Home | History | Annotate | Line # | Download | only in config
TODO revision 1.10
      1 o Call module as module.
      2 
      3   Until now, everything is called as attribute.  Separate module from it:
      4 
      5 	- Module is a collection of code (*.[cSo]), and provides a function.
      6 	  Module can depend on other modules.
      7 
      8 	- Attribute provides metadata for modules.  One module can have
      9 	  multiple attributes.  Attribute doesn't generate a module (*.o,
     10 	  *.ko).
     11 
     12 o Emit everything (ioconf.*, Makefile, ...) per-attribute.
     13 
     14   config(9) related metadata (cfdriver, cfattach, cfdata, ...) should be
     15   collected using linker.  Create ELF sections like
     16   .{rodata,data}.config.{cfdriver,cfattach,cfdata}.  Provide reference
     17   symbols (e.g. cfdriverinit[]) using linker script.  Sort entries by name
     18   to lookup entries by binary search in kernel.
     19 
     20 o Generate modular(9) related information.  Especially module dependency.
     21 
     22   At this moment modular(9) modules hardcode dependency in *.c using the
     23   MODULE() macro:
     24 
     25 	MODULE(MODULE_CLASS_DRIVER, hdaudio, "pci");
     26 
     27   This information already exists in config(5) definitions (files.*).
     28   Extend config(5) to be able to specify module's class.
     29 
     30   Ideally these module metadata are kept somewhere in ELF headers, so that
     31   loaders (e.g. boot(8)) can easily read.  One idea is to abuse DYNAMIC
     32   sections to record dependency, as shared library does.  (Feasibility
     33   unknown.)
     34 
     35 o Rename "interface attribute" to "bus".
     36 
     37   Instead of
     38 
     39 	define	audiobus {}
     40 	attach	audio at audiobus
     41 
     42   Do like this
     43 
     44 	defbus	audiobus {}
     45 	attach	audio at audiobus
     46 
     47 o Retire "attach foo at bar with foo_bar.c"
     48 
     49   Most of these should be rewritten by defining a common interface attribute
     50   "foobus", instead of writing multiple attachments.  com(4), ld(4), ehci(4)
     51   are typical examples.  For ehci(4), EHCI-capable controller drivers implement
     52   "ehcibus" interface, like:
     53 
     54 	defne	ehcibus {}
     55 	device	imxehci: ehcibus
     56 
     57   These drivers' attach functions call config_found() to attach ehci(4) via
     58   the "ehcibus" interface attribute, instead of calling ehci_init() directly.
     59   Same for com(4) (com_attach_subr()) and ld(4) (ldattach()).
     60 
     61 o Sort objects in more reasonable order.
     62 
     63   Put machdep.ko in the lowest address.  uvm.ko and kern.ko follow.
     64 
     65   Kill alphabetical sort (${OBJS:O} in sys/conf/Makefile.inc.kern.
     66 
     67   Use ldscript.  Do like this
     68 
     69 	.text :
     70 	AT (ADDR(.text) & 0x0fffffff)
     71 	{
     72 	  *(.text.machdep.locore.entry)
     73 	  *(.text.machdep.locore)
     74 	  *(.text.machdep)
     75 	  *(.text)
     76 	  *(.text.*)
     77 	  :
     78 
     79   Kill linker definitions in sys/conf/Makefile.inc.kern.
     80 
     81 o Differentiate "options" and "flags"/"params".
     82 
     83   "options" enables features by adding *.c files (via attributes).
     84 
     85   "flags" and "params" are to change contents of *.c files.  These don't add
     86   *.c files to the result kernel, or don't build attributes (modules).
     87 
     88 o Make flags/params per attributes (modules).
     89 
     90   Basically flags and params are cpp(1) #define's generated in opt_*.h.  Make
     91   them local to one attributes (modules).  Flags/params which affects files
     92   across attributes (modules) are possible, but should be discouraged.
     93 
     94 o Generate things only by definitions.
     95 
     96   In the ideal dynamically modular world, "selection" will be done not at
     97   compile time but at runtime.  Users select their wanted modules, by
     98   dynamically loading them.
     99 
    100   This means that the system provides all choices; that is, build all modules
    101   in the source tree.  Necessary information is defined in the "definition"
    102   part.
    103 
    104 o Split cfdata.
    105 
    106   cfdata is a set of pattern matching rules to enable devices at runtime device
    107   auto-configuration.  It is pure data and can (should) be generated separately
    108   from the code.
    109 
    110 o Allow easier adding and removing of options.
    111 
    112   It should be possible to add or remove options, flags, etc.,
    113   without regard to whether or not they are already defined.
    114   For example, a configuration like this:
    115 
    116 	include GENERIC
    117 	options FOO
    118 	no options BAR
    119 
    120   should work regardless of whether or not options FOO and/or
    121   options BAR were defined in GENERIC.  It should not give
    122   errors like "options BAR was already defined" or "options FOO
    123   was not defined".
    124 
    125 o Introduce "class".
    126 
    127   Every module should be classified as at least one class, as modular(9)
    128   modules already do.  For example, file systems are marked as "vfs", network
    129   protocols are "netproto".
    130 
    131   Consider to merge "devclass" into "class".
    132 
    133   For syntax clarity, class names could be used as a keyword to select the
    134   class's instance module:
    135 
    136 	# Define net80211 module as netproto class
    137 	class netproto
    138 	define net80211: netproto
    139 
    140 	# Select net80211 to be builtin
    141 	netproto net80211
    142 
    143   Accordingly device/attach selection syntax should be revisited.
    144 
    145 o Support kernel constructor/destructor (.kctors/.kdtors)
    146 
    147   Initialization and finalization should be called via constructors and
    148   destructors.  Don't hardcode those sequences as sys/kern/init_main.c:main()
    149   does.
    150 
    151   The order of .kctors/.kdtors is resolved by dependency.  The difference from
    152   userland is that in kernel depended ones are located in lower addresses;
    153   "machdep" module is the lowest.  Thus the lowest entry in .ctors must be
    154   executed the first.
    155 
    156   The .kctors/.kdtors entries are executed by kernel's main() function, unlike
    157   userland where start code executes .ctors/.dtors before main().  The hardcoded
    158   sequence of various subsystem initializations in init_main.c:main() will be
    159   replaced by an array of .kctors invocations, and #ifdef's there will be gone.
    160 
    161 o Replace linkset.
    162 
    163   Don't allow kernel subsystems create random ELF sections (with potentially
    164   long names) in the final kernel.  To collect some data in statically linked
    165   modules, creating intermediate sections (e.g. .data.linkset.sysctl) and
    166   exporting the start/end symbols (e.g. _data_linkset_sysctl_{start,end})
    167   using linker script should be fine.
    168 
    169   Dynamically loaded modules have to register those entries via constructors
    170   (functions).  This means that dynamically loaded modules are flexible but
    171   come with overhead.
    172 
    173 o Shared kernel objects.
    174 
    175   Since NetBSD has not established a clear kernel ABI, every single kernel
    176   has to build all the objects by their own.  As a result, similar kernels
    177   (e.g. evbarm kernels) repeatedly compile similar objects, that is waste of
    178   energy & space.
    179 
    180   Share them if possible.  For evb* ports, ideally everything except machdep.ko
    181   should be shared.
    182 
    183   While leaving optimizations as options (CPU specific optimizations, inlined
    184   bus_space(9) operations, etc.) for users, the official binaries build
    185   provided by TNF should be as portable as possible.
    186 
    187 o Control ELF sections using linker script.
    188 
    189   Now kernel is linked and built directly from object files (*.o).  Each port
    190   has an MD linker script, which does everything needed to be done at link
    191   time.  As a result, they do from MI alignment restriction (read_mostly,
    192   cacheline_aligned) to load address specification for external boot loaders.
    193 
    194   Make this into multiple stages to make linkage more structural.  Especially,
    195   reserve the final link for purely MD purpose.
    196 
    197 	Monolithic build:
    198 		     *.o  ---> netbsd.ko	Generic MI linkage
    199 		netbsd.ko ---> netbsd.ro	Kernel MI linkage
    200 		netbsd.ro ---> netbsd		Kernel MD linkage
    201 
    202 	Modular build (kernel):
    203 		     *.o  --->      *.ko	Generic + Per-module MI linkage
    204 		     *.ko ---> netbsd.ro	Kernel MI linkage
    205 		netbsd.ro ---> netbsd		Kernel MD linkage
    206 
    207 	Modular build (module):
    208 		     *.o  --->      *.ko	Generic + Per-module MI linkage
    209 		     *.ko --->      *.ro	Modular MI linkage
    210 		     *.ro --->      *.kmod	Modular MD linkage
    211 
    212   Genric MI linkage is for processing MI linkage that can be applied generally.
    213   Data section alignment (.data.read_mostly and .data.cacheline_aligned) is
    214   processed here.
    215 
    216   Per-module MI linkage is for modules that want some ordering.  For example,
    217   machdep.ko wants to put entry code at the top of .text and .data.
    218 
    219   Kernel MI linkage is for collecting kernel global section data, that is what
    220   link-set is used for now.  Once they are collected and symbols to the ranges
    221   are assigned, those sections are merged into the pre-existing sections
    222   (.rodata) because link-set sections in "netbsd" will never be interpreted by
    223   external loaders.
    224 
    225   Kernel MD linkage is used purely for MD purposes, that is, how kernels are
    226   loaded by external loaders.  It might be possible that one kernel relocatable
    227   (netbsd.ro) is linked into multiple final kernel image (netbsd) for diferent
    228   load addresses.
    229 
    230   XXX Modular MI linkage 
    231   XXX Modular MD linkage
    232