Home | History | Annotate | Line # | Download | only in config
TODO revision 1.14
      1 o Call module as module.
      2 
      3   Until now, everything is called as attribute.  Separate module from it:
      4 
      5 	- Module is a collection of code (*.[cSo]), and provides a function.
      6 	  Module can depend on other modules.
      7 
      8 	- Attribute provides metadata for modules.  One module can have
      9 	  multiple attributes.  Attribute doesn't generate a module (*.o,
     10 	  *.ko).
     11 
     12 o Emit everything (ioconf.*, Makefile, ...) per-attribute.
     13 
     14   config(9) related metadata (cfdriver, cfattach, cfdata, ...) should be
     15   collected using linker.  Create ELF sections like
     16   .{rodata,data}.config.{cfdriver,cfattach,cfdata}.  Provide reference
     17   symbols (e.g. cfdriverinit[]) using linker script.  Sort entries by name
     18   to lookup entries by binary search in kernel.
     19 
     20 o Generate modular(9) related information.  Especially module dependency.
     21 
     22   At this moment modular(9) modules hardcode dependency in *.c using the
     23   MODULE() macro:
     24 
     25 	MODULE(MODULE_CLASS_DRIVER, hdaudio, "pci");
     26 
     27   This information already exists in config(5) definitions (files.*).
     28   Extend config(5) to be able to specify module's class.
     29 
     30   Ideally these module metadata are kept somewhere in ELF headers, so that
     31   loaders (e.g. boot(8)) can easily read.  One idea is to abuse DYNAMIC
     32   sections to record dependency, as shared library does.  (Feasibility
     33   unknown.)
     34 
     35 o Rename "interface attribute" to "bus".
     36 
     37   Instead of
     38 
     39 	define	audiobus {}
     40 	attach	audio at audiobus
     41 
     42   Do like this
     43 
     44 	defbus	audiobus {}
     45 	attach	audio at audiobus
     46 
     47 o Retire "attach foo at bar with foo_bar.c"
     48 
     49   Most of these should be rewritten by defining a common interface attribute
     50   "foobus", instead of writing multiple attachments.  com(4), ld(4), ehci(4)
     51   are typical examples.  For ehci(4), EHCI-capable controller drivers implement
     52   "ehcibus" interface, like:
     53 
     54 	defne	ehcibus {}
     55 	device	imxehci: ehcibus
     56 
     57   These drivers' attach functions call config_found() to attach ehci(4) via
     58   the "ehcibus" interface attribute, instead of calling ehci_init() directly.
     59   Same for com(4) (com_attach_subr()) and ld(4) (ldattach()).
     60 
     61 o Sort objects in more reasonable order.
     62 
     63   Put machdep.ko in the lowest address.  uvm.ko and kern.ko follow.
     64 
     65   Kill alphabetical sort (${OBJS:O} in sys/conf/Makefile.inc.kern.
     66 
     67   Use ldscript.  Do like this
     68 
     69 	.text :
     70 	AT (ADDR(.text) & 0x0fffffff)
     71 	{
     72 	  *(.text.machdep.locore.entry)
     73 	  *(.text.machdep.locore)
     74 	  *(.text.machdep)
     75 	  *(.text)
     76 	  *(.text.*)
     77 	  :
     78 
     79   Kill linker definitions in sys/conf/Makefile.inc.kern.
     80 
     81 o Differentiate "options" and "flags"/"params".
     82 
     83   "options" enables features by adding *.c files (via attributes).
     84 
     85   "flags" and "params" are to change contents of *.c files.  These don't add
     86   *.c files to the result kernel, or don't build attributes (modules).
     87 
     88 o Make flags/params per attributes (modules).
     89 
     90   Basically flags and params are cpp(1) #define's generated in opt_*.h.  Make
     91   them local to one attributes (modules).  Flags/params which affects files
     92   across attributes (modules) are possible, but should be discouraged.
     93 
     94 o Generate things only by definitions.
     95 
     96   In the ideal dynamically modular world, "selection" will be done not at
     97   compile time but at runtime.  Users select their wanted modules, by
     98   dynamically loading them.
     99 
    100   This means that the system provides all choices; that is, build all modules
    101   in the source tree.  Necessary information is defined in the "definition"
    102   part.
    103 
    104 o Split cfdata.
    105 
    106   cfdata is a set of pattern matching rules to enable devices at runtime device
    107   auto-configuration.  It is pure data and can (should) be generated separately
    108   from the code.
    109 
    110 o Allow easier adding and removing of options.
    111 
    112   It should be possible to add or remove options, flags, etc.,
    113   without regard to whether or not they are already defined.
    114   For example, a configuration like this:
    115 
    116 	include GENERIC
    117 	options FOO
    118 	no options BAR
    119 
    120   should work regardless of whether or not options FOO and/or
    121   options BAR were defined in GENERIC.  It should not give
    122   errors like "options BAR was already defined" or "options FOO
    123   was not defined".
    124 
    125 o Introduce "class".
    126 
    127   Every module should be classified as at least one class, as modular(9)
    128   modules already do.  For example, file systems are marked as "vfs", network
    129   protocols are "netproto".
    130 
    131   Consider to merge "devclass" into "class".
    132 
    133   For syntax clarity, class names could be used as a keyword to select the
    134   class's instance module:
    135 
    136 	# Define net80211 module as netproto class
    137 	class netproto
    138 	define net80211: netproto
    139 
    140 	# Select net80211 to be builtin
    141 	netproto net80211
    142 
    143   Accordingly device/attach selection syntax should be revisited.
    144 
    145 o Support kernel constructor/destructor (.kctors/.kdtors)
    146 
    147   Initialization and finalization should be called via constructors and
    148   destructors.  Don't hardcode those sequences as sys/kern/init_main.c:main()
    149   does.
    150 
    151   The order of .kctors/.kdtors is resolved by dependency.  The difference from
    152   userland is that in kernel depended ones are located in lower addresses;
    153   "machdep" module is the lowest.  Thus the lowest entry in .ctors must be
    154   executed the first.
    155 
    156   The .kctors/.kdtors entries are executed by kernel's main() function, unlike
    157   userland where start code executes .ctors/.dtors before main().  The hardcoded
    158   sequence of various subsystem initializations in init_main.c:main() will be
    159   replaced by an array of .kctors invocations, and #ifdef's there will be gone.
    160 
    161 o Hide link-set in the final kernel.
    162 
    163   Link-set is used to collect references (pointers) at link time.  It relys on
    164   the ld(1) behavior that it automatically generates `__start_X' and `__stop_X'
    165   symbols for the section `X' to reduce coding.
    166 
    167   Don't allow kernel subsystems create random ELF sections.
    168 
    169   Pre-define all the available link-set names and pre-generate a linker script
    170   to merge them into .rodata.
    171 
    172   (For modular(9) modules, `link_set_modules' is looked up by kernel loader.
    173   Provide only it.)
    174 
    175   Provide a way for 3rd party modules to declare extra link-set.
    176 
    177 o Shared kernel objects.
    178 
    179   Since NetBSD has not established a clear kernel ABI, every single kernel
    180   has to build all the objects by their own.  As a result, similar kernels
    181   (e.g. evbarm kernels) repeatedly compile similar objects, that is waste of
    182   energy & space.
    183 
    184   Share them if possible.  For evb* ports, ideally everything except machdep.ko
    185   should be shared.
    186 
    187   While leaving optimizations as options (CPU specific optimizations, inlined
    188   bus_space(9) operations, etc.) for users, the official binaries build
    189   provided by TNF should be as portable as possible.
    190 
    191 o Control ELF sections using linker script.
    192 
    193   Now kernel is linked and built directly from object files (*.o).  Each port
    194   has an MD linker script, which does everything needed to be done at link
    195   time.  As a result, they do from MI alignment restriction (read_mostly,
    196   cacheline_aligned) to load address specification for external boot loaders.
    197 
    198   Make this into multiple stages to make linkage more structural.  Especially,
    199   reserve the final link for purely MD purpose.  Note that in modular build,
    200   *.ko are shared between build of kernel and modular(9) modules (*.kmod).
    201 
    202 	Monolithic build:
    203 		     *.o  ---> netbsd.ko	Generic MI linkage
    204 		netbsd.ko ---> netbsd.ro	Kernel MI linkage
    205 		netbsd.ro ---> netbsd		Kernel MD linkage
    206 
    207 	Modular build (kernel):
    208 		     *.o  --->      *.ko	Generic + Per-module MI linkage
    209 		     *.ko ---> netbsd.ro	Kernel MI linkage
    210 		netbsd.ro ---> netbsd		Kernel MD linkage
    211 
    212 	Modular build (module):
    213 		     *.o  --->      *.ko	Generic + Per-module MI linkage
    214 		     *.ko --->      *.ro	Modular MI linkage
    215 		     *.ro --->      *.kmod	Modular MD linkage
    216 
    217   Genric MI linkage is for processing MI linkage that can be applied generally.
    218   Data section alignment (.data.read_mostly and .data.cacheline_aligned) is
    219   processed here.
    220 
    221   Per-module MI linkage is for modules that want some ordering.  For example,
    222   machdep.ko wants to put entry code at the top of .text and .data.
    223 
    224   Kernel MI linkage is for collecting kernel global section data, that is what
    225   link-set is used for now.  Once they are collected and symbols to the ranges
    226   are assigned, those sections are merged into the pre-existing sections
    227   (.rodata) because link-set sections in "netbsd" will never be interpreted by
    228   external loaders.
    229 
    230   Kernel MD linkage is used purely for MD purposes, that is, how kernels are
    231   loaded by external loaders.  It might be possible that one kernel relocatable
    232   (netbsd.ro) is linked into multiple final kernel image (netbsd) for diferent
    233   load addresses.
    234 
    235   Modular MI linkage is to prepare a module to be loadable as modular(9).  This
    236   may add some extra sections and/or symbols.
    237 
    238   Modular MD linkage is again for pure MD purposes like kernel MD linkage.
    239   Adjustment and/or optimization may be done.
    240 
    241   Kernel and modular MI linkages may change behavior depending on existence
    242   of debug information.  In the future .symtab will be copied using linker
    243   during this stage.
    244 
    245 o Redesign swapnetbsd.c (root/swap device specification)
    246 
    247   Don't build a whole kernel only to specify root/swap devices.
    248 
    249   Make these parameter re-configurable afterwards.
    250 
    251 o Namespace.
    252 
    253   Investigate namespace of attributes/modules/options.  Figure out the hidden
    254   design about these, document it, then re-design it.
    255 
    256   At this moment, all of them share the single "selecttab", which means their
    257   namespaces are common, but they also have respective tables (attrtab,
    258   opttab, etc.).
    259 
    260   Selecting an option (addoption()), that is also a module name, works only if
    261   the module doesn't depend on anything, because addoption() doesn't select
    262   module and its dependencies (selectattr()).  In other words, an option is
    263   only safely converted to a module (define), only if it doesn't depend on
    264   anything.  (One example is DDB.)
    265