operator.c revision 1.4 1 1.4 tls /* $NetBSD: operator.c,v 1.4 1997/01/09 20:19:15 tls Exp $ */
2 1.4 tls
3 1.1 cgd /*-
4 1.3 jtc * Copyright (c) 1990, 1993
5 1.3 jtc * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * This code is derived from software contributed to Berkeley by
8 1.1 cgd * Cimarron D. Taylor of the University of California, Berkeley.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.1 cgd * 3. All advertising materials mentioning features or use of this software
19 1.1 cgd * must display the following acknowledgement:
20 1.1 cgd * This product includes software developed by the University of
21 1.1 cgd * California, Berkeley and its contributors.
22 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
23 1.1 cgd * may be used to endorse or promote products derived from this software
24 1.1 cgd * without specific prior written permission.
25 1.1 cgd *
26 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 1.1 cgd * SUCH DAMAGE.
37 1.1 cgd */
38 1.1 cgd
39 1.1 cgd #ifndef lint
40 1.3 jtc /*static char sccsid[] = "from: @(#)operator.c 8.1 (Berkeley) 6/6/93";*/
41 1.4 tls static char rcsid[] = "$NetBSD: operator.c,v 1.4 1997/01/09 20:19:15 tls Exp $";
42 1.1 cgd #endif /* not lint */
43 1.1 cgd
44 1.1 cgd #include <sys/types.h>
45 1.3 jtc
46 1.3 jtc #include <err.h>
47 1.3 jtc #include <fts.h>
48 1.1 cgd #include <stdio.h>
49 1.3 jtc
50 1.1 cgd #include "find.h"
51 1.1 cgd
52 1.1 cgd /*
53 1.1 cgd * yanknode --
54 1.1 cgd * destructively removes the top from the plan
55 1.1 cgd */
56 1.1 cgd static PLAN *
57 1.1 cgd yanknode(planp)
58 1.1 cgd PLAN **planp; /* pointer to top of plan (modified) */
59 1.1 cgd {
60 1.1 cgd PLAN *node; /* top node removed from the plan */
61 1.1 cgd
62 1.1 cgd if ((node = (*planp)) == NULL)
63 1.3 jtc return (NULL);
64 1.1 cgd (*planp) = (*planp)->next;
65 1.1 cgd node->next = NULL;
66 1.3 jtc return (node);
67 1.1 cgd }
68 1.1 cgd
69 1.1 cgd /*
70 1.1 cgd * yankexpr --
71 1.1 cgd * Removes one expression from the plan. This is used mainly by
72 1.1 cgd * paren_squish. In comments below, an expression is either a
73 1.1 cgd * simple node or a N_EXPR node containing a list of simple nodes.
74 1.1 cgd */
75 1.1 cgd static PLAN *
76 1.1 cgd yankexpr(planp)
77 1.1 cgd PLAN **planp; /* pointer to top of plan (modified) */
78 1.1 cgd {
79 1.1 cgd register PLAN *next; /* temp node holding subexpression results */
80 1.1 cgd PLAN *node; /* pointer to returned node or expression */
81 1.1 cgd PLAN *tail; /* pointer to tail of subplan */
82 1.1 cgd PLAN *subplan; /* pointer to head of ( ) expression */
83 1.1 cgd int f_expr();
84 1.1 cgd
85 1.1 cgd /* first pull the top node from the plan */
86 1.1 cgd if ((node = yanknode(planp)) == NULL)
87 1.3 jtc return (NULL);
88 1.1 cgd
89 1.1 cgd /*
90 1.1 cgd * If the node is an '(' then we recursively slurp up expressions
91 1.1 cgd * until we find its associated ')'. If it's a closing paren we
92 1.1 cgd * just return it and unwind our recursion; all other nodes are
93 1.1 cgd * complete expressions, so just return them.
94 1.1 cgd */
95 1.1 cgd if (node->type == N_OPENPAREN)
96 1.1 cgd for (tail = subplan = NULL;;) {
97 1.1 cgd if ((next = yankexpr(planp)) == NULL)
98 1.3 jtc err(1, "(: missing closing ')'");
99 1.1 cgd /*
100 1.1 cgd * If we find a closing ')' we store the collected
101 1.1 cgd * subplan in our '(' node and convert the node to
102 1.1 cgd * a N_EXPR. The ')' we found is ignored. Otherwise,
103 1.1 cgd * we just continue to add whatever we get to our
104 1.1 cgd * subplan.
105 1.1 cgd */
106 1.1 cgd if (next->type == N_CLOSEPAREN) {
107 1.1 cgd if (subplan == NULL)
108 1.3 jtc errx(1, "(): empty inner expression");
109 1.1 cgd node->p_data[0] = subplan;
110 1.1 cgd node->type = N_EXPR;
111 1.1 cgd node->eval = f_expr;
112 1.1 cgd break;
113 1.1 cgd } else {
114 1.1 cgd if (subplan == NULL)
115 1.1 cgd tail = subplan = next;
116 1.1 cgd else {
117 1.1 cgd tail->next = next;
118 1.1 cgd tail = next;
119 1.1 cgd }
120 1.1 cgd tail->next = NULL;
121 1.1 cgd }
122 1.1 cgd }
123 1.3 jtc return (node);
124 1.1 cgd }
125 1.1 cgd
126 1.1 cgd /*
127 1.1 cgd * paren_squish --
128 1.1 cgd * replaces "parentheisized" plans in our search plan with "expr" nodes.
129 1.1 cgd */
130 1.1 cgd PLAN *
131 1.1 cgd paren_squish(plan)
132 1.1 cgd PLAN *plan; /* plan with ( ) nodes */
133 1.1 cgd {
134 1.1 cgd register PLAN *expr; /* pointer to next expression */
135 1.1 cgd register PLAN *tail; /* pointer to tail of result plan */
136 1.1 cgd PLAN *result; /* pointer to head of result plan */
137 1.1 cgd
138 1.1 cgd result = tail = NULL;
139 1.1 cgd
140 1.1 cgd /*
141 1.1 cgd * the basic idea is to have yankexpr do all our work and just
142 1.1 cgd * collect it's results together.
143 1.1 cgd */
144 1.1 cgd while ((expr = yankexpr(&plan)) != NULL) {
145 1.1 cgd /*
146 1.1 cgd * if we find an unclaimed ')' it means there is a missing
147 1.1 cgd * '(' someplace.
148 1.1 cgd */
149 1.1 cgd if (expr->type == N_CLOSEPAREN)
150 1.3 jtc errx(1, "): no beginning '('");
151 1.1 cgd
152 1.1 cgd /* add the expression to our result plan */
153 1.1 cgd if (result == NULL)
154 1.1 cgd tail = result = expr;
155 1.1 cgd else {
156 1.1 cgd tail->next = expr;
157 1.1 cgd tail = expr;
158 1.1 cgd }
159 1.1 cgd tail->next = NULL;
160 1.1 cgd }
161 1.3 jtc return (result);
162 1.1 cgd }
163 1.1 cgd
164 1.1 cgd /*
165 1.1 cgd * not_squish --
166 1.1 cgd * compresses "!" expressions in our search plan.
167 1.1 cgd */
168 1.1 cgd PLAN *
169 1.1 cgd not_squish(plan)
170 1.1 cgd PLAN *plan; /* plan to process */
171 1.1 cgd {
172 1.1 cgd register PLAN *next; /* next node being processed */
173 1.1 cgd register PLAN *node; /* temporary node used in N_NOT processing */
174 1.1 cgd register PLAN *tail; /* pointer to tail of result plan */
175 1.1 cgd PLAN *result; /* pointer to head of result plan */
176 1.1 cgd
177 1.1 cgd tail = result = next = NULL;
178 1.1 cgd
179 1.1 cgd while ((next = yanknode(&plan)) != NULL) {
180 1.1 cgd /*
181 1.1 cgd * if we encounter a ( expression ) then look for nots in
182 1.1 cgd * the expr subplan.
183 1.1 cgd */
184 1.1 cgd if (next->type == N_EXPR)
185 1.1 cgd next->p_data[0] = not_squish(next->p_data[0]);
186 1.1 cgd
187 1.1 cgd /*
188 1.1 cgd * if we encounter a not, then snag the next node and place
189 1.1 cgd * it in the not's subplan. As an optimization we compress
190 1.1 cgd * several not's to zero or one not.
191 1.1 cgd */
192 1.1 cgd if (next->type == N_NOT) {
193 1.1 cgd int notlevel = 1;
194 1.1 cgd
195 1.1 cgd node = yanknode(&plan);
196 1.1 cgd while (node->type == N_NOT) {
197 1.1 cgd ++notlevel;
198 1.1 cgd node = yanknode(&plan);
199 1.1 cgd }
200 1.1 cgd if (node == NULL)
201 1.3 jtc errx(1, "!: no following expression");
202 1.1 cgd if (node->type == N_OR)
203 1.3 jtc errx(1, "!: nothing between ! and -o");
204 1.1 cgd if (notlevel % 2 != 1)
205 1.1 cgd next = node;
206 1.1 cgd else
207 1.1 cgd next->p_data[0] = node;
208 1.1 cgd }
209 1.1 cgd
210 1.1 cgd /* add the node to our result plan */
211 1.1 cgd if (result == NULL)
212 1.1 cgd tail = result = next;
213 1.1 cgd else {
214 1.1 cgd tail->next = next;
215 1.1 cgd tail = next;
216 1.1 cgd }
217 1.1 cgd tail->next = NULL;
218 1.1 cgd }
219 1.3 jtc return (result);
220 1.1 cgd }
221 1.1 cgd
222 1.1 cgd /*
223 1.1 cgd * or_squish --
224 1.1 cgd * compresses -o expressions in our search plan.
225 1.1 cgd */
226 1.1 cgd PLAN *
227 1.1 cgd or_squish(plan)
228 1.1 cgd PLAN *plan; /* plan with ors to be squished */
229 1.1 cgd {
230 1.1 cgd register PLAN *next; /* next node being processed */
231 1.1 cgd register PLAN *tail; /* pointer to tail of result plan */
232 1.1 cgd PLAN *result; /* pointer to head of result plan */
233 1.1 cgd
234 1.1 cgd tail = result = next = NULL;
235 1.1 cgd
236 1.1 cgd while ((next = yanknode(&plan)) != NULL) {
237 1.1 cgd /*
238 1.1 cgd * if we encounter a ( expression ) then look for or's in
239 1.1 cgd * the expr subplan.
240 1.1 cgd */
241 1.1 cgd if (next->type == N_EXPR)
242 1.1 cgd next->p_data[0] = or_squish(next->p_data[0]);
243 1.1 cgd
244 1.1 cgd /* if we encounter a not then look for not's in the subplan */
245 1.1 cgd if (next->type == N_NOT)
246 1.1 cgd next->p_data[0] = or_squish(next->p_data[0]);
247 1.1 cgd
248 1.1 cgd /*
249 1.1 cgd * if we encounter an or, then place our collected plan in the
250 1.1 cgd * or's first subplan and then recursively collect the
251 1.1 cgd * remaining stuff into the second subplan and return the or.
252 1.1 cgd */
253 1.1 cgd if (next->type == N_OR) {
254 1.1 cgd if (result == NULL)
255 1.3 jtc errx(1, "-o: no expression before -o");
256 1.1 cgd next->p_data[0] = result;
257 1.1 cgd next->p_data[1] = or_squish(plan);
258 1.1 cgd if (next->p_data[1] == NULL)
259 1.3 jtc errx(1, "-o: no expression after -o");
260 1.3 jtc return (next);
261 1.1 cgd }
262 1.1 cgd
263 1.1 cgd /* add the node to our result plan */
264 1.1 cgd if (result == NULL)
265 1.1 cgd tail = result = next;
266 1.1 cgd else {
267 1.1 cgd tail->next = next;
268 1.1 cgd tail = next;
269 1.1 cgd }
270 1.1 cgd tail->next = NULL;
271 1.1 cgd }
272 1.3 jtc return (result);
273 1.1 cgd }
274