Home | History | Annotate | Line # | Download | only in find
      1  1.10       snj /*	$NetBSD: operator.c,v 1.10 2014/10/18 08:33:30 snj Exp $	*/
      2   1.4       tls 
      3   1.1       cgd /*-
      4   1.3       jtc  * Copyright (c) 1990, 1993
      5   1.3       jtc  *	The Regents of the University of California.  All rights reserved.
      6   1.1       cgd  *
      7   1.1       cgd  * This code is derived from software contributed to Berkeley by
      8   1.1       cgd  * Cimarron D. Taylor of the University of California, Berkeley.
      9   1.1       cgd  *
     10   1.1       cgd  * Redistribution and use in source and binary forms, with or without
     11   1.1       cgd  * modification, are permitted provided that the following conditions
     12   1.1       cgd  * are met:
     13   1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     14   1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     15   1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     17   1.1       cgd  *    documentation and/or other materials provided with the distribution.
     18   1.8       agc  * 3. Neither the name of the University nor the names of its contributors
     19   1.1       cgd  *    may be used to endorse or promote products derived from this software
     20   1.1       cgd  *    without specific prior written permission.
     21   1.1       cgd  *
     22   1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23   1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24   1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25   1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26   1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27   1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28   1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29   1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30   1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31   1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32   1.1       cgd  * SUCH DAMAGE.
     33   1.1       cgd  */
     34   1.1       cgd 
     35   1.5     lukem #include <sys/cdefs.h>
     36   1.1       cgd #ifndef lint
     37   1.5     lukem #if 0
     38   1.5     lukem static char sccsid[] = "from: @(#)operator.c	8.1 (Berkeley) 6/6/93";
     39   1.5     lukem #else
     40  1.10       snj __RCSID("$NetBSD: operator.c,v 1.10 2014/10/18 08:33:30 snj Exp $");
     41   1.5     lukem #endif
     42   1.1       cgd #endif /* not lint */
     43   1.1       cgd 
     44   1.1       cgd #include <sys/types.h>
     45   1.3       jtc 
     46   1.3       jtc #include <err.h>
     47   1.3       jtc #include <fts.h>
     48   1.1       cgd #include <stdio.h>
     49   1.3       jtc 
     50   1.1       cgd #include "find.h"
     51   1.9       apb 
     52   1.9       apb static PLAN *yanknode(PLAN **);
     53   1.9       apb static PLAN *yankexpr(PLAN **);
     54   1.6  christos 
     55   1.1       cgd /*
     56   1.1       cgd  * yanknode --
     57   1.1       cgd  *	destructively removes the top from the plan
     58   1.1       cgd  */
     59   1.1       cgd static PLAN *
     60   1.9       apb yanknode(PLAN **planp)		/* pointer to top of plan (modified) */
     61   1.1       cgd {
     62   1.1       cgd 	PLAN *node;		/* top node removed from the plan */
     63   1.9       apb 
     64   1.1       cgd 	if ((node = (*planp)) == NULL)
     65   1.3       jtc 		return (NULL);
     66   1.1       cgd 	(*planp) = (*planp)->next;
     67   1.1       cgd 	node->next = NULL;
     68   1.3       jtc 	return (node);
     69   1.1       cgd }
     70   1.9       apb 
     71   1.1       cgd /*
     72   1.1       cgd  * yankexpr --
     73   1.1       cgd  *	Removes one expression from the plan.  This is used mainly by
     74   1.1       cgd  *	paren_squish.  In comments below, an expression is either a
     75   1.1       cgd  *	simple node or a N_EXPR node containing a list of simple nodes.
     76   1.1       cgd  */
     77   1.1       cgd static PLAN *
     78   1.9       apb yankexpr(PLAN **planp)		/* pointer to top of plan (modified) */
     79   1.1       cgd {
     80   1.5     lukem 	PLAN *next;		/* temp node holding subexpression results */
     81   1.1       cgd 	PLAN *node;		/* pointer to returned node or expression */
     82   1.1       cgd 	PLAN *tail;		/* pointer to tail of subplan */
     83   1.1       cgd 	PLAN *subplan;		/* pointer to head of ( ) expression */
     84   1.9       apb 
     85   1.1       cgd 	/* first pull the top node from the plan */
     86   1.1       cgd 	if ((node = yanknode(planp)) == NULL)
     87   1.3       jtc 		return (NULL);
     88   1.9       apb 
     89   1.1       cgd 	/*
     90   1.1       cgd 	 * If the node is an '(' then we recursively slurp up expressions
     91   1.1       cgd 	 * until we find its associated ')'.  If it's a closing paren we
     92   1.1       cgd 	 * just return it and unwind our recursion; all other nodes are
     93   1.1       cgd 	 * complete expressions, so just return them.
     94   1.1       cgd 	 */
     95   1.1       cgd 	if (node->type == N_OPENPAREN)
     96   1.1       cgd 		for (tail = subplan = NULL;;) {
     97   1.1       cgd 			if ((next = yankexpr(planp)) == NULL)
     98   1.3       jtc 				err(1, "(: missing closing ')'");
     99   1.1       cgd 			/*
    100   1.1       cgd 			 * If we find a closing ')' we store the collected
    101   1.1       cgd 			 * subplan in our '(' node and convert the node to
    102   1.1       cgd 			 * a N_EXPR.  The ')' we found is ignored.  Otherwise,
    103   1.1       cgd 			 * we just continue to add whatever we get to our
    104   1.1       cgd 			 * subplan.
    105   1.1       cgd 			 */
    106   1.1       cgd 			if (next->type == N_CLOSEPAREN) {
    107   1.1       cgd 				if (subplan == NULL)
    108   1.3       jtc 					errx(1, "(): empty inner expression");
    109   1.1       cgd 				node->p_data[0] = subplan;
    110   1.1       cgd 				node->type = N_EXPR;
    111   1.1       cgd 				node->eval = f_expr;
    112   1.1       cgd 				break;
    113   1.1       cgd 			} else {
    114   1.1       cgd 				if (subplan == NULL)
    115   1.1       cgd 					tail = subplan = next;
    116   1.1       cgd 				else {
    117   1.1       cgd 					tail->next = next;
    118   1.1       cgd 					tail = next;
    119   1.1       cgd 				}
    120   1.1       cgd 				tail->next = NULL;
    121   1.1       cgd 			}
    122   1.1       cgd 		}
    123   1.3       jtc 	return (node);
    124   1.1       cgd }
    125   1.9       apb 
    126   1.1       cgd /*
    127   1.1       cgd  * paren_squish --
    128   1.1       cgd  *	replaces "parentheisized" plans in our search plan with "expr" nodes.
    129   1.1       cgd  */
    130   1.1       cgd PLAN *
    131   1.9       apb paren_squish(PLAN *plan)	/* plan with ( ) nodes */
    132   1.1       cgd {
    133   1.5     lukem 	PLAN *expr;		/* pointer to next expression */
    134   1.5     lukem 	PLAN *tail;		/* pointer to tail of result plan */
    135   1.1       cgd 	PLAN *result;		/* pointer to head of result plan */
    136   1.9       apb 
    137   1.1       cgd 	result = tail = NULL;
    138   1.1       cgd 
    139   1.1       cgd 	/*
    140   1.1       cgd 	 * the basic idea is to have yankexpr do all our work and just
    141  1.10       snj 	 * collect its results together.
    142   1.1       cgd 	 */
    143   1.1       cgd 	while ((expr = yankexpr(&plan)) != NULL) {
    144   1.1       cgd 		/*
    145   1.1       cgd 		 * if we find an unclaimed ')' it means there is a missing
    146   1.1       cgd 		 * '(' someplace.
    147   1.1       cgd 		 */
    148   1.1       cgd 		if (expr->type == N_CLOSEPAREN)
    149   1.3       jtc 			errx(1, "): no beginning '('");
    150   1.1       cgd 
    151   1.1       cgd 		/* add the expression to our result plan */
    152   1.1       cgd 		if (result == NULL)
    153   1.1       cgd 			tail = result = expr;
    154   1.1       cgd 		else {
    155   1.1       cgd 			tail->next = expr;
    156   1.1       cgd 			tail = expr;
    157   1.1       cgd 		}
    158   1.1       cgd 		tail->next = NULL;
    159   1.1       cgd 	}
    160   1.3       jtc 	return (result);
    161   1.1       cgd }
    162   1.9       apb 
    163   1.1       cgd /*
    164   1.1       cgd  * not_squish --
    165   1.1       cgd  *	compresses "!" expressions in our search plan.
    166   1.1       cgd  */
    167   1.1       cgd PLAN *
    168   1.9       apb not_squish(PLAN *plan)		/* plan to process */
    169   1.1       cgd {
    170   1.5     lukem 	PLAN *next;		/* next node being processed */
    171   1.5     lukem 	PLAN *node;		/* temporary node used in N_NOT processing */
    172   1.5     lukem 	PLAN *tail;		/* pointer to tail of result plan */
    173   1.1       cgd 	PLAN *result;		/* pointer to head of result plan */
    174   1.9       apb 
    175   1.1       cgd 	tail = result = next = NULL;
    176   1.9       apb 
    177   1.1       cgd 	while ((next = yanknode(&plan)) != NULL) {
    178   1.1       cgd 		/*
    179   1.1       cgd 		 * if we encounter a ( expression ) then look for nots in
    180   1.1       cgd 		 * the expr subplan.
    181   1.1       cgd 		 */
    182   1.1       cgd 		if (next->type == N_EXPR)
    183   1.1       cgd 			next->p_data[0] = not_squish(next->p_data[0]);
    184   1.1       cgd 
    185   1.1       cgd 		/*
    186   1.1       cgd 		 * if we encounter a not, then snag the next node and place
    187   1.1       cgd 		 * it in the not's subplan.  As an optimization we compress
    188   1.1       cgd 		 * several not's to zero or one not.
    189   1.1       cgd 		 */
    190   1.1       cgd 		if (next->type == N_NOT) {
    191   1.1       cgd 			int notlevel = 1;
    192   1.1       cgd 
    193   1.1       cgd 			node = yanknode(&plan);
    194   1.7     lukem 			while (node != NULL && node->type == N_NOT) {
    195   1.1       cgd 				++notlevel;
    196   1.1       cgd 				node = yanknode(&plan);
    197   1.1       cgd 			}
    198   1.1       cgd 			if (node == NULL)
    199   1.3       jtc 				errx(1, "!: no following expression");
    200   1.1       cgd 			if (node->type == N_OR)
    201   1.3       jtc 				errx(1, "!: nothing between ! and -o");
    202   1.7     lukem 			if (node->type == N_EXPR)
    203   1.7     lukem 				node = not_squish(node);
    204   1.1       cgd 			if (notlevel % 2 != 1)
    205   1.1       cgd 				next = node;
    206   1.1       cgd 			else
    207   1.1       cgd 				next->p_data[0] = node;
    208   1.1       cgd 		}
    209   1.1       cgd 
    210   1.1       cgd 		/* add the node to our result plan */
    211   1.1       cgd 		if (result == NULL)
    212   1.1       cgd 			tail = result = next;
    213   1.1       cgd 		else {
    214   1.1       cgd 			tail->next = next;
    215   1.1       cgd 			tail = next;
    216   1.1       cgd 		}
    217   1.1       cgd 		tail->next = NULL;
    218   1.1       cgd 	}
    219   1.3       jtc 	return (result);
    220   1.1       cgd }
    221   1.9       apb 
    222   1.1       cgd /*
    223   1.1       cgd  * or_squish --
    224   1.1       cgd  *	compresses -o expressions in our search plan.
    225   1.1       cgd  */
    226   1.1       cgd PLAN *
    227   1.9       apb or_squish(PLAN *plan)		/* plan with ors to be squished */
    228   1.1       cgd {
    229   1.5     lukem 	PLAN *next;		/* next node being processed */
    230   1.5     lukem 	PLAN *tail;		/* pointer to tail of result plan */
    231   1.1       cgd 	PLAN *result;		/* pointer to head of result plan */
    232   1.9       apb 
    233   1.1       cgd 	tail = result = next = NULL;
    234   1.9       apb 
    235   1.1       cgd 	while ((next = yanknode(&plan)) != NULL) {
    236   1.1       cgd 		/*
    237   1.1       cgd 		 * if we encounter a ( expression ) then look for or's in
    238   1.1       cgd 		 * the expr subplan.
    239   1.1       cgd 		 */
    240   1.1       cgd 		if (next->type == N_EXPR)
    241   1.1       cgd 			next->p_data[0] = or_squish(next->p_data[0]);
    242   1.1       cgd 
    243   1.1       cgd 		/* if we encounter a not then look for not's in the subplan */
    244   1.1       cgd 		if (next->type == N_NOT)
    245   1.1       cgd 			next->p_data[0] = or_squish(next->p_data[0]);
    246   1.1       cgd 
    247   1.1       cgd 		/*
    248   1.1       cgd 		 * if we encounter an or, then place our collected plan in the
    249   1.1       cgd 		 * or's first subplan and then recursively collect the
    250   1.1       cgd 		 * remaining stuff into the second subplan and return the or.
    251   1.1       cgd 		 */
    252   1.1       cgd 		if (next->type == N_OR) {
    253   1.1       cgd 			if (result == NULL)
    254   1.3       jtc 				errx(1, "-o: no expression before -o");
    255   1.1       cgd 			next->p_data[0] = result;
    256   1.1       cgd 			next->p_data[1] = or_squish(plan);
    257   1.1       cgd 			if (next->p_data[1] == NULL)
    258   1.3       jtc 				errx(1, "-o: no expression after -o");
    259   1.3       jtc 			return (next);
    260   1.1       cgd 		}
    261   1.1       cgd 
    262   1.1       cgd 		/* add the node to our result plan */
    263   1.1       cgd 		if (result == NULL)
    264   1.1       cgd 			tail = result = next;
    265   1.1       cgd 		else {
    266   1.1       cgd 			tail->next = next;
    267   1.1       cgd 			tail = next;
    268   1.1       cgd 		}
    269   1.1       cgd 		tail->next = NULL;
    270   1.1       cgd 	}
    271   1.3       jtc 	return (result);
    272   1.1       cgd }
    273