Home | History | Annotate | Line # | Download | only in compress
      1  1.16  andvar /*	$NetBSD: zopen.c,v 1.16 2022/03/23 11:08:28 andvar Exp $	*/
      2   1.5   glass 
      3   1.1     cgd /*-
      4   1.1     cgd  * Copyright (c) 1985, 1986, 1992, 1993
      5   1.1     cgd  *	The Regents of the University of California.  All rights reserved.
      6   1.1     cgd  *
      7   1.1     cgd  * This code is derived from software contributed to Berkeley by
      8   1.1     cgd  * Diomidis Spinellis and James A. Woods, derived from original
      9   1.1     cgd  * work by Spencer Thomas and Joseph Orost.
     10   1.1     cgd  *
     11   1.1     cgd  * Redistribution and use in source and binary forms, with or without
     12   1.1     cgd  * modification, are permitted provided that the following conditions
     13   1.1     cgd  * are met:
     14   1.1     cgd  * 1. Redistributions of source code must retain the above copyright
     15   1.1     cgd  *    notice, this list of conditions and the following disclaimer.
     16   1.1     cgd  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.1     cgd  *    notice, this list of conditions and the following disclaimer in the
     18   1.1     cgd  *    documentation and/or other materials provided with the distribution.
     19   1.8     agc  * 3. Neither the name of the University nor the names of its contributors
     20   1.1     cgd  *    may be used to endorse or promote products derived from this software
     21   1.1     cgd  *    without specific prior written permission.
     22   1.1     cgd  *
     23   1.1     cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24   1.1     cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25   1.1     cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26   1.1     cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27   1.1     cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28   1.1     cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29   1.1     cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30   1.1     cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31   1.1     cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32   1.1     cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33   1.1     cgd  * SUCH DAMAGE.
     34   1.1     cgd  */
     35   1.1     cgd 
     36   1.1     cgd #if defined(LIBC_SCCS) && !defined(lint)
     37   1.5   glass #if 0
     38   1.5   glass static char sccsid[] = "@(#)zopen.c	8.1 (Berkeley) 6/27/93";
     39   1.5   glass #else
     40  1.16  andvar static char rcsid[] = "$NetBSD: zopen.c,v 1.16 2022/03/23 11:08:28 andvar Exp $";
     41   1.5   glass #endif
     42   1.1     cgd #endif /* LIBC_SCCS and not lint */
     43   1.1     cgd 
     44   1.1     cgd /*-
     45   1.1     cgd  * fcompress.c - File compression ala IEEE Computer, June 1984.
     46   1.1     cgd  *
     47   1.1     cgd  * Compress authors:
     48   1.1     cgd  *		Spencer W. Thomas	(decvax!utah-cs!thomas)
     49   1.1     cgd  *		Jim McKie		(decvax!mcvax!jim)
     50   1.1     cgd  *		Steve Davies		(decvax!vax135!petsd!peora!srd)
     51   1.1     cgd  *		Ken Turkowski		(decvax!decwrl!turtlevax!ken)
     52   1.1     cgd  *		James A. Woods		(decvax!ihnp4!ames!jaw)
     53   1.1     cgd  *		Joe Orost		(decvax!vax135!petsd!joe)
     54   1.1     cgd  *
     55   1.1     cgd  * Cleaned up and converted to library returning I/O streams by
     56   1.1     cgd  * Diomidis Spinellis <dds (at) doc.ic.ac.uk>.
     57   1.1     cgd  *
     58   1.1     cgd  * zopen(filename, mode, bits)
     59   1.1     cgd  *	Returns a FILE * that can be used for read or write.  The modes
     60   1.1     cgd  *	supported are only "r" and "w".  Seeking is not allowed.  On
     61   1.1     cgd  *	reading the file is decompressed, on writing it is compressed.
     62   1.1     cgd  *	The output is compatible with compress(1) with 16 bit tables.
     63   1.1     cgd  *	Any file produced by compress(1) can be read.
     64   1.1     cgd  */
     65   1.1     cgd 
     66   1.1     cgd #include <sys/param.h>
     67   1.1     cgd #include <sys/stat.h>
     68   1.1     cgd 
     69   1.1     cgd #include <errno.h>
     70   1.1     cgd #include <signal.h>
     71   1.1     cgd #include <stdio.h>
     72   1.1     cgd #include <stdlib.h>
     73   1.1     cgd #include <string.h>
     74   1.1     cgd #include <unistd.h>
     75   1.1     cgd 
     76   1.1     cgd #define	BITS		16		/* Default bits. */
     77   1.1     cgd #define	HSIZE		69001		/* 95% occupancy */
     78   1.1     cgd 
     79   1.1     cgd /* A code_int must be able to hold 2**BITS values of type int, and also -1. */
     80   1.1     cgd typedef long code_int;
     81   1.1     cgd typedef long count_int;
     82   1.1     cgd 
     83   1.1     cgd typedef u_char char_type;
     84   1.1     cgd static char_type magic_header[] =
     85   1.1     cgd 	{'\037', '\235'};		/* 1F 9D */
     86   1.1     cgd 
     87   1.1     cgd #define	BIT_MASK	0x1f		/* Defines for third byte of header. */
     88   1.1     cgd #define	BLOCK_MASK	0x80
     89   1.1     cgd 
     90   1.1     cgd /*
     91   1.1     cgd  * Masks 0x40 and 0x20 are free.  I think 0x20 should mean that there is
     92   1.1     cgd  * a fourth header byte (for expansion).
     93   1.1     cgd  */
     94   1.1     cgd #define	INIT_BITS 9			/* Initial number of bits/code. */
     95   1.1     cgd 
     96   1.1     cgd #define	MAXCODE(n_bits)	((1 << (n_bits)) - 1)
     97   1.1     cgd 
     98   1.1     cgd struct s_zstate {
     99   1.1     cgd 	FILE *zs_fp;			/* File stream for I/O */
    100   1.1     cgd 	char zs_mode;			/* r or w */
    101   1.1     cgd 	enum {
    102   1.1     cgd 		S_START, S_MIDDLE, S_EOF
    103   1.1     cgd 	} zs_state;			/* State of computation */
    104   1.1     cgd 	int zs_n_bits;			/* Number of bits/code. */
    105   1.1     cgd 	int zs_maxbits;			/* User settable max # bits/code. */
    106   1.1     cgd 	code_int zs_maxcode;		/* Maximum code, given n_bits. */
    107   1.1     cgd 	code_int zs_maxmaxcode;		/* Should NEVER generate this code. */
    108   1.1     cgd 	count_int zs_htab [HSIZE];
    109   1.1     cgd 	u_short zs_codetab [HSIZE];
    110   1.1     cgd 	code_int zs_hsize;		/* For dynamic table sizing. */
    111   1.1     cgd 	code_int zs_free_ent;		/* First unused entry. */
    112   1.1     cgd 	/*
    113   1.1     cgd 	 * Block compression parameters -- after all codes are used up,
    114   1.1     cgd 	 * and compression rate changes, start over.
    115   1.1     cgd 	 */
    116   1.1     cgd 	int zs_block_compress;
    117   1.1     cgd 	int zs_clear_flg;
    118   1.1     cgd 	long zs_ratio;
    119   1.1     cgd 	count_int zs_checkpoint;
    120   1.1     cgd 	int zs_offset;
    121   1.1     cgd 	long zs_in_count;		/* Length of input. */
    122   1.1     cgd 	long zs_bytes_out;		/* Length of compressed output. */
    123   1.1     cgd 	long zs_out_count;		/* # of codes output (for debugging). */
    124   1.1     cgd 	char_type zs_buf[BITS];
    125   1.1     cgd 	union {
    126   1.1     cgd 		struct {
    127   1.1     cgd 			long zs_fcode;
    128   1.1     cgd 			code_int zs_ent;
    129   1.1     cgd 			code_int zs_hsize_reg;
    130   1.1     cgd 			int zs_hshift;
    131  1.16  andvar 		} w;			/* Write parameters */
    132   1.1     cgd 		struct {
    133   1.1     cgd 			char_type *zs_stackp;
    134   1.1     cgd 			int zs_finchar;
    135   1.1     cgd 			code_int zs_code, zs_oldcode, zs_incode;
    136   1.1     cgd 			int zs_roffset, zs_size;
    137   1.1     cgd 			char_type zs_gbuf[BITS];
    138   1.1     cgd 		} r;			/* Read parameters */
    139   1.1     cgd 	} u;
    140   1.1     cgd };
    141   1.1     cgd 
    142   1.1     cgd /* Definitions to retain old variable names */
    143   1.1     cgd #define	fp		zs->zs_fp
    144   1.1     cgd #define	zmode		zs->zs_mode
    145   1.1     cgd #define	state		zs->zs_state
    146   1.1     cgd #define	n_bits		zs->zs_n_bits
    147   1.1     cgd #define	maxbits		zs->zs_maxbits
    148   1.1     cgd #define	maxcode		zs->zs_maxcode
    149   1.1     cgd #define	maxmaxcode	zs->zs_maxmaxcode
    150   1.1     cgd #define	htab		zs->zs_htab
    151   1.1     cgd #define	codetab		zs->zs_codetab
    152   1.1     cgd #define	hsize		zs->zs_hsize
    153   1.1     cgd #define	free_ent	zs->zs_free_ent
    154   1.1     cgd #define	block_compress	zs->zs_block_compress
    155   1.1     cgd #define	clear_flg	zs->zs_clear_flg
    156   1.1     cgd #define	ratio		zs->zs_ratio
    157   1.1     cgd #define	checkpoint	zs->zs_checkpoint
    158   1.1     cgd #define	offset		zs->zs_offset
    159   1.1     cgd #define	in_count	zs->zs_in_count
    160   1.1     cgd #define	bytes_out	zs->zs_bytes_out
    161   1.1     cgd #define	out_count	zs->zs_out_count
    162   1.1     cgd #define	buf		zs->zs_buf
    163   1.1     cgd #define	fcode		zs->u.w.zs_fcode
    164   1.1     cgd #define	hsize_reg	zs->u.w.zs_hsize_reg
    165   1.1     cgd #define	ent		zs->u.w.zs_ent
    166   1.1     cgd #define	hshift		zs->u.w.zs_hshift
    167   1.1     cgd #define	stackp		zs->u.r.zs_stackp
    168   1.1     cgd #define	finchar		zs->u.r.zs_finchar
    169   1.1     cgd #define	code		zs->u.r.zs_code
    170   1.1     cgd #define	oldcode		zs->u.r.zs_oldcode
    171   1.1     cgd #define	incode		zs->u.r.zs_incode
    172   1.1     cgd #define	roffset		zs->u.r.zs_roffset
    173   1.1     cgd #define	size		zs->u.r.zs_size
    174   1.1     cgd #define	gbuf		zs->u.r.zs_gbuf
    175   1.1     cgd 
    176   1.1     cgd /*
    177   1.1     cgd  * To save much memory, we overlay the table used by compress() with those
    178   1.1     cgd  * used by decompress().  The tab_prefix table is the same size and type as
    179   1.1     cgd  * the codetab.  The tab_suffix table needs 2**BITS characters.  We get this
    180   1.1     cgd  * from the beginning of htab.  The output stack uses the rest of htab, and
    181   1.1     cgd  * contains characters.  There is plenty of room for any possible stack
    182   1.1     cgd  * (stack used to be 8000 characters).
    183   1.1     cgd  */
    184   1.1     cgd 
    185   1.1     cgd #define	htabof(i)	htab[i]
    186   1.1     cgd #define	codetabof(i)	codetab[i]
    187   1.1     cgd 
    188   1.1     cgd #define	tab_prefixof(i)	codetabof(i)
    189   1.1     cgd #define	tab_suffixof(i)	((char_type *)(htab))[i]
    190   1.1     cgd #define	de_stack	((char_type *)&tab_suffixof(1 << BITS))
    191   1.1     cgd 
    192   1.1     cgd #define	CHECK_GAP 10000		/* Ratio check interval. */
    193   1.1     cgd 
    194   1.1     cgd /*
    195   1.1     cgd  * the next two codes should not be changed lightly, as they must not
    196   1.1     cgd  * lie within the contiguous general code space.
    197   1.1     cgd  */
    198   1.1     cgd #define	FIRST	257		/* First free entry. */
    199   1.1     cgd #define	CLEAR	256		/* Table clear output code. */
    200   1.1     cgd 
    201   1.7     wiz static int	cl_block(struct s_zstate *);
    202   1.7     wiz static code_int	getcode(struct s_zstate *);
    203   1.7     wiz static int	output(struct s_zstate *, code_int);
    204   1.7     wiz static int	zclose(void *);
    205   1.7     wiz FILE	       *zopen(const char *, const char *, int);
    206   1.7     wiz static int	zread(void *, char *, int);
    207   1.7     wiz static int	zwrite(void *, const char *, int);
    208   1.1     cgd 
    209   1.1     cgd /*-
    210   1.1     cgd  * Algorithm from "A Technique for High Performance Data Compression",
    211   1.1     cgd  * Terry A. Welch, IEEE Computer Vol 17, No 6 (June 1984), pp 8-19.
    212   1.1     cgd  *
    213   1.1     cgd  * Algorithm:
    214   1.1     cgd  * 	Modified Lempel-Ziv method (LZW).  Basically finds common
    215   1.1     cgd  * substrings and replaces them with a variable size code.  This is
    216   1.1     cgd  * deterministic, and can be done on the fly.  Thus, the decompression
    217   1.1     cgd  * procedure needs no input table, but tracks the way the table was built.
    218   1.1     cgd  */
    219   1.1     cgd 
    220   1.1     cgd /*-
    221   1.1     cgd  * compress write
    222   1.1     cgd  *
    223   1.1     cgd  * Algorithm:  use open addressing double hashing (no chaining) on the
    224   1.1     cgd  * prefix code / next character combination.  We do a variant of Knuth's
    225   1.1     cgd  * algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
    226   1.1     cgd  * secondary probe.  Here, the modular division first probe is gives way
    227   1.1     cgd  * to a faster exclusive-or manipulation.  Also do block compression with
    228   1.1     cgd  * an adaptive reset, whereby the code table is cleared when the compression
    229   1.1     cgd  * ratio decreases, but after the table fills.  The variable-length output
    230   1.1     cgd  * codes are re-sized at this point, and a special CLEAR code is generated
    231   1.1     cgd  * for the decompressor.  Late addition:  construct the table according to
    232   1.1     cgd  * file size for noticeable speed improvement on small files.  Please direct
    233   1.1     cgd  * questions about this implementation to ames!jaw.
    234   1.1     cgd  */
    235   1.1     cgd static int
    236   1.7     wiz zwrite(void *cookie, const char *wbp, int num)
    237   1.1     cgd {
    238   1.6   lukem 	code_int i;
    239   1.6   lukem 	int c, disp;
    240   1.1     cgd 	struct s_zstate *zs;
    241   1.1     cgd 	const u_char *bp;
    242   1.1     cgd 	u_char tmp;
    243   1.1     cgd 	int count;
    244   1.1     cgd 
    245   1.1     cgd 	if (num == 0)
    246   1.1     cgd 		return (0);
    247   1.1     cgd 
    248   1.1     cgd 	zs = cookie;
    249   1.1     cgd 	count = num;
    250  1.13   lukem 	bp = (const u_char *)wbp;
    251   1.1     cgd 	if (state == S_MIDDLE)
    252   1.1     cgd 		goto middle;
    253   1.1     cgd 	state = S_MIDDLE;
    254   1.1     cgd 
    255   1.3  andrew 	maxmaxcode = 1L << maxbits;
    256   1.1     cgd 	if (fwrite(magic_header,
    257   1.1     cgd 	    sizeof(char), sizeof(magic_header), fp) != sizeof(magic_header))
    258   1.1     cgd 		return (-1);
    259   1.3  andrew 	tmp = (u_char)(maxbits | block_compress);
    260   1.1     cgd 	if (fwrite(&tmp, sizeof(char), sizeof(tmp), fp) != sizeof(tmp))
    261   1.1     cgd 		return (-1);
    262   1.1     cgd 
    263   1.1     cgd 	offset = 0;
    264   1.1     cgd 	bytes_out = 3;		/* Includes 3-byte header mojo. */
    265   1.1     cgd 	out_count = 0;
    266   1.1     cgd 	clear_flg = 0;
    267   1.1     cgd 	ratio = 0;
    268   1.1     cgd 	in_count = 1;
    269   1.1     cgd 	checkpoint = CHECK_GAP;
    270   1.1     cgd 	maxcode = MAXCODE(n_bits = INIT_BITS);
    271   1.1     cgd 	free_ent = ((block_compress) ? FIRST : 256);
    272   1.1     cgd 
    273   1.1     cgd 	ent = *bp++;
    274   1.1     cgd 	--count;
    275   1.1     cgd 
    276   1.1     cgd 	hshift = 0;
    277   1.1     cgd 	for (fcode = (long)hsize; fcode < 65536L; fcode *= 2L)
    278   1.1     cgd 		hshift++;
    279   1.1     cgd 	hshift = 8 - hshift;	/* Set hash code range bound. */
    280   1.1     cgd 
    281   1.1     cgd 	hsize_reg = hsize;
    282  1.12   joerg 	memset(htab, 0xff, hsize_reg * sizeof(count_int));
    283   1.1     cgd 
    284  1.11   joerg middle:	while (count--) {
    285   1.1     cgd 		c = *bp++;
    286   1.1     cgd 		in_count++;
    287   1.1     cgd 		fcode = (long)(((long)c << maxbits) + ent);
    288   1.1     cgd 		i = ((c << hshift) ^ ent);	/* Xor hashing. */
    289   1.1     cgd 
    290   1.1     cgd 		if (htabof(i) == fcode) {
    291   1.1     cgd 			ent = codetabof(i);
    292   1.1     cgd 			continue;
    293   1.1     cgd 		} else if ((long)htabof(i) < 0)	/* Empty slot. */
    294   1.1     cgd 			goto nomatch;
    295   1.1     cgd 		disp = hsize_reg - i;	/* Secondary hash (after G. Knott). */
    296   1.1     cgd 		if (i == 0)
    297   1.1     cgd 			disp = 1;
    298   1.1     cgd probe:		if ((i -= disp) < 0)
    299   1.1     cgd 			i += hsize_reg;
    300   1.1     cgd 
    301   1.1     cgd 		if (htabof(i) == fcode) {
    302   1.1     cgd 			ent = codetabof(i);
    303   1.1     cgd 			continue;
    304   1.1     cgd 		}
    305   1.1     cgd 		if ((long)htabof(i) >= 0)
    306   1.1     cgd 			goto probe;
    307   1.1     cgd nomatch:	if (output(zs, (code_int) ent) == -1)
    308   1.1     cgd 			return (-1);
    309   1.1     cgd 		out_count++;
    310   1.1     cgd 		ent = c;
    311   1.1     cgd 		if (free_ent < maxmaxcode) {
    312   1.1     cgd 			codetabof(i) = free_ent++;	/* code -> hashtable */
    313   1.1     cgd 			htabof(i) = fcode;
    314   1.1     cgd 		} else if ((count_int)in_count >=
    315   1.1     cgd 		    checkpoint && block_compress) {
    316   1.1     cgd 			if (cl_block(zs) == -1)
    317   1.1     cgd 				return (-1);
    318   1.1     cgd 		}
    319   1.1     cgd 	}
    320   1.1     cgd 	return (num);
    321   1.1     cgd }
    322   1.1     cgd 
    323   1.1     cgd static int
    324   1.7     wiz zclose(void *cookie)
    325   1.1     cgd {
    326   1.1     cgd 	struct s_zstate *zs;
    327   1.1     cgd 	int rval;
    328   1.1     cgd 
    329   1.1     cgd 	zs = cookie;
    330   1.1     cgd 	if (zmode == 'w') {		/* Put out the final code. */
    331   1.1     cgd 		if (output(zs, (code_int) ent) == -1) {
    332   1.1     cgd 			(void)fclose(fp);
    333   1.1     cgd 			free(zs);
    334   1.1     cgd 			return (-1);
    335   1.1     cgd 		}
    336   1.1     cgd 		out_count++;
    337   1.1     cgd 		if (output(zs, (code_int) - 1) == -1) {
    338   1.1     cgd 			(void)fclose(fp);
    339   1.1     cgd 			free(zs);
    340   1.1     cgd 			return (-1);
    341   1.1     cgd 		}
    342   1.1     cgd 	}
    343   1.1     cgd 	rval = fclose(fp) == EOF ? -1 : 0;
    344   1.1     cgd 	free(zs);
    345   1.1     cgd 	return (rval);
    346   1.1     cgd }
    347   1.1     cgd 
    348   1.1     cgd /*-
    349   1.1     cgd  * Output the given code.
    350   1.1     cgd  * Inputs:
    351   1.1     cgd  * 	code:	A n_bits-bit integer.  If == -1, then EOF.  This assumes
    352   1.1     cgd  *		that n_bits =< (long)wordsize - 1.
    353   1.1     cgd  * Outputs:
    354   1.1     cgd  * 	Outputs code to the file.
    355   1.1     cgd  * Assumptions:
    356   1.1     cgd  *	Chars are 8 bits long.
    357   1.1     cgd  * Algorithm:
    358   1.1     cgd  * 	Maintain a BITS character long buffer (so that 8 codes will
    359   1.1     cgd  * fit in it exactly).  Use the VAX insv instruction to insert each
    360   1.1     cgd  * code in turn.  When the buffer fills up empty it and start over.
    361   1.1     cgd  */
    362   1.1     cgd 
    363   1.1     cgd static char_type lmask[9] =
    364   1.1     cgd 	{0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00};
    365   1.1     cgd static char_type rmask[9] =
    366   1.1     cgd 	{0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff};
    367   1.1     cgd 
    368   1.1     cgd static int
    369   1.7     wiz output(struct s_zstate *zs, code_int ocode)
    370   1.1     cgd {
    371   1.6   lukem 	int bits, r_off;
    372   1.6   lukem 	char_type *bp;
    373   1.1     cgd 
    374   1.1     cgd 	r_off = offset;
    375   1.1     cgd 	bits = n_bits;
    376   1.1     cgd 	bp = buf;
    377   1.1     cgd 	if (ocode >= 0) {
    378   1.1     cgd 		/* Get to the first byte. */
    379   1.1     cgd 		bp += (r_off >> 3);
    380   1.1     cgd 		r_off &= 7;
    381   1.1     cgd 		/*
    382   1.1     cgd 		 * Since ocode is always >= 8 bits, only need to mask the first
    383   1.1     cgd 		 * hunk on the left.
    384   1.1     cgd 		 */
    385   1.6   lukem 		*bp = (*bp & rmask[r_off]) | ((ocode << r_off) & lmask[r_off]);
    386   1.1     cgd 		bp++;
    387   1.1     cgd 		bits -= (8 - r_off);
    388   1.1     cgd 		ocode >>= 8 - r_off;
    389   1.1     cgd 		/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
    390   1.1     cgd 		if (bits >= 8) {
    391   1.1     cgd 			*bp++ = ocode;
    392   1.1     cgd 			ocode >>= 8;
    393   1.1     cgd 			bits -= 8;
    394   1.1     cgd 		}
    395   1.1     cgd 		/* Last bits. */
    396   1.1     cgd 		if (bits)
    397   1.1     cgd 			*bp = ocode;
    398   1.1     cgd 		offset += n_bits;
    399   1.1     cgd 		if (offset == (n_bits << 3)) {
    400   1.1     cgd 			bp = buf;
    401   1.1     cgd 			bits = n_bits;
    402   1.1     cgd 			bytes_out += bits;
    403  1.13   lukem 			if (fwrite(bp, sizeof(char), bits, fp) != (size_t)bits)
    404   1.1     cgd 				return (-1);
    405   1.1     cgd 			bp += bits;
    406   1.1     cgd 			bits = 0;
    407   1.1     cgd 			offset = 0;
    408   1.1     cgd 		}
    409   1.1     cgd 		/*
    410   1.1     cgd 		 * If the next entry is going to be too big for the ocode size,
    411   1.1     cgd 		 * then increase it, if possible.
    412   1.1     cgd 		 */
    413   1.1     cgd 		if (free_ent > maxcode || (clear_flg > 0)) {
    414   1.1     cgd 		       /*
    415   1.1     cgd 			* Write the whole buffer, because the input side won't
    416   1.1     cgd 			* discover the size increase until after it has read it.
    417   1.1     cgd 			*/
    418   1.1     cgd 			if (offset > 0) {
    419  1.13   lukem 				if (fwrite(buf, 1, n_bits, fp) != (size_t)n_bits)
    420   1.1     cgd 					return (-1);
    421   1.1     cgd 				bytes_out += n_bits;
    422   1.1     cgd 			}
    423   1.1     cgd 			offset = 0;
    424   1.1     cgd 
    425   1.1     cgd 			if (clear_flg) {
    426   1.1     cgd 				maxcode = MAXCODE(n_bits = INIT_BITS);
    427   1.1     cgd 				clear_flg = 0;
    428   1.1     cgd 			} else {
    429   1.1     cgd 				n_bits++;
    430   1.1     cgd 				if (n_bits == maxbits)
    431   1.1     cgd 					maxcode = maxmaxcode;
    432   1.1     cgd 				else
    433   1.1     cgd 					maxcode = MAXCODE(n_bits);
    434   1.1     cgd 			}
    435   1.1     cgd 		}
    436   1.1     cgd 	} else {
    437   1.1     cgd 		/* At EOF, write the rest of the buffer. */
    438   1.1     cgd 		if (offset > 0) {
    439   1.1     cgd 			offset = (offset + 7) / 8;
    440  1.13   lukem 			if (fwrite(buf, 1, offset, fp) != (size_t)offset)
    441   1.1     cgd 				return (-1);
    442   1.1     cgd 			bytes_out += offset;
    443   1.1     cgd 		}
    444   1.1     cgd 		offset = 0;
    445   1.1     cgd 	}
    446   1.1     cgd 	return (0);
    447   1.1     cgd }
    448   1.1     cgd 
    449   1.1     cgd /*
    450   1.1     cgd  * Decompress read.  This routine adapts to the codes in the file building
    451   1.1     cgd  * the "string" table on-the-fly; requiring no table to be stored in the
    452   1.1     cgd  * compressed file.  The tables used herein are shared with those of the
    453   1.1     cgd  * compress() routine.  See the definitions above.
    454   1.1     cgd  */
    455   1.1     cgd static int
    456   1.7     wiz zread(void *cookie, char *rbp, int num)
    457   1.1     cgd {
    458   1.6   lukem 	u_int count;
    459   1.1     cgd 	struct s_zstate *zs;
    460   1.1     cgd 	u_char *bp, header[3];
    461   1.1     cgd 
    462   1.1     cgd 	if (num == 0)
    463   1.1     cgd 		return (0);
    464   1.1     cgd 
    465   1.1     cgd 	zs = cookie;
    466   1.1     cgd 	count = num;
    467   1.1     cgd 	bp = (u_char *)rbp;
    468   1.1     cgd 	switch (state) {
    469   1.1     cgd 	case S_START:
    470   1.1     cgd 		state = S_MIDDLE;
    471   1.1     cgd 		break;
    472   1.1     cgd 	case S_MIDDLE:
    473   1.1     cgd 		goto middle;
    474   1.1     cgd 	case S_EOF:
    475   1.1     cgd 		goto eof;
    476   1.1     cgd 	}
    477   1.1     cgd 
    478   1.1     cgd 	/* Check the magic number */
    479   1.1     cgd 	if (fread(header,
    480   1.1     cgd 	    sizeof(char), sizeof(header), fp) != sizeof(header) ||
    481   1.1     cgd 	    memcmp(header, magic_header, sizeof(magic_header)) != 0) {
    482   1.1     cgd 		errno = EFTYPE;
    483   1.1     cgd 		return (-1);
    484   1.1     cgd 	}
    485   1.1     cgd 	maxbits = header[2];	/* Set -b from file. */
    486   1.1     cgd 	block_compress = maxbits & BLOCK_MASK;
    487   1.1     cgd 	maxbits &= BIT_MASK;
    488   1.1     cgd 	maxmaxcode = 1L << maxbits;
    489  1.15   joerg 	if (maxbits > BITS || maxbits < 12) {
    490   1.1     cgd 		errno = EFTYPE;
    491   1.1     cgd 		return (-1);
    492   1.1     cgd 	}
    493   1.1     cgd 	/* As above, initialize the first 256 entries in the table. */
    494   1.1     cgd 	maxcode = MAXCODE(n_bits = INIT_BITS);
    495   1.1     cgd 	for (code = 255; code >= 0; code--) {
    496   1.1     cgd 		tab_prefixof(code) = 0;
    497   1.1     cgd 		tab_suffixof(code) = (char_type) code;
    498   1.1     cgd 	}
    499   1.1     cgd 	free_ent = block_compress ? FIRST : 256;
    500  1.15   joerg 	oldcode = -1;
    501   1.1     cgd 	stackp = de_stack;
    502   1.1     cgd 
    503   1.1     cgd 	while ((code = getcode(zs)) > -1) {
    504   1.1     cgd 
    505   1.1     cgd 		if ((code == CLEAR) && block_compress) {
    506   1.1     cgd 			for (code = 255; code >= 0; code--)
    507   1.1     cgd 				tab_prefixof(code) = 0;
    508   1.1     cgd 			clear_flg = 1;
    509  1.15   joerg 			free_ent = FIRST;
    510  1.15   joerg 			oldcode = -1;
    511  1.15   joerg 			continue;
    512   1.1     cgd 		}
    513   1.1     cgd 		incode = code;
    514   1.1     cgd 
    515  1.15   joerg 		/* Special case for kWkWk string. */
    516   1.1     cgd 		if (code >= free_ent) {
    517  1.15   joerg 			if (code > free_ent || oldcode == -1) {
    518  1.15   joerg 				/* Bad stream. */
    519  1.15   joerg 				errno = EINVAL;
    520  1.15   joerg 				return (-1);
    521  1.15   joerg 			}
    522   1.1     cgd 			*stackp++ = finchar;
    523   1.1     cgd 			code = oldcode;
    524   1.1     cgd 		}
    525  1.15   joerg 		/*
    526  1.15   joerg 		 * The above condition ensures that code < free_ent.
    527  1.15   joerg 		 * The construction of tab_prefixof in turn guarantees that
    528  1.15   joerg 		 * each iteration decreases code and therefore stack usage is
    529  1.15   joerg 		 * bound by 1 << BITS - 256.
    530  1.15   joerg 		 */
    531   1.1     cgd 
    532   1.1     cgd 		/* Generate output characters in reverse order. */
    533   1.1     cgd 		while (code >= 256) {
    534   1.1     cgd 			*stackp++ = tab_suffixof(code);
    535   1.1     cgd 			code = tab_prefixof(code);
    536   1.1     cgd 		}
    537   1.1     cgd 		*stackp++ = finchar = tab_suffixof(code);
    538   1.1     cgd 
    539   1.1     cgd 		/* And put them out in forward order.  */
    540   1.1     cgd middle:		do {
    541   1.1     cgd 			if (count-- == 0)
    542   1.1     cgd 				return (num);
    543   1.1     cgd 			*bp++ = *--stackp;
    544   1.1     cgd 		} while (stackp > de_stack);
    545   1.1     cgd 
    546   1.1     cgd 		/* Generate the new entry. */
    547  1.15   joerg 		if ((code = free_ent) < maxmaxcode && oldcode != -1) {
    548   1.1     cgd 			tab_prefixof(code) = (u_short) oldcode;
    549   1.1     cgd 			tab_suffixof(code) = finchar;
    550   1.1     cgd 			free_ent = code + 1;
    551   1.1     cgd 		}
    552   1.1     cgd 
    553   1.1     cgd 		/* Remember previous code. */
    554   1.1     cgd 		oldcode = incode;
    555   1.1     cgd 	}
    556   1.1     cgd 	state = S_EOF;
    557   1.1     cgd eof:	return (num - count);
    558   1.1     cgd }
    559   1.1     cgd 
    560   1.1     cgd /*-
    561   1.1     cgd  * Read one code from the standard input.  If EOF, return -1.
    562   1.1     cgd  * Inputs:
    563   1.1     cgd  * 	stdin
    564   1.1     cgd  * Outputs:
    565   1.1     cgd  * 	code or -1 is returned.
    566   1.1     cgd  */
    567   1.1     cgd static code_int
    568   1.7     wiz getcode(struct s_zstate *zs)
    569   1.1     cgd {
    570   1.6   lukem 	code_int gcode;
    571   1.6   lukem 	int r_off, bits;
    572   1.6   lukem 	char_type *bp;
    573   1.1     cgd 
    574   1.1     cgd 	bp = gbuf;
    575   1.1     cgd 	if (clear_flg > 0 || roffset >= size || free_ent > maxcode) {
    576   1.1     cgd 		/*
    577   1.1     cgd 		 * If the next entry will be too big for the current gcode
    578   1.1     cgd 		 * size, then we must increase the size.  This implies reading
    579   1.1     cgd 		 * a new buffer full, too.
    580   1.1     cgd 		 */
    581   1.1     cgd 		if (free_ent > maxcode) {
    582   1.1     cgd 			n_bits++;
    583   1.1     cgd 			if (n_bits == maxbits)	/* Won't get any bigger now. */
    584   1.1     cgd 				maxcode = maxmaxcode;
    585   1.1     cgd 			else
    586   1.1     cgd 				maxcode = MAXCODE(n_bits);
    587   1.1     cgd 		}
    588   1.1     cgd 		if (clear_flg > 0) {
    589   1.1     cgd 			maxcode = MAXCODE(n_bits = INIT_BITS);
    590   1.1     cgd 			clear_flg = 0;
    591   1.1     cgd 		}
    592   1.1     cgd 		size = fread(gbuf, 1, n_bits, fp);
    593   1.1     cgd 		if (size <= 0)			/* End of file. */
    594   1.1     cgd 			return (-1);
    595   1.1     cgd 		roffset = 0;
    596   1.1     cgd 		/* Round size down to integral number of codes. */
    597   1.1     cgd 		size = (size << 3) - (n_bits - 1);
    598   1.1     cgd 	}
    599   1.1     cgd 	r_off = roffset;
    600   1.1     cgd 	bits = n_bits;
    601   1.1     cgd 
    602   1.1     cgd 	/* Get to the first byte. */
    603   1.1     cgd 	bp += (r_off >> 3);
    604   1.1     cgd 	r_off &= 7;
    605   1.1     cgd 
    606   1.1     cgd 	/* Get first part (low order bits). */
    607   1.1     cgd 	gcode = (*bp++ >> r_off);
    608   1.1     cgd 	bits -= (8 - r_off);
    609   1.1     cgd 	r_off = 8 - r_off;	/* Now, roffset into gcode word. */
    610   1.1     cgd 
    611   1.1     cgd 	/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
    612   1.1     cgd 	if (bits >= 8) {
    613   1.1     cgd 		gcode |= *bp++ << r_off;
    614   1.1     cgd 		r_off += 8;
    615   1.1     cgd 		bits -= 8;
    616   1.1     cgd 	}
    617   1.1     cgd 
    618   1.1     cgd 	/* High order bits. */
    619   1.1     cgd 	gcode |= (*bp & rmask[bits]) << r_off;
    620   1.1     cgd 	roffset += n_bits;
    621   1.1     cgd 
    622   1.1     cgd 	return (gcode);
    623   1.1     cgd }
    624   1.1     cgd 
    625   1.1     cgd static int
    626   1.7     wiz cl_block(struct s_zstate *zs)		/* Table clear for block compress. */
    627   1.1     cgd {
    628   1.6   lukem 	long rat;
    629   1.1     cgd 
    630   1.1     cgd 	checkpoint = in_count + CHECK_GAP;
    631   1.1     cgd 
    632   1.1     cgd 	if (in_count > 0x007fffff) {	/* Shift will overflow. */
    633   1.1     cgd 		rat = bytes_out >> 8;
    634   1.1     cgd 		if (rat == 0)		/* Don't divide by zero. */
    635   1.1     cgd 			rat = 0x7fffffff;
    636   1.1     cgd 		else
    637   1.1     cgd 			rat = in_count / rat;
    638   1.1     cgd 	} else
    639   1.1     cgd 		rat = (in_count << 8) / bytes_out;	/* 8 fractional bits. */
    640   1.1     cgd 	if (rat > ratio)
    641   1.1     cgd 		ratio = rat;
    642   1.1     cgd 	else {
    643   1.1     cgd 		ratio = 0;
    644  1.12   joerg 		memset(htab, 0xff, hsize * sizeof(count_int));
    645   1.1     cgd 		free_ent = FIRST;
    646   1.1     cgd 		clear_flg = 1;
    647   1.1     cgd 		if (output(zs, (code_int) CLEAR) == -1)
    648   1.1     cgd 			return (-1);
    649   1.1     cgd 	}
    650   1.1     cgd 	return (0);
    651   1.1     cgd }
    652   1.1     cgd 
    653   1.1     cgd FILE *
    654   1.7     wiz zopen(const char *fname, const char *mode, int bits)
    655   1.1     cgd {
    656   1.1     cgd 	struct s_zstate *zs;
    657   1.1     cgd 
    658   1.6   lukem 	if ((mode[0] != 'r' && mode[0] != 'w') || mode[1] != '\0' ||
    659   1.1     cgd 	    bits < 0 || bits > BITS) {
    660   1.1     cgd 		errno = EINVAL;
    661   1.1     cgd 		return (NULL);
    662   1.1     cgd 	}
    663   1.1     cgd 
    664   1.1     cgd 	if ((zs = calloc(1, sizeof(struct s_zstate))) == NULL)
    665   1.1     cgd 		return (NULL);
    666   1.1     cgd 
    667   1.1     cgd 	maxbits = bits ? bits : BITS;	/* User settable max # bits/code. */
    668   1.3  andrew 	maxmaxcode = 1 << maxbits;	/* Should NEVER generate this code. */
    669   1.1     cgd 	hsize = HSIZE;			/* For dynamic table sizing. */
    670   1.1     cgd 	free_ent = 0;			/* First unused entry. */
    671   1.1     cgd 	block_compress = BLOCK_MASK;
    672   1.1     cgd 	clear_flg = 0;
    673   1.1     cgd 	ratio = 0;
    674   1.1     cgd 	checkpoint = CHECK_GAP;
    675   1.1     cgd 	in_count = 1;			/* Length of input. */
    676   1.1     cgd 	out_count = 0;			/* # of codes output (for debugging). */
    677   1.1     cgd 	state = S_START;
    678   1.1     cgd 	roffset = 0;
    679   1.1     cgd 	size = 0;
    680   1.1     cgd 
    681   1.1     cgd 	/*
    682   1.1     cgd 	 * Layering compress on top of stdio in order to provide buffering,
    683   1.1     cgd 	 * and ensure that reads and write work with the data specified.
    684   1.1     cgd 	 */
    685   1.1     cgd 	if ((fp = fopen(fname, mode)) == NULL) {
    686   1.1     cgd 		free(zs);
    687   1.1     cgd 		return (NULL);
    688   1.1     cgd 	}
    689   1.1     cgd 	switch (*mode) {
    690   1.1     cgd 	case 'r':
    691   1.1     cgd 		zmode = 'r';
    692   1.1     cgd 		return (funopen(zs, zread, NULL, NULL, zclose));
    693   1.1     cgd 	case 'w':
    694   1.1     cgd 		zmode = 'w';
    695   1.1     cgd 		return (funopen(zs, NULL, zwrite, NULL, zclose));
    696   1.1     cgd 	}
    697   1.1     cgd 	/* NOTREACHED */
    698   1.6   lukem 	return (NULL);
    699   1.1     cgd }
    700