find.c revision 1.26 1 1.26 christos /* $NetBSD: find.c,v 1.26 2010/12/27 16:09:46 christos Exp $ */
2 1.8 tls
3 1.1 cgd /*-
4 1.10 mrg * Copyright (c) 1991, 1993, 1994
5 1.5 jtc * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * This code is derived from software contributed to Berkeley by
8 1.1 cgd * Cimarron D. Taylor of the University of California, Berkeley.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.18 agc * 3. Neither the name of the University nor the names of its contributors
19 1.1 cgd * may be used to endorse or promote products derived from this software
20 1.1 cgd * without specific prior written permission.
21 1.1 cgd *
22 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 cgd * SUCH DAMAGE.
33 1.1 cgd */
34 1.1 cgd
35 1.9 lukem #include <sys/cdefs.h>
36 1.1 cgd #ifndef lint
37 1.9 lukem #if 0
38 1.10 mrg static char sccsid[] = "from: @(#)find.c 8.5 (Berkeley) 8/5/94";
39 1.9 lukem #else
40 1.26 christos __RCSID("$NetBSD: find.c,v 1.26 2010/12/27 16:09:46 christos Exp $");
41 1.9 lukem #endif
42 1.1 cgd #endif /* not lint */
43 1.1 cgd
44 1.1 cgd #include <sys/types.h>
45 1.1 cgd #include <sys/stat.h>
46 1.5 jtc
47 1.5 jtc #include <err.h>
48 1.5 jtc #include <errno.h>
49 1.1 cgd #include <fts.h>
50 1.25 lukem #include <signal.h>
51 1.1 cgd #include <stdio.h>
52 1.1 cgd #include <string.h>
53 1.1 cgd #include <stdlib.h>
54 1.26 christos #include <stdbool.h>
55 1.26 christos #include <unistd.h>
56 1.5 jtc
57 1.1 cgd #include "find.h"
58 1.1 cgd
59 1.23 apb static int ftscompare(const FTSENT **, const FTSENT **);
60 1.12 itohy
61 1.1 cgd /*
62 1.1 cgd * find_formplan --
63 1.1 cgd * process the command line and create a "plan" corresponding to the
64 1.1 cgd * command arguments.
65 1.1 cgd */
66 1.1 cgd PLAN *
67 1.23 apb find_formplan(char **argv)
68 1.1 cgd {
69 1.1 cgd PLAN *plan, *tail, *new;
70 1.1 cgd
71 1.1 cgd /*
72 1.1 cgd * for each argument in the command line, determine what kind of node
73 1.1 cgd * it is, create the appropriate node type and add the new plan node
74 1.1 cgd * to the end of the existing plan. The resulting plan is a linked
75 1.1 cgd * list of plan nodes. For example, the string:
76 1.1 cgd *
77 1.1 cgd * % find . -name foo -newer bar -print
78 1.1 cgd *
79 1.1 cgd * results in the plan:
80 1.1 cgd *
81 1.1 cgd * [-name foo]--> [-newer bar]--> [-print]
82 1.1 cgd *
83 1.1 cgd * in this diagram, `[-name foo]' represents the plan node generated
84 1.1 cgd * by c_name() with an argument of foo and `-->' represents the
85 1.1 cgd * plan->next pointer.
86 1.1 cgd */
87 1.5 jtc for (plan = tail = NULL; *argv;) {
88 1.1 cgd if (!(new = find_create(&argv)))
89 1.1 cgd continue;
90 1.1 cgd if (plan == NULL)
91 1.1 cgd tail = plan = new;
92 1.1 cgd else {
93 1.1 cgd tail->next = new;
94 1.1 cgd tail = new;
95 1.1 cgd }
96 1.1 cgd }
97 1.12 itohy
98 1.1 cgd /*
99 1.21 jschauma * if the user didn't specify one of -print, -ok, -fprint, -exec, or
100 1.21 jschauma * -exit, then -print is assumed so we bracket the current expression
101 1.21 jschauma * with parens, if necessary, and add a -print node on the end.
102 1.1 cgd */
103 1.1 cgd if (!isoutput) {
104 1.6 cgd if (plan == NULL) {
105 1.11 christos new = c_print(NULL, 0);
106 1.1 cgd tail = plan = new;
107 1.6 cgd } else {
108 1.11 christos new = c_openparen(NULL, 0);
109 1.6 cgd new->next = plan;
110 1.6 cgd plan = new;
111 1.11 christos new = c_closeparen(NULL, 0);
112 1.6 cgd tail->next = new;
113 1.6 cgd tail = new;
114 1.11 christos new = c_print(NULL, 0);
115 1.1 cgd tail->next = new;
116 1.1 cgd tail = new;
117 1.1 cgd }
118 1.1 cgd }
119 1.12 itohy
120 1.1 cgd /*
121 1.1 cgd * the command line has been completely processed into a search plan
122 1.1 cgd * except for the (, ), !, and -o operators. Rearrange the plan so
123 1.1 cgd * that the portions of the plan which are affected by the operators
124 1.1 cgd * are moved into operator nodes themselves. For example:
125 1.1 cgd *
126 1.1 cgd * [!]--> [-name foo]--> [-print]
127 1.1 cgd *
128 1.1 cgd * becomes
129 1.1 cgd *
130 1.1 cgd * [! [-name foo] ]--> [-print]
131 1.1 cgd *
132 1.1 cgd * and
133 1.1 cgd *
134 1.1 cgd * [(]--> [-depth]--> [-name foo]--> [)]--> [-print]
135 1.1 cgd *
136 1.1 cgd * becomes
137 1.1 cgd *
138 1.1 cgd * [expr [-depth]-->[-name foo] ]--> [-print]
139 1.1 cgd *
140 1.1 cgd * operators are handled in order of precedence.
141 1.1 cgd */
142 1.1 cgd
143 1.1 cgd plan = paren_squish(plan); /* ()'s */
144 1.1 cgd plan = not_squish(plan); /* !'s */
145 1.1 cgd plan = or_squish(plan); /* -o's */
146 1.5 jtc return (plan);
147 1.1 cgd }
148 1.12 itohy
149 1.12 itohy static int
150 1.23 apb ftscompare(const FTSENT **e1, const FTSENT **e2)
151 1.12 itohy {
152 1.14 enami
153 1.14 enami return (strcoll((*e1)->fts_name, (*e2)->fts_name));
154 1.12 itohy }
155 1.12 itohy
156 1.26 christos static sigset_t ss;
157 1.26 christos static bool notty;
158 1.26 christos
159 1.26 christos static __inline void
160 1.26 christos sig_init(void)
161 1.26 christos {
162 1.26 christos notty = !(isatty(STDIN_FILENO) || isatty(STDOUT_FILENO) ||
163 1.26 christos isatty(STDERR_FILENO));
164 1.26 christos if (notty)
165 1.26 christos return;
166 1.26 christos sigemptyset(&ss);
167 1.26 christos sigaddset(&ss, SIGINFO); /* block SIGINFO */
168 1.26 christos }
169 1.26 christos
170 1.26 christos static __inline void
171 1.23 apb sig_lock(sigset_t *s)
172 1.17 yamt {
173 1.26 christos if (notty)
174 1.26 christos return;
175 1.26 christos sigprocmask(SIG_BLOCK, &ss, s);
176 1.17 yamt }
177 1.17 yamt
178 1.26 christos static __inline void
179 1.23 apb sig_unlock(const sigset_t *s)
180 1.17 yamt {
181 1.26 christos if (notty)
182 1.26 christos return;
183 1.17 yamt sigprocmask(SIG_SETMASK, s, NULL);
184 1.17 yamt }
185 1.17 yamt
186 1.1 cgd FTS *tree; /* pointer to top of FTS hierarchy */
187 1.16 yamt FTSENT *g_entry; /* shared with SIGINFO handler */
188 1.1 cgd
189 1.1 cgd /*
190 1.1 cgd * find_execute --
191 1.1 cgd * take a search plan and an array of search paths and executes the plan
192 1.1 cgd * over all FTSENT's returned for the given search paths.
193 1.1 cgd */
194 1.10 mrg int
195 1.23 apb find_execute(PLAN *plan, char **paths)
196 1.1 cgd {
197 1.1 cgd PLAN *p;
198 1.22 apb int r, rval, cval;
199 1.17 yamt sigset_t s;
200 1.12 itohy
201 1.21 jschauma cval = 1;
202 1.21 jschauma
203 1.12 itohy if (!(tree = fts_open(paths, ftsoptions, issort ? ftscompare : NULL)))
204 1.5 jtc err(1, "ftsopen");
205 1.1 cgd
206 1.26 christos sig_init();
207 1.17 yamt sig_lock(&s);
208 1.26 christos for (rval = 0; cval && (g_entry = fts_read(tree)) != NULL;) {
209 1.16 yamt switch (g_entry->fts_info) {
210 1.1 cgd case FTS_D:
211 1.1 cgd if (isdepth)
212 1.1 cgd continue;
213 1.1 cgd break;
214 1.1 cgd case FTS_DP:
215 1.1 cgd if (!isdepth)
216 1.1 cgd continue;
217 1.1 cgd break;
218 1.1 cgd case FTS_DNR:
219 1.1 cgd case FTS_ERR:
220 1.1 cgd case FTS_NS:
221 1.26 christos sig_unlock(&s);
222 1.5 jtc (void)fflush(stdout);
223 1.10 mrg warnx("%s: %s",
224 1.16 yamt g_entry->fts_path, strerror(g_entry->fts_errno));
225 1.10 mrg rval = 1;
226 1.26 christos sig_lock(&s);
227 1.1 cgd continue;
228 1.1 cgd }
229 1.1 cgd #define BADCH " \t\n\\'\""
230 1.16 yamt if (isxargs && strpbrk(g_entry->fts_path, BADCH)) {
231 1.26 christos sig_unlock(&s);
232 1.5 jtc (void)fflush(stdout);
233 1.16 yamt warnx("%s: illegal path", g_entry->fts_path);
234 1.10 mrg rval = 1;
235 1.26 christos sig_lock(&s);
236 1.1 cgd continue;
237 1.1 cgd }
238 1.12 itohy
239 1.1 cgd /*
240 1.10 mrg * Call all the functions in the execution plan until one is
241 1.1 cgd * false or all have been executed. This is where we do all
242 1.1 cgd * the work specified by the user on the command line.
243 1.1 cgd */
244 1.26 christos sig_unlock(&s);
245 1.16 yamt for (p = plan; p && (p->eval)(p, g_entry); p = p->next)
246 1.21 jschauma if (p->type == N_EXIT) {
247 1.21 jschauma rval = p->exit_val;
248 1.21 jschauma cval = 0;
249 1.21 jschauma }
250 1.26 christos sig_lock(&s);
251 1.1 cgd }
252 1.21 jschauma
253 1.17 yamt sig_unlock(&s);
254 1.10 mrg if (errno)
255 1.10 mrg err(1, "fts_read");
256 1.1 cgd (void)fts_close(tree);
257 1.22 apb
258 1.22 apb /*
259 1.22 apb * Cleanup any plans with leftover state.
260 1.22 apb * Keep the last non-zero return value.
261 1.22 apb */
262 1.22 apb if ((r = find_traverse(plan, plan_cleanup, NULL)) != 0)
263 1.22 apb rval = r;
264 1.22 apb
265 1.10 mrg return (rval);
266 1.1 cgd }
267 1.22 apb
268 1.22 apb /*
269 1.22 apb * find_traverse --
270 1.22 apb * traverse the plan tree and execute func() on all plans. This
271 1.22 apb * does not evaluate each plan's eval() function; it is intended
272 1.22 apb * for operations that must run on all plans, such as state
273 1.22 apb * cleanup.
274 1.22 apb *
275 1.22 apb * If any func() returns non-zero, then so will find_traverse().
276 1.22 apb */
277 1.22 apb int
278 1.22 apb find_traverse(plan, func, arg)
279 1.22 apb PLAN *plan;
280 1.23 apb int (*func)(PLAN *, void *);
281 1.22 apb void *arg;
282 1.22 apb {
283 1.22 apb PLAN *p;
284 1.22 apb int r, rval;
285 1.22 apb
286 1.22 apb rval = 0;
287 1.22 apb for (p = plan; p; p = p->next) {
288 1.22 apb if ((r = func(p, arg)) != 0)
289 1.22 apb rval = r;
290 1.22 apb if (p->type == N_EXPR || p->type == N_OR) {
291 1.22 apb if (p->p_data[0])
292 1.22 apb if ((r = find_traverse(p->p_data[0],
293 1.22 apb func, arg)) != 0)
294 1.22 apb rval = r;
295 1.22 apb if (p->p_data[1])
296 1.22 apb if ((r = find_traverse(p->p_data[1],
297 1.22 apb func, arg)) != 0)
298 1.22 apb rval = r;
299 1.22 apb }
300 1.22 apb }
301 1.22 apb return rval;
302 1.22 apb }
303