1 1.14 riastrad /* $NetBSD: t_sleep.c,v 1.14 2025/04/08 01:29:08 riastradh Exp $ */ 2 1.1 pgoyette 3 1.1 pgoyette /*- 4 1.1 pgoyette * Copyright (c) 2006 Frank Kardel 5 1.1 pgoyette * All rights reserved. 6 1.1 pgoyette * 7 1.1 pgoyette * Redistribution and use in source and binary forms, with or without 8 1.1 pgoyette * modification, are permitted provided that the following conditions 9 1.1 pgoyette * are met: 10 1.1 pgoyette * 1. Redistributions of source code must retain the above copyright 11 1.1 pgoyette * notice, this list of conditions and the following disclaimer. 12 1.1 pgoyette * 2. Redistributions in binary form must reproduce the above copyright 13 1.1 pgoyette * notice, this list of conditions and the following disclaimer in the 14 1.1 pgoyette * documentation and/or other materials provided with the distribution. 15 1.1 pgoyette * 16 1.1 pgoyette * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 1.1 pgoyette * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 1.1 pgoyette * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 1.1 pgoyette * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 1.1 pgoyette * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 1.1 pgoyette * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 1.1 pgoyette * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 1.1 pgoyette * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 1.1 pgoyette * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 1.1 pgoyette * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 1.1 pgoyette * POSSIBILITY OF SUCH DAMAGE. 27 1.1 pgoyette */ 28 1.1 pgoyette 29 1.10 christos #include <sys/cdefs.h> 30 1.10 christos #include <sys/event.h> 31 1.10 christos #include <sys/signal.h> 32 1.10 christos #include <sys/time.h> /* for TIMESPEC_TO_TIMEVAL on FreeBSD */ 33 1.10 christos 34 1.1 pgoyette #include <atf-c.h> 35 1.1 pgoyette #include <errno.h> 36 1.11 maya #include <inttypes.h> 37 1.1 pgoyette #include <poll.h> 38 1.1 pgoyette #include <stdio.h> 39 1.1 pgoyette #include <stdlib.h> 40 1.1 pgoyette #include <string.h> 41 1.1 pgoyette #include <time.h> 42 1.1 pgoyette #include <unistd.h> 43 1.1 pgoyette 44 1.7 christos #include "isqemu.h" 45 1.7 christos 46 1.1 pgoyette #define BILLION 1000000000LL /* nano-seconds per second */ 47 1.1 pgoyette #define MILLION 1000000LL /* nano-seconds per milli-second */ 48 1.1 pgoyette 49 1.5 pgoyette #define ALARM 6 /* SIGALRM after this many seconds */ 50 1.5 pgoyette #define MAXSLEEP 22 /* Maximum delay in seconds */ 51 1.5 pgoyette #define KEVNT_TIMEOUT 10300 /* measured in milli-seconds */ 52 1.4 pgoyette #define FUZZ (40 * MILLION) /* scheduling fuzz accepted - 40 ms */ 53 1.4 pgoyette 54 1.4 pgoyette /* 55 1.4 pgoyette * Timer notes 56 1.4 pgoyette * 57 1.4 pgoyette * Most tests use FUZZ as their initial delay value, but 'sleep' 58 1.4 pgoyette * starts at 1sec (since it cannot handle sub-second intervals). 59 1.4 pgoyette * Subsequent passes double the previous interval, up to MAXSLEEP. 60 1.4 pgoyette * 61 1.5 pgoyette * The current values result in 5 passes for the 'sleep' test (at 1, 62 1.5 pgoyette * 2, 4, 8, and 16 seconds) and 10 passes for the other tests (at 63 1.5 pgoyette * 0.04, 0.08, 0.16, 0.32, 0.64, 1.28, 2.56, 5.12, 10.24, and 20.48 64 1.5 pgoyette * seconds). 65 1.4 pgoyette * 66 1.5 pgoyette * The ALARM is only set if the current pass's delay is longer, and 67 1.5 pgoyette * only if the ALARM has not already been triggered. 68 1.4 pgoyette * 69 1.5 pgoyette * The 'kevent' test needs the ALARM to be set on a different pass 70 1.5 pgoyette * from when the KEVNT_TIMEOUT fires. So set ALARM to fire on the 71 1.5 pgoyette * penultimate pass, and the KEVNT_TIMEOUT on the final pass. We 72 1.5 pgoyette * set KEVNT_TIMEOUT just barely long enough to put it into the 73 1.5 pgoyette * last test pass, and set MAXSLEEP a couple seconds longer than 74 1.8 gson * necessary, in order to avoid a QEMU bug which nearly doubles 75 1.5 pgoyette * some timers. 76 1.4 pgoyette */ 77 1.4 pgoyette 78 1.4 pgoyette static volatile int sig; 79 1.1 pgoyette 80 1.1 pgoyette int sleeptest(int (*)(struct timespec *, struct timespec *), bool, bool); 81 1.1 pgoyette int do_nanosleep(struct timespec *, struct timespec *); 82 1.1 pgoyette int do_select(struct timespec *, struct timespec *); 83 1.1 pgoyette int do_poll(struct timespec *, struct timespec *); 84 1.1 pgoyette int do_sleep(struct timespec *, struct timespec *); 85 1.1 pgoyette int do_kevent(struct timespec *, struct timespec *); 86 1.1 pgoyette void sigalrm(int); 87 1.1 pgoyette 88 1.1 pgoyette void 89 1.1 pgoyette sigalrm(int s) 90 1.1 pgoyette { 91 1.4 pgoyette 92 1.1 pgoyette sig++; 93 1.1 pgoyette } 94 1.1 pgoyette 95 1.1 pgoyette int 96 1.1 pgoyette do_nanosleep(struct timespec *delay, struct timespec *remain) 97 1.1 pgoyette { 98 1.1 pgoyette int ret; 99 1.1 pgoyette 100 1.1 pgoyette if (nanosleep(delay, remain) == -1) 101 1.1 pgoyette ret = (errno == EINTR ? 0 : errno); 102 1.1 pgoyette else 103 1.1 pgoyette ret = 0; 104 1.1 pgoyette return ret; 105 1.1 pgoyette } 106 1.1 pgoyette 107 1.1 pgoyette int 108 1.1 pgoyette do_select(struct timespec *delay, struct timespec *remain) 109 1.1 pgoyette { 110 1.1 pgoyette int ret; 111 1.1 pgoyette struct timeval tv; 112 1.1 pgoyette 113 1.1 pgoyette TIMESPEC_TO_TIMEVAL(&tv, delay); 114 1.1 pgoyette if (select(0, NULL, NULL, NULL, &tv) == -1) 115 1.1 pgoyette ret = (errno == EINTR ? 0 : errno); 116 1.1 pgoyette else 117 1.1 pgoyette ret = 0; 118 1.1 pgoyette return ret; 119 1.1 pgoyette } 120 1.1 pgoyette 121 1.1 pgoyette int 122 1.1 pgoyette do_poll(struct timespec *delay, struct timespec *remain) 123 1.1 pgoyette { 124 1.1 pgoyette int ret; 125 1.1 pgoyette struct timeval tv; 126 1.1 pgoyette 127 1.1 pgoyette TIMESPEC_TO_TIMEVAL(&tv, delay); 128 1.1 pgoyette if (pollts(NULL, 0, delay, NULL) == -1) 129 1.1 pgoyette ret = (errno == EINTR ? 0 : errno); 130 1.1 pgoyette else 131 1.1 pgoyette ret = 0; 132 1.1 pgoyette return ret; 133 1.1 pgoyette } 134 1.1 pgoyette 135 1.1 pgoyette int 136 1.1 pgoyette do_sleep(struct timespec *delay, struct timespec *remain) 137 1.1 pgoyette { 138 1.1 pgoyette struct timeval tv; 139 1.1 pgoyette 140 1.1 pgoyette TIMESPEC_TO_TIMEVAL(&tv, delay); 141 1.1 pgoyette remain->tv_sec = sleep(delay->tv_sec); 142 1.1 pgoyette remain->tv_nsec = 0; 143 1.1 pgoyette 144 1.1 pgoyette return 0; 145 1.1 pgoyette } 146 1.1 pgoyette 147 1.1 pgoyette int 148 1.1 pgoyette do_kevent(struct timespec *delay, struct timespec *remain) 149 1.1 pgoyette { 150 1.1 pgoyette struct kevent ktimer; 151 1.1 pgoyette struct kevent kresult; 152 1.1 pgoyette int rtc, kq, kerrno; 153 1.4 pgoyette int tmo; 154 1.1 pgoyette 155 1.1 pgoyette ATF_REQUIRE_MSG((kq = kqueue()) != -1, "kqueue: %s", strerror(errno)); 156 1.1 pgoyette 157 1.4 pgoyette tmo = KEVNT_TIMEOUT; 158 1.5 pgoyette 159 1.5 pgoyette /* 160 1.5 pgoyette * If we expect the KEVNT_TIMEOUT to fire, and we're running 161 1.5 pgoyette * under QEMU, make sure the delay is long enough to account 162 1.5 pgoyette * for the effects of PR kern/43997 ! 163 1.5 pgoyette */ 164 1.7 christos if (isQEMU() && 165 1.5 pgoyette tmo/1000 < delay->tv_sec && tmo/500 > delay->tv_sec) 166 1.5 pgoyette delay->tv_sec = MAXSLEEP; 167 1.5 pgoyette 168 1.14 riastrad fprintf(stderr, "kevent: set EVFILT_TIMER tmo=%d\n", tmo); 169 1.1 pgoyette EV_SET(&ktimer, 1, EVFILT_TIMER, EV_ADD, 0, tmo, 0); 170 1.1 pgoyette 171 1.14 riastrad fprintf(stderr, "kevent: wait up to %lld.%09ld sec\n", 172 1.14 riastrad (long long)delay->tv_sec, (long)delay->tv_nsec); 173 1.1 pgoyette rtc = kevent(kq, &ktimer, 1, &kresult, 1, delay); 174 1.1 pgoyette kerrno = errno; 175 1.14 riastrad fprintf(stderr, "kevent returned rtc=%d\n", rtc); 176 1.1 pgoyette 177 1.1 pgoyette (void)close(kq); 178 1.1 pgoyette 179 1.4 pgoyette if (rtc == -1) { 180 1.9 kre ATF_REQUIRE_MSG(kerrno == EINTR, "kevent: %s", 181 1.9 kre strerror(kerrno)); 182 1.4 pgoyette return 0; 183 1.4 pgoyette } 184 1.1 pgoyette 185 1.3 pgoyette if (delay->tv_sec * BILLION + delay->tv_nsec > tmo * MILLION) 186 1.14 riastrad ATF_CHECK_MSG(rtc > 0, 187 1.5 pgoyette "kevent: KEVNT_TIMEOUT did not cause EVFILT_TIMER event"); 188 1.1 pgoyette 189 1.1 pgoyette return 0; 190 1.1 pgoyette } 191 1.1 pgoyette 192 1.1 pgoyette ATF_TC(nanosleep); 193 1.12 riastrad ATF_TC_HEAD(nanosleep, tc) 194 1.1 pgoyette { 195 1.12 riastrad 196 1.1 pgoyette atf_tc_set_md_var(tc, "descr", "Test nanosleep(2) timing"); 197 1.1 pgoyette atf_tc_set_md_var(tc, "timeout", "65"); 198 1.12 riastrad } 199 1.1 pgoyette 200 1.1 pgoyette ATF_TC_BODY(nanosleep, tc) 201 1.1 pgoyette { 202 1.1 pgoyette 203 1.1 pgoyette sleeptest(do_nanosleep, true, false); 204 1.1 pgoyette } 205 1.1 pgoyette 206 1.1 pgoyette ATF_TC(select); 207 1.12 riastrad ATF_TC_HEAD(select, tc) 208 1.1 pgoyette { 209 1.12 riastrad 210 1.1 pgoyette atf_tc_set_md_var(tc, "descr", "Test select(2) timing"); 211 1.1 pgoyette atf_tc_set_md_var(tc, "timeout", "65"); 212 1.12 riastrad } 213 1.1 pgoyette 214 1.1 pgoyette ATF_TC_BODY(select, tc) 215 1.1 pgoyette { 216 1.1 pgoyette 217 1.1 pgoyette sleeptest(do_select, true, true); 218 1.1 pgoyette } 219 1.1 pgoyette 220 1.1 pgoyette ATF_TC(poll); 221 1.12 riastrad ATF_TC_HEAD(poll, tc) 222 1.1 pgoyette { 223 1.12 riastrad 224 1.1 pgoyette atf_tc_set_md_var(tc, "descr", "Test poll(2) timing"); 225 1.1 pgoyette atf_tc_set_md_var(tc, "timeout", "65"); 226 1.12 riastrad } 227 1.1 pgoyette 228 1.1 pgoyette ATF_TC_BODY(poll, tc) 229 1.1 pgoyette { 230 1.1 pgoyette 231 1.1 pgoyette sleeptest(do_poll, true, true); 232 1.1 pgoyette } 233 1.1 pgoyette 234 1.1 pgoyette ATF_TC(sleep); 235 1.12 riastrad ATF_TC_HEAD(sleep, tc) 236 1.1 pgoyette { 237 1.12 riastrad 238 1.1 pgoyette atf_tc_set_md_var(tc, "descr", "Test sleep(3) timing"); 239 1.1 pgoyette atf_tc_set_md_var(tc, "timeout", "65"); 240 1.12 riastrad } 241 1.1 pgoyette 242 1.1 pgoyette ATF_TC_BODY(sleep, tc) 243 1.1 pgoyette { 244 1.1 pgoyette 245 1.1 pgoyette sleeptest(do_sleep, false, false); 246 1.1 pgoyette } 247 1.1 pgoyette 248 1.1 pgoyette ATF_TC(kevent); 249 1.12 riastrad ATF_TC_HEAD(kevent, tc) 250 1.1 pgoyette { 251 1.12 riastrad 252 1.1 pgoyette atf_tc_set_md_var(tc, "descr", "Test kevent(2) timing"); 253 1.1 pgoyette atf_tc_set_md_var(tc, "timeout", "65"); 254 1.12 riastrad } 255 1.1 pgoyette 256 1.1 pgoyette ATF_TC_BODY(kevent, tc) 257 1.1 pgoyette { 258 1.1 pgoyette 259 1.1 pgoyette sleeptest(do_kevent, true, true); 260 1.1 pgoyette } 261 1.1 pgoyette 262 1.1 pgoyette int 263 1.1 pgoyette sleeptest(int (*test)(struct timespec *, struct timespec *), 264 1.1 pgoyette bool subsec, bool sim_remain) 265 1.1 pgoyette { 266 1.1 pgoyette struct timespec tsa, tsb, tslp, tremain; 267 1.1 pgoyette int64_t delta1, delta2, delta3, round; 268 1.1 pgoyette 269 1.1 pgoyette sig = 0; 270 1.1 pgoyette signal(SIGALRM, sigalrm); 271 1.1 pgoyette 272 1.1 pgoyette if (subsec) { 273 1.1 pgoyette round = 1; 274 1.1 pgoyette delta3 = FUZZ; 275 1.1 pgoyette } else { 276 1.1 pgoyette round = 1000000000; 277 1.1 pgoyette delta3 = round; 278 1.1 pgoyette } 279 1.13 riastrad fprintf(stderr, "round=%"PRId64" delta3=%"PRId64"\n", round, delta3); 280 1.1 pgoyette 281 1.1 pgoyette tslp.tv_sec = delta3 / 1000000000; 282 1.1 pgoyette tslp.tv_nsec = delta3 % 1000000000; 283 1.13 riastrad fprintf(stderr, "initial tslp = %lld.%09ld sec\n", 284 1.13 riastrad (long long)tslp.tv_sec, (long)tslp.tv_nsec); 285 1.1 pgoyette 286 1.5 pgoyette while (tslp.tv_sec <= MAXSLEEP) { 287 1.13 riastrad fprintf(stderr, "\n"); 288 1.13 riastrad 289 1.1 pgoyette /* 290 1.1 pgoyette * disturb sleep by signal on purpose 291 1.12 riastrad */ 292 1.13 riastrad if (tslp.tv_sec > ALARM && sig == 0) { 293 1.13 riastrad fprintf(stderr, "request alarm after %d sec\n", ALARM); 294 1.1 pgoyette alarm(ALARM); 295 1.13 riastrad } 296 1.13 riastrad 297 1.13 riastrad fprintf(stderr, "sleep for %lld.%09ld sec\n", 298 1.13 riastrad (long long)tslp.tv_sec, (long)tslp.tv_nsec); 299 1.1 pgoyette 300 1.1 pgoyette clock_gettime(CLOCK_REALTIME, &tsa); 301 1.1 pgoyette (*test)(&tslp, &tremain); 302 1.1 pgoyette clock_gettime(CLOCK_REALTIME, &tsb); 303 1.1 pgoyette 304 1.13 riastrad fprintf(stderr, "slept from %lld.%09ld to %lld.%09ld\n", 305 1.13 riastrad (long long)tsa.tv_sec, (long)tsa.tv_nsec, 306 1.13 riastrad (long long)tsb.tv_sec, (long)tsb.tv_nsec); 307 1.13 riastrad 308 1.1 pgoyette if (sim_remain) { 309 1.1 pgoyette timespecsub(&tsb, &tsa, &tremain); 310 1.14 riastrad fprintf(stderr, "slept %lld.%09ld sec\n", 311 1.14 riastrad (long long)tremain.tv_sec, (long)tremain.tv_nsec); 312 1.1 pgoyette timespecsub(&tslp, &tremain, &tremain); 313 1.1 pgoyette } 314 1.1 pgoyette 315 1.13 riastrad fprintf(stderr, "remaining %lld.%09ld sec\n", 316 1.13 riastrad (long long)tremain.tv_sec, (long)tremain.tv_nsec); 317 1.13 riastrad 318 1.1 pgoyette delta1 = (int64_t)tsb.tv_sec - (int64_t)tsa.tv_sec; 319 1.1 pgoyette delta1 *= BILLION; 320 1.1 pgoyette delta1 += (int64_t)tsb.tv_nsec - (int64_t)tsa.tv_nsec; 321 1.1 pgoyette 322 1.13 riastrad fprintf(stderr, "delta1=%"PRId64"\n", delta1); 323 1.13 riastrad 324 1.1 pgoyette delta2 = (int64_t)tremain.tv_sec * BILLION; 325 1.1 pgoyette delta2 += (int64_t)tremain.tv_nsec; 326 1.1 pgoyette 327 1.13 riastrad fprintf(stderr, "delta2=%"PRId64"\n", delta2); 328 1.13 riastrad 329 1.1 pgoyette delta3 = (int64_t)tslp.tv_sec * BILLION; 330 1.1 pgoyette delta3 += (int64_t)tslp.tv_nsec - delta1 - delta2; 331 1.1 pgoyette 332 1.13 riastrad fprintf(stderr, "delta3=%"PRId64"\n", delta3); 333 1.13 riastrad 334 1.1 pgoyette delta3 /= round; 335 1.1 pgoyette delta3 *= round; 336 1.1 pgoyette 337 1.13 riastrad fprintf(stderr, " ->%"PRId64"\n", delta3); 338 1.13 riastrad 339 1.4 pgoyette if (delta3 > FUZZ || delta3 < -FUZZ) { 340 1.6 jmmv if (!sim_remain) 341 1.4 pgoyette atf_tc_expect_fail("Long reschedule latency " 342 1.4 pgoyette "due to PR kern/43997"); 343 1.1 pgoyette 344 1.4 pgoyette atf_tc_fail("Reschedule latency %"PRId64" exceeds " 345 1.4 pgoyette "allowable fuzz %lld", delta3, FUZZ); 346 1.4 pgoyette } 347 1.1 pgoyette delta3 = (int64_t)tslp.tv_sec * 2 * BILLION; 348 1.1 pgoyette delta3 += (int64_t)tslp.tv_nsec * 2; 349 1.1 pgoyette 350 1.13 riastrad fprintf(stderr, "delta3=%"PRId64"\n", delta3); 351 1.13 riastrad 352 1.1 pgoyette delta3 /= round; 353 1.1 pgoyette delta3 *= round; 354 1.13 riastrad fprintf(stderr, " ->%"PRId64"\n", delta3); 355 1.1 pgoyette if (delta3 < FUZZ) 356 1.1 pgoyette break; 357 1.1 pgoyette tslp.tv_sec = delta3 / BILLION; 358 1.1 pgoyette tslp.tv_nsec = delta3 % BILLION; 359 1.13 riastrad fprintf(stderr, "tslp = %lld.%ld sec\n", 360 1.13 riastrad (long long)tslp.tv_sec, (long)tslp.tv_nsec); 361 1.1 pgoyette } 362 1.1 pgoyette ATF_REQUIRE_MSG(sig == 1, "Alarm did not fire!"); 363 1.1 pgoyette 364 1.1 pgoyette atf_tc_pass(); 365 1.1 pgoyette } 366 1.1 pgoyette 367 1.12 riastrad ATF_TP_ADD_TCS(tp) 368 1.1 pgoyette { 369 1.1 pgoyette ATF_TP_ADD_TC(tp, nanosleep); 370 1.1 pgoyette ATF_TP_ADD_TC(tp, select); 371 1.12 riastrad ATF_TP_ADD_TC(tp, poll); 372 1.1 pgoyette ATF_TP_ADD_TC(tp, sleep); 373 1.1 pgoyette ATF_TP_ADD_TC(tp, kevent); 374 1.12 riastrad 375 1.1 pgoyette return atf_no_error(); 376 1.1 pgoyette } 377