1 1.16 andvar /* $NetBSD: zopen.c,v 1.16 2022/03/23 11:08:28 andvar Exp $ */ 2 1.5 glass 3 1.1 cgd /*- 4 1.1 cgd * Copyright (c) 1985, 1986, 1992, 1993 5 1.1 cgd * The Regents of the University of California. All rights reserved. 6 1.1 cgd * 7 1.1 cgd * This code is derived from software contributed to Berkeley by 8 1.1 cgd * Diomidis Spinellis and James A. Woods, derived from original 9 1.1 cgd * work by Spencer Thomas and Joseph Orost. 10 1.1 cgd * 11 1.1 cgd * Redistribution and use in source and binary forms, with or without 12 1.1 cgd * modification, are permitted provided that the following conditions 13 1.1 cgd * are met: 14 1.1 cgd * 1. Redistributions of source code must retain the above copyright 15 1.1 cgd * notice, this list of conditions and the following disclaimer. 16 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright 17 1.1 cgd * notice, this list of conditions and the following disclaimer in the 18 1.1 cgd * documentation and/or other materials provided with the distribution. 19 1.8 agc * 3. Neither the name of the University nor the names of its contributors 20 1.1 cgd * may be used to endorse or promote products derived from this software 21 1.1 cgd * without specific prior written permission. 22 1.1 cgd * 23 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 1.1 cgd * SUCH DAMAGE. 34 1.1 cgd */ 35 1.1 cgd 36 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint) 37 1.5 glass #if 0 38 1.5 glass static char sccsid[] = "@(#)zopen.c 8.1 (Berkeley) 6/27/93"; 39 1.5 glass #else 40 1.16 andvar static char rcsid[] = "$NetBSD: zopen.c,v 1.16 2022/03/23 11:08:28 andvar Exp $"; 41 1.5 glass #endif 42 1.1 cgd #endif /* LIBC_SCCS and not lint */ 43 1.1 cgd 44 1.1 cgd /*- 45 1.1 cgd * fcompress.c - File compression ala IEEE Computer, June 1984. 46 1.1 cgd * 47 1.1 cgd * Compress authors: 48 1.1 cgd * Spencer W. Thomas (decvax!utah-cs!thomas) 49 1.1 cgd * Jim McKie (decvax!mcvax!jim) 50 1.1 cgd * Steve Davies (decvax!vax135!petsd!peora!srd) 51 1.1 cgd * Ken Turkowski (decvax!decwrl!turtlevax!ken) 52 1.1 cgd * James A. Woods (decvax!ihnp4!ames!jaw) 53 1.1 cgd * Joe Orost (decvax!vax135!petsd!joe) 54 1.1 cgd * 55 1.1 cgd * Cleaned up and converted to library returning I/O streams by 56 1.1 cgd * Diomidis Spinellis <dds (at) doc.ic.ac.uk>. 57 1.1 cgd * 58 1.1 cgd * zopen(filename, mode, bits) 59 1.1 cgd * Returns a FILE * that can be used for read or write. The modes 60 1.1 cgd * supported are only "r" and "w". Seeking is not allowed. On 61 1.1 cgd * reading the file is decompressed, on writing it is compressed. 62 1.1 cgd * The output is compatible with compress(1) with 16 bit tables. 63 1.1 cgd * Any file produced by compress(1) can be read. 64 1.1 cgd */ 65 1.1 cgd 66 1.1 cgd #include <sys/param.h> 67 1.1 cgd #include <sys/stat.h> 68 1.1 cgd 69 1.1 cgd #include <errno.h> 70 1.1 cgd #include <signal.h> 71 1.1 cgd #include <stdio.h> 72 1.1 cgd #include <stdlib.h> 73 1.1 cgd #include <string.h> 74 1.1 cgd #include <unistd.h> 75 1.1 cgd 76 1.1 cgd #define BITS 16 /* Default bits. */ 77 1.1 cgd #define HSIZE 69001 /* 95% occupancy */ 78 1.1 cgd 79 1.1 cgd /* A code_int must be able to hold 2**BITS values of type int, and also -1. */ 80 1.1 cgd typedef long code_int; 81 1.1 cgd typedef long count_int; 82 1.1 cgd 83 1.1 cgd typedef u_char char_type; 84 1.1 cgd static char_type magic_header[] = 85 1.1 cgd {'\037', '\235'}; /* 1F 9D */ 86 1.1 cgd 87 1.1 cgd #define BIT_MASK 0x1f /* Defines for third byte of header. */ 88 1.1 cgd #define BLOCK_MASK 0x80 89 1.1 cgd 90 1.1 cgd /* 91 1.1 cgd * Masks 0x40 and 0x20 are free. I think 0x20 should mean that there is 92 1.1 cgd * a fourth header byte (for expansion). 93 1.1 cgd */ 94 1.1 cgd #define INIT_BITS 9 /* Initial number of bits/code. */ 95 1.1 cgd 96 1.1 cgd #define MAXCODE(n_bits) ((1 << (n_bits)) - 1) 97 1.1 cgd 98 1.1 cgd struct s_zstate { 99 1.1 cgd FILE *zs_fp; /* File stream for I/O */ 100 1.1 cgd char zs_mode; /* r or w */ 101 1.1 cgd enum { 102 1.1 cgd S_START, S_MIDDLE, S_EOF 103 1.1 cgd } zs_state; /* State of computation */ 104 1.1 cgd int zs_n_bits; /* Number of bits/code. */ 105 1.1 cgd int zs_maxbits; /* User settable max # bits/code. */ 106 1.1 cgd code_int zs_maxcode; /* Maximum code, given n_bits. */ 107 1.1 cgd code_int zs_maxmaxcode; /* Should NEVER generate this code. */ 108 1.1 cgd count_int zs_htab [HSIZE]; 109 1.1 cgd u_short zs_codetab [HSIZE]; 110 1.1 cgd code_int zs_hsize; /* For dynamic table sizing. */ 111 1.1 cgd code_int zs_free_ent; /* First unused entry. */ 112 1.1 cgd /* 113 1.1 cgd * Block compression parameters -- after all codes are used up, 114 1.1 cgd * and compression rate changes, start over. 115 1.1 cgd */ 116 1.1 cgd int zs_block_compress; 117 1.1 cgd int zs_clear_flg; 118 1.1 cgd long zs_ratio; 119 1.1 cgd count_int zs_checkpoint; 120 1.1 cgd int zs_offset; 121 1.1 cgd long zs_in_count; /* Length of input. */ 122 1.1 cgd long zs_bytes_out; /* Length of compressed output. */ 123 1.1 cgd long zs_out_count; /* # of codes output (for debugging). */ 124 1.1 cgd char_type zs_buf[BITS]; 125 1.1 cgd union { 126 1.1 cgd struct { 127 1.1 cgd long zs_fcode; 128 1.1 cgd code_int zs_ent; 129 1.1 cgd code_int zs_hsize_reg; 130 1.1 cgd int zs_hshift; 131 1.16 andvar } w; /* Write parameters */ 132 1.1 cgd struct { 133 1.1 cgd char_type *zs_stackp; 134 1.1 cgd int zs_finchar; 135 1.1 cgd code_int zs_code, zs_oldcode, zs_incode; 136 1.1 cgd int zs_roffset, zs_size; 137 1.1 cgd char_type zs_gbuf[BITS]; 138 1.1 cgd } r; /* Read parameters */ 139 1.1 cgd } u; 140 1.1 cgd }; 141 1.1 cgd 142 1.1 cgd /* Definitions to retain old variable names */ 143 1.1 cgd #define fp zs->zs_fp 144 1.1 cgd #define zmode zs->zs_mode 145 1.1 cgd #define state zs->zs_state 146 1.1 cgd #define n_bits zs->zs_n_bits 147 1.1 cgd #define maxbits zs->zs_maxbits 148 1.1 cgd #define maxcode zs->zs_maxcode 149 1.1 cgd #define maxmaxcode zs->zs_maxmaxcode 150 1.1 cgd #define htab zs->zs_htab 151 1.1 cgd #define codetab zs->zs_codetab 152 1.1 cgd #define hsize zs->zs_hsize 153 1.1 cgd #define free_ent zs->zs_free_ent 154 1.1 cgd #define block_compress zs->zs_block_compress 155 1.1 cgd #define clear_flg zs->zs_clear_flg 156 1.1 cgd #define ratio zs->zs_ratio 157 1.1 cgd #define checkpoint zs->zs_checkpoint 158 1.1 cgd #define offset zs->zs_offset 159 1.1 cgd #define in_count zs->zs_in_count 160 1.1 cgd #define bytes_out zs->zs_bytes_out 161 1.1 cgd #define out_count zs->zs_out_count 162 1.1 cgd #define buf zs->zs_buf 163 1.1 cgd #define fcode zs->u.w.zs_fcode 164 1.1 cgd #define hsize_reg zs->u.w.zs_hsize_reg 165 1.1 cgd #define ent zs->u.w.zs_ent 166 1.1 cgd #define hshift zs->u.w.zs_hshift 167 1.1 cgd #define stackp zs->u.r.zs_stackp 168 1.1 cgd #define finchar zs->u.r.zs_finchar 169 1.1 cgd #define code zs->u.r.zs_code 170 1.1 cgd #define oldcode zs->u.r.zs_oldcode 171 1.1 cgd #define incode zs->u.r.zs_incode 172 1.1 cgd #define roffset zs->u.r.zs_roffset 173 1.1 cgd #define size zs->u.r.zs_size 174 1.1 cgd #define gbuf zs->u.r.zs_gbuf 175 1.1 cgd 176 1.1 cgd /* 177 1.1 cgd * To save much memory, we overlay the table used by compress() with those 178 1.1 cgd * used by decompress(). The tab_prefix table is the same size and type as 179 1.1 cgd * the codetab. The tab_suffix table needs 2**BITS characters. We get this 180 1.1 cgd * from the beginning of htab. The output stack uses the rest of htab, and 181 1.1 cgd * contains characters. There is plenty of room for any possible stack 182 1.1 cgd * (stack used to be 8000 characters). 183 1.1 cgd */ 184 1.1 cgd 185 1.1 cgd #define htabof(i) htab[i] 186 1.1 cgd #define codetabof(i) codetab[i] 187 1.1 cgd 188 1.1 cgd #define tab_prefixof(i) codetabof(i) 189 1.1 cgd #define tab_suffixof(i) ((char_type *)(htab))[i] 190 1.1 cgd #define de_stack ((char_type *)&tab_suffixof(1 << BITS)) 191 1.1 cgd 192 1.1 cgd #define CHECK_GAP 10000 /* Ratio check interval. */ 193 1.1 cgd 194 1.1 cgd /* 195 1.1 cgd * the next two codes should not be changed lightly, as they must not 196 1.1 cgd * lie within the contiguous general code space. 197 1.1 cgd */ 198 1.1 cgd #define FIRST 257 /* First free entry. */ 199 1.1 cgd #define CLEAR 256 /* Table clear output code. */ 200 1.1 cgd 201 1.7 wiz static int cl_block(struct s_zstate *); 202 1.7 wiz static code_int getcode(struct s_zstate *); 203 1.7 wiz static int output(struct s_zstate *, code_int); 204 1.7 wiz static int zclose(void *); 205 1.7 wiz FILE *zopen(const char *, const char *, int); 206 1.7 wiz static int zread(void *, char *, int); 207 1.7 wiz static int zwrite(void *, const char *, int); 208 1.1 cgd 209 1.1 cgd /*- 210 1.1 cgd * Algorithm from "A Technique for High Performance Data Compression", 211 1.1 cgd * Terry A. Welch, IEEE Computer Vol 17, No 6 (June 1984), pp 8-19. 212 1.1 cgd * 213 1.1 cgd * Algorithm: 214 1.1 cgd * Modified Lempel-Ziv method (LZW). Basically finds common 215 1.1 cgd * substrings and replaces them with a variable size code. This is 216 1.1 cgd * deterministic, and can be done on the fly. Thus, the decompression 217 1.1 cgd * procedure needs no input table, but tracks the way the table was built. 218 1.1 cgd */ 219 1.1 cgd 220 1.1 cgd /*- 221 1.1 cgd * compress write 222 1.1 cgd * 223 1.1 cgd * Algorithm: use open addressing double hashing (no chaining) on the 224 1.1 cgd * prefix code / next character combination. We do a variant of Knuth's 225 1.1 cgd * algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime 226 1.1 cgd * secondary probe. Here, the modular division first probe is gives way 227 1.1 cgd * to a faster exclusive-or manipulation. Also do block compression with 228 1.1 cgd * an adaptive reset, whereby the code table is cleared when the compression 229 1.1 cgd * ratio decreases, but after the table fills. The variable-length output 230 1.1 cgd * codes are re-sized at this point, and a special CLEAR code is generated 231 1.1 cgd * for the decompressor. Late addition: construct the table according to 232 1.1 cgd * file size for noticeable speed improvement on small files. Please direct 233 1.1 cgd * questions about this implementation to ames!jaw. 234 1.1 cgd */ 235 1.1 cgd static int 236 1.7 wiz zwrite(void *cookie, const char *wbp, int num) 237 1.1 cgd { 238 1.6 lukem code_int i; 239 1.6 lukem int c, disp; 240 1.1 cgd struct s_zstate *zs; 241 1.1 cgd const u_char *bp; 242 1.1 cgd u_char tmp; 243 1.1 cgd int count; 244 1.1 cgd 245 1.1 cgd if (num == 0) 246 1.1 cgd return (0); 247 1.1 cgd 248 1.1 cgd zs = cookie; 249 1.1 cgd count = num; 250 1.13 lukem bp = (const u_char *)wbp; 251 1.1 cgd if (state == S_MIDDLE) 252 1.1 cgd goto middle; 253 1.1 cgd state = S_MIDDLE; 254 1.1 cgd 255 1.3 andrew maxmaxcode = 1L << maxbits; 256 1.1 cgd if (fwrite(magic_header, 257 1.1 cgd sizeof(char), sizeof(magic_header), fp) != sizeof(magic_header)) 258 1.1 cgd return (-1); 259 1.3 andrew tmp = (u_char)(maxbits | block_compress); 260 1.1 cgd if (fwrite(&tmp, sizeof(char), sizeof(tmp), fp) != sizeof(tmp)) 261 1.1 cgd return (-1); 262 1.1 cgd 263 1.1 cgd offset = 0; 264 1.1 cgd bytes_out = 3; /* Includes 3-byte header mojo. */ 265 1.1 cgd out_count = 0; 266 1.1 cgd clear_flg = 0; 267 1.1 cgd ratio = 0; 268 1.1 cgd in_count = 1; 269 1.1 cgd checkpoint = CHECK_GAP; 270 1.1 cgd maxcode = MAXCODE(n_bits = INIT_BITS); 271 1.1 cgd free_ent = ((block_compress) ? FIRST : 256); 272 1.1 cgd 273 1.1 cgd ent = *bp++; 274 1.1 cgd --count; 275 1.1 cgd 276 1.1 cgd hshift = 0; 277 1.1 cgd for (fcode = (long)hsize; fcode < 65536L; fcode *= 2L) 278 1.1 cgd hshift++; 279 1.1 cgd hshift = 8 - hshift; /* Set hash code range bound. */ 280 1.1 cgd 281 1.1 cgd hsize_reg = hsize; 282 1.12 joerg memset(htab, 0xff, hsize_reg * sizeof(count_int)); 283 1.1 cgd 284 1.11 joerg middle: while (count--) { 285 1.1 cgd c = *bp++; 286 1.1 cgd in_count++; 287 1.1 cgd fcode = (long)(((long)c << maxbits) + ent); 288 1.1 cgd i = ((c << hshift) ^ ent); /* Xor hashing. */ 289 1.1 cgd 290 1.1 cgd if (htabof(i) == fcode) { 291 1.1 cgd ent = codetabof(i); 292 1.1 cgd continue; 293 1.1 cgd } else if ((long)htabof(i) < 0) /* Empty slot. */ 294 1.1 cgd goto nomatch; 295 1.1 cgd disp = hsize_reg - i; /* Secondary hash (after G. Knott). */ 296 1.1 cgd if (i == 0) 297 1.1 cgd disp = 1; 298 1.1 cgd probe: if ((i -= disp) < 0) 299 1.1 cgd i += hsize_reg; 300 1.1 cgd 301 1.1 cgd if (htabof(i) == fcode) { 302 1.1 cgd ent = codetabof(i); 303 1.1 cgd continue; 304 1.1 cgd } 305 1.1 cgd if ((long)htabof(i) >= 0) 306 1.1 cgd goto probe; 307 1.1 cgd nomatch: if (output(zs, (code_int) ent) == -1) 308 1.1 cgd return (-1); 309 1.1 cgd out_count++; 310 1.1 cgd ent = c; 311 1.1 cgd if (free_ent < maxmaxcode) { 312 1.1 cgd codetabof(i) = free_ent++; /* code -> hashtable */ 313 1.1 cgd htabof(i) = fcode; 314 1.1 cgd } else if ((count_int)in_count >= 315 1.1 cgd checkpoint && block_compress) { 316 1.1 cgd if (cl_block(zs) == -1) 317 1.1 cgd return (-1); 318 1.1 cgd } 319 1.1 cgd } 320 1.1 cgd return (num); 321 1.1 cgd } 322 1.1 cgd 323 1.1 cgd static int 324 1.7 wiz zclose(void *cookie) 325 1.1 cgd { 326 1.1 cgd struct s_zstate *zs; 327 1.1 cgd int rval; 328 1.1 cgd 329 1.1 cgd zs = cookie; 330 1.1 cgd if (zmode == 'w') { /* Put out the final code. */ 331 1.1 cgd if (output(zs, (code_int) ent) == -1) { 332 1.1 cgd (void)fclose(fp); 333 1.1 cgd free(zs); 334 1.1 cgd return (-1); 335 1.1 cgd } 336 1.1 cgd out_count++; 337 1.1 cgd if (output(zs, (code_int) - 1) == -1) { 338 1.1 cgd (void)fclose(fp); 339 1.1 cgd free(zs); 340 1.1 cgd return (-1); 341 1.1 cgd } 342 1.1 cgd } 343 1.1 cgd rval = fclose(fp) == EOF ? -1 : 0; 344 1.1 cgd free(zs); 345 1.1 cgd return (rval); 346 1.1 cgd } 347 1.1 cgd 348 1.1 cgd /*- 349 1.1 cgd * Output the given code. 350 1.1 cgd * Inputs: 351 1.1 cgd * code: A n_bits-bit integer. If == -1, then EOF. This assumes 352 1.1 cgd * that n_bits =< (long)wordsize - 1. 353 1.1 cgd * Outputs: 354 1.1 cgd * Outputs code to the file. 355 1.1 cgd * Assumptions: 356 1.1 cgd * Chars are 8 bits long. 357 1.1 cgd * Algorithm: 358 1.1 cgd * Maintain a BITS character long buffer (so that 8 codes will 359 1.1 cgd * fit in it exactly). Use the VAX insv instruction to insert each 360 1.1 cgd * code in turn. When the buffer fills up empty it and start over. 361 1.1 cgd */ 362 1.1 cgd 363 1.1 cgd static char_type lmask[9] = 364 1.1 cgd {0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00}; 365 1.1 cgd static char_type rmask[9] = 366 1.1 cgd {0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff}; 367 1.1 cgd 368 1.1 cgd static int 369 1.7 wiz output(struct s_zstate *zs, code_int ocode) 370 1.1 cgd { 371 1.6 lukem int bits, r_off; 372 1.6 lukem char_type *bp; 373 1.1 cgd 374 1.1 cgd r_off = offset; 375 1.1 cgd bits = n_bits; 376 1.1 cgd bp = buf; 377 1.1 cgd if (ocode >= 0) { 378 1.1 cgd /* Get to the first byte. */ 379 1.1 cgd bp += (r_off >> 3); 380 1.1 cgd r_off &= 7; 381 1.1 cgd /* 382 1.1 cgd * Since ocode is always >= 8 bits, only need to mask the first 383 1.1 cgd * hunk on the left. 384 1.1 cgd */ 385 1.6 lukem *bp = (*bp & rmask[r_off]) | ((ocode << r_off) & lmask[r_off]); 386 1.1 cgd bp++; 387 1.1 cgd bits -= (8 - r_off); 388 1.1 cgd ocode >>= 8 - r_off; 389 1.1 cgd /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */ 390 1.1 cgd if (bits >= 8) { 391 1.1 cgd *bp++ = ocode; 392 1.1 cgd ocode >>= 8; 393 1.1 cgd bits -= 8; 394 1.1 cgd } 395 1.1 cgd /* Last bits. */ 396 1.1 cgd if (bits) 397 1.1 cgd *bp = ocode; 398 1.1 cgd offset += n_bits; 399 1.1 cgd if (offset == (n_bits << 3)) { 400 1.1 cgd bp = buf; 401 1.1 cgd bits = n_bits; 402 1.1 cgd bytes_out += bits; 403 1.13 lukem if (fwrite(bp, sizeof(char), bits, fp) != (size_t)bits) 404 1.1 cgd return (-1); 405 1.1 cgd bp += bits; 406 1.1 cgd bits = 0; 407 1.1 cgd offset = 0; 408 1.1 cgd } 409 1.1 cgd /* 410 1.1 cgd * If the next entry is going to be too big for the ocode size, 411 1.1 cgd * then increase it, if possible. 412 1.1 cgd */ 413 1.1 cgd if (free_ent > maxcode || (clear_flg > 0)) { 414 1.1 cgd /* 415 1.1 cgd * Write the whole buffer, because the input side won't 416 1.1 cgd * discover the size increase until after it has read it. 417 1.1 cgd */ 418 1.1 cgd if (offset > 0) { 419 1.13 lukem if (fwrite(buf, 1, n_bits, fp) != (size_t)n_bits) 420 1.1 cgd return (-1); 421 1.1 cgd bytes_out += n_bits; 422 1.1 cgd } 423 1.1 cgd offset = 0; 424 1.1 cgd 425 1.1 cgd if (clear_flg) { 426 1.1 cgd maxcode = MAXCODE(n_bits = INIT_BITS); 427 1.1 cgd clear_flg = 0; 428 1.1 cgd } else { 429 1.1 cgd n_bits++; 430 1.1 cgd if (n_bits == maxbits) 431 1.1 cgd maxcode = maxmaxcode; 432 1.1 cgd else 433 1.1 cgd maxcode = MAXCODE(n_bits); 434 1.1 cgd } 435 1.1 cgd } 436 1.1 cgd } else { 437 1.1 cgd /* At EOF, write the rest of the buffer. */ 438 1.1 cgd if (offset > 0) { 439 1.1 cgd offset = (offset + 7) / 8; 440 1.13 lukem if (fwrite(buf, 1, offset, fp) != (size_t)offset) 441 1.1 cgd return (-1); 442 1.1 cgd bytes_out += offset; 443 1.1 cgd } 444 1.1 cgd offset = 0; 445 1.1 cgd } 446 1.1 cgd return (0); 447 1.1 cgd } 448 1.1 cgd 449 1.1 cgd /* 450 1.1 cgd * Decompress read. This routine adapts to the codes in the file building 451 1.1 cgd * the "string" table on-the-fly; requiring no table to be stored in the 452 1.1 cgd * compressed file. The tables used herein are shared with those of the 453 1.1 cgd * compress() routine. See the definitions above. 454 1.1 cgd */ 455 1.1 cgd static int 456 1.7 wiz zread(void *cookie, char *rbp, int num) 457 1.1 cgd { 458 1.6 lukem u_int count; 459 1.1 cgd struct s_zstate *zs; 460 1.1 cgd u_char *bp, header[3]; 461 1.1 cgd 462 1.1 cgd if (num == 0) 463 1.1 cgd return (0); 464 1.1 cgd 465 1.1 cgd zs = cookie; 466 1.1 cgd count = num; 467 1.1 cgd bp = (u_char *)rbp; 468 1.1 cgd switch (state) { 469 1.1 cgd case S_START: 470 1.1 cgd state = S_MIDDLE; 471 1.1 cgd break; 472 1.1 cgd case S_MIDDLE: 473 1.1 cgd goto middle; 474 1.1 cgd case S_EOF: 475 1.1 cgd goto eof; 476 1.1 cgd } 477 1.1 cgd 478 1.1 cgd /* Check the magic number */ 479 1.1 cgd if (fread(header, 480 1.1 cgd sizeof(char), sizeof(header), fp) != sizeof(header) || 481 1.1 cgd memcmp(header, magic_header, sizeof(magic_header)) != 0) { 482 1.1 cgd errno = EFTYPE; 483 1.1 cgd return (-1); 484 1.1 cgd } 485 1.1 cgd maxbits = header[2]; /* Set -b from file. */ 486 1.1 cgd block_compress = maxbits & BLOCK_MASK; 487 1.1 cgd maxbits &= BIT_MASK; 488 1.1 cgd maxmaxcode = 1L << maxbits; 489 1.15 joerg if (maxbits > BITS || maxbits < 12) { 490 1.1 cgd errno = EFTYPE; 491 1.1 cgd return (-1); 492 1.1 cgd } 493 1.1 cgd /* As above, initialize the first 256 entries in the table. */ 494 1.1 cgd maxcode = MAXCODE(n_bits = INIT_BITS); 495 1.1 cgd for (code = 255; code >= 0; code--) { 496 1.1 cgd tab_prefixof(code) = 0; 497 1.1 cgd tab_suffixof(code) = (char_type) code; 498 1.1 cgd } 499 1.1 cgd free_ent = block_compress ? FIRST : 256; 500 1.15 joerg oldcode = -1; 501 1.1 cgd stackp = de_stack; 502 1.1 cgd 503 1.1 cgd while ((code = getcode(zs)) > -1) { 504 1.1 cgd 505 1.1 cgd if ((code == CLEAR) && block_compress) { 506 1.1 cgd for (code = 255; code >= 0; code--) 507 1.1 cgd tab_prefixof(code) = 0; 508 1.1 cgd clear_flg = 1; 509 1.15 joerg free_ent = FIRST; 510 1.15 joerg oldcode = -1; 511 1.15 joerg continue; 512 1.1 cgd } 513 1.1 cgd incode = code; 514 1.1 cgd 515 1.15 joerg /* Special case for kWkWk string. */ 516 1.1 cgd if (code >= free_ent) { 517 1.15 joerg if (code > free_ent || oldcode == -1) { 518 1.15 joerg /* Bad stream. */ 519 1.15 joerg errno = EINVAL; 520 1.15 joerg return (-1); 521 1.15 joerg } 522 1.1 cgd *stackp++ = finchar; 523 1.1 cgd code = oldcode; 524 1.1 cgd } 525 1.15 joerg /* 526 1.15 joerg * The above condition ensures that code < free_ent. 527 1.15 joerg * The construction of tab_prefixof in turn guarantees that 528 1.15 joerg * each iteration decreases code and therefore stack usage is 529 1.15 joerg * bound by 1 << BITS - 256. 530 1.15 joerg */ 531 1.1 cgd 532 1.1 cgd /* Generate output characters in reverse order. */ 533 1.1 cgd while (code >= 256) { 534 1.1 cgd *stackp++ = tab_suffixof(code); 535 1.1 cgd code = tab_prefixof(code); 536 1.1 cgd } 537 1.1 cgd *stackp++ = finchar = tab_suffixof(code); 538 1.1 cgd 539 1.1 cgd /* And put them out in forward order. */ 540 1.1 cgd middle: do { 541 1.1 cgd if (count-- == 0) 542 1.1 cgd return (num); 543 1.1 cgd *bp++ = *--stackp; 544 1.1 cgd } while (stackp > de_stack); 545 1.1 cgd 546 1.1 cgd /* Generate the new entry. */ 547 1.15 joerg if ((code = free_ent) < maxmaxcode && oldcode != -1) { 548 1.1 cgd tab_prefixof(code) = (u_short) oldcode; 549 1.1 cgd tab_suffixof(code) = finchar; 550 1.1 cgd free_ent = code + 1; 551 1.1 cgd } 552 1.1 cgd 553 1.1 cgd /* Remember previous code. */ 554 1.1 cgd oldcode = incode; 555 1.1 cgd } 556 1.1 cgd state = S_EOF; 557 1.1 cgd eof: return (num - count); 558 1.1 cgd } 559 1.1 cgd 560 1.1 cgd /*- 561 1.1 cgd * Read one code from the standard input. If EOF, return -1. 562 1.1 cgd * Inputs: 563 1.1 cgd * stdin 564 1.1 cgd * Outputs: 565 1.1 cgd * code or -1 is returned. 566 1.1 cgd */ 567 1.1 cgd static code_int 568 1.7 wiz getcode(struct s_zstate *zs) 569 1.1 cgd { 570 1.6 lukem code_int gcode; 571 1.6 lukem int r_off, bits; 572 1.6 lukem char_type *bp; 573 1.1 cgd 574 1.1 cgd bp = gbuf; 575 1.1 cgd if (clear_flg > 0 || roffset >= size || free_ent > maxcode) { 576 1.1 cgd /* 577 1.1 cgd * If the next entry will be too big for the current gcode 578 1.1 cgd * size, then we must increase the size. This implies reading 579 1.1 cgd * a new buffer full, too. 580 1.1 cgd */ 581 1.1 cgd if (free_ent > maxcode) { 582 1.1 cgd n_bits++; 583 1.1 cgd if (n_bits == maxbits) /* Won't get any bigger now. */ 584 1.1 cgd maxcode = maxmaxcode; 585 1.1 cgd else 586 1.1 cgd maxcode = MAXCODE(n_bits); 587 1.1 cgd } 588 1.1 cgd if (clear_flg > 0) { 589 1.1 cgd maxcode = MAXCODE(n_bits = INIT_BITS); 590 1.1 cgd clear_flg = 0; 591 1.1 cgd } 592 1.1 cgd size = fread(gbuf, 1, n_bits, fp); 593 1.1 cgd if (size <= 0) /* End of file. */ 594 1.1 cgd return (-1); 595 1.1 cgd roffset = 0; 596 1.1 cgd /* Round size down to integral number of codes. */ 597 1.1 cgd size = (size << 3) - (n_bits - 1); 598 1.1 cgd } 599 1.1 cgd r_off = roffset; 600 1.1 cgd bits = n_bits; 601 1.1 cgd 602 1.1 cgd /* Get to the first byte. */ 603 1.1 cgd bp += (r_off >> 3); 604 1.1 cgd r_off &= 7; 605 1.1 cgd 606 1.1 cgd /* Get first part (low order bits). */ 607 1.1 cgd gcode = (*bp++ >> r_off); 608 1.1 cgd bits -= (8 - r_off); 609 1.1 cgd r_off = 8 - r_off; /* Now, roffset into gcode word. */ 610 1.1 cgd 611 1.1 cgd /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */ 612 1.1 cgd if (bits >= 8) { 613 1.1 cgd gcode |= *bp++ << r_off; 614 1.1 cgd r_off += 8; 615 1.1 cgd bits -= 8; 616 1.1 cgd } 617 1.1 cgd 618 1.1 cgd /* High order bits. */ 619 1.1 cgd gcode |= (*bp & rmask[bits]) << r_off; 620 1.1 cgd roffset += n_bits; 621 1.1 cgd 622 1.1 cgd return (gcode); 623 1.1 cgd } 624 1.1 cgd 625 1.1 cgd static int 626 1.7 wiz cl_block(struct s_zstate *zs) /* Table clear for block compress. */ 627 1.1 cgd { 628 1.6 lukem long rat; 629 1.1 cgd 630 1.1 cgd checkpoint = in_count + CHECK_GAP; 631 1.1 cgd 632 1.1 cgd if (in_count > 0x007fffff) { /* Shift will overflow. */ 633 1.1 cgd rat = bytes_out >> 8; 634 1.1 cgd if (rat == 0) /* Don't divide by zero. */ 635 1.1 cgd rat = 0x7fffffff; 636 1.1 cgd else 637 1.1 cgd rat = in_count / rat; 638 1.1 cgd } else 639 1.1 cgd rat = (in_count << 8) / bytes_out; /* 8 fractional bits. */ 640 1.1 cgd if (rat > ratio) 641 1.1 cgd ratio = rat; 642 1.1 cgd else { 643 1.1 cgd ratio = 0; 644 1.12 joerg memset(htab, 0xff, hsize * sizeof(count_int)); 645 1.1 cgd free_ent = FIRST; 646 1.1 cgd clear_flg = 1; 647 1.1 cgd if (output(zs, (code_int) CLEAR) == -1) 648 1.1 cgd return (-1); 649 1.1 cgd } 650 1.1 cgd return (0); 651 1.1 cgd } 652 1.1 cgd 653 1.1 cgd FILE * 654 1.7 wiz zopen(const char *fname, const char *mode, int bits) 655 1.1 cgd { 656 1.1 cgd struct s_zstate *zs; 657 1.1 cgd 658 1.6 lukem if ((mode[0] != 'r' && mode[0] != 'w') || mode[1] != '\0' || 659 1.1 cgd bits < 0 || bits > BITS) { 660 1.1 cgd errno = EINVAL; 661 1.1 cgd return (NULL); 662 1.1 cgd } 663 1.1 cgd 664 1.1 cgd if ((zs = calloc(1, sizeof(struct s_zstate))) == NULL) 665 1.1 cgd return (NULL); 666 1.1 cgd 667 1.1 cgd maxbits = bits ? bits : BITS; /* User settable max # bits/code. */ 668 1.3 andrew maxmaxcode = 1 << maxbits; /* Should NEVER generate this code. */ 669 1.1 cgd hsize = HSIZE; /* For dynamic table sizing. */ 670 1.1 cgd free_ent = 0; /* First unused entry. */ 671 1.1 cgd block_compress = BLOCK_MASK; 672 1.1 cgd clear_flg = 0; 673 1.1 cgd ratio = 0; 674 1.1 cgd checkpoint = CHECK_GAP; 675 1.1 cgd in_count = 1; /* Length of input. */ 676 1.1 cgd out_count = 0; /* # of codes output (for debugging). */ 677 1.1 cgd state = S_START; 678 1.1 cgd roffset = 0; 679 1.1 cgd size = 0; 680 1.1 cgd 681 1.1 cgd /* 682 1.1 cgd * Layering compress on top of stdio in order to provide buffering, 683 1.1 cgd * and ensure that reads and write work with the data specified. 684 1.1 cgd */ 685 1.1 cgd if ((fp = fopen(fname, mode)) == NULL) { 686 1.1 cgd free(zs); 687 1.1 cgd return (NULL); 688 1.1 cgd } 689 1.1 cgd switch (*mode) { 690 1.1 cgd case 'r': 691 1.1 cgd zmode = 'r'; 692 1.1 cgd return (funopen(zs, zread, NULL, NULL, zclose)); 693 1.1 cgd case 'w': 694 1.1 cgd zmode = 'w'; 695 1.1 cgd return (funopen(zs, NULL, zwrite, NULL, zclose)); 696 1.1 cgd } 697 1.1 cgd /* NOTREACHED */ 698 1.6 lukem return (NULL); 699 1.1 cgd } 700