zopen.c revision 1.5 1 /* $NetBSD: zopen.c,v 1.5 1995/03/26 09:44:53 glass Exp $ */
2
3 /*-
4 * Copyright (c) 1985, 1986, 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Diomidis Spinellis and James A. Woods, derived from original
9 * work by Spencer Thomas and Joseph Orost.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the University of
22 * California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 */
39
40 #if defined(LIBC_SCCS) && !defined(lint)
41 #if 0
42 static char sccsid[] = "@(#)zopen.c 8.1 (Berkeley) 6/27/93";
43 #else
44 static char rcsid[] = "$NetBSD: zopen.c,v 1.5 1995/03/26 09:44:53 glass Exp $";
45 #endif
46 #endif /* LIBC_SCCS and not lint */
47
48 /*-
49 * fcompress.c - File compression ala IEEE Computer, June 1984.
50 *
51 * Compress authors:
52 * Spencer W. Thomas (decvax!utah-cs!thomas)
53 * Jim McKie (decvax!mcvax!jim)
54 * Steve Davies (decvax!vax135!petsd!peora!srd)
55 * Ken Turkowski (decvax!decwrl!turtlevax!ken)
56 * James A. Woods (decvax!ihnp4!ames!jaw)
57 * Joe Orost (decvax!vax135!petsd!joe)
58 *
59 * Cleaned up and converted to library returning I/O streams by
60 * Diomidis Spinellis <dds (at) doc.ic.ac.uk>.
61 *
62 * zopen(filename, mode, bits)
63 * Returns a FILE * that can be used for read or write. The modes
64 * supported are only "r" and "w". Seeking is not allowed. On
65 * reading the file is decompressed, on writing it is compressed.
66 * The output is compatible with compress(1) with 16 bit tables.
67 * Any file produced by compress(1) can be read.
68 */
69
70 #include <sys/param.h>
71 #include <sys/stat.h>
72
73 #include <ctype.h>
74 #include <errno.h>
75 #include <signal.h>
76 #include <stdio.h>
77 #include <stdlib.h>
78 #include <string.h>
79 #include <unistd.h>
80
81 #define BITS 16 /* Default bits. */
82 #define HSIZE 69001 /* 95% occupancy */
83
84 /* A code_int must be able to hold 2**BITS values of type int, and also -1. */
85 typedef long code_int;
86 typedef long count_int;
87
88 typedef u_char char_type;
89 static char_type magic_header[] =
90 {'\037', '\235'}; /* 1F 9D */
91
92 #define BIT_MASK 0x1f /* Defines for third byte of header. */
93 #define BLOCK_MASK 0x80
94
95 /*
96 * Masks 0x40 and 0x20 are free. I think 0x20 should mean that there is
97 * a fourth header byte (for expansion).
98 */
99 #define INIT_BITS 9 /* Initial number of bits/code. */
100
101 #define MAXCODE(n_bits) ((1 << (n_bits)) - 1)
102
103 struct s_zstate {
104 FILE *zs_fp; /* File stream for I/O */
105 char zs_mode; /* r or w */
106 enum {
107 S_START, S_MIDDLE, S_EOF
108 } zs_state; /* State of computation */
109 int zs_n_bits; /* Number of bits/code. */
110 int zs_maxbits; /* User settable max # bits/code. */
111 code_int zs_maxcode; /* Maximum code, given n_bits. */
112 code_int zs_maxmaxcode; /* Should NEVER generate this code. */
113 count_int zs_htab [HSIZE];
114 u_short zs_codetab [HSIZE];
115 code_int zs_hsize; /* For dynamic table sizing. */
116 code_int zs_free_ent; /* First unused entry. */
117 /*
118 * Block compression parameters -- after all codes are used up,
119 * and compression rate changes, start over.
120 */
121 int zs_block_compress;
122 int zs_clear_flg;
123 long zs_ratio;
124 count_int zs_checkpoint;
125 int zs_offset;
126 long zs_in_count; /* Length of input. */
127 long zs_bytes_out; /* Length of compressed output. */
128 long zs_out_count; /* # of codes output (for debugging). */
129 char_type zs_buf[BITS];
130 union {
131 struct {
132 long zs_fcode;
133 code_int zs_ent;
134 code_int zs_hsize_reg;
135 int zs_hshift;
136 } w; /* Write paramenters */
137 struct {
138 char_type *zs_stackp;
139 int zs_finchar;
140 code_int zs_code, zs_oldcode, zs_incode;
141 int zs_roffset, zs_size;
142 char_type zs_gbuf[BITS];
143 } r; /* Read parameters */
144 } u;
145 };
146
147 /* Definitions to retain old variable names */
148 #define fp zs->zs_fp
149 #define zmode zs->zs_mode
150 #define state zs->zs_state
151 #define n_bits zs->zs_n_bits
152 #define maxbits zs->zs_maxbits
153 #define maxcode zs->zs_maxcode
154 #define maxmaxcode zs->zs_maxmaxcode
155 #define htab zs->zs_htab
156 #define codetab zs->zs_codetab
157 #define hsize zs->zs_hsize
158 #define free_ent zs->zs_free_ent
159 #define block_compress zs->zs_block_compress
160 #define clear_flg zs->zs_clear_flg
161 #define ratio zs->zs_ratio
162 #define checkpoint zs->zs_checkpoint
163 #define offset zs->zs_offset
164 #define in_count zs->zs_in_count
165 #define bytes_out zs->zs_bytes_out
166 #define out_count zs->zs_out_count
167 #define buf zs->zs_buf
168 #define fcode zs->u.w.zs_fcode
169 #define hsize_reg zs->u.w.zs_hsize_reg
170 #define ent zs->u.w.zs_ent
171 #define hshift zs->u.w.zs_hshift
172 #define stackp zs->u.r.zs_stackp
173 #define finchar zs->u.r.zs_finchar
174 #define code zs->u.r.zs_code
175 #define oldcode zs->u.r.zs_oldcode
176 #define incode zs->u.r.zs_incode
177 #define roffset zs->u.r.zs_roffset
178 #define size zs->u.r.zs_size
179 #define gbuf zs->u.r.zs_gbuf
180
181 /*
182 * To save much memory, we overlay the table used by compress() with those
183 * used by decompress(). The tab_prefix table is the same size and type as
184 * the codetab. The tab_suffix table needs 2**BITS characters. We get this
185 * from the beginning of htab. The output stack uses the rest of htab, and
186 * contains characters. There is plenty of room for any possible stack
187 * (stack used to be 8000 characters).
188 */
189
190 #define htabof(i) htab[i]
191 #define codetabof(i) codetab[i]
192
193 #define tab_prefixof(i) codetabof(i)
194 #define tab_suffixof(i) ((char_type *)(htab))[i]
195 #define de_stack ((char_type *)&tab_suffixof(1 << BITS))
196
197 #define CHECK_GAP 10000 /* Ratio check interval. */
198
199 /*
200 * the next two codes should not be changed lightly, as they must not
201 * lie within the contiguous general code space.
202 */
203 #define FIRST 257 /* First free entry. */
204 #define CLEAR 256 /* Table clear output code. */
205
206 static int cl_block __P((struct s_zstate *));
207 static void cl_hash __P((struct s_zstate *, count_int));
208 static code_int getcode __P((struct s_zstate *));
209 static int output __P((struct s_zstate *, code_int));
210 static int zclose __P((void *));
211 static int zread __P((void *, char *, int));
212 static int zwrite __P((void *, const char *, int));
213
214 /*-
215 * Algorithm from "A Technique for High Performance Data Compression",
216 * Terry A. Welch, IEEE Computer Vol 17, No 6 (June 1984), pp 8-19.
217 *
218 * Algorithm:
219 * Modified Lempel-Ziv method (LZW). Basically finds common
220 * substrings and replaces them with a variable size code. This is
221 * deterministic, and can be done on the fly. Thus, the decompression
222 * procedure needs no input table, but tracks the way the table was built.
223 */
224
225 /*-
226 * compress write
227 *
228 * Algorithm: use open addressing double hashing (no chaining) on the
229 * prefix code / next character combination. We do a variant of Knuth's
230 * algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
231 * secondary probe. Here, the modular division first probe is gives way
232 * to a faster exclusive-or manipulation. Also do block compression with
233 * an adaptive reset, whereby the code table is cleared when the compression
234 * ratio decreases, but after the table fills. The variable-length output
235 * codes are re-sized at this point, and a special CLEAR code is generated
236 * for the decompressor. Late addition: construct the table according to
237 * file size for noticeable speed improvement on small files. Please direct
238 * questions about this implementation to ames!jaw.
239 */
240 static int
241 zwrite(cookie, wbp, num)
242 void *cookie;
243 const char *wbp;
244 int num;
245 {
246 register code_int i;
247 register int c, disp;
248 struct s_zstate *zs;
249 const u_char *bp;
250 u_char tmp;
251 int count;
252
253 if (num == 0)
254 return (0);
255
256 zs = cookie;
257 count = num;
258 bp = (u_char *)wbp;
259 if (state == S_MIDDLE)
260 goto middle;
261 state = S_MIDDLE;
262
263 maxmaxcode = 1L << maxbits;
264 if (fwrite(magic_header,
265 sizeof(char), sizeof(magic_header), fp) != sizeof(magic_header))
266 return (-1);
267 tmp = (u_char)(maxbits | block_compress);
268 if (fwrite(&tmp, sizeof(char), sizeof(tmp), fp) != sizeof(tmp))
269 return (-1);
270
271 offset = 0;
272 bytes_out = 3; /* Includes 3-byte header mojo. */
273 out_count = 0;
274 clear_flg = 0;
275 ratio = 0;
276 in_count = 1;
277 checkpoint = CHECK_GAP;
278 maxcode = MAXCODE(n_bits = INIT_BITS);
279 free_ent = ((block_compress) ? FIRST : 256);
280
281 ent = *bp++;
282 --count;
283
284 hshift = 0;
285 for (fcode = (long)hsize; fcode < 65536L; fcode *= 2L)
286 hshift++;
287 hshift = 8 - hshift; /* Set hash code range bound. */
288
289 hsize_reg = hsize;
290 cl_hash(zs, (count_int)hsize_reg); /* Clear hash table. */
291
292 middle: for (i = 0; count--;) {
293 c = *bp++;
294 in_count++;
295 fcode = (long)(((long)c << maxbits) + ent);
296 i = ((c << hshift) ^ ent); /* Xor hashing. */
297
298 if (htabof(i) == fcode) {
299 ent = codetabof(i);
300 continue;
301 } else if ((long)htabof(i) < 0) /* Empty slot. */
302 goto nomatch;
303 disp = hsize_reg - i; /* Secondary hash (after G. Knott). */
304 if (i == 0)
305 disp = 1;
306 probe: if ((i -= disp) < 0)
307 i += hsize_reg;
308
309 if (htabof(i) == fcode) {
310 ent = codetabof(i);
311 continue;
312 }
313 if ((long)htabof(i) >= 0)
314 goto probe;
315 nomatch: if (output(zs, (code_int) ent) == -1)
316 return (-1);
317 out_count++;
318 ent = c;
319 if (free_ent < maxmaxcode) {
320 codetabof(i) = free_ent++; /* code -> hashtable */
321 htabof(i) = fcode;
322 } else if ((count_int)in_count >=
323 checkpoint && block_compress) {
324 if (cl_block(zs) == -1)
325 return (-1);
326 }
327 }
328 return (num);
329 }
330
331 static int
332 zclose(cookie)
333 void *cookie;
334 {
335 struct s_zstate *zs;
336 int rval;
337
338 zs = cookie;
339 if (zmode == 'w') { /* Put out the final code. */
340 if (output(zs, (code_int) ent) == -1) {
341 (void)fclose(fp);
342 free(zs);
343 return (-1);
344 }
345 out_count++;
346 if (output(zs, (code_int) - 1) == -1) {
347 (void)fclose(fp);
348 free(zs);
349 return (-1);
350 }
351 }
352 rval = fclose(fp) == EOF ? -1 : 0;
353 free(zs);
354 return (rval);
355 }
356
357 /*-
358 * Output the given code.
359 * Inputs:
360 * code: A n_bits-bit integer. If == -1, then EOF. This assumes
361 * that n_bits =< (long)wordsize - 1.
362 * Outputs:
363 * Outputs code to the file.
364 * Assumptions:
365 * Chars are 8 bits long.
366 * Algorithm:
367 * Maintain a BITS character long buffer (so that 8 codes will
368 * fit in it exactly). Use the VAX insv instruction to insert each
369 * code in turn. When the buffer fills up empty it and start over.
370 */
371
372 static char_type lmask[9] =
373 {0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00};
374 static char_type rmask[9] =
375 {0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff};
376
377 static int
378 output(zs, ocode)
379 struct s_zstate *zs;
380 code_int ocode;
381 {
382 register int bits, r_off;
383 register char_type *bp;
384
385 r_off = offset;
386 bits = n_bits;
387 bp = buf;
388 if (ocode >= 0) {
389 /* Get to the first byte. */
390 bp += (r_off >> 3);
391 r_off &= 7;
392 /*
393 * Since ocode is always >= 8 bits, only need to mask the first
394 * hunk on the left.
395 */
396 *bp = (*bp & rmask[r_off]) | (ocode << r_off) & lmask[r_off];
397 bp++;
398 bits -= (8 - r_off);
399 ocode >>= 8 - r_off;
400 /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
401 if (bits >= 8) {
402 *bp++ = ocode;
403 ocode >>= 8;
404 bits -= 8;
405 }
406 /* Last bits. */
407 if (bits)
408 *bp = ocode;
409 offset += n_bits;
410 if (offset == (n_bits << 3)) {
411 bp = buf;
412 bits = n_bits;
413 bytes_out += bits;
414 if (fwrite(bp, sizeof(char), bits, fp) != bits)
415 return (-1);
416 bp += bits;
417 bits = 0;
418 offset = 0;
419 }
420 /*
421 * If the next entry is going to be too big for the ocode size,
422 * then increase it, if possible.
423 */
424 if (free_ent > maxcode || (clear_flg > 0)) {
425 /*
426 * Write the whole buffer, because the input side won't
427 * discover the size increase until after it has read it.
428 */
429 if (offset > 0) {
430 if (fwrite(buf, 1, n_bits, fp) != n_bits)
431 return (-1);
432 bytes_out += n_bits;
433 }
434 offset = 0;
435
436 if (clear_flg) {
437 maxcode = MAXCODE(n_bits = INIT_BITS);
438 clear_flg = 0;
439 } else {
440 n_bits++;
441 if (n_bits == maxbits)
442 maxcode = maxmaxcode;
443 else
444 maxcode = MAXCODE(n_bits);
445 }
446 }
447 } else {
448 /* At EOF, write the rest of the buffer. */
449 if (offset > 0) {
450 offset = (offset + 7) / 8;
451 if (fwrite(buf, 1, offset, fp) != offset)
452 return (-1);
453 bytes_out += offset;
454 }
455 offset = 0;
456 }
457 return (0);
458 }
459
460 /*
461 * Decompress read. This routine adapts to the codes in the file building
462 * the "string" table on-the-fly; requiring no table to be stored in the
463 * compressed file. The tables used herein are shared with those of the
464 * compress() routine. See the definitions above.
465 */
466 static int
467 zread(cookie, rbp, num)
468 void *cookie;
469 char *rbp;
470 int num;
471 {
472 register u_int count;
473 struct s_zstate *zs;
474 u_char *bp, header[3];
475
476 if (num == 0)
477 return (0);
478
479 zs = cookie;
480 count = num;
481 bp = (u_char *)rbp;
482 switch (state) {
483 case S_START:
484 state = S_MIDDLE;
485 break;
486 case S_MIDDLE:
487 goto middle;
488 case S_EOF:
489 goto eof;
490 }
491
492 /* Check the magic number */
493 if (fread(header,
494 sizeof(char), sizeof(header), fp) != sizeof(header) ||
495 memcmp(header, magic_header, sizeof(magic_header)) != 0) {
496 errno = EFTYPE;
497 return (-1);
498 }
499 maxbits = header[2]; /* Set -b from file. */
500 block_compress = maxbits & BLOCK_MASK;
501 maxbits &= BIT_MASK;
502 maxmaxcode = 1L << maxbits;
503 if (maxbits > BITS) {
504 errno = EFTYPE;
505 return (-1);
506 }
507 /* As above, initialize the first 256 entries in the table. */
508 maxcode = MAXCODE(n_bits = INIT_BITS);
509 for (code = 255; code >= 0; code--) {
510 tab_prefixof(code) = 0;
511 tab_suffixof(code) = (char_type) code;
512 }
513 free_ent = block_compress ? FIRST : 256;
514
515 finchar = oldcode = getcode(zs);
516 if (oldcode == -1) /* EOF already? */
517 return (0); /* Get out of here */
518
519 /* First code must be 8 bits = char. */
520 *bp++ = (u_char)finchar;
521 count--;
522 stackp = de_stack;
523
524 while ((code = getcode(zs)) > -1) {
525
526 if ((code == CLEAR) && block_compress) {
527 for (code = 255; code >= 0; code--)
528 tab_prefixof(code) = 0;
529 clear_flg = 1;
530 free_ent = FIRST - 1;
531 if ((code = getcode(zs)) == -1) /* O, untimely death! */
532 break;
533 }
534 incode = code;
535
536 /* Special case for KwKwK string. */
537 if (code >= free_ent) {
538 *stackp++ = finchar;
539 code = oldcode;
540 }
541
542 /* Generate output characters in reverse order. */
543 while (code >= 256) {
544 *stackp++ = tab_suffixof(code);
545 code = tab_prefixof(code);
546 }
547 *stackp++ = finchar = tab_suffixof(code);
548
549 /* And put them out in forward order. */
550 middle: do {
551 if (count-- == 0)
552 return (num);
553 *bp++ = *--stackp;
554 } while (stackp > de_stack);
555
556 /* Generate the new entry. */
557 if ((code = free_ent) < maxmaxcode) {
558 tab_prefixof(code) = (u_short) oldcode;
559 tab_suffixof(code) = finchar;
560 free_ent = code + 1;
561 }
562
563 /* Remember previous code. */
564 oldcode = incode;
565 }
566 state = S_EOF;
567 eof: return (num - count);
568 }
569
570 /*-
571 * Read one code from the standard input. If EOF, return -1.
572 * Inputs:
573 * stdin
574 * Outputs:
575 * code or -1 is returned.
576 */
577 static code_int
578 getcode(zs)
579 struct s_zstate *zs;
580 {
581 register code_int gcode;
582 register int r_off, bits;
583 register char_type *bp;
584
585 bp = gbuf;
586 if (clear_flg > 0 || roffset >= size || free_ent > maxcode) {
587 /*
588 * If the next entry will be too big for the current gcode
589 * size, then we must increase the size. This implies reading
590 * a new buffer full, too.
591 */
592 if (free_ent > maxcode) {
593 n_bits++;
594 if (n_bits == maxbits) /* Won't get any bigger now. */
595 maxcode = maxmaxcode;
596 else
597 maxcode = MAXCODE(n_bits);
598 }
599 if (clear_flg > 0) {
600 maxcode = MAXCODE(n_bits = INIT_BITS);
601 clear_flg = 0;
602 }
603 size = fread(gbuf, 1, n_bits, fp);
604 if (size <= 0) /* End of file. */
605 return (-1);
606 roffset = 0;
607 /* Round size down to integral number of codes. */
608 size = (size << 3) - (n_bits - 1);
609 }
610 r_off = roffset;
611 bits = n_bits;
612
613 /* Get to the first byte. */
614 bp += (r_off >> 3);
615 r_off &= 7;
616
617 /* Get first part (low order bits). */
618 gcode = (*bp++ >> r_off);
619 bits -= (8 - r_off);
620 r_off = 8 - r_off; /* Now, roffset into gcode word. */
621
622 /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
623 if (bits >= 8) {
624 gcode |= *bp++ << r_off;
625 r_off += 8;
626 bits -= 8;
627 }
628
629 /* High order bits. */
630 gcode |= (*bp & rmask[bits]) << r_off;
631 roffset += n_bits;
632
633 return (gcode);
634 }
635
636 static int
637 cl_block(zs) /* Table clear for block compress. */
638 struct s_zstate *zs;
639 {
640 register long rat;
641
642 checkpoint = in_count + CHECK_GAP;
643
644 if (in_count > 0x007fffff) { /* Shift will overflow. */
645 rat = bytes_out >> 8;
646 if (rat == 0) /* Don't divide by zero. */
647 rat = 0x7fffffff;
648 else
649 rat = in_count / rat;
650 } else
651 rat = (in_count << 8) / bytes_out; /* 8 fractional bits. */
652 if (rat > ratio)
653 ratio = rat;
654 else {
655 ratio = 0;
656 cl_hash(zs, (count_int) hsize);
657 free_ent = FIRST;
658 clear_flg = 1;
659 if (output(zs, (code_int) CLEAR) == -1)
660 return (-1);
661 }
662 return (0);
663 }
664
665 static void
666 cl_hash(zs, cl_hsize) /* Reset code table. */
667 struct s_zstate *zs;
668 register count_int cl_hsize;
669 {
670 register count_int *htab_p;
671 register long i, m1;
672
673 m1 = -1;
674 htab_p = htab + cl_hsize;
675 i = cl_hsize - 16;
676 do { /* Might use Sys V memset(3) here. */
677 *(htab_p - 16) = m1;
678 *(htab_p - 15) = m1;
679 *(htab_p - 14) = m1;
680 *(htab_p - 13) = m1;
681 *(htab_p - 12) = m1;
682 *(htab_p - 11) = m1;
683 *(htab_p - 10) = m1;
684 *(htab_p - 9) = m1;
685 *(htab_p - 8) = m1;
686 *(htab_p - 7) = m1;
687 *(htab_p - 6) = m1;
688 *(htab_p - 5) = m1;
689 *(htab_p - 4) = m1;
690 *(htab_p - 3) = m1;
691 *(htab_p - 2) = m1;
692 *(htab_p - 1) = m1;
693 htab_p -= 16;
694 } while ((i -= 16) >= 0);
695 for (i += 16; i > 0; i--)
696 *--htab_p = m1;
697 }
698
699 FILE *
700 zopen(fname, mode, bits)
701 const char *fname, *mode;
702 int bits;
703 {
704 struct s_zstate *zs;
705
706 if (mode[0] != 'r' && mode[0] != 'w' || mode[1] != '\0' ||
707 bits < 0 || bits > BITS) {
708 errno = EINVAL;
709 return (NULL);
710 }
711
712 if ((zs = calloc(1, sizeof(struct s_zstate))) == NULL)
713 return (NULL);
714
715 maxbits = bits ? bits : BITS; /* User settable max # bits/code. */
716 maxmaxcode = 1 << maxbits; /* Should NEVER generate this code. */
717 hsize = HSIZE; /* For dynamic table sizing. */
718 free_ent = 0; /* First unused entry. */
719 block_compress = BLOCK_MASK;
720 clear_flg = 0;
721 ratio = 0;
722 checkpoint = CHECK_GAP;
723 in_count = 1; /* Length of input. */
724 out_count = 0; /* # of codes output (for debugging). */
725 state = S_START;
726 roffset = 0;
727 size = 0;
728
729 /*
730 * Layering compress on top of stdio in order to provide buffering,
731 * and ensure that reads and write work with the data specified.
732 */
733 if ((fp = fopen(fname, mode)) == NULL) {
734 free(zs);
735 return (NULL);
736 }
737 switch (*mode) {
738 case 'r':
739 zmode = 'r';
740 return (funopen(zs, zread, NULL, NULL, zclose));
741 case 'w':
742 zmode = 'w';
743 return (funopen(zs, NULL, zwrite, NULL, zclose));
744 }
745 /* NOTREACHED */
746 }
747