Home | History | Annotate | Line # | Download | only in find
operator.c revision 1.1
      1  1.1  cgd /*-
      2  1.1  cgd  * Copyright (c) 1990 The Regents of the University of California.
      3  1.1  cgd  * All rights reserved.
      4  1.1  cgd  *
      5  1.1  cgd  * This code is derived from software contributed to Berkeley by
      6  1.1  cgd  * Cimarron D. Taylor of the University of California, Berkeley.
      7  1.1  cgd  *
      8  1.1  cgd  * Redistribution and use in source and binary forms, with or without
      9  1.1  cgd  * modification, are permitted provided that the following conditions
     10  1.1  cgd  * are met:
     11  1.1  cgd  * 1. Redistributions of source code must retain the above copyright
     12  1.1  cgd  *    notice, this list of conditions and the following disclaimer.
     13  1.1  cgd  * 2. Redistributions in binary form must reproduce the above copyright
     14  1.1  cgd  *    notice, this list of conditions and the following disclaimer in the
     15  1.1  cgd  *    documentation and/or other materials provided with the distribution.
     16  1.1  cgd  * 3. All advertising materials mentioning features or use of this software
     17  1.1  cgd  *    must display the following acknowledgement:
     18  1.1  cgd  *	This product includes software developed by the University of
     19  1.1  cgd  *	California, Berkeley and its contributors.
     20  1.1  cgd  * 4. Neither the name of the University nor the names of its contributors
     21  1.1  cgd  *    may be used to endorse or promote products derived from this software
     22  1.1  cgd  *    without specific prior written permission.
     23  1.1  cgd  *
     24  1.1  cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  1.1  cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  1.1  cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  1.1  cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  1.1  cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  1.1  cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  1.1  cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  1.1  cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  1.1  cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  1.1  cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  1.1  cgd  * SUCH DAMAGE.
     35  1.1  cgd  */
     36  1.1  cgd 
     37  1.1  cgd #ifndef lint
     38  1.1  cgd static char sccsid[] = "@(#)operator.c	5.4 (Berkeley) 5/24/91";
     39  1.1  cgd #endif /* not lint */
     40  1.1  cgd 
     41  1.1  cgd #include <sys/types.h>
     42  1.1  cgd #include <stdio.h>
     43  1.1  cgd #include "find.h"
     44  1.1  cgd 
     45  1.1  cgd /*
     46  1.1  cgd  * yanknode --
     47  1.1  cgd  *	destructively removes the top from the plan
     48  1.1  cgd  */
     49  1.1  cgd static PLAN *
     50  1.1  cgd yanknode(planp)
     51  1.1  cgd 	PLAN **planp;		/* pointer to top of plan (modified) */
     52  1.1  cgd {
     53  1.1  cgd 	PLAN *node;		/* top node removed from the plan */
     54  1.1  cgd 
     55  1.1  cgd 	if ((node = (*planp)) == NULL)
     56  1.1  cgd 		return(NULL);
     57  1.1  cgd 	(*planp) = (*planp)->next;
     58  1.1  cgd 	node->next = NULL;
     59  1.1  cgd 	return(node);
     60  1.1  cgd }
     61  1.1  cgd 
     62  1.1  cgd /*
     63  1.1  cgd  * yankexpr --
     64  1.1  cgd  *	Removes one expression from the plan.  This is used mainly by
     65  1.1  cgd  *	paren_squish.  In comments below, an expression is either a
     66  1.1  cgd  *	simple node or a N_EXPR node containing a list of simple nodes.
     67  1.1  cgd  */
     68  1.1  cgd static PLAN *
     69  1.1  cgd yankexpr(planp)
     70  1.1  cgd 	PLAN **planp;		/* pointer to top of plan (modified) */
     71  1.1  cgd {
     72  1.1  cgd 	register PLAN *next;	/* temp node holding subexpression results */
     73  1.1  cgd 	PLAN *node;		/* pointer to returned node or expression */
     74  1.1  cgd 	PLAN *tail;		/* pointer to tail of subplan */
     75  1.1  cgd 	PLAN *subplan;		/* pointer to head of ( ) expression */
     76  1.1  cgd 	int f_expr();
     77  1.1  cgd 
     78  1.1  cgd 	/* first pull the top node from the plan */
     79  1.1  cgd 	if ((node = yanknode(planp)) == NULL)
     80  1.1  cgd 		return(NULL);
     81  1.1  cgd 
     82  1.1  cgd 	/*
     83  1.1  cgd 	 * If the node is an '(' then we recursively slurp up expressions
     84  1.1  cgd 	 * until we find its associated ')'.  If it's a closing paren we
     85  1.1  cgd 	 * just return it and unwind our recursion; all other nodes are
     86  1.1  cgd 	 * complete expressions, so just return them.
     87  1.1  cgd 	 */
     88  1.1  cgd 	if (node->type == N_OPENPAREN)
     89  1.1  cgd 		for (tail = subplan = NULL;;) {
     90  1.1  cgd 			if ((next = yankexpr(planp)) == NULL)
     91  1.1  cgd 				err("%s: %s", "(", "missing closing ')'");
     92  1.1  cgd 			/*
     93  1.1  cgd 			 * If we find a closing ')' we store the collected
     94  1.1  cgd 			 * subplan in our '(' node and convert the node to
     95  1.1  cgd 			 * a N_EXPR.  The ')' we found is ignored.  Otherwise,
     96  1.1  cgd 			 * we just continue to add whatever we get to our
     97  1.1  cgd 			 * subplan.
     98  1.1  cgd 			 */
     99  1.1  cgd 			if (next->type == N_CLOSEPAREN) {
    100  1.1  cgd 				if (subplan == NULL)
    101  1.1  cgd 					err("%s: %s",
    102  1.1  cgd 					    "()", "empty inner expression");
    103  1.1  cgd 				node->p_data[0] = subplan;
    104  1.1  cgd 				node->type = N_EXPR;
    105  1.1  cgd 				node->eval = f_expr;
    106  1.1  cgd 				break;
    107  1.1  cgd 			} else {
    108  1.1  cgd 				if (subplan == NULL)
    109  1.1  cgd 					tail = subplan = next;
    110  1.1  cgd 				else {
    111  1.1  cgd 					tail->next = next;
    112  1.1  cgd 					tail = next;
    113  1.1  cgd 				}
    114  1.1  cgd 				tail->next = NULL;
    115  1.1  cgd 			}
    116  1.1  cgd 		}
    117  1.1  cgd 	return(node);
    118  1.1  cgd }
    119  1.1  cgd 
    120  1.1  cgd /*
    121  1.1  cgd  * paren_squish --
    122  1.1  cgd  *	replaces "parentheisized" plans in our search plan with "expr" nodes.
    123  1.1  cgd  */
    124  1.1  cgd PLAN *
    125  1.1  cgd paren_squish(plan)
    126  1.1  cgd 	PLAN *plan;		/* plan with ( ) nodes */
    127  1.1  cgd {
    128  1.1  cgd 	register PLAN *expr;	/* pointer to next expression */
    129  1.1  cgd 	register PLAN *tail;	/* pointer to tail of result plan */
    130  1.1  cgd 	PLAN *result;		/* pointer to head of result plan */
    131  1.1  cgd 
    132  1.1  cgd 	result = tail = NULL;
    133  1.1  cgd 
    134  1.1  cgd 	/*
    135  1.1  cgd 	 * the basic idea is to have yankexpr do all our work and just
    136  1.1  cgd 	 * collect it's results together.
    137  1.1  cgd 	 */
    138  1.1  cgd 	while ((expr = yankexpr(&plan)) != NULL) {
    139  1.1  cgd 		/*
    140  1.1  cgd 		 * if we find an unclaimed ')' it means there is a missing
    141  1.1  cgd 		 * '(' someplace.
    142  1.1  cgd 		 */
    143  1.1  cgd 		if (expr->type == N_CLOSEPAREN)
    144  1.1  cgd 			err("%s: %s", ")", "no beginning '('");
    145  1.1  cgd 
    146  1.1  cgd 		/* add the expression to our result plan */
    147  1.1  cgd 		if (result == NULL)
    148  1.1  cgd 			tail = result = expr;
    149  1.1  cgd 		else {
    150  1.1  cgd 			tail->next = expr;
    151  1.1  cgd 			tail = expr;
    152  1.1  cgd 		}
    153  1.1  cgd 		tail->next = NULL;
    154  1.1  cgd 	}
    155  1.1  cgd 	return(result);
    156  1.1  cgd }
    157  1.1  cgd 
    158  1.1  cgd /*
    159  1.1  cgd  * not_squish --
    160  1.1  cgd  *	compresses "!" expressions in our search plan.
    161  1.1  cgd  */
    162  1.1  cgd PLAN *
    163  1.1  cgd not_squish(plan)
    164  1.1  cgd 	PLAN *plan;		/* plan to process */
    165  1.1  cgd {
    166  1.1  cgd 	register PLAN *next;	/* next node being processed */
    167  1.1  cgd 	register PLAN *node;	/* temporary node used in N_NOT processing */
    168  1.1  cgd 	register PLAN *tail;	/* pointer to tail of result plan */
    169  1.1  cgd 	PLAN *result;		/* pointer to head of result plan */
    170  1.1  cgd 
    171  1.1  cgd 	tail = result = next = NULL;
    172  1.1  cgd 
    173  1.1  cgd 	while ((next = yanknode(&plan)) != NULL) {
    174  1.1  cgd 		/*
    175  1.1  cgd 		 * if we encounter a ( expression ) then look for nots in
    176  1.1  cgd 		 * the expr subplan.
    177  1.1  cgd 		 */
    178  1.1  cgd 		if (next->type == N_EXPR)
    179  1.1  cgd 			next->p_data[0] = not_squish(next->p_data[0]);
    180  1.1  cgd 
    181  1.1  cgd 		/*
    182  1.1  cgd 		 * if we encounter a not, then snag the next node and place
    183  1.1  cgd 		 * it in the not's subplan.  As an optimization we compress
    184  1.1  cgd 		 * several not's to zero or one not.
    185  1.1  cgd 		 */
    186  1.1  cgd 		if (next->type == N_NOT) {
    187  1.1  cgd 			int notlevel = 1;
    188  1.1  cgd 
    189  1.1  cgd 			node = yanknode(&plan);
    190  1.1  cgd 			while (node->type == N_NOT) {
    191  1.1  cgd 				++notlevel;
    192  1.1  cgd 				node = yanknode(&plan);
    193  1.1  cgd 			}
    194  1.1  cgd 			if (node == NULL)
    195  1.1  cgd 				err("%s: %s", "!", "no following expression");
    196  1.1  cgd 			if (node->type == N_OR)
    197  1.1  cgd 				err("%s: %s", "!", "nothing between ! and -o");
    198  1.1  cgd 			if (notlevel % 2 != 1)
    199  1.1  cgd 				next = node;
    200  1.1  cgd 			else
    201  1.1  cgd 				next->p_data[0] = node;
    202  1.1  cgd 		}
    203  1.1  cgd 
    204  1.1  cgd 		/* add the node to our result plan */
    205  1.1  cgd 		if (result == NULL)
    206  1.1  cgd 			tail = result = next;
    207  1.1  cgd 		else {
    208  1.1  cgd 			tail->next = next;
    209  1.1  cgd 			tail = next;
    210  1.1  cgd 		}
    211  1.1  cgd 		tail->next = NULL;
    212  1.1  cgd 	}
    213  1.1  cgd 	return(result);
    214  1.1  cgd }
    215  1.1  cgd 
    216  1.1  cgd /*
    217  1.1  cgd  * or_squish --
    218  1.1  cgd  *	compresses -o expressions in our search plan.
    219  1.1  cgd  */
    220  1.1  cgd PLAN *
    221  1.1  cgd or_squish(plan)
    222  1.1  cgd 	PLAN *plan;		/* plan with ors to be squished */
    223  1.1  cgd {
    224  1.1  cgd 	register PLAN *next;	/* next node being processed */
    225  1.1  cgd 	register PLAN *tail;	/* pointer to tail of result plan */
    226  1.1  cgd 	PLAN *result;		/* pointer to head of result plan */
    227  1.1  cgd 
    228  1.1  cgd 	tail = result = next = NULL;
    229  1.1  cgd 
    230  1.1  cgd 	while ((next = yanknode(&plan)) != NULL) {
    231  1.1  cgd 		/*
    232  1.1  cgd 		 * if we encounter a ( expression ) then look for or's in
    233  1.1  cgd 		 * the expr subplan.
    234  1.1  cgd 		 */
    235  1.1  cgd 		if (next->type == N_EXPR)
    236  1.1  cgd 			next->p_data[0] = or_squish(next->p_data[0]);
    237  1.1  cgd 
    238  1.1  cgd 		/* if we encounter a not then look for not's in the subplan */
    239  1.1  cgd 		if (next->type == N_NOT)
    240  1.1  cgd 			next->p_data[0] = or_squish(next->p_data[0]);
    241  1.1  cgd 
    242  1.1  cgd 		/*
    243  1.1  cgd 		 * if we encounter an or, then place our collected plan in the
    244  1.1  cgd 		 * or's first subplan and then recursively collect the
    245  1.1  cgd 		 * remaining stuff into the second subplan and return the or.
    246  1.1  cgd 		 */
    247  1.1  cgd 		if (next->type == N_OR) {
    248  1.1  cgd 			if (result == NULL)
    249  1.1  cgd 				err("%s: %s", "-o", "no expression before -o");
    250  1.1  cgd 			next->p_data[0] = result;
    251  1.1  cgd 			next->p_data[1] = or_squish(plan);
    252  1.1  cgd 			if (next->p_data[1] == NULL)
    253  1.1  cgd 				err("%s: %s", "-o", "no expression after -o");
    254  1.1  cgd 			return(next);
    255  1.1  cgd 		}
    256  1.1  cgd 
    257  1.1  cgd 		/* add the node to our result plan */
    258  1.1  cgd 		if (result == NULL)
    259  1.1  cgd 			tail = result = next;
    260  1.1  cgd 		else {
    261  1.1  cgd 			tail->next = next;
    262  1.1  cgd 			tail = next;
    263  1.1  cgd 		}
    264  1.1  cgd 		tail->next = NULL;
    265  1.1  cgd 	}
    266  1.1  cgd 	return(result);
    267  1.1  cgd }
    268