operator.c revision 1.8 1 1.8 agc /* $NetBSD: operator.c,v 1.8 2003/08/07 11:13:43 agc Exp $ */
2 1.4 tls
3 1.1 cgd /*-
4 1.3 jtc * Copyright (c) 1990, 1993
5 1.3 jtc * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * This code is derived from software contributed to Berkeley by
8 1.1 cgd * Cimarron D. Taylor of the University of California, Berkeley.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.8 agc * 3. Neither the name of the University nor the names of its contributors
19 1.1 cgd * may be used to endorse or promote products derived from this software
20 1.1 cgd * without specific prior written permission.
21 1.1 cgd *
22 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 cgd * SUCH DAMAGE.
33 1.1 cgd */
34 1.1 cgd
35 1.5 lukem #include <sys/cdefs.h>
36 1.1 cgd #ifndef lint
37 1.5 lukem #if 0
38 1.5 lukem static char sccsid[] = "from: @(#)operator.c 8.1 (Berkeley) 6/6/93";
39 1.5 lukem #else
40 1.8 agc __RCSID("$NetBSD: operator.c,v 1.8 2003/08/07 11:13:43 agc Exp $");
41 1.5 lukem #endif
42 1.1 cgd #endif /* not lint */
43 1.1 cgd
44 1.1 cgd #include <sys/types.h>
45 1.3 jtc
46 1.3 jtc #include <err.h>
47 1.3 jtc #include <fts.h>
48 1.1 cgd #include <stdio.h>
49 1.3 jtc
50 1.1 cgd #include "find.h"
51 1.1 cgd
52 1.6 christos static PLAN *yanknode __P((PLAN **));
53 1.6 christos static PLAN *yankexpr __P((PLAN **));
54 1.6 christos
55 1.1 cgd /*
56 1.1 cgd * yanknode --
57 1.1 cgd * destructively removes the top from the plan
58 1.1 cgd */
59 1.1 cgd static PLAN *
60 1.1 cgd yanknode(planp)
61 1.1 cgd PLAN **planp; /* pointer to top of plan (modified) */
62 1.1 cgd {
63 1.1 cgd PLAN *node; /* top node removed from the plan */
64 1.1 cgd
65 1.1 cgd if ((node = (*planp)) == NULL)
66 1.3 jtc return (NULL);
67 1.1 cgd (*planp) = (*planp)->next;
68 1.1 cgd node->next = NULL;
69 1.3 jtc return (node);
70 1.1 cgd }
71 1.1 cgd
72 1.1 cgd /*
73 1.1 cgd * yankexpr --
74 1.1 cgd * Removes one expression from the plan. This is used mainly by
75 1.1 cgd * paren_squish. In comments below, an expression is either a
76 1.1 cgd * simple node or a N_EXPR node containing a list of simple nodes.
77 1.1 cgd */
78 1.1 cgd static PLAN *
79 1.1 cgd yankexpr(planp)
80 1.1 cgd PLAN **planp; /* pointer to top of plan (modified) */
81 1.1 cgd {
82 1.5 lukem PLAN *next; /* temp node holding subexpression results */
83 1.1 cgd PLAN *node; /* pointer to returned node or expression */
84 1.1 cgd PLAN *tail; /* pointer to tail of subplan */
85 1.1 cgd PLAN *subplan; /* pointer to head of ( ) expression */
86 1.1 cgd
87 1.1 cgd /* first pull the top node from the plan */
88 1.1 cgd if ((node = yanknode(planp)) == NULL)
89 1.3 jtc return (NULL);
90 1.1 cgd
91 1.1 cgd /*
92 1.1 cgd * If the node is an '(' then we recursively slurp up expressions
93 1.1 cgd * until we find its associated ')'. If it's a closing paren we
94 1.1 cgd * just return it and unwind our recursion; all other nodes are
95 1.1 cgd * complete expressions, so just return them.
96 1.1 cgd */
97 1.1 cgd if (node->type == N_OPENPAREN)
98 1.1 cgd for (tail = subplan = NULL;;) {
99 1.1 cgd if ((next = yankexpr(planp)) == NULL)
100 1.3 jtc err(1, "(: missing closing ')'");
101 1.1 cgd /*
102 1.1 cgd * If we find a closing ')' we store the collected
103 1.1 cgd * subplan in our '(' node and convert the node to
104 1.1 cgd * a N_EXPR. The ')' we found is ignored. Otherwise,
105 1.1 cgd * we just continue to add whatever we get to our
106 1.1 cgd * subplan.
107 1.1 cgd */
108 1.1 cgd if (next->type == N_CLOSEPAREN) {
109 1.1 cgd if (subplan == NULL)
110 1.3 jtc errx(1, "(): empty inner expression");
111 1.1 cgd node->p_data[0] = subplan;
112 1.1 cgd node->type = N_EXPR;
113 1.1 cgd node->eval = f_expr;
114 1.1 cgd break;
115 1.1 cgd } else {
116 1.1 cgd if (subplan == NULL)
117 1.1 cgd tail = subplan = next;
118 1.1 cgd else {
119 1.1 cgd tail->next = next;
120 1.1 cgd tail = next;
121 1.1 cgd }
122 1.1 cgd tail->next = NULL;
123 1.1 cgd }
124 1.1 cgd }
125 1.3 jtc return (node);
126 1.1 cgd }
127 1.1 cgd
128 1.1 cgd /*
129 1.1 cgd * paren_squish --
130 1.1 cgd * replaces "parentheisized" plans in our search plan with "expr" nodes.
131 1.1 cgd */
132 1.1 cgd PLAN *
133 1.1 cgd paren_squish(plan)
134 1.1 cgd PLAN *plan; /* plan with ( ) nodes */
135 1.1 cgd {
136 1.5 lukem PLAN *expr; /* pointer to next expression */
137 1.5 lukem PLAN *tail; /* pointer to tail of result plan */
138 1.1 cgd PLAN *result; /* pointer to head of result plan */
139 1.1 cgd
140 1.1 cgd result = tail = NULL;
141 1.1 cgd
142 1.1 cgd /*
143 1.1 cgd * the basic idea is to have yankexpr do all our work and just
144 1.1 cgd * collect it's results together.
145 1.1 cgd */
146 1.1 cgd while ((expr = yankexpr(&plan)) != NULL) {
147 1.1 cgd /*
148 1.1 cgd * if we find an unclaimed ')' it means there is a missing
149 1.1 cgd * '(' someplace.
150 1.1 cgd */
151 1.1 cgd if (expr->type == N_CLOSEPAREN)
152 1.3 jtc errx(1, "): no beginning '('");
153 1.1 cgd
154 1.1 cgd /* add the expression to our result plan */
155 1.1 cgd if (result == NULL)
156 1.1 cgd tail = result = expr;
157 1.1 cgd else {
158 1.1 cgd tail->next = expr;
159 1.1 cgd tail = expr;
160 1.1 cgd }
161 1.1 cgd tail->next = NULL;
162 1.1 cgd }
163 1.3 jtc return (result);
164 1.1 cgd }
165 1.1 cgd
166 1.1 cgd /*
167 1.1 cgd * not_squish --
168 1.1 cgd * compresses "!" expressions in our search plan.
169 1.1 cgd */
170 1.1 cgd PLAN *
171 1.1 cgd not_squish(plan)
172 1.1 cgd PLAN *plan; /* plan to process */
173 1.1 cgd {
174 1.5 lukem PLAN *next; /* next node being processed */
175 1.5 lukem PLAN *node; /* temporary node used in N_NOT processing */
176 1.5 lukem PLAN *tail; /* pointer to tail of result plan */
177 1.1 cgd PLAN *result; /* pointer to head of result plan */
178 1.1 cgd
179 1.1 cgd tail = result = next = NULL;
180 1.1 cgd
181 1.1 cgd while ((next = yanknode(&plan)) != NULL) {
182 1.1 cgd /*
183 1.1 cgd * if we encounter a ( expression ) then look for nots in
184 1.1 cgd * the expr subplan.
185 1.1 cgd */
186 1.1 cgd if (next->type == N_EXPR)
187 1.1 cgd next->p_data[0] = not_squish(next->p_data[0]);
188 1.1 cgd
189 1.1 cgd /*
190 1.1 cgd * if we encounter a not, then snag the next node and place
191 1.1 cgd * it in the not's subplan. As an optimization we compress
192 1.1 cgd * several not's to zero or one not.
193 1.1 cgd */
194 1.1 cgd if (next->type == N_NOT) {
195 1.1 cgd int notlevel = 1;
196 1.1 cgd
197 1.1 cgd node = yanknode(&plan);
198 1.7 lukem while (node != NULL && node->type == N_NOT) {
199 1.1 cgd ++notlevel;
200 1.1 cgd node = yanknode(&plan);
201 1.1 cgd }
202 1.1 cgd if (node == NULL)
203 1.3 jtc errx(1, "!: no following expression");
204 1.1 cgd if (node->type == N_OR)
205 1.3 jtc errx(1, "!: nothing between ! and -o");
206 1.7 lukem if (node->type == N_EXPR)
207 1.7 lukem node = not_squish(node);
208 1.1 cgd if (notlevel % 2 != 1)
209 1.1 cgd next = node;
210 1.1 cgd else
211 1.1 cgd next->p_data[0] = node;
212 1.1 cgd }
213 1.1 cgd
214 1.1 cgd /* add the node to our result plan */
215 1.1 cgd if (result == NULL)
216 1.1 cgd tail = result = next;
217 1.1 cgd else {
218 1.1 cgd tail->next = next;
219 1.1 cgd tail = next;
220 1.1 cgd }
221 1.1 cgd tail->next = NULL;
222 1.1 cgd }
223 1.3 jtc return (result);
224 1.1 cgd }
225 1.1 cgd
226 1.1 cgd /*
227 1.1 cgd * or_squish --
228 1.1 cgd * compresses -o expressions in our search plan.
229 1.1 cgd */
230 1.1 cgd PLAN *
231 1.1 cgd or_squish(plan)
232 1.1 cgd PLAN *plan; /* plan with ors to be squished */
233 1.1 cgd {
234 1.5 lukem PLAN *next; /* next node being processed */
235 1.5 lukem PLAN *tail; /* pointer to tail of result plan */
236 1.1 cgd PLAN *result; /* pointer to head of result plan */
237 1.1 cgd
238 1.1 cgd tail = result = next = NULL;
239 1.1 cgd
240 1.1 cgd while ((next = yanknode(&plan)) != NULL) {
241 1.1 cgd /*
242 1.1 cgd * if we encounter a ( expression ) then look for or's in
243 1.1 cgd * the expr subplan.
244 1.1 cgd */
245 1.1 cgd if (next->type == N_EXPR)
246 1.1 cgd next->p_data[0] = or_squish(next->p_data[0]);
247 1.1 cgd
248 1.1 cgd /* if we encounter a not then look for not's in the subplan */
249 1.1 cgd if (next->type == N_NOT)
250 1.1 cgd next->p_data[0] = or_squish(next->p_data[0]);
251 1.1 cgd
252 1.1 cgd /*
253 1.1 cgd * if we encounter an or, then place our collected plan in the
254 1.1 cgd * or's first subplan and then recursively collect the
255 1.1 cgd * remaining stuff into the second subplan and return the or.
256 1.1 cgd */
257 1.1 cgd if (next->type == N_OR) {
258 1.1 cgd if (result == NULL)
259 1.3 jtc errx(1, "-o: no expression before -o");
260 1.1 cgd next->p_data[0] = result;
261 1.1 cgd next->p_data[1] = or_squish(plan);
262 1.1 cgd if (next->p_data[1] == NULL)
263 1.3 jtc errx(1, "-o: no expression after -o");
264 1.3 jtc return (next);
265 1.1 cgd }
266 1.1 cgd
267 1.1 cgd /* add the node to our result plan */
268 1.1 cgd if (result == NULL)
269 1.1 cgd tail = result = next;
270 1.1 cgd else {
271 1.1 cgd tail->next = next;
272 1.1 cgd tail = next;
273 1.1 cgd }
274 1.1 cgd tail->next = NULL;
275 1.1 cgd }
276 1.3 jtc return (result);
277 1.1 cgd }
278