Home | History | Annotate | Line # | Download | only in find
operator.c revision 1.3
      1  1.1      cgd /*-
      2  1.3      jtc  * Copyright (c) 1990, 1993
      3  1.3      jtc  *	The Regents of the University of California.  All rights reserved.
      4  1.1      cgd  *
      5  1.1      cgd  * This code is derived from software contributed to Berkeley by
      6  1.1      cgd  * Cimarron D. Taylor of the University of California, Berkeley.
      7  1.1      cgd  *
      8  1.1      cgd  * Redistribution and use in source and binary forms, with or without
      9  1.1      cgd  * modification, are permitted provided that the following conditions
     10  1.1      cgd  * are met:
     11  1.1      cgd  * 1. Redistributions of source code must retain the above copyright
     12  1.1      cgd  *    notice, this list of conditions and the following disclaimer.
     13  1.1      cgd  * 2. Redistributions in binary form must reproduce the above copyright
     14  1.1      cgd  *    notice, this list of conditions and the following disclaimer in the
     15  1.1      cgd  *    documentation and/or other materials provided with the distribution.
     16  1.1      cgd  * 3. All advertising materials mentioning features or use of this software
     17  1.1      cgd  *    must display the following acknowledgement:
     18  1.1      cgd  *	This product includes software developed by the University of
     19  1.1      cgd  *	California, Berkeley and its contributors.
     20  1.1      cgd  * 4. Neither the name of the University nor the names of its contributors
     21  1.1      cgd  *    may be used to endorse or promote products derived from this software
     22  1.1      cgd  *    without specific prior written permission.
     23  1.1      cgd  *
     24  1.1      cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  1.1      cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  1.1      cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  1.1      cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  1.1      cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  1.1      cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  1.1      cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  1.1      cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  1.1      cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  1.1      cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  1.1      cgd  * SUCH DAMAGE.
     35  1.1      cgd  */
     36  1.1      cgd 
     37  1.1      cgd #ifndef lint
     38  1.3      jtc /*static char sccsid[] = "from: @(#)operator.c	8.1 (Berkeley) 6/6/93";*/
     39  1.2  mycroft static char rcsid[] = "$Id: operator.c,v 1.3 1993/12/30 21:15:31 jtc Exp $";
     40  1.1      cgd #endif /* not lint */
     41  1.1      cgd 
     42  1.1      cgd #include <sys/types.h>
     43  1.3      jtc 
     44  1.3      jtc #include <err.h>
     45  1.3      jtc #include <fts.h>
     46  1.1      cgd #include <stdio.h>
     47  1.3      jtc 
     48  1.1      cgd #include "find.h"
     49  1.1      cgd 
     50  1.1      cgd /*
     51  1.1      cgd  * yanknode --
     52  1.1      cgd  *	destructively removes the top from the plan
     53  1.1      cgd  */
     54  1.1      cgd static PLAN *
     55  1.1      cgd yanknode(planp)
     56  1.1      cgd 	PLAN **planp;		/* pointer to top of plan (modified) */
     57  1.1      cgd {
     58  1.1      cgd 	PLAN *node;		/* top node removed from the plan */
     59  1.1      cgd 
     60  1.1      cgd 	if ((node = (*planp)) == NULL)
     61  1.3      jtc 		return (NULL);
     62  1.1      cgd 	(*planp) = (*planp)->next;
     63  1.1      cgd 	node->next = NULL;
     64  1.3      jtc 	return (node);
     65  1.1      cgd }
     66  1.1      cgd 
     67  1.1      cgd /*
     68  1.1      cgd  * yankexpr --
     69  1.1      cgd  *	Removes one expression from the plan.  This is used mainly by
     70  1.1      cgd  *	paren_squish.  In comments below, an expression is either a
     71  1.1      cgd  *	simple node or a N_EXPR node containing a list of simple nodes.
     72  1.1      cgd  */
     73  1.1      cgd static PLAN *
     74  1.1      cgd yankexpr(planp)
     75  1.1      cgd 	PLAN **planp;		/* pointer to top of plan (modified) */
     76  1.1      cgd {
     77  1.1      cgd 	register PLAN *next;	/* temp node holding subexpression results */
     78  1.1      cgd 	PLAN *node;		/* pointer to returned node or expression */
     79  1.1      cgd 	PLAN *tail;		/* pointer to tail of subplan */
     80  1.1      cgd 	PLAN *subplan;		/* pointer to head of ( ) expression */
     81  1.1      cgd 	int f_expr();
     82  1.1      cgd 
     83  1.1      cgd 	/* first pull the top node from the plan */
     84  1.1      cgd 	if ((node = yanknode(planp)) == NULL)
     85  1.3      jtc 		return (NULL);
     86  1.1      cgd 
     87  1.1      cgd 	/*
     88  1.1      cgd 	 * If the node is an '(' then we recursively slurp up expressions
     89  1.1      cgd 	 * until we find its associated ')'.  If it's a closing paren we
     90  1.1      cgd 	 * just return it and unwind our recursion; all other nodes are
     91  1.1      cgd 	 * complete expressions, so just return them.
     92  1.1      cgd 	 */
     93  1.1      cgd 	if (node->type == N_OPENPAREN)
     94  1.1      cgd 		for (tail = subplan = NULL;;) {
     95  1.1      cgd 			if ((next = yankexpr(planp)) == NULL)
     96  1.3      jtc 				err(1, "(: missing closing ')'");
     97  1.1      cgd 			/*
     98  1.1      cgd 			 * If we find a closing ')' we store the collected
     99  1.1      cgd 			 * subplan in our '(' node and convert the node to
    100  1.1      cgd 			 * a N_EXPR.  The ')' we found is ignored.  Otherwise,
    101  1.1      cgd 			 * we just continue to add whatever we get to our
    102  1.1      cgd 			 * subplan.
    103  1.1      cgd 			 */
    104  1.1      cgd 			if (next->type == N_CLOSEPAREN) {
    105  1.1      cgd 				if (subplan == NULL)
    106  1.3      jtc 					errx(1, "(): empty inner expression");
    107  1.1      cgd 				node->p_data[0] = subplan;
    108  1.1      cgd 				node->type = N_EXPR;
    109  1.1      cgd 				node->eval = f_expr;
    110  1.1      cgd 				break;
    111  1.1      cgd 			} else {
    112  1.1      cgd 				if (subplan == NULL)
    113  1.1      cgd 					tail = subplan = next;
    114  1.1      cgd 				else {
    115  1.1      cgd 					tail->next = next;
    116  1.1      cgd 					tail = next;
    117  1.1      cgd 				}
    118  1.1      cgd 				tail->next = NULL;
    119  1.1      cgd 			}
    120  1.1      cgd 		}
    121  1.3      jtc 	return (node);
    122  1.1      cgd }
    123  1.1      cgd 
    124  1.1      cgd /*
    125  1.1      cgd  * paren_squish --
    126  1.1      cgd  *	replaces "parentheisized" plans in our search plan with "expr" nodes.
    127  1.1      cgd  */
    128  1.1      cgd PLAN *
    129  1.1      cgd paren_squish(plan)
    130  1.1      cgd 	PLAN *plan;		/* plan with ( ) nodes */
    131  1.1      cgd {
    132  1.1      cgd 	register PLAN *expr;	/* pointer to next expression */
    133  1.1      cgd 	register PLAN *tail;	/* pointer to tail of result plan */
    134  1.1      cgd 	PLAN *result;		/* pointer to head of result plan */
    135  1.1      cgd 
    136  1.1      cgd 	result = tail = NULL;
    137  1.1      cgd 
    138  1.1      cgd 	/*
    139  1.1      cgd 	 * the basic idea is to have yankexpr do all our work and just
    140  1.1      cgd 	 * collect it's results together.
    141  1.1      cgd 	 */
    142  1.1      cgd 	while ((expr = yankexpr(&plan)) != NULL) {
    143  1.1      cgd 		/*
    144  1.1      cgd 		 * if we find an unclaimed ')' it means there is a missing
    145  1.1      cgd 		 * '(' someplace.
    146  1.1      cgd 		 */
    147  1.1      cgd 		if (expr->type == N_CLOSEPAREN)
    148  1.3      jtc 			errx(1, "): no beginning '('");
    149  1.1      cgd 
    150  1.1      cgd 		/* add the expression to our result plan */
    151  1.1      cgd 		if (result == NULL)
    152  1.1      cgd 			tail = result = expr;
    153  1.1      cgd 		else {
    154  1.1      cgd 			tail->next = expr;
    155  1.1      cgd 			tail = expr;
    156  1.1      cgd 		}
    157  1.1      cgd 		tail->next = NULL;
    158  1.1      cgd 	}
    159  1.3      jtc 	return (result);
    160  1.1      cgd }
    161  1.1      cgd 
    162  1.1      cgd /*
    163  1.1      cgd  * not_squish --
    164  1.1      cgd  *	compresses "!" expressions in our search plan.
    165  1.1      cgd  */
    166  1.1      cgd PLAN *
    167  1.1      cgd not_squish(plan)
    168  1.1      cgd 	PLAN *plan;		/* plan to process */
    169  1.1      cgd {
    170  1.1      cgd 	register PLAN *next;	/* next node being processed */
    171  1.1      cgd 	register PLAN *node;	/* temporary node used in N_NOT processing */
    172  1.1      cgd 	register PLAN *tail;	/* pointer to tail of result plan */
    173  1.1      cgd 	PLAN *result;		/* pointer to head of result plan */
    174  1.1      cgd 
    175  1.1      cgd 	tail = result = next = NULL;
    176  1.1      cgd 
    177  1.1      cgd 	while ((next = yanknode(&plan)) != NULL) {
    178  1.1      cgd 		/*
    179  1.1      cgd 		 * if we encounter a ( expression ) then look for nots in
    180  1.1      cgd 		 * the expr subplan.
    181  1.1      cgd 		 */
    182  1.1      cgd 		if (next->type == N_EXPR)
    183  1.1      cgd 			next->p_data[0] = not_squish(next->p_data[0]);
    184  1.1      cgd 
    185  1.1      cgd 		/*
    186  1.1      cgd 		 * if we encounter a not, then snag the next node and place
    187  1.1      cgd 		 * it in the not's subplan.  As an optimization we compress
    188  1.1      cgd 		 * several not's to zero or one not.
    189  1.1      cgd 		 */
    190  1.1      cgd 		if (next->type == N_NOT) {
    191  1.1      cgd 			int notlevel = 1;
    192  1.1      cgd 
    193  1.1      cgd 			node = yanknode(&plan);
    194  1.1      cgd 			while (node->type == N_NOT) {
    195  1.1      cgd 				++notlevel;
    196  1.1      cgd 				node = yanknode(&plan);
    197  1.1      cgd 			}
    198  1.1      cgd 			if (node == NULL)
    199  1.3      jtc 				errx(1, "!: no following expression");
    200  1.1      cgd 			if (node->type == N_OR)
    201  1.3      jtc 				errx(1, "!: nothing between ! and -o");
    202  1.1      cgd 			if (notlevel % 2 != 1)
    203  1.1      cgd 				next = node;
    204  1.1      cgd 			else
    205  1.1      cgd 				next->p_data[0] = node;
    206  1.1      cgd 		}
    207  1.1      cgd 
    208  1.1      cgd 		/* add the node to our result plan */
    209  1.1      cgd 		if (result == NULL)
    210  1.1      cgd 			tail = result = next;
    211  1.1      cgd 		else {
    212  1.1      cgd 			tail->next = next;
    213  1.1      cgd 			tail = next;
    214  1.1      cgd 		}
    215  1.1      cgd 		tail->next = NULL;
    216  1.1      cgd 	}
    217  1.3      jtc 	return (result);
    218  1.1      cgd }
    219  1.1      cgd 
    220  1.1      cgd /*
    221  1.1      cgd  * or_squish --
    222  1.1      cgd  *	compresses -o expressions in our search plan.
    223  1.1      cgd  */
    224  1.1      cgd PLAN *
    225  1.1      cgd or_squish(plan)
    226  1.1      cgd 	PLAN *plan;		/* plan with ors to be squished */
    227  1.1      cgd {
    228  1.1      cgd 	register PLAN *next;	/* next node being processed */
    229  1.1      cgd 	register PLAN *tail;	/* pointer to tail of result plan */
    230  1.1      cgd 	PLAN *result;		/* pointer to head of result plan */
    231  1.1      cgd 
    232  1.1      cgd 	tail = result = next = NULL;
    233  1.1      cgd 
    234  1.1      cgd 	while ((next = yanknode(&plan)) != NULL) {
    235  1.1      cgd 		/*
    236  1.1      cgd 		 * if we encounter a ( expression ) then look for or's in
    237  1.1      cgd 		 * the expr subplan.
    238  1.1      cgd 		 */
    239  1.1      cgd 		if (next->type == N_EXPR)
    240  1.1      cgd 			next->p_data[0] = or_squish(next->p_data[0]);
    241  1.1      cgd 
    242  1.1      cgd 		/* if we encounter a not then look for not's in the subplan */
    243  1.1      cgd 		if (next->type == N_NOT)
    244  1.1      cgd 			next->p_data[0] = or_squish(next->p_data[0]);
    245  1.1      cgd 
    246  1.1      cgd 		/*
    247  1.1      cgd 		 * if we encounter an or, then place our collected plan in the
    248  1.1      cgd 		 * or's first subplan and then recursively collect the
    249  1.1      cgd 		 * remaining stuff into the second subplan and return the or.
    250  1.1      cgd 		 */
    251  1.1      cgd 		if (next->type == N_OR) {
    252  1.1      cgd 			if (result == NULL)
    253  1.3      jtc 				errx(1, "-o: no expression before -o");
    254  1.1      cgd 			next->p_data[0] = result;
    255  1.1      cgd 			next->p_data[1] = or_squish(plan);
    256  1.1      cgd 			if (next->p_data[1] == NULL)
    257  1.3      jtc 				errx(1, "-o: no expression after -o");
    258  1.3      jtc 			return (next);
    259  1.1      cgd 		}
    260  1.1      cgd 
    261  1.1      cgd 		/* add the node to our result plan */
    262  1.1      cgd 		if (result == NULL)
    263  1.1      cgd 			tail = result = next;
    264  1.1      cgd 		else {
    265  1.1      cgd 			tail->next = next;
    266  1.1      cgd 			tail = next;
    267  1.1      cgd 		}
    268  1.1      cgd 		tail->next = NULL;
    269  1.1      cgd 	}
    270  1.3      jtc 	return (result);
    271  1.1      cgd }
    272