UBC_WRITE);
1568 memset(win, 0, bytelen);
1569 ubc_release(win, 0);
1570 len -= bytelen;
1571 }
1572 }
1573