1 1.1 kre /* $NetBSD: t_nanosleep.c,v 1.1 2024/10/09 13:02:53 kre Exp $ */ 2 1.1 kre 3 1.1 kre /*- 4 1.1 kre * Copyright (c) 2024 The NetBSD Foundation, Inc. 5 1.1 kre * All rights reserved. 6 1.1 kre * 7 1.1 kre * Redistribution and use in source and binary forms, with or without 8 1.1 kre * modification, are permitted provided that the following conditions 9 1.1 kre * are met: 10 1.1 kre * 1. Redistributions of source code must retain the above copyright 11 1.1 kre * notice, this list of conditions and the following disclaimer. 12 1.1 kre * 2. Redistributions in binary form must reproduce the above copyright 13 1.1 kre * notice, this list of conditions and the following disclaimer in the 14 1.1 kre * documentation and/or other materials provided with the distribution. 15 1.1 kre * 16 1.1 kre * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 1.1 kre * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 1.1 kre * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 1.1 kre * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 1.1 kre * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 1.1 kre * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 1.1 kre * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 1.1 kre * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 1.1 kre * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 1.1 kre * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 1.1 kre * POSSIBILITY OF SUCH DAMAGE. 27 1.1 kre */ 28 1.1 kre 29 1.1 kre #include <sys/cdefs.h> 30 1.1 kre __COPYRIGHT("@(#) Copyright (c) 2024\ 31 1.1 kre The NetBSD Foundation, inc. All rights reserved."); 32 1.1 kre __RCSID("$NetBSD: t_nanosleep.c,v 1.1 2024/10/09 13:02:53 kre Exp $"); 33 1.1 kre 34 1.1 kre #include <sys/types.h> 35 1.1 kre #include <sys/wait.h> 36 1.1 kre 37 1.1 kre #include <atf-c.h> 38 1.1 kre 39 1.1 kre #include <errno.h> 40 1.1 kre #include <signal.h> 41 1.1 kre #include <stdio.h> 42 1.1 kre #include <stdlib.h> 43 1.1 kre #include <time.h> 44 1.1 kre #include <unistd.h> 45 1.1 kre 46 1.1 kre static void 47 1.1 kre sacrifice(void) 48 1.1 kre { 49 1.1 kre pause(); 50 1.1 kre } 51 1.1 kre 52 1.1 kre static void 53 1.1 kre tester(pid_t victim, clockid_t clock, int flags) 54 1.1 kre { 55 1.1 kre /* 56 1.1 kre * we need this sleep to be long enough that we 57 1.1 kre * can accurately detect when the sleep finishes 58 1.1 kre * early, but not so long that when there's no 59 1.1 kre * bug and things actually sleep this long, that 60 1.1 kre * the execution of a sleep this long, several 61 1.1 kre * times, won't slow down the overall testing 62 1.1 kre * process too much. Trial and error... 63 1.1 kre */ 64 1.1 kre struct timespec to_sleep = { 4, 0 }; 65 1.1 kre 66 1.1 kre struct timespec before, after; 67 1.1 kre struct timespec *ts; 68 1.1 kre int e; 69 1.1 kre 70 1.1 kre if (clock_gettime(clock, &before) != 0) 71 1.1 kre exit(1); 72 1.1 kre 73 1.1 kre if (flags & TIMER_ABSTIME) { 74 1.1 kre timespecadd(&to_sleep, &before, &after); 75 1.1 kre ts = &after; 76 1.1 kre } else 77 1.1 kre ts = &to_sleep; 78 1.1 kre 79 1.1 kre printf("Test: Clock=%d Flags=%x, starting at %jd.%.9ld\n", 80 1.1 kre (int)clock, flags, (intmax_t)before.tv_sec, before.tv_nsec); 81 1.1 kre if (flags & TIMER_ABSTIME) 82 1.1 kre printf("Sleeping until %jd.%.9ld\n", 83 1.1 kre (intmax_t)ts->tv_sec, ts->tv_nsec); 84 1.1 kre else 85 1.1 kre printf("Sleeping for %jd.%.9ld\n", 86 1.1 kre (intmax_t)ts->tv_sec, ts->tv_nsec); 87 1.1 kre 88 1.1 kre /* OK, we're ready */ 89 1.1 kre 90 1.1 kre /* these next two steps need to be as close together as possible */ 91 1.1 kre if (kill(victim, SIGKILL) == -1) 92 1.1 kre exit(2); 93 1.1 kre if ((e = clock_nanosleep(clock, flags, ts, &after)) != 0) 94 1.1 kre exit(20 + e); 95 1.1 kre 96 1.1 kre if (!(flags & TIMER_ABSTIME)) { 97 1.1 kre printf("Remaining to sleep: %jd.%.9ld\n", 98 1.1 kre (intmax_t)after.tv_sec, after.tv_nsec); 99 1.1 kre 100 1.1 kre if (after.tv_sec != 0 || after.tv_nsec != 0) 101 1.1 kre exit(3); 102 1.1 kre } 103 1.1 kre 104 1.1 kre if (clock_gettime(clock, &after) != 0) 105 1.1 kre exit(4); 106 1.1 kre 107 1.1 kre printf("Sleep ended at: %jd.%.9ld\n", 108 1.1 kre (intmax_t)after.tv_sec, after.tv_nsec); 109 1.1 kre 110 1.1 kre timespecadd(&before, &to_sleep, &before); 111 1.1 kre if (timespeccmp(&before, &after, >)) 112 1.1 kre exit(5); 113 1.1 kre 114 1.1 kre exit(0); 115 1.1 kre } 116 1.1 kre 117 1.1 kre /* 118 1.1 kre * The parent of the masochist/victim above, controls everything. 119 1.1 kre */ 120 1.1 kre static void 121 1.1 kre runit(clockid_t clock, int flags) 122 1.1 kre { 123 1.1 kre pid_t v, m, x; 124 1.1 kre int status; 125 1.1 kre struct timespec brief = { 0, 3 * 100 * 1000 * 1000 }; /* 300 ms */ 126 1.1 kre 127 1.1 kre ATF_REQUIRE((v = fork()) != -1); 128 1.1 kre if (v == 0) 129 1.1 kre sacrifice(); 130 1.1 kre 131 1.1 kre ATF_REQUIRE((m = fork()) != -1); 132 1.1 kre if (m == 0) 133 1.1 kre tester(v, clock, flags); 134 1.1 kre 135 1.1 kre ATF_REQUIRE((x = wait(&status)) != -1); 136 1.1 kre 137 1.1 kre if (x == m) { 138 1.1 kre /* 139 1.1 kre * This is bad, the murderer shouldn't die first 140 1.1 kre */ 141 1.1 kre fprintf(stderr, "M exited first, status %#x\n", status); 142 1.1 kre (void)kill(v, SIGKILL); /* just in case */ 143 1.1 kre atf_tc_fail("2nd child predeceased first"); 144 1.1 kre } 145 1.1 kre if (x != v) { 146 1.1 kre fprintf(stderr, "Unknown exit from %d (status: %#x)" 147 1.1 kre "(M=%d V=%d)\n", x, status, m, v); 148 1.1 kre (void)kill(m, SIGKILL); 149 1.1 kre (void)kill(v, SIGKILL); 150 1.1 kre atf_tc_fail("Strange child died"); 151 1.1 kre } 152 1.1 kre 153 1.1 kre /* 154 1.1 kre * OK, the victim died, we don't really care why, 155 1.1 kre * (it should have been because of a SIGKILL, maybe 156 1.1 kre * test for that someday). 157 1.1 kre * 158 1.1 kre * Now we get to proceed to the real test. 159 1.1 kre * 160 1.1 kre * But we want to wait a short whle to try and be sure 161 1.1 kre * that m (the child still running) has a chance to 162 1.1 kre * fall asleep. 163 1.1 kre */ 164 1.1 kre (void) clock_nanosleep(CLOCK_MONOTONIC, TIMER_RELTIME, &brief, NULL); 165 1.1 kre 166 1.1 kre /* 167 1.1 kre * This is the test, for PR kern/58733 168 1.1 kre * - stop a process while in clock_nanosleep() 169 1.1 kre * - resume it again 170 1.1 kre * - see if it still sleeps as long as was requested (or longer) 171 1.1 kre */ 172 1.1 kre ATF_REQUIRE(kill(m, SIGSTOP) == 0); 173 1.1 kre (void) clock_nanosleep(CLOCK_MONOTONIC, TIMER_RELTIME, &brief, NULL); 174 1.1 kre ATF_REQUIRE(kill(m, SIGCONT) == 0); 175 1.1 kre 176 1.1 kre ATF_REQUIRE((x = wait(&status)) != -1); 177 1.1 kre 178 1.1 kre if (x != m) { 179 1.1 kre fprintf(stderr, "Unknown exit from %d (status: %#x)" 180 1.1 kre "(M=%d V=%d)\n", x, status, m, v); 181 1.1 kre (void) kill(m, SIGKILL); 182 1.1 kre atf_tc_fail("Strange child died"); 183 1.1 kre } 184 1.1 kre 185 1.1 kre if (status == 0) 186 1.1 kre atf_tc_pass(); 187 1.1 kre 188 1.1 kre /* 189 1.1 kre * Here we should decode the status, and give a better 190 1.1 kre * clue what really went wrong. Later... 191 1.1 kre */ 192 1.1 kre fprintf(stderr, "Test failed: status from M: %#x\n", status); 193 1.1 kre atf_tc_fail("M exited with non-zero status. PR kern/58733"); 194 1.1 kre } 195 1.1 kre 196 1.1 kre 197 1.1 kre ATF_TC(nanosleep_monotonic_absolute); 198 1.1 kre ATF_TC_HEAD(nanosleep_monotonic_absolute, tc) 199 1.1 kre { 200 1.1 kre atf_tc_set_md_var(tc, "descr", "Checks clock_nanosleep(MONO, ABS)"); 201 1.1 kre } 202 1.1 kre ATF_TC_BODY(nanosleep_monotonic_absolute, tc) 203 1.1 kre { 204 1.1 kre runit(CLOCK_MONOTONIC, TIMER_ABSTIME); 205 1.1 kre } 206 1.1 kre 207 1.1 kre ATF_TC(nanosleep_monotonic_relative); 208 1.1 kre ATF_TC_HEAD(nanosleep_monotonic_relative, tc) 209 1.1 kre { 210 1.1 kre atf_tc_set_md_var(tc, "descr", "Checks clock_nanosleep(MONO, REL)"); 211 1.1 kre } 212 1.1 kre ATF_TC_BODY(nanosleep_monotonic_relative, tc) 213 1.1 kre { 214 1.1 kre runit(CLOCK_MONOTONIC, TIMER_RELTIME); 215 1.1 kre } 216 1.1 kre 217 1.1 kre ATF_TC(nanosleep_realtime_absolute); 218 1.1 kre ATF_TC_HEAD(nanosleep_realtime_absolute, tc) 219 1.1 kre { 220 1.1 kre atf_tc_set_md_var(tc, "descr", "Checks clock_nanosleep(REAL, ABS)"); 221 1.1 kre } 222 1.1 kre ATF_TC_BODY(nanosleep_realtime_absolute, tc) 223 1.1 kre { 224 1.1 kre runit(CLOCK_REALTIME, TIMER_ABSTIME); 225 1.1 kre } 226 1.1 kre 227 1.1 kre ATF_TC(nanosleep_realtime_relative); 228 1.1 kre ATF_TC_HEAD(nanosleep_realtime_relative, tc) 229 1.1 kre { 230 1.1 kre atf_tc_set_md_var(tc, "descr", "Checks clock_nanosleep(REAL, REL)"); 231 1.1 kre } 232 1.1 kre ATF_TC_BODY(nanosleep_realtime_relative, tc) 233 1.1 kre { 234 1.1 kre runit(CLOCK_REALTIME, TIMER_RELTIME); 235 1.1 kre } 236 1.1 kre 237 1.1 kre ATF_TP_ADD_TCS(tp) 238 1.1 kre { 239 1.1 kre 240 1.1 kre ATF_TP_ADD_TC(tp, nanosleep_monotonic_absolute); 241 1.1 kre ATF_TP_ADD_TC(tp, nanosleep_monotonic_relative); 242 1.1 kre ATF_TP_ADD_TC(tp, nanosleep_realtime_absolute); 243 1.1 kre ATF_TP_ADD_TC(tp, nanosleep_realtime_relative); 244 1.1 kre 245 1.1 kre return atf_no_error(); 246 1.1 kre } 247