Home | History | Annotate | Line # | Download | only in find
operator.c revision 1.9
      1  1.9       apb /*	$NetBSD: operator.c,v 1.9 2006/10/11 19:51:10 apb Exp $	*/
      2  1.4       tls 
      3  1.1       cgd /*-
      4  1.3       jtc  * Copyright (c) 1990, 1993
      5  1.3       jtc  *	The Regents of the University of California.  All rights reserved.
      6  1.1       cgd  *
      7  1.1       cgd  * This code is derived from software contributed to Berkeley by
      8  1.1       cgd  * Cimarron D. Taylor of the University of California, Berkeley.
      9  1.1       cgd  *
     10  1.1       cgd  * Redistribution and use in source and binary forms, with or without
     11  1.1       cgd  * modification, are permitted provided that the following conditions
     12  1.1       cgd  * are met:
     13  1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     14  1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     15  1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     17  1.1       cgd  *    documentation and/or other materials provided with the distribution.
     18  1.8       agc  * 3. Neither the name of the University nor the names of its contributors
     19  1.1       cgd  *    may be used to endorse or promote products derived from this software
     20  1.1       cgd  *    without specific prior written permission.
     21  1.1       cgd  *
     22  1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  1.1       cgd  * SUCH DAMAGE.
     33  1.1       cgd  */
     34  1.1       cgd 
     35  1.5     lukem #include <sys/cdefs.h>
     36  1.1       cgd #ifndef lint
     37  1.5     lukem #if 0
     38  1.5     lukem static char sccsid[] = "from: @(#)operator.c	8.1 (Berkeley) 6/6/93";
     39  1.5     lukem #else
     40  1.9       apb __RCSID("$NetBSD: operator.c,v 1.9 2006/10/11 19:51:10 apb Exp $");
     41  1.5     lukem #endif
     42  1.1       cgd #endif /* not lint */
     43  1.1       cgd 
     44  1.1       cgd #include <sys/types.h>
     45  1.3       jtc 
     46  1.3       jtc #include <err.h>
     47  1.3       jtc #include <fts.h>
     48  1.1       cgd #include <stdio.h>
     49  1.3       jtc 
     50  1.1       cgd #include "find.h"
     51  1.9       apb 
     52  1.9       apb static PLAN *yanknode(PLAN **);
     53  1.9       apb static PLAN *yankexpr(PLAN **);
     54  1.6  christos 
     55  1.1       cgd /*
     56  1.1       cgd  * yanknode --
     57  1.1       cgd  *	destructively removes the top from the plan
     58  1.1       cgd  */
     59  1.1       cgd static PLAN *
     60  1.9       apb yanknode(PLAN **planp)		/* pointer to top of plan (modified) */
     61  1.1       cgd {
     62  1.1       cgd 	PLAN *node;		/* top node removed from the plan */
     63  1.9       apb 
     64  1.1       cgd 	if ((node = (*planp)) == NULL)
     65  1.3       jtc 		return (NULL);
     66  1.1       cgd 	(*planp) = (*planp)->next;
     67  1.1       cgd 	node->next = NULL;
     68  1.3       jtc 	return (node);
     69  1.1       cgd }
     70  1.9       apb 
     71  1.1       cgd /*
     72  1.1       cgd  * yankexpr --
     73  1.1       cgd  *	Removes one expression from the plan.  This is used mainly by
     74  1.1       cgd  *	paren_squish.  In comments below, an expression is either a
     75  1.1       cgd  *	simple node or a N_EXPR node containing a list of simple nodes.
     76  1.1       cgd  */
     77  1.1       cgd static PLAN *
     78  1.9       apb yankexpr(PLAN **planp)		/* pointer to top of plan (modified) */
     79  1.1       cgd {
     80  1.5     lukem 	PLAN *next;		/* temp node holding subexpression results */
     81  1.1       cgd 	PLAN *node;		/* pointer to returned node or expression */
     82  1.1       cgd 	PLAN *tail;		/* pointer to tail of subplan */
     83  1.1       cgd 	PLAN *subplan;		/* pointer to head of ( ) expression */
     84  1.9       apb 
     85  1.1       cgd 	/* first pull the top node from the plan */
     86  1.1       cgd 	if ((node = yanknode(planp)) == NULL)
     87  1.3       jtc 		return (NULL);
     88  1.9       apb 
     89  1.1       cgd 	/*
     90  1.1       cgd 	 * If the node is an '(' then we recursively slurp up expressions
     91  1.1       cgd 	 * until we find its associated ')'.  If it's a closing paren we
     92  1.1       cgd 	 * just return it and unwind our recursion; all other nodes are
     93  1.1       cgd 	 * complete expressions, so just return them.
     94  1.1       cgd 	 */
     95  1.1       cgd 	if (node->type == N_OPENPAREN)
     96  1.1       cgd 		for (tail = subplan = NULL;;) {
     97  1.1       cgd 			if ((next = yankexpr(planp)) == NULL)
     98  1.3       jtc 				err(1, "(: missing closing ')'");
     99  1.1       cgd 			/*
    100  1.1       cgd 			 * If we find a closing ')' we store the collected
    101  1.1       cgd 			 * subplan in our '(' node and convert the node to
    102  1.1       cgd 			 * a N_EXPR.  The ')' we found is ignored.  Otherwise,
    103  1.1       cgd 			 * we just continue to add whatever we get to our
    104  1.1       cgd 			 * subplan.
    105  1.1       cgd 			 */
    106  1.1       cgd 			if (next->type == N_CLOSEPAREN) {
    107  1.1       cgd 				if (subplan == NULL)
    108  1.3       jtc 					errx(1, "(): empty inner expression");
    109  1.1       cgd 				node->p_data[0] = subplan;
    110  1.1       cgd 				node->type = N_EXPR;
    111  1.1       cgd 				node->eval = f_expr;
    112  1.1       cgd 				break;
    113  1.1       cgd 			} else {
    114  1.1       cgd 				if (subplan == NULL)
    115  1.1       cgd 					tail = subplan = next;
    116  1.1       cgd 				else {
    117  1.1       cgd 					tail->next = next;
    118  1.1       cgd 					tail = next;
    119  1.1       cgd 				}
    120  1.1       cgd 				tail->next = NULL;
    121  1.1       cgd 			}
    122  1.1       cgd 		}
    123  1.3       jtc 	return (node);
    124  1.1       cgd }
    125  1.9       apb 
    126  1.1       cgd /*
    127  1.1       cgd  * paren_squish --
    128  1.1       cgd  *	replaces "parentheisized" plans in our search plan with "expr" nodes.
    129  1.1       cgd  */
    130  1.1       cgd PLAN *
    131  1.9       apb paren_squish(PLAN *plan)	/* plan with ( ) nodes */
    132  1.1       cgd {
    133  1.5     lukem 	PLAN *expr;		/* pointer to next expression */
    134  1.5     lukem 	PLAN *tail;		/* pointer to tail of result plan */
    135  1.1       cgd 	PLAN *result;		/* pointer to head of result plan */
    136  1.9       apb 
    137  1.1       cgd 	result = tail = NULL;
    138  1.1       cgd 
    139  1.1       cgd 	/*
    140  1.1       cgd 	 * the basic idea is to have yankexpr do all our work and just
    141  1.1       cgd 	 * collect it's results together.
    142  1.1       cgd 	 */
    143  1.1       cgd 	while ((expr = yankexpr(&plan)) != NULL) {
    144  1.1       cgd 		/*
    145  1.1       cgd 		 * if we find an unclaimed ')' it means there is a missing
    146  1.1       cgd 		 * '(' someplace.
    147  1.1       cgd 		 */
    148  1.1       cgd 		if (expr->type == N_CLOSEPAREN)
    149  1.3       jtc 			errx(1, "): no beginning '('");
    150  1.1       cgd 
    151  1.1       cgd 		/* add the expression to our result plan */
    152  1.1       cgd 		if (result == NULL)
    153  1.1       cgd 			tail = result = expr;
    154  1.1       cgd 		else {
    155  1.1       cgd 			tail->next = expr;
    156  1.1       cgd 			tail = expr;
    157  1.1       cgd 		}
    158  1.1       cgd 		tail->next = NULL;
    159  1.1       cgd 	}
    160  1.3       jtc 	return (result);
    161  1.1       cgd }
    162  1.9       apb 
    163  1.1       cgd /*
    164  1.1       cgd  * not_squish --
    165  1.1       cgd  *	compresses "!" expressions in our search plan.
    166  1.1       cgd  */
    167  1.1       cgd PLAN *
    168  1.9       apb not_squish(PLAN *plan)		/* plan to process */
    169  1.1       cgd {
    170  1.5     lukem 	PLAN *next;		/* next node being processed */
    171  1.5     lukem 	PLAN *node;		/* temporary node used in N_NOT processing */
    172  1.5     lukem 	PLAN *tail;		/* pointer to tail of result plan */
    173  1.1       cgd 	PLAN *result;		/* pointer to head of result plan */
    174  1.9       apb 
    175  1.1       cgd 	tail = result = next = NULL;
    176  1.9       apb 
    177  1.1       cgd 	while ((next = yanknode(&plan)) != NULL) {
    178  1.1       cgd 		/*
    179  1.1       cgd 		 * if we encounter a ( expression ) then look for nots in
    180  1.1       cgd 		 * the expr subplan.
    181  1.1       cgd 		 */
    182  1.1       cgd 		if (next->type == N_EXPR)
    183  1.1       cgd 			next->p_data[0] = not_squish(next->p_data[0]);
    184  1.1       cgd 
    185  1.1       cgd 		/*
    186  1.1       cgd 		 * if we encounter a not, then snag the next node and place
    187  1.1       cgd 		 * it in the not's subplan.  As an optimization we compress
    188  1.1       cgd 		 * several not's to zero or one not.
    189  1.1       cgd 		 */
    190  1.1       cgd 		if (next->type == N_NOT) {
    191  1.1       cgd 			int notlevel = 1;
    192  1.1       cgd 
    193  1.1       cgd 			node = yanknode(&plan);
    194  1.7     lukem 			while (node != NULL && node->type == N_NOT) {
    195  1.1       cgd 				++notlevel;
    196  1.1       cgd 				node = yanknode(&plan);
    197  1.1       cgd 			}
    198  1.1       cgd 			if (node == NULL)
    199  1.3       jtc 				errx(1, "!: no following expression");
    200  1.1       cgd 			if (node->type == N_OR)
    201  1.3       jtc 				errx(1, "!: nothing between ! and -o");
    202  1.7     lukem 			if (node->type == N_EXPR)
    203  1.7     lukem 				node = not_squish(node);
    204  1.1       cgd 			if (notlevel % 2 != 1)
    205  1.1       cgd 				next = node;
    206  1.1       cgd 			else
    207  1.1       cgd 				next->p_data[0] = node;
    208  1.1       cgd 		}
    209  1.1       cgd 
    210  1.1       cgd 		/* add the node to our result plan */
    211  1.1       cgd 		if (result == NULL)
    212  1.1       cgd 			tail = result = next;
    213  1.1       cgd 		else {
    214  1.1       cgd 			tail->next = next;
    215  1.1       cgd 			tail = next;
    216  1.1       cgd 		}
    217  1.1       cgd 		tail->next = NULL;
    218  1.1       cgd 	}
    219  1.3       jtc 	return (result);
    220  1.1       cgd }
    221  1.9       apb 
    222  1.1       cgd /*
    223  1.1       cgd  * or_squish --
    224  1.1       cgd  *	compresses -o expressions in our search plan.
    225  1.1       cgd  */
    226  1.1       cgd PLAN *
    227  1.9       apb or_squish(PLAN *plan)		/* plan with ors to be squished */
    228  1.1       cgd {
    229  1.5     lukem 	PLAN *next;		/* next node being processed */
    230  1.5     lukem 	PLAN *tail;		/* pointer to tail of result plan */
    231  1.1       cgd 	PLAN *result;		/* pointer to head of result plan */
    232  1.9       apb 
    233  1.1       cgd 	tail = result = next = NULL;
    234  1.9       apb 
    235  1.1       cgd 	while ((next = yanknode(&plan)) != NULL) {
    236  1.1       cgd 		/*
    237  1.1       cgd 		 * if we encounter a ( expression ) then look for or's in
    238  1.1       cgd 		 * the expr subplan.
    239  1.1       cgd 		 */
    240  1.1       cgd 		if (next->type == N_EXPR)
    241  1.1       cgd 			next->p_data[0] = or_squish(next->p_data[0]);
    242  1.1       cgd 
    243  1.1       cgd 		/* if we encounter a not then look for not's in the subplan */
    244  1.1       cgd 		if (next->type == N_NOT)
    245  1.1       cgd 			next->p_data[0] = or_squish(next->p_data[0]);
    246  1.1       cgd 
    247  1.1       cgd 		/*
    248  1.1       cgd 		 * if we encounter an or, then place our collected plan in the
    249  1.1       cgd 		 * or's first subplan and then recursively collect the
    250  1.1       cgd 		 * remaining stuff into the second subplan and return the or.
    251  1.1       cgd 		 */
    252  1.1       cgd 		if (next->type == N_OR) {
    253  1.1       cgd 			if (result == NULL)
    254  1.3       jtc 				errx(1, "-o: no expression before -o");
    255  1.1       cgd 			next->p_data[0] = result;
    256  1.1       cgd 			next->p_data[1] = or_squish(plan);
    257  1.1       cgd 			if (next->p_data[1] == NULL)
    258  1.3       jtc 				errx(1, "-o: no expression after -o");
    259  1.3       jtc 			return (next);
    260  1.1       cgd 		}
    261  1.1       cgd 
    262  1.1       cgd 		/* add the node to our result plan */
    263  1.1       cgd 		if (result == NULL)
    264  1.1       cgd 			tail = result = next;
    265  1.1       cgd 		else {
    266  1.1       cgd 			tail->next = next;
    267  1.1       cgd 			tail = next;
    268  1.1       cgd 		}
    269  1.1       cgd 		tail->next = NULL;
    270  1.1       cgd 	}
    271  1.3       jtc 	return (result);
    272  1.1       cgd }
    273